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Modeling of sound propagation in porous media requires the knowledge of several intrinsic mate-

rial parameters, some of which are difficult or impossible to measure directly, particularly in the

case of a porous medium which is composed of pores with a wide range of scales and random inter-

connections. Four particular parameters which are rarely measured non-acoustically, but used

extensively in a number of acoustical models, are the viscous and thermal characteristic lengths,

thermal permeability, and Pride parameter. The main purpose of this work is to show how these pa-

rameters relate to the pore size distribution which is a routine characteristic measured non-

acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical

models which have been developed previously to predict the dynamic density and/or compressibil-

ity of the equivalent fluid in a porous medium. In this work the models proposed by Johnson,

Koplik, and Dashn [J. Fluid Mech. 176, 379–402 (1987)], Champoux and Allard [J. Appl. Phys.

70(4), 1975–1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964–4978 (1993)], and

Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198–1209 (1998)]

are compared. The findings are then used to compare the behavior of the complex dynamic density

and compressibility of the fluid in a material pore with uniform and variable cross-sections.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4947540]
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I. INTRODUCTION

The ability to accurately predict sound propagation in po-

rous media is essential for many areas of science and engi-

neering. Typical examples include non-invasive inspection of

porous bones, outdoor sound propagation in presence of po-

rous ground, underwater sound propagation in the presence of

porous sediments, and noise control. A majority of models

which are used for these purposes are equivalent fluid models

in which the fluid trapped in the material pores is typically

presented as a homogeneous, equivalent fluid with complex,

frequency dependent acoustic characteristic impedance, zðxÞ,
and complex wavenumber, kðxÞ. Here x ¼ 2pf is the angular

frequency, where f is the frequency in Hz. In practical calcula-

tions these are usually the properties of bulk medium, rather

than to the fluid properties in a single pore. The value of the

characteristic impedance and the boundary conditions sur-

rounding the porous layer determine the ability of sound

waves to penetrate this layer. The value of the complex wave-

number relates to the speed of the sound wave in the porous

space and the rate at which it attenuates.

The models used to predict the acoustic impedance and

wavenumber require the accurate knowledge of several intrin-

sic material parameters some of which are difficult to measure

non-acoustically. A most common class of these models is

based on the works by Johnson et al.1 and Champoux and

Allard.2 Johnson et al. introduced the concept of the viscous

characteristic length which is the ratio [see Eq. (2.17) in Ref. 1]

K ¼ 2

ð
ju rð Þj2dVð
ju rwð Þj2dA

; (1)

where u(r) is the seepage velocity vector of the fluid in the

material pores which is excited by the incident sound wave.

The integration in the denominator of Eq. (1) is carried out

over the pore-frame interface of the pore area, A, whereas

the integration in the numerator in Eq. (1) is carried out with

respect to the pore volume, V. According to Johnson et al.,
“K is the volume-to-surface ratio of the pore-solid interface

in which each area or volume element is weighted according

to the local value of the field u(r).”1 The main use of the vis-

cous characteristic length is to define the characteristic pore

scale so that the complex, frequency dependent dynamic tor-

tuosity [Eq. (3.4a) in Ref. 1]

~a xð Þ ¼ a1 1þ r/
ia1q0x

1þ 4ia2
1gq0x

r2K2/2

 !1=2
2
4

3
5 (2)

and the dynamic density [Eq. (3) in Ref. 2]a)Electronic mail: k.horoshenkov@sheffield.ac.uk
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~qðxÞ ¼ ~aðxÞq0=/ (3)

of the fluid which fills the material pores can be predicted. In

the above equations q0 is the equilibrium fluid density, a1 is

the geometric tortuosity, r is the static air flow resistivity, g
is the dynamic viscosity of the fluid, / is the material poros-

ity, and i ¼
ffiffiffiffiffiffiffi
�1
p

. According to Johnson et al., the dynamic

density is related to the dynamic permeability as

~j xð Þ ¼ ig/
~a xð Þx (4)

[Eq. (2.1c) in Ref. 1]. In many cases, the Johnson et al. model

is used with the low frequency viscous permeability,

j0 ¼ limx!0 jðxÞ, so that the flow resistivity, r, is replaced

with j0 ¼ g=r to avoid the influence of the properties of the

saturating fluid. It is worth noting that the expression of the

dynamic density we present in this paper [Eq. (3)] is given for

the bulk medium; therefore, it is normalized by the medium po-

rosity /. In this sense, Eq. (3.4a) for the dynamic tortuosity in

Ref. 1 and Eq. (3) for the dynamic density in Ref. 2 are given

for a sound propagation in a single pore and these need normal-

izing by / if used to describe the bulk medium. The tilde over

a symbol in the above equations and in the following text sug-

gest that the frequency-dependent quantity is for the fluid in a

pore which cross-section varies along the pore length.

There are a number of reliable non-acoustic laboratory

techniques to measure the porosity, tortuosity, and flow re-

sistivity (or viscous permeability) which are well detailed in

Chap. 5 in Ref. 3. However, measuring the viscous charac-

teristic length seems rather problematic. Traditionally, the

value of K has either been adjusted to make the model fit

(e.g., see Sec. IV in Ref. 2) or estimated from the high-

frequency behavior of the dynamic density (e.g., Refs. 5 and

6) or from the impedance tube data (e.g., Ref. 7).

The model proposed by Johnson et al.1 works well

for a porous medium which can be approximated with a

network of non-intersecting tubes with a uniform cross-

section. For the materials with non-uniform pores, the

knowledge of K is not sufficient to account for the ther-

mal dissipation effects and to satisfy the actual asymptotic

behavior of the frequency-dependent sound speed in this

type of porous media in the low- and high-frequency lim-

its. The viscous losses are larger in the narrowest parts of

the pore and these parts are described with the character-

istic dimension K. The thermal losses are larger in the

wider parts of the pore which need to be characterized

with the thermal characteristic length. Champoux and

Allard2 suggested that these effects should be properly

accounted for through the dynamic bulk modulus, which

is given by

~K xð Þ ¼ cP0

/
c� c� 1

1� ir0/
q0a1NPrx

1þ 4ia2
1gq0NPrx

r0K0/
� �2

 !1=2

2
664

3
775
�1

:
(5)

Here r0 is the thermal flow resistivity, K0 is the thermal

characteristic length describing the pore scale where the

thermal dissipation effects are particularly pronounced,

and NPr is the Prandtl number. More commonly, the ther-

mal flow resistivity, r0, is replaced with its thermal perme-

ability counterpart, i.e., j00 ¼ g=r0. In the case of a

material with non-uniform pores K0 can be significantly

different from K and K0 > K. It is defined as twice the ra-

tio of the fluid volume in the pores to the pore surface

area in this volume, i.e.,

K0 ¼ 2

ð
dVð
dA

: (6)

Because r � K�2 and r0 � K0�2, it is usual that r > r0.2 The

characteristic impedance and wavenumber of this type of po-

rous media can be then predicted using the density and com-

pressibility information

~zðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~qðxÞ= ~CðxÞ

q
and ~kðxÞ¼x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~qðxÞ ~CðxÞ

q
; (7)

where ~CðxÞ ¼ 1= ~KðxÞ is the complex compressibility of

fluid in the material pores and ~cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~qðxÞ ~CðxÞ

q
is the

sound speed. It has been shown that this model works well

for a wide range of porous media with arbitrary pore geome-

try and pore size distribution, e.g., in the case of fibrous

materials (Sec. IV in Ref. 4), granular media,9 and foams

(Sec. V in Ref. 10). The combination of Eqs. (2), (3), and (5)

is usually called the Johnson-Champoux-Allard model or

JCA model.

The question is how to determine the values of the ther-

mal characteristic length, K0, and thermal permeability, j00,

needed for the JCA model. These parameters are rarely

measured non-acoustically.5,6 There are efficient acoustical

methods to measure these parameters (e.g., Refs. 7 and 8).

The purpose of this paper is to illustrate how the parameters

K, K0, and j00 can be related to the pore size distribution in a

porous medium, which is a routinely measurable characteris-

tics using a number of affordable laboratory methods which

include the water saturation, gas adsorption, and optical

analysis techniques. In a particular case, when the pore size

distribution is log-normal, this paper shows that the parame-

ters used in the models of Johnson et al.,1 Champoux and
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Allard,2 and Pride et al.14 (see Sec. II B) can be expressed as

a function of the mean pore size and standard deviation. The

paper is organized as follows. Section II compares the as-

ymptotic behavior of the dynamic density for the case when

the pore shape and size are assumed to be uniform along the

pore length, but the medium can be composed of pores of

various cross-sectional area. Section III derives the exact

expressions for the dynamic density and complex compressi-

bility for the porous medium for the case, when the pore

shape is assumed to be circular cylindrical shape, but pore

size is no longer uniform along the pore length. We present

the fundamental relations between the intrinsic material pa-

rameters used in the different models. We also derive the

new Pad�e approximations for the dynamic density and com-

plex compressibility of fluid filling the non-uniform pores.

Section IV compares the behavior of several models for the

acoustical properties of porous medium against the new

model. The conclusions are drawn in Sec. V.

II. SOUND PROPAGATION IN UNIFORM CYLINDRICAL
PORES

A. Theoretical background

Let us first consider the case when a sound wave propa-

gates in a medium which can be described as a stack of uni-

form cylindrical pores which cross-sectional area is

randomly distributed, but does not change in the axial direc-

tion as illustrated in Fig. 1. For this type of porous media, it

was shown that the dynamic density of the effective fluid in

a single pore in a material averaged over all possible pore

sizes can be given by the following expression:11

qx xð Þ ¼ q0

1

1� I xð Þ ; (8)

where

I xð Þ ¼ 1� ixq0

g

ð1
0

s2e sð Þw x; sð Þds: (9)

Here and below, the subscript x suggests that we refer to a

quantity which describes sound propagation in a single pore.

The function wðx; sÞ in integral (9) is the solution of the

Helmholtz equation for the acoustic velocity field in the mate-

rial pore of size s. It depends on the adopted pore geometry

and frequency of sound and its physical meaning is discussed

in Sec. I in Ref. 11. The term e(s) in integral (9) is the proba-

bility density function for the distribution of the pore radius s.
For a particular case when the pore geometry is circular,

w zð Þ ¼
2I1 zð Þ
zI0 zð Þ

� 1

� �
z�2; (10)

where z ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ixq0=g

p
and I0ðzÞ and I1ðzÞ are the modified

Bessel functions of order zero and one, respectively.12

If the porous material is composed of pores which

radii s obey a log-normal distribution, i.e., eðuÞ ¼ ð1=
rs

ffiffiffiffiffiffi
2p
p
Þe�ðu��uÞ2=2r2

s ; u ¼ �log2s; �u ¼ �log2�s, then the

expression for IðxÞ in Eq. (8) can be given by the following

integral:

I xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

v �z 2�rstð Þe�t2=2dt; (11)

where �z ¼ �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ixq=g

p
and �s is the median pore size. This

type of pore size distribution is highly common for granular

porous media and foams (e.g., Ref. 13). We note that the

standard deviation rs is a measure of the log-normal distribu-

tion and it is given in terms of the u units, where �u ¼ �log2�s
is the average pore size taken on the log-normal scale. The

function v in integral (11) depends only on the assumed pore

shape and frequency. In the case of circular cylindrical pores

of radius s we chose in this work, this function is

v zð Þ ¼
2I1 zð Þ
zI0 zð Þ

: (12)

Alternative forms of vðzÞ for other pore geometries are avail-

able and discussed in Sec. II in Ref. 11. We note that the

choice of pore shape does not make a significant difference

in the frequency range when the acoustic wavelength is

much larger than the characteristic pore size. In this case, the

pore size distribution has the dominant effect.

Expression (8) can be used to define the complex com-

pressibility of the fluid in a single pore which is given by

Cx xð Þ ¼ 1

cP0

c� q0 c� 1ð Þ
qx Nprxð Þ

 !
: (13)

In order to represent the acoustical properties of a bulk

medium with tortuous pores occupying a representative pro-

portion of the material volume, we need to account for the

pore tortuosity and material porosity. In this case we require

that the mean velocity through the pores in the bulk medium,

i.e., the total volume flux divided by the cross-sectional area

of the sample is hui ¼ /huxi=
ffiffiffiffiffiffi
a1
p

, where huxi is the mean

velocity in a single pore in a porous medium with some stat-

istically distributed pore size as defined with eðuÞ. In order

to satisfy the equation of motion [Eq. (9) in Ref. 11] and the

equation of thermodynamic equilibrium [Eq. (19) in Ref. 11]

in the case of the bulk medium, we need to replace qxðxÞ by

a bulk medium dynamic complex density,
FIG. 1. A porous medium consisting of uniform pores with random cross-

section.
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q xð Þ ¼ a1
/

qx xð Þ; (14)

and complex compressibility with its bulk characteristic,

CðxÞ ¼ /CxðxÞ: (15)

Here we also need to introduce the bulk flow resistivity,

r ¼ a1rx=/, which replaces the flow resistivity of a single

pore, rx. The pore size distribution model suggests that the

flow resistivity of a single pore in a material with statistical

pore size distribution e(s) is given by the following expres-

sion (see Sec. III in Ref. 11):

rx ¼
�g

�w0hs2i
¼ �g

�w0�s2e2f
; (16)

where hs2i ¼
Ð1

0
s2eðsÞds is the mean pore size, �s is the me-

dian pore size and the coefficient �w0 ¼ �1=8 for the adopted

circular, cylindrical pore geometry (see Table I in Ref. 11)

and f ¼ ðrs log 2Þ2.

B. Behavior of the uniform pore models at asymptotic
limits

The low- and high-frequency behavior of the dynamic

density of the equivalent fluid in a single pore for a material

with a log-normal pore size distribution can be expressed

with the following asymptotic limits (see Sec. III in Ref. 11):

qx xð Þ
q0

¼ 1

e2
þ 1þ h1 þ O e2ð Þ; e! 0 (17)

and

qx xð Þ
q0

¼ 1þ h2

e
þ O e�2ð Þ; e!1; (18)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ixq0=rx

p
. The coefficients h1 and h2 are real

positive coefficients whose values depend only on the

assumed pore shape. In the case of the circular pore shape,

these coefficients are h1 ¼ 4=3e4f � 1 and h2 ¼ 1=
ffiffiffi
2
p

e3=2f

(see Table I in Ref. 11). In light of the above, we can rewrite

expressions (17) and (18) to obtain the following two asymp-

totic limits:

qx xð Þ
q0

¼ rx

�ixq0

þ 4=3e4 rs ln 2ð Þ2 þ O xð Þ; x! 0 (19)

and

qx xð Þ
q0

¼ 1þ 2e1=2 rs ln 2ð Þ2

�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixq0

r
þ O x�1ð Þ; x!1:

(20)

In Ref. 11 these asymptotic limits were used to derive

the Pad�e approximation for the Biot’s viscosity correction

function. This approximation depends on the complex

variable e and it helps to avoid a requirement for numerical

integration or evaluation of special functions in integral (11)

when the complex dynamic density and complex

compressibility need to be calculated [expressions (8) and

(13)]. It is of interest to compare the coefficients at these two

limits with the coefficients in the limits of the model by

Johnson et al.1 and Pride et al.14

According to the model by Johnson et al.1 the low-

frequency asymptotic limits for the behavior of the dynamic

density in a material composed of straight cylindrical pores

of circular shape is

qx xð Þ
q0

¼ rx

�ixq0

þ 1þ 2g

rxK
2

� �
þ O xð Þ; x! 0: (21)

In the case of a circular cylindrical pore rx ¼ 8g=K2, so that

we have

qx xð Þ
q0

¼ rx

�ixq0

þ 5

4
þ O xð Þ; x! 0: (22)

An alternative formulation for the low-frequency asymptotic

behavior of the dynamic density can be derived using the

approach proposed by Pride et al.,14

qx xð Þ
q0

¼ 1þ bþ rx

�ixq0

; x! 0; (23)

where b is a coefficient introduced by Pride et al. It is related

to the enhancement in the effective fluid inertia at lower fre-

quencies caused by the cross-sectional changes in the pore

size and viscous friction on the smallest apertures of the

pore.14 The asymptotic behavior of the dynamic density at

the higher frequency end of the spectrum given by Johnson

et al. is

qx xð Þ
q0

¼ 1þ 2

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixq0

r
þ O x�1ð Þ; x!1: (24)

We note that the expression for the dynamic density in the

model proposed in Ref. 1 differs from that proposed in Ref.

14 by the asymptotic behavior of the low-frequency limit.

The comparison of equations (20) and (21) suggests that

it is impossible to match the asymptotic behavior of the real

part of the dynamic density derived for x! 0 in the case of

the pore size distribution approach11 and the model of

Johnson et al.1 It can be matched exactly to that of the model

of Pride et al.14 if the parameter b in the Pride et al. model is

set to b ¼ 4=3e4ðrs ln 2Þ2 � 1. The asymptotic behavior of the

imaginary part of the dynamic density derived for x! 0 is

exactly the same for all these two models. A comparison of

expressions (20) and (24) suggests that the behavior of the

dynamic density at the x!1 limit can be matched exactly

provided that K ¼ �se�1=2ðrs ln 2Þ2 .

III. SOUND PROPAGATION IN NON-UNIFORM
CYLINDRICAL PORES

A. Theoretical background

Let us now consider sound propagation in a cylindrical

pore which circular cross-section varies with depth as shown

in Fig. 2. We split this pore in N sections and assume that

within each of these sections the flow velocity �n and pore
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cross-sectional area An are constant. We denote q to be the

volume velocity in the oscillatory flow which is set through

this pore because of the acoustic pressure p is applied to its

throat. We follow the original work by Champoux and

Stinson15 and assume that the length of the pore Dx is long

enough to include a representative number of pore scale var-

iations but much shorter than the acoustic wavelength. We

assume that the pore cross-section is circular so that the

dynamic density and complex compressibility of the fluid in

each of the pore sections illustrated in Fig. 2 can be

expressed as [Eqs. (9) and (12) in Ref. 16]

qxðxÞ ¼ q0=ð1� 2TðzÞ=zÞ (25)

and

Cx xð Þ ¼ 1

cP0

c� q0 c� 1ð Þ
qx

ffiffiffiffiffiffiffi
NPr

p
z

� �
 !

; (26)

respectively. In the above expressions TðzÞ ¼ J1ðzÞ=J0ðzÞ is

the ratio of the Bessel functions and z ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ixq0=g

p
as

before.

Here we are interested in the behavior of functions

qxðxÞ and CxðxÞ in the low (z! 0) and high (z !1) fre-

quency limits. For this purpose, we make use of the follow-

ing asymptotic behavior of the function 2TðzÞ=z:

2TðzÞ=z ¼ 1� z2=8þ z4=48þ Oðz6Þ; z! 0; (27)

and

2TðzÞ=z ¼ 2=z� 1=z2 þ Oðz�3Þ; z!1: (28)

The above yields

qx xð Þ ¼ q0 4=3þ 8=z2
� �

þ O z4ð Þ;

Cx xð Þ ¼ 1

cP0

cþ c� 1ð ÞNPrz
2=8

� �
þ O z4ð Þ; z! 0

(29)

and

qx xð Þ ¼ q0 1þ 2=zð Þ þ O z�2ð Þ;

Cx xð Þ ¼ 1

cP0

1� 2 c� 1ð Þ= z
ffiffiffiffiffiffiffi
NPr

p� �� �
þ O z�2ð Þ; z!1: (30)

Let us now consider that the acoustic pressure p is

applied across the pore length Dx as depicted in Fig. 2. The

equation of motion for the fluid in this pore is

� @p

@x
¼ ix~qx xð Þ�; (31)

where ~qxðxÞ is the frequency-dependent dynamic density of

the fluid in the non-uniform pore, and � is the mean flow ve-

locity in the pore. The problem here is to determine the den-

sity function ~qxðxÞ for the mean flow velocity in the pore,

which is

� ¼ 1=N
X

n

�n ¼ q=N
X

n

1=An: (32)

The pressure change over the part of this pore with the cross-

section An is

�Dpn ¼ ixqqnðxÞ=Andl; (33)

where qnðxÞ is the dynamic density of the fluid in the part of

the pore with the area An ¼ ps2
n, which can be expressed

with Eq. (25) in which the pore radius in the parameter z is

set to s¼ sn. The total pressure change over the whole pore

length Dx is

Dp ¼
X

n

Dpn; (34)

i.e.,

�Dp ¼ ixq
X

n

qnðxÞ=Andl: (35)

The pressure gradient over the total pore length Dx is

�Dp

Dx
¼ ixq

X
n

qn xð Þ=Andl=Dx: (36)

Because q ¼ �=ð1=N
P

n1=AnÞ and dl=Dx ¼ 1=N, we obtain

�Dp

Dx
¼ ix

X
n

qn xð Þ=An

X
n

1=An

�; (37)

where

~qx xð Þ ¼

X
n

qn xð Þ=An

X
n

1=An

(38)

is the expression for the dynamic density in the nonuniform

pore. The N !1 and dl! 0 limit of the above expression

is (sn ! s)FIG. 2. Sound propagation in a non-uniform pore.
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~qx xð Þ ¼

ð1
0

qx x; sð Þe sð Þ=s2dsð1
0

e sð Þ=s2ds

¼ Iq
I1=A

; (39)

where e(s) is the probability density function for the distribu-

tion of the pore size s along the length of the pore.

Similarly, we can derive the expression for the complex

compressibility function ~CxðxÞ making use of the continuity

equation for the oscillatory flow of fluid in the non-uniform

pore, i.e.,

� @�
@x
¼ ix ~Cx xð Þp: (40)

Under the influence of the acoustic pressure p applied to the

pore neck the change in the flow velocity in the part of the

pore with cross-section An is

�D�n ¼ ixCnðxÞpdl; (41)

where CnðxÞ is the compressibility of the fluid in this part of

the pore which can be predicted using Eq. (26) for s¼ sn.

Assuming that the acoustic pressure is constant over Dx the

total change in the volume velocity over the length Dx is the

sum

�Dq

Dx
¼ �

X
n

D�nAn ¼ ix
X

n

Cn xð ÞAnpdl=Dx: (42)

Because of dl=Dx ¼ 1=N and Dq ¼ D�=N
P

nAn, where D�
is the average velocity variation across the length Dx, the

above equation becomes

�D�
Dx
¼ ix

X
n

Cn xð ÞAn

X
n

An

p; (43)

where

~Cx xð Þ¼

X
n

Cn xð ÞAn

X
n

An

(44)

is the complex compressibility of the fluid in the non-

uniform pore. The N !1 and dl! 0 limit of the above

expression is

~Cx xð Þ ¼

ð1
0

Cx x; sð Þe sð Þs2dsð1
0

e sð Þs2ds

¼ IC

IA
: (45)

B. The asymptotic limits for the dynamic density
and compressibility for the fluid in a non-uniform pore

In this section we will study the asymptotic limits for

the dynamics density [Eq. (39)] and complex compressibility

[Eq. (45)] which we derived in Sec. III A. As before, we

assume that the pore radius is distributed log-normally, i.e.,

eðsÞ ¼ f ðuÞðdu=dsÞ, where f ðuÞ ¼ ð1=rs

ffiffiffiffiffiffi
2p
p
Þe�ðu��uÞ2=2r2

s

and u ¼ �log2s. The problem now is to estimate the low-

frequency limit (x! 0) of Eqs. (39) and (45),

~qx xð Þ ¼ Iq
I1=A

(46)

and

~Cx xð Þ ¼ IC

IA
; (47)

where the integrals in the denominator are expressed in

terms of the parameters of the log-normal distribution rs, �u,

and u,

Iq ¼
ðþ1
�1

qxðx;uÞ22ue�ðu��uÞ2=2r2
s du; (48)

IC;x ¼
ðþ1
�1

Cxðx;uÞ2�2ue�ðu��uÞ2=2r2
s du; (49)

I1=A ¼
ðþ1
�1

22ue�ðu��uÞ2=2r2
s du ¼

ffiffiffiffiffiffi
2p
p

rs2
2�ue2r2

s log22;

(50)

and

IA ¼
ðþ1
�1

2�2ue�ðu��uÞ2=2r2
s du ¼

ffiffiffiffiffiffi
2p
p

rs2
�2�ue2r2

s log22:

(51)

The Appendix presents the detailed procedure which we

used to derive the low- and high-frequency limits of the inte-

grals Iq and IC. The Appendix also shows how the integrals

I1=A and IA can be reduced to some simple analytical

expressions.

The results presented in the appendix suggest that the

asymptotic limits for the dynamic density and complex com-

pressibility of fluid in a non-uniform pore can be expressed

as

~qx xð Þ ¼ q0 4=3� 8ge6r2
s log22

ixq0�s2

 !
þ O x2ð Þ; x! 0;

(52)

~Cx xð Þ ¼ 1

cP0

c� c� 1ð Þ ixq0NPr�s
2e6r2

s log22

8g

 !

þ O x2ð Þ; x! 0; (53)

~qx xð Þ ¼ q0 1þ 2e5=2r2
s log22

�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixq0

r !

þ O x�1ð Þ; x!1; (54)

and
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~Cx xð Þ ¼ 1

cP0

1� 2e�3=2r2
s log22

�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixq0NPr

r !

þ O x�1ð Þ; x!1: (55)

These limits enable us to derive the relations between the

characteristic lengths and permeabilities used in the JCA

model and pore size distribution parameters which we used

in the Champoux-Stinson representation of the non-uniform

pore. The behavior of the dynamic density in the low fre-

quency limit [Eq. (52)] yields the following values of the

flow resistivity and viscous permeability:

rx ¼
8g
�s2

e6 rs log 2ð Þ2 (56)

and

j0 ¼
�s2

8
e�6 rs log 2ð Þ2 ; (57)

respectively. The application of Eq. (53) and Eq. (5.6) in

Ref. 3 yields the following values of the thermal resistivity

and permeability:

r0x ¼
8g
�s2

e�6 rs log 2ð Þ2 (58)

and

j00 ¼
�s2

8
e6 rs log 2ð Þ2 : (59)

The above suggests that the ratio of the thermal to viscous

permeabilities is j00=j0 ¼ e12ðrs log 2Þ2 . For a typical value of

rs ¼ 0:3, this ratio is 1.680. The values of the viscous and

thermal permeabilities are equal in the case of a uniform

pore, i.e., when rs ¼ 0. The leading term of 4/3 in Eq. (52)

is consistent with the parameter b ¼ 1=3 in Eq. (23) pro-

posed by Pride et al.14 to improve the low frequency behav-

ior of the model by Johnson et al. [see Eqs. (2) and (3)]. It is

related to the enhancement in the effective fluid inertia at

lower frequencies caused by the cross-sectional changes in

the pore size and viscous friction on the smallest apertures of

the pore. In some more recent publications this parameter

has been modified and assigned with notations other than b
which was originally used by Pride et al. [e.g., parameter P
in Eq. (25) in Ref. 17, parameter b in Eq. (5.32) in Ref. 3]. It

is of interest to note that in the case of a porous medium

with cylindrical pores which radius is log-normally distrib-

uted (see Sec. II B), the Pride parameter is equivalent to

b ¼ 4=3e4ðrs ln 2Þ2 � 1.

The behavior of the dynamics density and compressibil-

ity in the high frequency limit [Eqs. (24), (54), (55), and Eq.

(28) in Ref. 4] yields the following values of the viscous and

thermal characteristic lengths:

K ¼ �se�5=2ðrs log 2Þ2 (60)

and

K0 ¼ �se3=2ðrs log 2Þ2 ; (61)

respectively. It is clear that the ratio of these two lengths is

K0=K ¼ e4ðrs log 2Þ2 . For the value of the standard deviation

chosen in the previous example (rs ¼ 0:3) this ratio is 1.189.

The characteristic lengths become identical in the uniform

pore case. We note that there is an error in Eq. (28) in Ref. 4.

Its denominator should refer to K0 instead of K.

C. Pad�e approximations

Equations for the asymptotic limits (52)–(55) provide a

good basis to understand the relations between various

intrinsic material parameters used in a range of models for

the acoustical properties of porous media. However, these

are inconvenient to calculate the acoustical properties of the

fluid in a non-uniform pore. In the work by Horoshenkov

et al.11 it was suggested to adopt the Pad�e approximation to

link the two limits together. It is possible to modify the Pad�e
approximation used in Ref. 11 to account for the results pre-

sented in Sec. III B.

Following the work by Horoshenkov et al.11 we express

Eqs. (52) and (54) for the dynamic density in a form similar

to Eqs. (17) and (18),

~qxð�Þ=q0 ¼ 1þ hq;1 þ ��2
q þ Oð�4

qÞ; �! 0 (62)

and

~qxð�Þ=q0 ¼ 1þ hq;2�q þ Oð��2
q Þ; �q !1; (63)

respectively. In the above equations we denote

�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ixq0=rx

p
. The coefficient hq;1 ¼ 1=3 is essentially

the parameter of Pride et al.14 which depends on the pore

cross-sectional shape only. It is also equivalent to the coeffi-

cient h1 used in the Pad�e approximation in Ref. 11 [see Eq.

(53) in Ref. 11]. The coefficient hq;2 ¼ e�1=2ðrs log 2Þ2=
ffiffiffi
2
p

is

equivalent to the Pad�e coefficient h2 [see Eq. (56) in Ref. 11]

which depends both on the pore cross-sectional shape and on

the width of the pore size distribution.

Following Ref. 11 (see pages 1205 and 1206) we sug-

gest approximating the dynamic density with the following

expression:

~qxð�qÞ ’ 1þ ��2
q

~Fqð�qÞ; (64)

where

~Fq �qð Þ ¼
1þ hq;3�q þ hq;1�q

1þ hq;3�q
(65)

is the Pad�e approximant and hq;3 ¼ hq;1=hq;2.

A very similar procedure can be adopted to derive the

Pad�e approximation for the complex compressibility. First,

we make use of Eq. (26) to express Eqs. (53) and (55) in the

following form:

cP0
~Cxð�cÞ ¼ cþ ðc� 1Þ�2

c þ Oð�4
cÞ; �c ! 0 (66)

and

J. Acoust. Soc. Am. 139 (5), May 2016 Horoshenkov et al. 2469

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  143.167.30.213 On: Mon, 13 Jun 2016 14:02:51



cP0
~Cxð�cÞ ¼ 1� hc;2�

�1
c þ Oð��2

c Þ; �c !1; (67)

where �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ixq0NPr=r0xÞ

p
and hc;2 ¼ e3=2ðrs log 2Þ2=

ffiffiffi
2
p

. In

this case, the complex compressibility can be approximated

with

~Cx �cð Þ ¼
1

cP0

c� c� 1

1þ ��2
c

~Fc �cð Þ

 !
; (68)

where

~Fc �cð Þ ¼
1þ hc;3�c þ hc;1�c

1þ hc;3�c
: (69)

We note that in the above approximation hc;1 ¼ hq;1 ¼ 1=3

and that hc;3 ¼ hc;1=hc;2. In the case of the bulk medium, we

replace ~qx and ~Cx in Eqs. (14) and (15) with their bulk coun-

terparts, ~q and ~C, respectively.

IV. RESULTS

Figures 3 and 4 present the normalized dynamic density,

~qx, and complex compressibility, ~Cx, predicted using the

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) The normalized dynamic density of the fluid in a circular pore with a diameter of 1 mm. / ¼ 1; a1 ¼ 1. Solid line: Pad�e approximation

for the non-uniform pore; dash-dotted line: Pad�e approximation for the uniform pore; dashed line: Johnson et al. model; dotted line: Pride et al. model.
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Pad�e approximation model derived for the uniform circular

cylindrical pore,11 the JCA model,2 the model of Pride

et al.,14 and the newly derived Pad�e approximations [Eqs.

(64) and (68)] for a single non-uniform cylindrical pore case

with rs¼ 0; 0.3; and 0.6. The dynamic density spectra are

plotted against the dimensionless frequency scale, x=xv,

where xv ¼ 8g=ð�s2q0Þ is the Biot characteristic frequency

estimated for the median pore size �s. The complex compres-

sibility spectra are also presented against the dimensionless

frequency scale, x=xt, where xt ¼ k0=ð�s2q0CpÞ is the ther-

mal characteristic frequency and k0 and Cp are the thermal

conductivity and heat capacity of the fluid, respectively. In

these calculations we assumed that the pore is filled with

fluid with P0¼ 102 kPa, c¼ 1.4, q0¼ 1.25 kg/m3, g¼ 1.81

� 10–5 Pa s, k0¼ 0.0245 W/m K, Cp¼ 1003.5 J/(kg K) and

that the diameter of this pore is 2�s ¼ 1 mm. We expressed

the viscous and thermal characteristic lengths via �s and rs

using Eqs. (60) and (61). The flow resistivities were pre-

dicted with Eqs. (56) and (58).

The results presented in Fig. 3 for the dynamic density

show that in the case when there is no pore size distribution

in the medium (rs¼ 0) the imaginary part spectra predicted

with each of the three models are very similar. The relative

difference between the imaginary part spectra predicted with

the JCA model2 and the new Pad�e approximation model is

within 8.5% for all values of rs considered in this work. The

FIG. 4. (Color online) The normalized complex compressibility of the fluid in a circular pore with the diameter of 1 mm. / ¼ 1; a1 ¼ 1. Solid line: Pad�e
approximation for the non-uniform pore; dash-dotted line: Pad�e approximation for the uniform pore; dashed line: Champoux and Allard model.
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Pad�e approximation for the uniform pore11 and the new Pad�e
approximation model are identical when rs¼ 0. The imagi-

nary part spectra predicted with these two Pad�e approxima-

tion approaches begin to deviate significantly when rs 6¼ 0.

The behavior of the imaginary part predicted with the origi-

nal Pad�e approximation and the model of Pride et al. are

almost identical. There is a noticeable difference between

the real part predicted with the model of Johnson et al., with

the Pad�e approximation, and with the model of Pride et al.
as the low-frequency limit is approached. The real part spec-

tra predicted with the model of Johnson et al. asymptotically

approaches the 5/4 limit, as suggested by the behavior of the

real part in Eq. (22) and this limit does not depend on rs and

is accounted for in the model of Pride et al.14 The real part

spectra predicted with the new Pad�e approximation asymp-

totically approaches the 4/3 limit as suggested by the behav-

ior of the real part in Eq. (52), and this limit also does not

depend on rs. The low-frequency asymptotic limit of the

dynamic density predicted by the Pad�e approximation pro-

posed in Ref. 11 depends on the value of rs as suggested by

the behavior of the real part in Eq. (19). This dependence is

exponential, so that the low-frequency limit of the real part

of the density predicted by this model is higher than those

predicted by the Johnson et al. model and by the Pad�e
approximation for the uniform pore11 (see Fig. 3).

The results for the complex compressibility spectra pre-

sented in Fig. 4 suggest that the three models agree very well

in the case when rs¼ 0. The predictions by the two Pad�e
approximations are identical. The relative difference

between the imaginary part spectra predicted with the

Champoux-Allard model2 and the new Pad�e approximation

model is within 7% for rs¼ 0. The relative difference

between the real part of the spectra predicted with the

Champoux-Allard model2 and the new Pad�e approximation

model is within 6% for rs¼ 0. This difference is not notice-

ably affected by the value of rs. Similarly, the relative differ-

ence between the imaginary part of spectra predicted with

the Champoux-Allard model2 and the new Pad�e approxima-

tion model does not noticeably change with the change of rs.

However, there is a very large relative difference between

the dynamic density spectra predicted with the Champoux-

Allard model and with the original Pad�e approximation

proposed for the uniform pores. In the case of rs¼ 0.3, the

maximum difference is approximately 25%. In the case of

rs¼ 0.6, this difference is approximately 90%.

V. CONCLUSIONS

The results presented in this paper show that there is a

clear interdependence between the parameters of the pore

size distribution and characteristic viscous (K) and thermal

(K0) lengths. In the particular case, when the pore size distri-

bution can be assumed log-normal, it has been shown that

for a material with uniform circular cylindrical pores the vis-

cous characteristic length1 and the standard deviation in the

log-normal pore size (rs) (Ref. 11) this relation is

K ¼ �se�1=2ðrsln2Þ2 . It has also been shown that the asymptotic

behavior of the real part of the dynamic density derived for

x ! 0 in the case of pore size distribution approach11 and

the approach of Pride et al.14 can be matched exactly if the

Pride parameter is set to b ¼ 4=3e4ðrsln2Þ2 � 1.

In the case of porous media with non-uniform circular cy-

lindrical pores it has been shown that the relation between the

viscous characteristic length and the standard deviation in the

log-normal pore size is K ¼ �se�5=2ðrsln2Þ2 . The relation

between the thermal characteristic length and the standard

deviation in the log-normal pore size is K0 ¼ �se3=2ðrsln2Þ2 . This

means that the ratio of the thermal to viscous characteristic

lengths is controlled by the standard deviation in the pore

size. If the pore cross-section is uniform, the ratio is

K0=K ¼ 1. If rs 6¼ 0, then this ratio becomes

K0=K ¼ e4ðrs log 2Þ2 . For porous media with non-uniform pores,

the relation between the viscous permeability1 and the stand-

ard deviation in the log-normal pore size is

j0 ¼ ð�s2=8Þe�6ðrs log 2Þ2 . The relation between the thermal per-

meability2 and the standard deviation in the log-normal pore

size for this type of media is j00 ¼ ð�s2=8Þe6ðrs log 2Þ2 . In the

case of a uniform pore (rs¼ 0), j0 ¼ j00, otherwise

j00=j0 ¼ e12ðrs ln 2Þ2 . The viscous characteristic length, thermal

characteristic length and thermal permeability are notoriously

difficult to measure non-acoustically. Therefore, these find-

ings are particularly useful, because the median pore size and

standard deviation in the pore size are routinely measurable

parameters and the pore size distribution in a majority of po-

rous media can be approximated with log-normal fit.

The asymptotic limits for the dynamic density and

complex compressibility of the fluid in a medium with non-

uniform pores have been used to derive new Pad�e approxi-

mations for these two quantities which enable us to calculate

the acoustic characteristic impedance and wavenumber in

this type of medium. The form of these approximations is

very similar to that suggested in Ref. 11 for the case of a

medium with uniform pores. The coefficients in these

approximations are real and positive, which suggest that the

Pad�e approximation model should satisfy the reality and

causality conditions18 which is important for time-domain

modeling of sound propagation in porous media.

These finding suggest that the JCA model1,2 and the

model of Probe et al.14 can be used with five directly meas-

urable parameters, namely, flow resistivity (r), porosity (/),

tortuosity (a1), median pore size (�s), and standard deviation

in the pore size (rs). The viscous and thermal characteristic

lengths can then be deduced from these parameters. As an al-

ternative to the extensively validated JCA model, two newly

derived Pad�e approximations [Eqs. (64) and (68)] can be

used to predict the dynamic density and complex compressi-

bility of the effective fluid in the non-uniform material pores

using the same five intrinsic material parameters which are

easily measurable non-acoustically. A comparison of the

spectra for the real and imaginary parts of the dynamic den-

sity and complex compressibility predicted with the three

models suggests that the predictions with the JCA model

agree within 8.5% with those obtained with the new Pad�e
approximation model [Eqs. (64) and (68)] for media with

non-uniform pore. There can be large differences between

the predictions made with the Pad�e approximation which

was developed for media with uniform pores and that which

we propose for media with non-uniform pores.
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APPENDIX: THE BEHAVIOR OF THE INTEGRALS
IN EQS. (39) AND (45)

Here we determine the low- and high-frequency limits

for the two integrals which we derived in Sec. III. We

express the integrals in the numerators in equations (39) and

(45) in terms of rs, �u, and u,

Iq ¼
ðþ1
�1

qxðx;uÞ22ue�ðu��uÞ2=2r2
s du (A1)

and

IC ¼
ðþ1
�1

Cxðx;uÞ2�2ue�ðu��uÞ2=2r2
s du: (A2)

It is easy to show that the integrals in the denominators of

Eqs. (39) and (45) expressed in terms of rs, �u, and u simply

reduce to

I1=A ¼
ðþ1
�1

22ue�ðu��uÞ2=2r2
s du ¼

ffiffiffiffiffiffi
2p
p

rs2
2�ue2r2

s log22

(A3)

and

IA ¼
ðþ1
�1

2�2ue�ðu��uÞ2=2r2
s du ¼

ffiffiffiffiffiffi
2p
p

rs2
�2�ue2r2

s log22:

(A4)

Integral (A1) is effectively

Iq;x!0 ¼ q0 4=3I1=A �
8g

ixq0

ðþ1
�1

24ue� u��uð Þ2=2r2
s du

 !

þ O x4ð Þ;
(A5)

which reduces to (�s ¼ 2�u )

Iq;x!0 ¼ q0I1=A 4=3� 8ge6r2
s log22

ixq0�s2

 !
þ O x4ð Þ: (A6)

Similarly, integral (A2) for the low-frequency limit of the

complex compressibility is

IC;x!0 ¼
1

cP0

cIA �
ixq0NPr c� 1ð Þ

8g

�

�
ðþ1
�1

2�4ue� u��uð Þ2=2r2
s du

�
þ O x4ð Þ; (A7)

which reduces to

IC;x!0 ¼
IA

cP0

c� c� 1ð Þ ixq0NPr�s
2e6r2

s log22

8g

 !
þO x4ð Þ:

(A8)

The remaining high-frequency limit integrals for the above

quantities are

Iq;x!1 ¼ q0 I1=A þ 2

ffiffiffiffiffiffiffiffiffiffi
g

ixq0

r ðþ1
�1

23ue� u��uð Þ2=2r2
s du

 !

þ O x�1ð Þ;
(A9)

which reduces to

Iq;x!1 ¼ q0I1=A 1þ 2

�s

ffiffiffiffiffiffiffiffiffiffi
g

ixq0

r
e5=2r2

s log22

 !
þ O x�1ð Þ

(A10)

and

IC;x!1 ¼
1

cP0

IA � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g c� 1ð Þ
ixq0NPr

s0
@

�
ðþ1
�1

2�ue� u��uð Þ2=2r2
s du

�
þ O x�1ð Þ;

(A11)

which reduces to

IC;x!1 ¼ q0IA 1� 2 c� 1ð Þ
�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ixq0NPr

r
e�3=2r2

s log22

 !

þ O x�1ð Þ:
(A12)
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