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ABSTRACT 

Current debate focuses on the need for the transport sector to contribute to more 

ambitious carbon emission reduction targets. In the UK, various macro-economic and 

energy system wide, top-down models are used to explore the potential for energy 

demand and carbon emissions reduction in the transport sector. These models can lack 

the bottom-up, sectoral detail needed to simulate the effects of integrated demand and 

supply-side policy strategies to reduce emissions. Bridging the gap between short-term 

forecasting and long-term scenario “models”, this paper introduces a newly developed 

strategic transport, energy, emissions and environmental impacts model, the UK 

Transport Carbon Model (UKTCM). The UKTCM covers the range of transport-

energy-environment issues from socio-economic and policy influences on energy 

demand reduction through to lifecycle carbon emissions and external costs. The model 

is demonstrated in this paper by presenting the results of three single policies and one 

policy package scenario. Limitations of the model are also discussed. Developed under 

the auspices of the UK Energy Research Centre (UKERC) the UKTCM can be used to 

develop transport policy scenarios that explore the full range of technological, fiscal, 

regulatory and behavioural change policy interventions to meet UK climate change and 

energy security goals. 

 

Keywords: Transport energy modelling, Transport carbon emissions; Strategic policy 

analysis; Scenario development 

 



3 

 

 

1 INTRODUCTION 

Ambitious targets for greenhouse gas (GHG) reductions and concerns about energy 

security require comprehensive policy strategies to achieve those goals. These strategies 

are likely to involve a multitude of policy measures that will need to be integrated and 

carefully timed. This is particularly so in the transport sector, which is perceived as the 

most difficult sector to decarbonise and where there is a growing consensus that we will 

not achieve a low carbon transport system without a combination of demand 

management, operational, pricing and technical policy options (CfIT, 2007; Hickman 

and Banister, 2007). Policy makers often struggle with developing comprehensive 

strategies aiming to achieve a low carbon transport system, reverting to mostly 

technological options and assuming that society and preferences will not change. In the 

UK, for example, national strategy development within central government is mostly 

informed by techno-economic modelling of the energy system (e.g. using MARKAL, 

Loulou et al., 2004) and/or the transport system (e.g. using the National Transport 

Model, DfT, 2005). While these models are good at exploring the near to medium term 

future based on incremental change and technological evolution, they are not 

particularly good at modelling the wider set of demand and supply-side policies within a 

changing society and economy. This paper addresses some of these methodological 

gaps in scenario modelling by introducing a newly developed strategic transport-

energy-environment model called the UK Transport Carbon Model (UKTCM).  

 

Developed under the auspices of the Energy Demand theme of the UK Energy Research 

Centre (UKERC), the UKTCM is a highly disaggregated, bottom-up model of transport 
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energy use and life cycle carbon emissions in the UK. In a nutshell, the UKTCM 

provides annual projections of transport supply and demand, for all passenger and 

freight modes of transport, and calculates the corresponding energy use, life cycle 

emissions and environmental impacts year-by-year up to 2050. It takes a holistic view 

of the transport system, built around a set of exogenous scenarios of socio-economic 

and political developments. The model is technology rich and, in its current version, 

provides projections of how different technologies evolve over time for more than 600 

vehicle technology categories1, including a wide range of alternative-fuelled vehicles 

such as more efficient gasoline cars, hybrid electric cars, plug-in hybrid vans, battery 

electric buses and advanced aircraft. However, the UKTCM is specifically designed to 

develop future scenarios to explore the full range and potential of not only 

technological, but fiscal, regulatory and behavioural change transport policy 

interventions. An example is the recent Energy2050 work of the UK Energy Research 

Centre where UKTCM played a key role in developing the ‘Lifestyle’ scenarios (Anable 

et al., forthcoming; UK Energy Research Centre, 2009). 

 

The paper proceeds as follows: first, a short review presents the context in which the 

UKTCM has been developed, focusing on carbon reduction analysis and the presence 

(or lack) of similar strategic models; second, an overview of the modelling approach 

                                                 

1 A UKTCM ‘vehicle technology’ is defined as a typical representative of a combination of transport type 

(passenger or freight), vehicle type (e.g. motorcycle, car, HGV, train, aircraft), vehicle size (e.g. small 

car, van, heavy truck, intercity rail, medium sized aircraft for short haul European), fuel type (e.g. 

gasoline, diesel, E85, electricity), ‘vintage’ (e.g. ICV Euro IV 2005-09, ICV “Euro VIII” 2020-24, fuel 

cell EV Standard 3) and hybridisation (ICV, HEV, PHEV). ‘Vintage’ is used to simulate changes in 

performance, preferences and cost over time. Table 3 below lists the technologies currently implemented. 
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and methods used is given, including more detail on a couple of key features; third, the 

model is demonstrated by presenting the results of a reference scenario for the UK 

transport system up to 2050, followed by the comparison of three alternative single 

policy scenarios and a policy package; fourth, the limitations of the model are discussed 

before concluding with a summary of the results, ongoing parallel work and an outlook 

for future work. For more detail on the modelling methods and data assumptions see the 

UKTCM Reference Guide v1 (Brand, 2010a). For details on the user interface see the 

UKTCM User Guide v1 (Brand, 2010b). Both are available to download from the 

UKERC website (www.ukerc.ac.uk). 

 

2 BACKGROUND 

2.1 Carbon pathways  

At the global level, transport currently accounts for nearly 25% of energy related carbon 

dioxide (CO2) emissions (IEA, 2008). From a 2005 baseline, energy use and related 

CO2 emissions are expected to increase by more than 50% by 2030 and more than 

double by 2050 (ibid.). The fastest growth in emissions will likely arise from light-duty 

vehicles (i.e. passenger cars, small vans, sport utility vehicles), air travel, and road 

freight (ibid.). In the UK, although economy wide emissions reduction of 18% were 

achieved since 1990, domestic transport emissions increased 11% from over the same 

period reaching 135 Million tonnes of CO2 (MtCO2) in 2007 comprising 24% of total 

UK domestic emissions (CCC, 2009). The largest share of UK transport emissions is 

from road passenger cars at 86% followed by buses at 4%, rail at 2%, and domestic 

aviation at 2%. Importantly, this does not include an estimated 38 MtCO2 from 

international aviation which if accounted for would increase the contribution of 

http://www.ukerc.ac.uk/
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transport to total UK emissions (CCC, 2009; Jackson et al., 2009). Therefore, without 

significant contribution from the transport sector, the target recommended by the UK 

Committee on Climate Change (CCC) to cut CO2 equivalent of Kyoto GHGs emissions 

by 80% between 1990 and 2050 will not likely be achieved. 

 

Transport is invariably deemed to be the most difficult and expensive sector in which to 

considerably reduce energy demand and greenhouse gas emissions (Enkvist et al., 2007; 

HM Treasury, 2006; IPCC, 2007). The analysis on which such conclusions are based 

tends to rely on forecasting and modelling frameworks which accentuate technical 

solutions and economically optimal and rational behaviour of individual consumers and 

markets, often based on historic consumer preferences. More often than not, the 

transport policy response to this issue reflects this dominant techno-economic analytical 

approach and focuses on supply-side vehicle technology efficiency gains and fuel 

switching as the central mitigation pathway for the sector.  

 

What is under-researched (with the notable exception of DfT, 2008a) and sometimes 

even overlooked is timing – the rate of progress in reducing carbon is as important as 

the end target date. Given the longevity of CO2 in the atmosphere (Inman, 2008), what 

really counts in terms of mitigating climate change is a reduction in cumulative 

emissions. While late action will make it much harder to achieve carbon targets based 

on cumulative emissions, early action on the ‘low hanging fruit’ (e.g. speed limit 

enforcement, fuel duty increases) will make it easier in the long term. 
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2.2 Strategic modelling of the transport-energy-environment system 

For strategic modelling of the transport-energy-environment (TEE) system, essentially 

three different approaches have been pursued in Europe (for an overview see e.g. 

Burgess et al., 2005), involving (1) top-down equilibrium or optimisation models such 

as PRIMES (Syri et al., 2001) and MoMo (Fulton et al., 2009); (2) bottom-up 

simulation models such as TRENDS (Georgakaki et al., 2005), TREMOVE (De Ceuster 

et al., 2004), Zachariadis (2005) and Schäfer and Jacoby (2006); and (3) transport 

network models such as ASTRA (Martino and Schade, 2000), SCENES (IWW et al., 

2000) and EXPEDITE (de Jong et al., 2004). The majority of these models were 

designed to explore specific policy questions, focusing on economic and technology 

policy interventions and their effects on transport demand, with some modelling of 

(direct) energy use and emissions. They often lack the detail necessary to model 

national low carbon policies that go beyond techno-economic policy options, e.g. policy 

aimed at changing travel behaviour. Models based solely on econometric approaches are 

deemed to be inappropriate for looking into the medium to long term future, as 

societies, preferences and habits (and thus elasticities) change. 

 

At the national level a number of models exist, see e.g. de Jong et al. (2004). In the UK, 

no truly integrated TEE model exists at present, and policy makers rely on running 

different sets of models such as the (road) National Transport Model (NTM; DfT, 

2005), with separate models for rail, aviation and navigation. In addition, transport and 

climate mitigation policy is informed by energy and economy systems modes such as 

MARKAL (Loulou et al., 2004), seeking to explore intra-sector dynamics and trade-

offs. Although the models cover the majority of GHG emissions sources and types, they 

do not project full life cycle emissions. Finally, and crucially for the research 
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community, assumptions and methods of government run models are often not explicit, 

making independent scenario planning and policy analysis difficult. The lack of an 

integrated policy-relevant life cycle model of carbon emissions from transport was the 

main motivation for the development of the UKTCM, which is described next. 

 

3 MODEL DESIGN AND METHODS 

3.1 Model overview and architecture 

The UKTCM is designed around (a) a set of quantified scenarios which describe a 

range of possible external political and socioeconomic developments envisaged up to 

2050; (b) a set of single policy options and multiple policy packages that include fiscal, 

technical, regulatory and demand management measures; (c) four linked models of the 

transport-energy-environment system; and (d) a graphical user interface, to set up and 

run the model and view key modelling results. Figure 1 provides an overview of the 

system components. 
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Figure 1: Components of the UK Transport Carbon Model 
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The set of alternative scenarios describes a range of possible external political and 

socio-economic developments envisaged to 2050. These ‘futures’ are quantitatively 

specified by a set of exogenous variables which may affect the outcomes of the models, 

while being outside the control of the transport-energy-environment system. These 

variables include changes in national GDP, pre-tax energy prices, demographics, 

household disposable income and maximum car ownership levels. The purpose of the 

scenarios is to provide a series of contexts within which the UK transport system may 

develop over time so that alternative policies can be tested for robustness against the 

uncertainties in the political, socio-economic and technological spheres. 
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The policy options include fiscal measures such as vehicles and fuel taxes, regulatory 

measures such as fuel economy standards, information and education policies and 

investment and planning policies. Table 1 provides a list of the main policy options that 

can be modelled in UKTCM, and their primary and secondary effects. Importantly, 

policy packages of two or more policies listed in the Table can be modelled at the same 

time in an integrated and internally consistent manner. 
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Table 1: List of the main policy options that can be modelled in UKTCM, and their 

effects 

Policy  Primary (and secondary) effects Model 
Fiscal 
Company car tax fleet car technology choice, (demand) VSM/TDM 
Vehicle circulation tax road vehicle technology choice, (demand) VSM/TDM 
Vehicle purchase tax / feebates vehicle technology choice, (demand) VSM/TDM 
Car scrappage incentive/rebate private car technology choice, car 

ownership, (demand) 
VSM/TDM 

Fuel taxation (by volume or carbon 
content) 

vehicle technology choice, (demand) VSM/TDM 

Road user/congestion charging 
(graduated) 

vehicle technology choice, (demand) VSM/TDM 

Parking charges vehicle technology choice, (demand) VSM/TDM 
   
Regulation 
Fuel economy standards (voluntary, 
compulsory) 

vintaging of new vehicle fleets, (demand) VSM/TDM 

Regulation for low rolling resistance 
tyres and tyre pressure monitoring 

vehicle emissions factors DEEM 

Speed limits and enforcement road vehicle speed profiles and emissions 
factors 

DEEM 

Fuel obligations (e.g. Renewable 
Transport Fuel Obligation) 

carbon content of blended fuel, vehicle 
emissions factors 

DEEM 

Low emission zones (carbon) ‘redistribution’ of traffic to low emissions 
vehicles in access areas (e.g. urban) 

VSM 

High occupancy vehicle lanes average load factors, (average speeds and 
emissions) 

VSM, 
(DEEM) 

   
Information, education, smart/soft measures 
Travel plans (individualised, 
residential, workplace, schools) 

travel activity, modal shift, average 
distance travelled by car 

Scenario  

Eco-driving / driver behaviour vehicle emissions factors DEEM 
Labelling technology choice (via preference 

parameter) 
VSM 

Car sharing / pooling  load factors, car demand VSM/TDM 
   
Planning and investment   
Parking space availability car ownership (second, third+ car) VSM/TDM 
Rail electrification direct emissions, indirect emissions 

(electricity generation) 
 

Changes in electricity generation indirect emissions from (plug-in, battery) 
electric vehicle use 

LCEIM 

Additional public transport 
infrastructure, e.g. high speed rail 
investment 

indirect emissions from manufacture, 
(modal shift, induced demand) 

LCEIM, 
(Scenario) 

Note: TDM = transport demand model, VSM = vehicle stock model, DEEM = direct energy use 

and emissions model, LCEIM = life cycle and environmental impacts model 
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The user accesses the model mainly via a newly developed graphical user interface 

which serves as the main portal for setting up the exogenous scenarios, endogenous 

policies and policy packages, running of the modelling chain, visualisation of the results 

in tabular and graphical form, and semi-automated export to Excel or similar analysis 

software packages (Figure 2). It has been developed in Microsoft Access 2007 as a 

relational database system. 

 

Figure 2: Screenshot of the main menu of the UKTCM user interface 

 

 

The four linked models represent the core of the modelling system and describe the 

transport system and calculate their impacts. They are: the transport demand model 

(TDM), the vehicle stock model (VSM), the direct energy use and emissions model 

(DEEM) and the life cycle and environmental impacts model (LCEIM). The following 

Sections describe the four linked models in more detail with particular focus on how 

UKTCM models vehicle ownership, technology choice and life cycle emissions. 
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3.2 Transport demand model 

Approach 

The TDM is a simple demand model using a two-pronged approach. For each of the 

main modes of transport, demand is either (a) calculated endogenously year by year up 

to 2050 employing a typical econometric demand model or (b) simulated with 

exogenous assumptions on how travel activity, modal split and trip distances may 

evolve over time. 

 

In ‘forecasting mode’ (simple econometric model), the evolution of demand depends on 

exogenous scenario parameters such as GDP, the number of households and the 

population’s propensity to travel. It is also affected by the evolution of energy prices 

and changes in the relative average ownership and operating costs for each transport 

demand segment (Table 2), dependent on the mix of vehicle technologies in the vehicle 

fleet and their underlying costs, via a feedback loop from the VSM (see Equation E1 

below). This allows exploring slightly more radical changes in consumer preferences 

and system changes that are not easy to model using standard econometric techniques 

based on historic consumer preferences (revealed through elasticities of demand). This 

two-pronged approach aims to provide a set of plausible developments of transport 

demand – it is not intended to provide an accurate prediction of the most likely future 

development of transport demand. In ‘simulation mode’, demand is decoupled from 

forecasting in that the user puts in an externally derived or otherwise published demand 

projection. Simulation mode can be used to define alternative scenarios based on more 
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detailed changes in travel patterns by trip purpose, trip lengths and frequency.2 For 

example, this has been done for alternative scenarios on lifestyle changes as part of the 

UKERC Energy2050 project (UKERC, 2009).  

 

The final outputs of the demand model are passenger transport demand (expressed in 

passenger-kilometres, or pkm) and freight transport demand (expressed in tonne-

kilometres, or tkm) for the demand segments summarised in Table 2. 

 

                                                 

2 Currently the task of defining alternative demand projections is performed ‘off model’ in a detailed 

spreadsheet that depicts travel patterns in terms of trip purpose, frequency and lengths. As part of 

UKERC work it is planned to incorporate and formalise this into the next version of UKTCM. 
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Table 2: The UKTCM transport demand segments 

Passenger demand segments Freight demand segments 
Mode Journey segment Mode Journey segment 

Walking Urban  LDV (vans) Urban  
Cycling Urban / non-urban  Rural 
Motorcycle Urban   Motorway 
 Rural HGV (trucks) Urban  
 Motorway  Rural 
Car  Urban   Motorway 
 Rural Rail Dedicated rail freight 
 Motorway Navigation Inland / domestic 
Bus Local bus (urban)  Coastal / domestic 
 Coach (motorway)  Maritime / intern. 
 Minibus (rural) Air freight Domestic short haul 
Rail Light rail and underground  International medium haul / 

Europe 
 Regional rail  International long haul / 

intercontinental 
 Intercity rail  International supersonic 
 High speed rail   
Passenger air Domestic short haul   
 International medium haul / 

Europe 
  

 International long haul / 
intercontinental 

  

 International supersonic   

 

Overview of model specification 

Demand is derived as an econometric function of exogenous parameters, together with 

their respective elasticities of demand. Separate demand functions are used for each 

mode of transport as listed in Table 2, taking on the form shown in Equation E1: 
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where  T  = demand for travel (expressed in passenger-km and tonne-km) 

 GDP = Gross Domestic Product 

 NHH = total number of households 

 RC = relative vehicle ownership and operating costs for a demand segment 

 Exx = elasticity with respect to xx 

 n = modelling year (currently 1996, 1997, …, 2050) 

 

The relative ownership and operating costs RCn for each demand segment are the 

relative changes from year n-1 to year n of the average weighted costs fed back from the 

VSM. The VSM calculates ownership and operating costs for each vehicle technology 

based on a number of cost categories, including the average pre-tax purchase price (NB: 

price, not engineering cost), any purchase taxes or incentives (e.g. scrappage incentive), 

fixed operating costs (maintenance, insurance, excise duty, fixed road user charge, 

depreciation, etc.) and variable operating costs (fuel costs, road user charging per km or 

cordon entry, etc.). These are then weighted by vehicle-km and averaged over all 

technologies within a demand segment in year n to give a cost per passenger/tonne-km 

for each demand segment. 

 

In the short run, changes in incomes and prices influence the decision of making a trip 

and also the decision concerning which transport mode is used (e.g. in the short run, a 

car has already been purchased and only the variable costs of a trip are decisive). In the 

long-run, changes in income and in prices can also lead to a lasting change in people’s 

behaviour and can influence vehicle purchase decisions (for a good review see Goodwin 

et al., 2004). This difference between short-run and long-run effects has been taken into 

account in an indirect way in UKTCM. The first two elasticities in Equation E1 reflect 
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the short-run effects of changes in incomes and population levels on transport demand. 

The third elasticity simulates any additional long-run effects of relative changes of 

vehicle ownership and operating costs on overall demand and modal shift. Modal shift 

happens when the costs of providing one pkm or tkm for competing modes (say, car vs. 

bus vs. rail vs. air) as fed back by the VSM change relative to each other. There is an 

overall change in demand and also a shift from one mode to the other. The model 

applies default price elasticities (e.g. -0.38 for total passenger transport demand, -0.54 

for cars, -0.61 for vans and trucks) to changes in vehicle ownership and operating costs 

RC for each mode of transport. For example, an increase in fuel duty that is only applied 

to cars and motorcycles, but not buses, rail and air, will result in an increase in RC for 

cars relative to the reference scenario as well as relative to the other modes, ultimately 

leading to a decrease in overall passenger transport demand and a shift towards bus, rail 

and domestic air. This is demonstrated below in Section 4. 

 

To avoid a simple static approach the elasticities can take different values for each 

future year up to 2050. This dynamic approach allows modelling change in behaviour 

and preferences and avoids a simple projection of the past into the future. The 

estimation of the parameters for the calculation of future demand is based on statistical 

data for previous years and on transport demand forecasts taken from other studies. This 

allows the researcher and user to specify a ‘base case’ or ‘reference’ scenario against 

which alternative scenarios are compared. 
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Demand model calibration 

The demand elasticities were calibrated for the base year (1995) and subsequent years 

up to 2007, based on published statistics of transport (DfT, 2008c), demographic (ONS, 

2008) and economic (HM Treasury, 2008) data. For future years up to 2050, the 

elasticities were either set to historic averages (‘forecasting mode’) or derived once the 

user had specified an exogenous set of demand projections (‘simulation mode’). 

 

Thus in ‘simulation mode’ internal consistency checks can be carried out by comparing 

the elasticities implicit in the exogenous demand, GDP and population projections with 

published figures. For instance, Wohlgemuth (1997) provides short-run income 

elasticities of demand of between 0.23 (Europe) and 0.78 (US) for distance travelled by 

cars, 0.39 (Europe) for tonne-km by trucks and between 1.35 (Europe) and 1.75 (US) 

for passenger air miles travelled. These are comparable with other studies such as 

Goodwin et al. (2004). Assuming a long term GDP growth rate of just 2% per year, 

Government projections of population growth and taking current demand projections 

based on DfT (2008a), the UKTCM demand model calibration implied short term 

(2010-2020) elasticities in the range between 0.3 and 0.4 for distance travelled by car, 

between 0.7 and 0.8 for tonne-km by trucks and between 1.3 and 1.6 for passenger air 

miles – a reasonable fit with published data (Clements, 2008; see e.g. Goodwin et al., 

2004; Wohlgemuth, 1997). 
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3.3 Vehicle stock model (VSM) 

Approach 

The VSM is a disaggregate vehicle stock model that provides two key functions within 

UKTCM. First, it provides an evolution of the number of vehicles (total, new and 

scrapped) for each modelling year, disaggregated by vehicle type, vehicle size, fuel 

type, engine technology, vintage and age (Tables 3a and 3b provide a summary of this 

disaggregation). Secondly, it provides vehicle distances travelled disaggregated by 

vehicle size, technology and age, as input to the DEEM and the LCEIM. A crucial 

attribute of the stock model is that the user can test the effects of policy levers on the 

deployment of different technologies within the vehicle population. 
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Table 3a: Summary of UKTCM vehicle technologies for passenger transport 

Vehicle 
type 

Size Primary fuel Engines/ 
drivetrains 

No. of 
vintages 

Car Small  Gasoline  ICV, PHEV 21 
  Diesel ICV 10 
  Electric Battery EV 3 
  H2, biomethanol  FC 4 
 Medium Gasoline  ICV, HEV, PHEV 30 
  Diesel  ICV, HEV 21 
  Biodiesel (B100) ICV 3 
  Bioethanol (E85) ICV 9 
  LPG, CNG ICV 12 
  H2, biomethanol  FC 6 
 Large Gasoline  ICV, HEV, PHEV 30 
  Diesel  ICV, HEV 22 
  Biodiesel (B100) ICV 3 
  Bioethanol (E85) ICV 9 
  LPG ICV 11 
  H2, biomethanol  FC, ICV 11 
Motorcycle Average Gasoline ICV 3 
  Electric Battery EV 3 
  H2 FC 3 
Bus Mini Gasoline  ICV 3 
  Diesel ICV, HEV 22 
  LPG, CNG ICV 6 
  E85 ICV 9 
  Biodiesel (B100) ICV 3 
  H2 FC 1 
 Urban Diesel ICV, HEV, PHEV 30 
  Electric Battery EV 3 
  LPG, CNG ICV 5 
  E85 ICV 3 
  Biodiesel (B100) ICV 3 
  H2, biomethanol FC 9 
 Coach Diesel ICV, HEV 22 
  Electric Battery EV 3 
  LPG, CNG ICV 5 
  Biodiesel (B100) ICV 3 
  H2, biomethanol FC 9 
Rail Light, metro Grid electricity Electric  6 
 Regional  Diesel  ICV 3 
  Grid electricity  Electric 3 
 Intercity  Diesel  ICV 3 
  Grid electricity  Electric 3 
 High speed Grid electricity Electric 3 
Air General aviation Jet A-1 Turboprop  1 
 Short haul, dom. Jet A-1, H2 Turbine  9 
 Medium haul, int. Jet A-1, H2 Turbine 9 
 Long haul, int. Jet A-1, H2 Turbine 9 
 Supersonic, int. Jet A-1, H2 Turbine 9 
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Table 3b: Summary of UKTCM vehicle technologies for freight transport 

Vehicle 
type 

Size Fuels Engines/ 
drivetrains 

No. of 
vintages 

Trucks Light  Gasoline  ICV 13 
 (vans, <7.5t GVW) Diesel ICV, HEV, PHEV 30 
  Battery electric Electric  3 
  Biodiesel (B100) ICV 9 
  Bioethanol (E85) ICV 9 
  LPG, CNG ICV 6 
  H2 FC 3 
 Medium  Diesel  ICV, HEV 14 
 (7.5t - 16t GVW) Biodiesel (B100) ICV 4 
  H2, biomethanol  FC, ICV 14 
 Large Diesel  ICV, HEV 15 
 (>16t GVW) Biodiesel (B100) ICV 4 
  H2, biomethanol  FC, ICV 14 
Rail Regional  Diesel  ICV 3 
  Grid electricity  Electric 3 
Shipping Inland Diesel  ICV 2 
 Coastal Diesel  ICV 2 
 Maritime Diesel  ICV 2 
Air Short haul, dom. Jet A-1, H2 Turbine  9 
 Medium haul, int. Jet A-1, H2 Turbine 9 
 Long haul, int. Jet A-1, H2 Turbine 9 
 Supersonic, int. Jet A-1, H2 Turbine 8 

Where: GVW=gross vehicle weight, ICV=internal combustion engine vehicle, HEV=hybrid 

electric vehicle, PHEV=plug-in hybrid electric vehicle, H2=hydrogen (gaseous or liquid), 

B100=100% biodiesel, E85=85% bioethanol-15% gasoline blend, LPG=liquefied 

petroleum gas, CNG=compressed natural gas, dom.=domestic, int.=international, Jet A-

1=aviation jet fuel (kerosene) 

 

In each year the structure of the vehicle population will change due to a combination of 

two processes: the purchase of new vehicles and the scrapping of old ones.  The process 

is iterative, with changes year-on-year against the vehicle population distribution for the 

base year.  New technologies will enter the population through the purchase of new 

vehicles (or the upgrading of existing vehicles, e.g. trucks).  For all vehicle types there 

is a common equation which describes the way the vehicle stock evolves over time: 
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NewVehicles(y) = TotalVehicles(y) - TotalVehicles(y-1) + ScrappedVehicles (y-1)  (E2) 

 

where:  y = modelling year, from (base year + 1) to end of modelling horizon 

 

Within the VSM, the calculation of the total number of different vehicle types in the 

stock each year is treated separately, as different forces are assumed to affect the entry 

of new vehicles into the stock. The exogenous scenarios, which describe the societal 

factors and attitudes that partly determine vehicle ownership, affect the overall vehicle 

numbers and technology choice in each year. The vehicle types modelled are 

motorcycles, three passenger car sizes, urban buses, express coaches, mini buses, vans, 

medium and large trucks, four aircraft sizes, four train sizes and three shipping vessel 

sizes. The VSM is divided into five main stages: 

1. Module to calculate car ownership, drawn upon previous household car 

ownership models following the development of the 1997 UK National Road 

Traffic Forecast model (DETR, 1997) and its improvements as specified by ITS 

Leeds (2001) and Whelan (2007). The module treats household ownership of a 

first, second and third or more car separately and draws on a number of 

explanatory variables such as changes in average new car prices, car ownership 

saturation levels, household location (urban, non-urban), household disposable 

income and availability of public transport; 

2. For all other vehicle types a module to calculate the number of total vehicles 

required to fulfil demand, taking into account exogenous variables such as GDP 

(for road freight) and scenario variables such as average vehicle load factors; 
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3. A module to calculate vehicle scrappage, simulated through the modified 

Weibull function previously used in the FOREMOVE model (Zachariadis et al., 

1995); 

4. A vehicle technology choice module, based on price and non-price factors 

underlying purchasing decisions. New cars are further modelled by size and 

market segment (private, fleet/company); 

5. Calculation and disaggregation of vehicle-kilometres by size, fuel type, engine 

technology and age, based on the demand segments derived in the TDM, vehicle 

load factors3 and the highly disaggregate vehicle stock derived in steps 1-4 

above. 

 

To populate and calibrate the stock model we used a number of sources, including car 

ownership data (Whelan, 2007), vehicle licensing (new, total) and vehicle age 

distributions (DfT, 2009b), vehicle purchase prices and O&M costs (Lane, 2006; 

SMMT, 2009), demographic (ONS, 2008) and macro-economic data (HM Treasury, 

2008). 

 

The detailed specification of the entire VSM goes beyond the scope of this paper. 

However, since vehicle technology choice is an important new feature of the model it is 

described next.  

 

                                                 

3 The ‘average load factor’ (in % of capacity) is an important scenario input variable for the VSM. It can 

be modified for the modelling years using the scenario variable ‘Scen_LoadFactor’, which is 

disaggregated by vehicle type e.g. ‘vans’ and route segment type e.g. ‘urban’ or ‘motorway’. 
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Model specification: focus on vehicle technology choice 

The purpose of the technology choice module is to split the total annual demand for new 

vehicles (i.e. NewVehicles(y) in Equation E2) among the different available 

technologies, for any specific vehicle type (such as light goods vehicles or medium-

sized cars). The idea behind the model is that a vehicle of technology i is chosen with 

probability (probi) which is related to cost and non-cost factors of the vehicle with that 

technology. Cost factors are simulated by calculating the equivalent annual cost EACi 

for each technology i. Non-cost factors are simulated by a preference and performance 

parameter, Pi, which is an aggregate function of perceived performance (perf), market 

presence (pres) and consumer preference (pref) of the vehicle technology. From the 

mathematical point of view, the probability is modelled as a linear function of the 

preference and performance parameter and a logit probability function (commonly used 

in behavioural modelling, see e.g. Train, 2009) of the cost factors: 
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where Pi = preference and performance parameter for vehicle technology i 

 EACi = equivalent annual cost of vehicle technology i 

 c = modelling constant (calibrated) 

 m = number of vehicle technologies available in modelling year 
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 perfi  = perceived performance of vehicle technology i 

 presi = market presence at maturity of vehicle technology i 

 prefi = consumer preference for vehicle technology i 

 

The equivalent annual cost EACi is the cost per year of owning and operating a vehicle 

over its entire (economic) lifespan. It is the sum of the annuity of owning the vehicle 

over its lifetime and any annual operating and maintenance costs (e.g. fuel, road user 

charging, circulation taxes, insurance, maintenance and depreciation) to the consumer. 

The annuity represents the annual payment of paying off a loan for all up-front costs 

(purchase price, purchase taxes and rebates). The applied discount rate can vary by 

vehicle type (car, van, aircraft, etc.) and, to avoid a purely static approach, by year. 

 

For cars, the discount rate can vary by vehicle ownership type in order to simulate the 

differences in financial considerations and investment risk for the private (higher private 

rates) and fleet/company (commercial rates) car markets. The default discount rate for 

the private car market is 30%, simulating higher cost of capital, risk aversion and the 

relative importance of up-front costs in the decision making process of the private 

consumer. In contrast, the default discount rate for the fleet/company car market is 10%, 

simulating lower cost of capital and investment risk. 

 

The P factor is an aggregate of three key factors that can influence purchasing 

decisions, based on market research by the UK Energy Saving Trust (2008). First, the 

factor of perceived performance perf is an aggregate of perceived safety and security, 

speed, acceleration, range between refuelling, space available and comfort. Secondly, 

the market presence factor pres represents the potential market presence of the vehicle 
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technology at market maturity, including factors such as availability of and access to 

fuel as well as market coverage (i.e. is the technology widely available across the 

different market segments such as ‘super mini’, ‘small family’, executive’ and ‘multi-

purpose vehicles’?). Thirdly, the consumer preference factor pref simulates non-cost 

factors that cannot be explained by cost, performance and market factors, e.g. vehicle 

colour, style and ‘technology loyalty’. 

 

The obvious challenge of defining P has been approached in two different ways. First, 

in the case where the vehicle technology is an established one, with a consolidated 

market share such as gasoline and diesel cars, P can be derived using equation E3 on the 

basis of observed, historical data such as the UK’s Vehicle Licensing Statistics (DfT, 

2009b). Since the values of P are not constant, but could change over time, it is 

necessary to verify their trends on the basis of observed data. In UKTCM, this 

verification process was performed for the base year and subsequent modelling years 

where licensing statistics exist (from 1995 to 2007). For example, the share of new 

diesel cars has increased significantly from around 20% in the late 1990s to around 50% 

in 2008 (SMMT, 2009). As the cost difference between gasoline and diesel cars has not 

changed dramatically, this trend implies that over this time period the non-cost factors 

for diesel cars increased relative to gasoline cars, indicating a relative improvement in 

performance (higher power, better acceleration, lower specific emissions), preference 

(decrease in perception of diesel being a dirty technology) and market potential 

(emergence of small diesel cars, technology availability now similar to gasoline 

technology). 
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Secondly, for new and alternative vehicle technologies, neither cost nor preference and 

performance data are well established or can be observed directly. In addition, both cost 

and non-cost factors may change more radically in future years than for their 

conventional counterparts. Costs may decrease as production achieves economies of 

scale, technological developments cut intrinsic costs and vehicle life increases. 

Similarly, vehicle performance may increase as technological developments improve 

utility and public perceptions change. Perceptions will be influenced by information 

such as marketing and technology demonstration, and also by the number of vehicles 

already in use. Market potentials may increase by the market providing larger ranges of 

models across the vehicle classes (e.g. hybrid electric cars may in future be available 

more widely across the market segments). Thus for each new and alternative vehicle 

technology the change in P over time is modelled as an S-curve using a logistic function 

(Note: this is distinct from the S-curve of market penetration, i.e. vehicle numbers.). We 

assume that the new technology improves from a market entry year Tentry to a product 

maturity year Tmaturity, reaching a maximum level P at maturity (Figure 3). Tentry is 

defined as the entry year for the first commercially available vehicles (albeit these may 

also be regarded as commercial prototypes, likely to be used primarily in demonstration 

projects). Tmaturity is the year when the vehicle technology performance and consumer 

preference are expected to level off (or at least become parallel with the trend line for 

conventional technologies).4 P is estimated based on the expected relative market share 

of the new vehicle technology (in terms of new vehicle sales) in year T2, compared to 

                                                 

4 Note Tmaturity is not the date when market penetration (share of new vehicle sales) levels off for the new 

technology. Growth in new vehicle sales may lag behind the rise in P, as the number of sales will also be 

critically dependent on differences in technology costs and taxes. 
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some specified conventional comparator or reference technology, that might be 

anticipated if the annualised costs of the conventional and new technologies were the 

same. For instance, a medium gasoline car is the reference technology against which all 

new and alternative medium sized cars are compared with in terms of their expected 

performance, preference and market availability. If an alternative technology has the 

same performance and preference but is expected to lack the refuelling infrastructure 

even at market maturity then P is lower according to the relative shares in refuelling 

infrastructure coverage across the nation. Figure 3 illustrates this by showing four 

hypothetical curves comparing an existing reference technology to three new vehicle 

technologies with three different entry years, maturity years and levels of preference 

and performance. 

 



29 

 

Figure 3: Comparison of four hypothetical preference and performance parameter 

curves 

 

Notes: P = preference and performance at market maturity; Tentry = expected entry year for the 

first commercially available vehicles; Tmaturity = expected maturity year i.e. year when the 

preference for and performance of the new vehicle technology are expected to level off (or at 

least become parallel with the trend line for existing technologies). Tentry1 is 2005 hence not 

shown in this Figure. 

 

Vehicle technology 1 represents a rather slowly progressing conventional technology 

where market entry happened in the past and maturity is expected in 2015, e.g. a 

gasoline hybrid electric medium-sized car. Vehicle technologies 2 and 3 represent future 

technologies (with market entries of 2013 and 2019), with comparatively faster rates 

and at maturity higher expected performance and preference than technology 1. 

Technology 3 takes only 6 years to mature and even outstrips the reference technology. 
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Clearly the specification of future vehicle costs and P parameter curves are crucial to 

the medium to long term outcomes of the vehicle technology choice module. While 

default values for cost and non-cost parameters have been developed based on best 

available knowledge in the literature and in consultation with policy and industry 

experts, UKTCM users can modify them according to their market expectations or for 

simple ‘what-if’ analysis. 

 

While the above methods apply to all vehicle categories, the car technology choice sub-

module adds two further twists. New cars are modelled by size (defined by three engine 

size categories) and ownership (private and fleet/company). Over the last 10 years, the 

UK new car size split has been nearly constant, with small cars taking up around 25% of 

the market, medium 60% and large 15%. Small and medium car shares have fallen 

slightly over the past 10 years, while large cars have been on the increase. Vehicle size 

split is a scenario input variable so can be changed for future years for sensitivity 

analysis or exploration of scenario variants. 

 

Car purchasing decisions can be quite different for the three main market segments of 

private, fleet and business car buyers. New fleet and business cars made up more than 

50% of all new cars sold in 2007 and 2008 (DfT, 2009b; SMMT, 2009). The high share 

of fleet and business cars is largely a UK phenomenon. The UKTCM simulates this 

feature of the UK market by putting more emphasis on up-front costs in the private car 

model (high discount rate, or hurdle rate, of 30%) while the fleet buyer sees the 

commercial rate of 10%. The distinction makes it possible to simulate policies affecting 

different market segments (e.g. company car tax, scrappage rebate for private buyers). 
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3.4 Direct energy and emissions model (DEEM) 

Approach 

The VSM provides vehicle-kilometres and average trip lengths, disaggregated by 

passenger/freight, vehicle type, vehicle size, fuel type, propulsion technology (including 

engine and drivetrain technology, e.g. hybridisation) and ‘route segment types’ (such as 

urban, rural and motorway for road, urban/light and high speed for rail, and take-off and 

cruise for air). From this, the DEEM calculates fuel and energy consumption (in volume 

and energy units) as well as greenhouse gas pollutant emissions arising from the 

operation of vehicles by using the established emissions factor method. By modelling 

‘bottom-up’ down to the level of vehicle technology and route segment type, the DEEM 

is able to model the combined effects of different fleet compositions, different sets of 

emission factors, traffic characteristics, cold starts, fuel quality and driver behaviour. 

This is a complex process and, given the focus of the paper, the detail has been omitted 

here but included in the UKTCM Reference Guide (Brand, 2010a). 

 

Model specification, data sources and calibration 

For road transport, speed distributions for each vehicle type (car, motorcycle, van, 

HGV) and route segment type (urban, rural, motorway) are used to calculate the energy 

consumption and emissions, based on average speed-emissions curves developed in 

previous research and emissions inventories such as COPERT (EEA, 1998, 2000), 

MEET (Hickman et al., 1999), HBEFA (INFRAS, 2004) and NAEI (NETCEN, 2003). 

These datasets provide a base set of emissions factors (mostly for conventional vehicle 

technologies), which is mapped onto UKTCM vehicle technologies and then scaled for 
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future technologies – thus providing the default set of emissions factors for UKTCM. 

The user can change both mapping and scaling to simulate effects of policy such as fuel 

efficiency standards. Emissions factors for road vehicles at normal operating 

temperatures (often called ‘hot’) are a polynomial function of average speed, with up to 

ten coefficients for each pollutant. The UKTCM base emissions factors are based on 

HBEFA (INFRAS, 2004) coefficients, which were originally calibrated in extensive 

vehicle emissions testing. The road transport module also takes account of cold start 

effects. The default speed distributions are based on observed data for Great Britain 

(DfT, 2008c: Tables 7.10 and 7.11). To take account of effects such as congestion and 

speed limits the user can alter the speed distributions. 

 

For all other modes, average emissions factors are used to calculate energy use and 

emissions. For air, emissions factors are split into the different flight stages 

‘landing/take-off’ (LTO) and ‘cruise’. The share of the LTO phase compared to the total 

flight distance is estimated based on the international CORINAIR/SNAP classification 

(code 08 05), where the flight distance up to an altitude of 1000 metres – about 30 km –

is allocated to airport traffic. 

 

Apart from direct energy use, the emissions types included in the DEEM are the direct 

greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) as well as the 

indirect GHG carbon monoxide (CO), sulphur dioxide (SO2), nitrogen oxides (NOX), 

non-methane volatile organic compounds (NMVOC) and particulates (PM).5  

 

                                                 

5 Nitrous oxide (N2O), the other direct GHG, is accounted for in the LCEIM. 
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As the methodologies used in the DEEM differ slightly from those used to derive 

national statistics, the DEEM needed to be calibrated in terms of energy use and 

emissions. The model was therefore calibrated to national statistics (DfT, 2008c) for 

each year between 1995 and 2007 by applying scaling factors to DEEM energy use and 

emissions factors. 

 

3.5 Life cycle and environmental impacts model (LCEIM) 

Approach 

Based on a typical environmental life cycle assessment framework (ICO, 2006), the 

LCEIM comprises a life cycle inventory model and the environmental impacts 

assessment model. The life cycle inventory model calculates energy use and emissions 

(including primary energy and land use) for the manufacture, maintenance and disposal 

of vehicles; the construction, maintenance, and disposal of infrastructure; and the supply 

of energy (fuels). The environmental impacts assessment model then provides an 

assessment of the damage caused by calculating impact indicators (e.g. global warming 

potential) and external costs. 

 

The life cycle inventory model uses the ‘hybrid approach’ of process-chain analysis and 

input-output analysis developed by Marheineke et al. (1998). Process chain analysis is 

used for the main supply paths, and aggregated values for complete process chains are 

used within the model. For additional upstream processes, considered to be second or 

third-order effects, input-output analysis is used. This hybrid approach is seen as 

appropriate as much of the evidence in the literature suggests that, in most cases, over 

the lifetime of a vehicle, vehicle operation produces the vast majority of energy use and 
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GHG emissions (Lane, 2006; MacLean and Lave, 2003). While the fuel supply and 

vehicle manufacture stages account for about 20% of total lifetime GHG emissions – 

being roughly equal in magnitude – vehicle maintenance and disposal account for a 

much smaller share (ibid.). 

 

The environmental impacts assessment model converts direct (from the DEEM) and 

indirect (from the life cycle inventory model) emissions into impacts, which include a 

number of common impact indicators and external costs. Impact indicators are a means 

to describe environmental damage and to compare different pollutants with respect to a 

certain impact using different weighting factors. For example, the GWP100 (100-year 

Global Warming Potential) describes the warming impact of emissions over the next 

100 years, and the POCP (Photochemical Ozone Creation Potential) refers to the 

formation of photochemical oxidants. The methodology for determining external costs is 

based on an evaluation of marginal effects. To estimate marginal effects an Impact 

Pathway Approach has been used, building on previous research on the European ExternE 

project (Bickel et al., 2003; EC, 2005). 

 

The LCEIM allows the user to simulate the effects on energy use and emissions of e.g. 

adding new infrastructure (e.g. high speed rail), changes in the electricity generation 

mix and an alternative set of impact potentials (IPCC, 2007, is current default). 

 

Model specification and data sources 

The calculation of indirect emissions from the manufacture, maintenance and disposal 

of vehicles follows two main steps. First, each vehicle type (e.g. medium sized internal 
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combustion car) is broken down into its components in terms of mass of materials 

needed to manufacture the vehicle and for vehicle maintenance (e.g. tyres, lubricants 

etc.). Some 15 materials are modelled for each vehicle, including alkyd resin varnish, 

aluminium, glass, polypropylene, rubber and three types of steel. Based on this 

materials breakdown, the emissions, primary energy use and land use changes 

embedded in each kg of material are derived, for up to 25 emissions categories 

including embedded CO2, nitrous oxide (N2O, a direct GHG), ‘land use conversion from 

undeveloped to cultivated’ (in metre square/kilogram of material) and ‘crude oil’ (in 

kilogram of oil/kilogram of material).6 Secondly, the energy use and emissions for the 

processes involved in manufacturing, maintenance and disposal are derived by 

multiplying energy requirements for each process category with process emissions 

factors. 

 

The calculation of indirect emissions for the construction, maintenance and disposal of 

additional infrastructure follows the same methodology as for life cycle assessment of 

vehicles.7 The underlying data are based on a number of life cycle studies, where 

available based on UK context, including more generic inventories on fuels and 

                                                 

6 For example, the embedded CO2 emissions factors for unalloyed, low-alloy and high-alloy steel are 

1.61, 1.97 and 5.28 kg of CO2 per kg of material respectively. For aluminium this is even higher at 9.97 

kg of CO2 per kg of material. 

7 Emissions arising from maintenance of existing (road) infrastructure is not covered at present. Detailed 

infrastructure modelling would require an infrastructure-demand model to consider the effects of 

infrastructure changes on congestion or the effects of relatively higher road freight traffic on 

infrastructure maintenance. However, this is outside the scope of UKTCM as appropriate data and an 

infrastructure-demand model were not available. 
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powertrains (Brinkman et al., 2005; DTI, 2000; Joint Research Centre, 2006) and 

vehicle manufacturing and disposal (Lane, 2006; Schäfer et al., 2006; Zamel and Li, 

2006) as well as more specific ones on vehicle materials (International Iron and Steel 

Institute, 2002), infrastructure materials (e.g. cement, Nemuth and Kreißig, 2007) and 

process emissions (e.g. freight transport, Höpfner et al., 2007). The allocation of 

emissions from additional infrastructure is done by vehicle-km, which presents a 

simplification as, for example, heavy trucks (doing fewer miles than cars overall) are 

responsible for a larger share of the damage. Double counting within the hybrid life 

cycle inventory was avoided as much as possible following Strømman et al. (2009). 

 

Emissions from energy supply are calculated by converting energy and fuel use 

provided by the DEEM into emissions using well-to-tank emissions factors. Note in the 

case of biofuels, the DEEM calculates direct (or tank-to-wheel) emissions, while the 

LCEIM calculates well-to-tank emissions, which in the case of GHG may be negative 

(when growing the crops takes up more GHG from the atmosphere than fuel harvesting, 

production and distribution emits back into it). For electricity as a fuel, the LCEIM uses 

upstream emissions factors by generation fuel, taking into account the national 

electricity generation mix, transmission and distribution losses (around 10%) and 

imports from other countries (mainly France). In 2007, on an electricity supplied basis, 

40% was generated by gas-fired power stations, 35% from coal, 16% from nuclear, 6% 

from renewables and 2% from imports (DECC, 2009). This results in a CO2 content of 

electricity of 541 gCO2/kWh end-use (including transmissions and distribution losses). 

The UKTCM incorporates default projections of the generation mix based on central 

Government projections to 2025 (DECC, 2008) and constant extrapolation to 2050. 

These can be changed by the user for scenario analysis. 
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Given the uncertainty inherent in life cycle assessment, the differences in methods, 

assumptions and data used in these studies, default data were chosen for the LCEIM that 

represent ‘best estimates’, which can be changed by the user. 

 

As for impact indicators, the LCEIM applies a simplified impact pathway approach using a 

building block methodology. This uses aggregated parameterised values for different 

processes and technologies that are based on (a) atmospheric transport and chemical 

transformation modelling; (b) calculation of concentrations/depositions, and (c) application 

of dose-response relationships. The building blocks provide a transformation between 

input parameters (such as emissions) and external costs. They also allow a transition from 

marginal to absolute effects. Different methodologies are applied for the direct emissions 

from vehicles and for indirect emissions from up- and downstream processes. 

 

The following two sections bring the model alive by presenting the results policy scenario 

analysis involving a reference scenario and four alternative policy scenarios for 

comparison. 

 

4 A REFENCE SCENARIO FOR COMPARISON 

4.1 Approach 

To assess the likely effects of changes in policy and strategy against some reference 

situation, a ‘reference scenario’ for the outlook period up to 2050 is required. This 

reference scenario should not be confused with a ‘business-as-usual’ forecast. It can be 

defined by the user in many ways, for example based on government projections or 
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alternative images of the future. The reference scenario developed for this research is 

broadly a projection of transport activity, energy use and emissions as if there were no 

policy action (unless policies already exist or are ‘firm and funded’, in which case their 

impact is reflected in the reference scenario). For cars, the reference scenario assumes 

there is no further policy, that is, no policy following on from the EU Voluntary 

Agreements (VA), which end in 2008-09. A mandatory successor to the VA has been 

proposed but details of the scheme are still being worked out. For vans and HGVs it is 

assumed that these modes continue to be outside of the EU framework for targets on 

new vehicle emissions. Based on the UK’s Renewable Transport Fuels Obligation 

(RTFO), the reference scenario includes biofuels use for road transport increasing to 

about 4% by energy (5% by volume) by 2013, remaining fixed at that level for future 

years.8 

4.2 Key data sources and assumptions 

The reference scenario was built around current demographic, economic and demand 

projections. Economic growth up to 2011 is based on UK government figures and near 

term forecasts (HM Treasury, 2008), including the 2008/09 recession. From 2012 GDP 

growth is assumed to average 2.0% up to 2050 – in line with the historic 50-year 

                                                 

8 The EU also proposed, in January 2008, a mandatory target for biofuels for Member States of 10% by 

energy in 2020. In July 2008, the Gallagher Review of the Indirect Effects of Biofuels RFA, 2008. The 

Gallagher Review of the indirect effects of biofuels production. Renewable Fuels Agency (RFA), St 

Leonards-on-Sea. collated the latest evidence on biofuels sustainability and greenhouse gas impacts. As a 

result of the Gallagher Review, the UK and EU targets are both open to change. It was therefore decided 

to use the Gallagher recommendations, rather than previous policy commitments in the reference 

projection. 
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average for the UK. Population projections are based on national population trends and 

forecasts (ONS, 2008). Energy resource (oil, gas, biomass, etc.) price projections are 

based on ‘central’ government forecasts9 (DECC, 2008), with the central forecast 

projecting the real term oil price to average 65 US$(2007) per barrel in 2010, then rising 

slightly to 70 US$(2007) per barrel by 2020 and increasing further to 75 US$(2007) per 

barrel in 2030. Our reference scenario then extrapolates to 2050 where crude oil is 

forecast to cost 85 US$(2007) per barrel. While household disposable income is 

assumed to grow in line with economic growth, the urban/non-urban split of household 

location is kept constant at 2008 levels. Average vehicle load factors are assumed to 

remain constant at 2008 levels. Vehicle and fuel taxes as well as maintenance and 

insurance costs of all vehicle types are assumed to remain constant at current levels. 

While pre-tax vehicle purchase costs were kept constant over time for established 

technologies, they gradually decrease for unconventional and future technologies, thus 

exogenously simulating improvements in production costs. For future vehicle 

technologies, the preference and performance parameters were developed in 

consultation with policy makers and industry experts, as mentioned earlier. For 

example, the ratio of the preference and performance parameters for the average 

medium sized gasoline plug-in hybrid electric (PHEV) car and its reference technology, 

the medium sized gasoline car, is gradually increasing from 0.3% for the 2009-14 

vintage to a maximum of 10% for the 2030 vintage and any further vintages. The main 

reasons for the relatively low values and gradual rate increase assumed in the reference 

                                                 

9 The published official forecast by DECC serves as a reference against which alternative futures should 

be compared with, in particular in the light of accelerating depletion of oil resources. Alternative 

scenarios could be run based simply on different resource price projections. 
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scenario are (a) limited deployment of the charging infrastructure (e.g. only in future 

‘low carbon cities’), (b) relatively limited market availability of PHEV cars and (c) 

consumer preference for ‘conventional’ over ‘new/unknown’ technology. The 10% 

figure for market presence is in the same ballpark as what some car manufacturers want 

us to believe. Nissan’s chief executive, Carlos Ghosn, was quoted by the BBC as 

predicting: “The electric car will account for 10% of the global market in 10 years.” 

(BBC News, 2010) – a somewhat optimistic view. The reference case thus assumes a 

slower rate of improvement for the preference factor, lagging behind by a decade or so. 

Similarly, road vehicles running on high blend biofuels (e.g. E85) have a relatively low 

preference factors (about 2% of the reference technology) due to the limited 

development of refuelling stations assumed in the reference case. 

 

Operating the UKTCM in simulation mode, transport demand projections were 

exogenously aligned to government projections. For road and rail, this was based on the 

‘central’ forecast of the National Transport Model (DfT, 2008b) to 2025 and 

extrapolated to 2050. The ‘business-as-usual’ projections in Kollamthodi et al. (2008) 

were used for shipping, and air transport projections were based on the most recent 

capacity constrained ‘s12s2’ demand forecast in DfT (2009a). These projections imply 

gradually lower growth rates for most vehicle types. For instance, the car passenger-km 

growth rate between 2010 and 2020 is 0.78% p.a. (i.e. lower than the 0.97% p.a. 

between 2000 and 2005), decreasing to around 0.4% p.a. for the 2040-2050 period. Air 

travel (domestic and international) is expected to grow by 3.1% p.a. for the 2010-2020 

period, gradually decreasing to 0.7% p.a. for the 2040-2050 period. Therefore, the 

reference case implies that air travel is set to decouple from GDP and income and (more 

or less) saturate by the middle of this century. 



41 

 

 

The reference scenario assumes gradual improvements in specific fuel consumption (in 

unit of fuel per km travelled) and tailpipe CO2 emissions for all vehicle types including 

cars, vans, trucks, shipping vessels and aircraft. The rates of improvement vary by 

vehicle type, size and propulsion technology and are based on technological innovation 

alone, not on policy or regulatory push (e.g. voluntary/mandatory agreement on new car 

CO2 emissions). For example, the fuel consumption improvement rates for new 

conventional, hybrid and plug-in hybrid cars are assumed to be around 0.5% p.a. – a 

lower rate than the average rate of 1.3% p.a. observed for new cars between 2000 and 

2007 (SMMT, 2008). The assumed specific fuel consumption figures for 2010 and rates 

of improvements up to 2050 are shown for cars in Table 4. 
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Table 4: Summary list of specific fuel consumption figures and rates of improvements 

for cars for the reference scenario 

  SFC (a) Average rates of change (% p.a.) 
Car size Fuel / engine 

technology 
2010 

baseline 
2010 - 2020 2020 - 2030 2030 - 2050 

Small  Gasoline ICV 7.3 -0.5% -0.5% -0.5% 
 Gasoline PHEV 5.1 -0.5% -0.5% -0.5% 
 Diesel ICV 4.9 -0.5% -0.5% -0.5% 
 Battery EV 16.5 (1) -0.8% -0.8% -0.5% 
 H2 FC 12.3 (2) - -2.1% -1.1% 
Medium Gasoline ICV 8.3 -0.5% -0.5% -0.5% 
 Gasoline HEV 5.0 -0.5% -0.5% -0.5% 
 Gasoline PHEV (3) 5.8 (15) -0.5% -0.5% -0.5% 
 Diesel ICV 5.4 -0.5% -0.5% -0.5% 
 Diesel HEV 3.3 -0.5% -0.5% -0.5% 
 B100 ICV 4.3 -1.4% -0.7% -0.5% 
 E85 ICV 8.7 -0.5% -0.5% -0.5% 
 LPG ICV 12.7 -0.5% -0.6% -0.6% 
 H2 FC 20.5  (2) - -1.4% -0.7% 
Large Gasoline ICV 10.3 -0.5% -0.5% -0.5% 
 Gasoline HEV 6.2 -0.5% -0.5% -0.5% 
 Gasoline PHEV (3) 7.2 (23) -0.5% -0.5% -0.5% 
 Diesel ICV 7.0 -0.5% -0.5% -0.5% 
 Diesel HEV 4.2 -0.5% -0.5% -0.5% 
 B100 ICV 6.8 -1.4% -0.7% -0.5% 
 E85 ICV 10.7 -0.5% -0.5% -0.5% 
 LPG ICV 13.8 -0.5% -0.6% -0.6% 
 H2 ICV 43.8 -1.0% -1.2% -0.6% 
 H2 FC 20.5  (2) - -1.4% -0.7% 

Notes: (a) SFC = specific fuel consumption as an average over urban, rural and motorway driving 

cycles and including cold starts, expressed in litres per 100km for all fuels except electricity, 

where SFC is expressed in kWh per 100km.  (1) SFC is in kWh/km.  (2) FC figure is for 2020.  (3) 

For PHEV, the first SFC figure is for the liquid energy carrier, expressed in l/100km and 

representing the weighted average of rural and motorway driving cycles; the second SFC figure 

in brackets is for electric operation, expressed in kWh/100km and representing urban driving 

cycle. 

 

4.3 Reference scenario results 

The demand for domestic passenger transport (in passenger-km) is projected to increase 

by 10% by 2020 and 21% by 2050 from 2007 levels (Table 5). Travel by car continues 
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to dominate passenger transport, with shares of 80% in 2020 and 77% in 2050. Rail and 

bus see their shares increase slightly to 11% and 8% in 2050 respectively. While 

domestic air travel accounts for only around 2% of total domestic passenger transport, 

international passenger air travel adds to this considerably (up to 70% by 2050) and 

from a 2007 baseline increases by 39% and 115% by 2020 and 2050 respectively. 

Domestic freight transport (in tonne-km) is set to increase by 19% by 2020 and 73% by 

2050. Domestic freight transport continues to be dominated by road freight (62% in 

2020, 58% in 2050), yet rail freight is expected to increase its share from 10% in 2007 

to 16% in 2050. 

 

As there are no major changes assumed in passenger and freight load factors over time, 

these trends are mirrored in traffic projections (vehicle-km). For road traffic, the highest 

rate of increase is expected for light goods vehicles (LGV, or vans), nearly tripling from 

66.4 billion vehicle-km in 2007 to 185.3 billion vehicle-km in 2050. Over the same 

period car traffic increases by only 30%, heavy goods vehicles (HGV) traffic by 22% 

and rail traffic doubles. Gasoline and diesel continue to be the main fuels used for road 

transport, mainly because the price of fuels does not increase significantly and 

alternative fuels (and vehicles) are neither widely available nor preferred by consumers. 
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Table 5: Selection of the main output indicators projected for the reference scenario 

 projected figures for key dates 
average annual growth 

rates (%) 

Traffic (billion vkm) 2007 2015 2020 2030 2050 
2010-
2020 

2020-
2030 

2030-
2050 

Motorcycle 6.3 7.0 7.4 7.6 7.0 1.6% 0.2% -0.4% 
Car 399.9 420.1 437.0 466.5 520.2 0.9% 0.7% 0.5% 
Bus and coach 5.9 6.2 6.3 6.5 6.9 0.6% 0.3% 0.3% 
LGV 66.4 82.3 94.8 122.2 185.3 3.0% 2.6% 2.1% 
HGV 29.1 30.2 31.4 33.4 35.6 0.9% 0.6% 0.3% 
Urban rail (LRT, metro) 0.1 0.1 0.1 0.1 0.2 1.9% 1.6% 1.4% 
Regional and Intercity 0.6 0.6 0.7 0.8 1.1 2.1% 1.8% 1.5% 
High Speed 0.0 0.0 0.0 0.0 0.0 1.9% 1.6% 1.4% 
Navigation, domestic 0.0 0.0 0.0 0.0 0.0 1.6% 1.4% 1.1% 
Aircraft, domestic 0.2 0.2 0.3 0.3 0.4 3.1% 2.1% 1.1% 
Aircraft, international 2.1 2.6 3.0 3.7 4.7 3.0% 2.2% 1.2% 
New cars (thousand vehicles) 
Gasoline ICV 1157 1407 1399 1306 1581 0.6% -0.7% 1.0% 
Diesel ICV 937 1099 1128 1010 1101 1.0% -1.1% 0.4% 
Gasoline & diesel HEV 7 31 71 237 343 21% 13% 1.9% 
Gasoline & diesel PHEV 0 2 11 237 335 55% 36% 1.7% 
Battery EV 4 21 71 86 80 25% 2.0% -0.4% 
LPG & CNG 1 1 1 2 3 0.4% 4.6% 2.9% 
Biodiesel & -ethanol 1 68 65 205 193 24% 12% -0.3% 
Fuel cell H2 0 0 0 0 1 43% 10% 7.1% 
Total new cars 2107 2630 2746 3083 3636 1.5% 1.2% 0.8% 
Direct CO2 (at source) (million tonnes) 
Motorcycle 0.6 0.6 0.6 0.6 0.5 -0.5% 0.1% -0.4% 
Car 76.9 74.0 73.1 70.2 67.2 -0.2% -0.4% -0.2% 
Bus and coach 3.2 3.1 3.0 2.7 2.2 -0.2% -1.0% -1.0% 
LGV 14.5 17.0 18.9 22.2 30.0 2.3% 1.6% 1.5% 
HGV 26.3 25.8 25.8 25.6 25.2 0.1% -0.1% -0.1% 
Rail, diesel only 2.2 2.2 2.2 2.3 3.0 0.4% 0.3% 1.3% 
Navigation, domestic 2.4 2.6 2.8 3.0 3.7 1.1% 1.0% 1.1% 
Aircraft, domestic 2.2 2.4 2.6 2.9 3.1 1.8% 1.1% 0.3% 
Aircraft, international 35.5 39.8 42.6 47.4 50.4 1.8% 1.1% 0.3% 
Total domestic 128.4 127.7 129.0 129.5 134.9 0.2% 0.0% 0.2% 
Lifecycle CO2 (million tonnes) 
Motorcycle 0.7 0.7 0.7 0.7 0.6 -0.4% 0.1% -0.4% 
Car 107.6 107.0 106.7 106.2 106.4 0.0% 0.0% 0.0% 
Bus and coach 4.1 3.9 3.8 3.6 3.3 -0.2% -0.5% -0.5% 
LGV 21.0 24.7 27.4 32.5 44.7 2.6% 1.7% 1.6% 
HGV 33.9 33.1 33.1 32.5 32.1 0.2% -0.2% -0.1% 
Rail, diesel only 5.2 5.4 5.5 5.8 7.4 0.9% 0.5% 1.2% 
Navigation, domestic 2.6 2.8 3.0 3.2 4.0 1.2% 0.8% 1.0% 
Aircraft, domestic 2.6 3.0 3.2 3.5 3.8 1.8% 1.1% 0.4% 
Aircraft, international 43.6 48.9 52.4 58.6 62.8 1.8% 1.1% 0.3% 
Total domestic 177.7 180.6 183.4 188.1 202.2 0.5% 0.3% 0.4% 
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The historic and projected domestic traffic by primary fuel and hybridisation is shown 

for cars in Figure 4, suggesting that pure biodiesel ICV and BEV cars will gradually 

increase market shares but be limited to a few percent of total traffic while first HEV 

then PHEV cars will take a larger share of the market from about 2020 onwards. 

Although not shown in the Figure, rail sees a moderate shift towards electrified rail, 

with a 64% share of total traffic by 2050.  

 

Figure 4: Historic and projected domestic car traffic by primary fuel and hybridisation, 

reference scenario 

 

Notes: E85 = blend of 15% petrol and 85% bioethanol; HEV = hybrid electric vehicle; PHEV = 

plug-in hybrid electric vehicle; ICV = internal combustion engine vehicle; FCV = fuel cell 

vehicle; LPG = liquefied petroleum gas; CNG = compressed natural gas 
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Car ownership increases as a result of population growth, increased household 

disposable incomes, lower average new car purchase prices in real terms and 

comparatively lower availability of public transport in rural areas. Assuming that car 

scrappage rates do not change over the outlook period, this results in the demand for 

new cars rising from about 2.1 million in 2007 to over 3.6 million in 2050. Only 3% of 

new cars are expected to be electric (either BEV or PHEV) in 2020, rising to about 12% 

by 2030 and then levelling out. This is a direct result of the price differentials for each 

technology and the limitations imposed on the preference and performance factor for 

BEV and PHEV explained earlier. 

 

Direct CO2 emissions from domestic transport increase slightly by about 5% between 

2007 and 2050, while indirect (i.e. upstream and downstream) CO2 emissions rise by 

37% over the same period. This can be explained by a moderate shift towards electric 

road and rail transport. On the back of rising traffic, direct CO2 emissions from cars 

actually fall by 5% by 2020 and 13% by 2050, mainly due to fuel economy 

improvements and the increased uptake of electric (BEV and PHEV) cars that produce 

no emissions at source. Electric vehicles obviously produce emissions upstream from 

electricity generation. Add this to the upstream and downstream emissions from the 

increase in car numbers and scrapped vehicles over time, indirect CO2 emissions from 

cars increase by 8.5 million tonnes (28%) between 2007 and 2050. As a result, lifecycle 

(direct plus indirect) emissions of CO2 from domestic traffic increase by 14% between 

2007 and 2050 while emissions from cars stay about the same (Figure 5). Although not 

shown in the Figure, lifecycle CO2 emissions from international air travel increase by 

20% between 2007 and 2020 and 44% by 2040 when they reach a plateau. This is 
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mainly due to the combined effects of improved fuel economy of future aircraft and 

lower aviation growth rates by the middle of this century. 

 

Figure 5: Historic and projected lifecycle CO2 emissions from domestic transport by 

vehicle type, reference scenario (index 100 = year 2007) 

 

 

As for the non-CO2 GHG, the picture is mixed. While CH4, CO, NOX and NMVOC 

emissions decrease significantly by 2030 and then stay roughly constant, emissions of 

N2O increase due to the increased use of biofuels. The lifecycle GWP100 increases by 

2% and 14% between 2007 and 2020 and 2050 respectively. As this is similar to the 

CO2 emissions projections the different impacts of non-CO2 emissions seem to cancel 

each other out. 
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5 ALTERNATIVE SCENARIOS 

To illustrate the variety of policy scenario analyses that can be handled by UKTCM the 

results of four alternative ‘what if’ type scenarios are presented here. The illustrative 

scenarios are (a) a private vehicle fuel duty policy with emphasis on ‘early action’ 

(FD1), (b) effective speed limit enforcement on motorways and dual carriageways 

(SPE1), (c) a technology promotion and incentivisation programme that affects 

consumer preferences, market availability and costs of EV and PHEV cars (EV1), and 

(d) an integrated policy package (PP1) comprising the three single policy scenarios. 

 

5.1 Policy description and assumptions 

In fuel duty scenario FD1 “early action” is followed by “gradual but little action”: road 

fuel duties on petro-fuels (petrol, diesel, compressed natural gas, liquefied petroleum 

gas) and bio-fuels (100% bio-diesel, 85% bio-ethanol) for cars and motorcycles10 

double between 2010 and 2020, with further but less steep increases of 1 pence/litre per 

year from 2021 onwards. Further taking into account resource cost increases due to 

forecast crude oil price rises, average petrol and diesel prices are set to double between 

2010 and 2050. In scenario SPE1 it is assumed that by 2014 the current 70 mph (113 

kph) speed limit is effectively enforced for all road vehicles on both motorways and 

dual carriageways. This is modelled by gradually changing the speed profile for road 

vehicles. It effectively reduces average speed for cars and motorcycles on motorways 

                                                 

10 In this scenario the fuel duties for buses, vans, HGV and all other surface passenger transport modes 

remain untouched. Similarly, the policy of no fuel duty or value added tax on aviation fuel remains 

unchanged. 
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from 69 mph (111 kph) to 57 mph (91 kph). Average speeds for vans, HGV and 

coaches effectively decrease from 56 mph (90 kph) to 54 mph (87 kph). No demand 

effects are assumed in SPE1. In scenario EV1, electric vehicles (first HEV, then BEV 

and PHEV) are becoming more widely available, gradually increase their performance 

relative to ICV vehicles and, crucially, will be equally preferred by consumers when 

compared to their ICV counterparts.11 The necessary recharging stations will be built in 

urban areas together with smart metering and home charging. This systemic change is 

assumed to happen gradually over the next 10-20 years. The integrated package PP1 

comprises the three options above, essentially simulating a road transport policy 

scenario with early action on petro- and bio-fuel duty and effective speed limit 

enforcement supplemented by partial electrification of road transport in medium to long 

term. 

 

5.2 Main results 

The fuel duty scenario (FD1) results in a 7% higher cost of motoring by car in 2020 

than in the reference case (REF), and 8% higher in 2050. As a result, passenger car 

demand is 3% lower in 2020 and 4% lower in 2050 than the baseline projection. There 

is some (<1%) modal shift to bus, rail and short haul air, and overall domestic demand 

                                                 

11 This is modelled by using an alternative set of preference and performance parameter (P) curves for 

cars, vans, HGV and buses on the principle that by a certain maturity year EVs (BEV, HEV, PHEV) are 

on equal terms with their reference technologies (petrol or diesel ICV) in terms of consumer preference, 

performance (max. speed, acceleration, range) and market potential/choice (equal presence on the market, 

not just a few exceptions as in 2009). It is further assumed that there is no change in the default forecast 

for the electricity generation mix. 
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for passenger travel decreases by 2% and 3% in 2020 and 2050 respectively. Although 

the total number of cars is only marginally lower in 2020 and 2050 than baseline, the 

car fleet sees a moderate shift from gasoline ICV technology to diesel/biodiesel ICV 

and electric cars (mainly BEV). By 2020, diesel will overtake gasoline as the main 

choice of fuel for new cars, and 11% of new cars will feature an electric drivetrain 

(BEV, HEV, PHEV), increasing to 31% by 2050. The combined effects of demand 

reduction, modal shift and moderate technology change results in 5% (2020) and 15% 

(2050) lower direct CO2 emissions from car travel in the FD1 scenario than in the REF 

case. Total lifecycle emissions of CO2 equivalent (CO2
eq, based on 100-year global 

warming potential) are also lower by 4% (2020) and 10% (2050) when compared to 

baseline levels. Cumulatively, the fuel duty policy (FD1) saves around 20 million 

tonnes (Mt) of CO2
eq between 2010 and 2020, and 279 Mt between 2010 and 2050 

when compared to baseline (Figure 6). While the demand for petro-fuels decreases 

slightly (from 52 billion litres in 2007 to 47 billion litres in 2050), the demand for 

electricity for transport quadruples between 2007 and 2050 (30% higher than in the 

REF case) – mainly as a result of the uptake of plug-in (BEV, PHEV) cars. The energy 

system-wide modelling of the aforementioned Energy2050 study (Anable et al., 

forthcoming; UK Energy Research Centre, 2009) suggests that overall the projected 

generation capacity and the electricity grid could cope with this increased demand if the 

vehicles were mainly charged overnight. The devil, however, may lie in the detail. It is 

still unclear whether the UK’s low voltage grid could cope at peak times, e.g. early 

evening when ovens, kettles, water/space heating and EV charging may prove too 

much, thus requiring investment in the grid on a large scale. One option to manage 

demand and deal with the different tax regimes is to have dual smart meters (one for 

transport, one for household electricity) and clear pricing signals that make it cheaper 
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(more expensive) to charge at off -peak (peak) times. Potentially most attractive for 

government are the 55% (2020) and 64% (2050) higher revenues from road fuel 

taxation. 

 

Figure 6: Scenario comparison of cumulative savings of CO2
eq emissions when 

compared to the reference case (REF)  

 

 

In the speed enforcement scenario (SPE1), the lower average speeds on motorways 

result in 2.3% (2020) and 2.4% lower direct CO2 emissions from all car travel (not just 

motorways) than in the reference case (REF). Emissions from motorcycle, van and 

HGV travel are also reduced, but less so. This results in a 1.5% reduction in UK 

domestic CO2 emissions when compared to baseline levels from 2015 onwards. 
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Cumulatively, the speed enforcement policy (SPE1) saves around 20 Mt of CO2
eq 

between 2010 and 2020, and 96 Mt between 2010 and 2050. 

 

The EV1 scenario emerges as a good low carbon option for the medium to long term. 

While in the REF case only 3% of new cars will be plugged (BEV, PHEV) by 2020, 

rising to 11% by 2030 and then levelling off, the EV1 scenario projects a higher rate of 

take up from about 2018, with 30% and 51% of new cars being electric by 2030 and 

2050 respectively. Interestingly, the demand for road traffic increases when compared 

to baseline – a result of the lower overall cost of ‘electric’ motoring (NB: no duty on 

electricity for transport use was assumed). Nevertheless, from 2020 onwards direct CO2 

emissions follow a considerably lower trajectory than in the REF case, while indirect 

emissions (mainly from electricity generation, but also vehicle production) are higher. 

By 2030, lifecycle CO2 emissions from domestic transport are 7% lower in the EV1 

scenario than in the REF case, and 10% lower by 2050 (Figure 7). While the demand 

for electricity for domestic transport is projected to be 2.5 times higher in the long term 

than in the REF case (reaching 35 TWh by 2050), the demand for petro- and bio-fuels is 

naturally lower, thus providing the taxman £5.4 billion p.a. (21%) less revenue from 

fuel duty by 2050. Cumulatively, the EV1 scenario saves 107 Mt of CO2
eq between 

2010 and 2030, and 474 Mt between 2010 and 2050.  
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Figure 7: Scenario comparison of total lifecycle CO2 emissions from domestic transport 

by vehicle type for 2007, 2020 and 2050 

 

 

In the integrated scenario (PP1), the combined effects of fuel duty increases, speed limit 

enforcement and partial electrification of road transport result in marginally lower 

demand for passenger transport (-2% in 2020, -1% in 2050) than in the REF case. 

Private vehicle traffic is reduced accordingly (-1.5% in 2050 compared to baseline), but 

not as much as in the fuel duty scenario (FD1). The shift from gasoline and 

diesel/biodiesel ICV technology to HEV and plug-in electric cars is more pronounced 

than in any of the single policy scenarios. By 2050, only 17% of new cars in PP1 will be 

gasoline or diesel/biodiesel ICV, 30% will be gasoline or diesel HEV, 39% PHEV and 

14% BEV. Direct CO2 emissions from domestic transport fall below 100 Mt by about 

2030 (23% less than in 2007) but see an increase again after 2040 due to increased 
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demand. Still, this is 8% (2020) and 27% (2050) less than in the reference case. 

Similarly, in PP1 total lifecycle CO2 and CO2
eq from domestic transport decrease in the 

medium term followed by a gradual increase to roughly where we are now in the long 

term (Figure 7) – yet this is 5% (2020) and 14% (2050) less than baseline (REF) levels. 

Cumulatively, the PP1 policy package saves around 57 Mt of CO2
eq between 2010 and 

2020, and 773 Mt between 2010 and 2050 (Figure 6). As a result of the fuel switching, 

the demand for petro-fuels decreases significantly (from 52 billion litres in 2007 to 38 

billion litres in 2050), but revenues from road fuel taxation are still 24% higher than in 

the REF case due to the doubling of petro-fuel duty. In contrast the demand for 

electricity for domestic transport increases tenfold between 2007 (about 4 TWh) and 

2050 (about 39 TWh), which has potentially major implications for electricity load 

management and recharging regimes.  

 

6 CONCLUSIONS 

This paper starts with the premise that there is a lack of integrated scenario modelling 

capability for research and practice that is appropriate for modelling the wide range of 

policies needed to decarbonise the transport system. It then aims to fill that gap by 

presenting a newly developed strategic transport-energy-environment model, the 

UKTCM, which is complementary to more sophisticated forecasting models (which 

usually address more specific aspects of the transport-energy-environment system but 

not the whole system). As a simulation model it is primarily aimed at ‘what-if’ type 

policy analyses and low carbon strategy development for the medium to long term. 

Although it comprises elements of forecasting at the aggregate levels, the model is not 

suited to endogenously model, say, the finer details of ‘smarter choices’ policies. 
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However, the scenario modelling framework is suited for developing structured 

‘storylines’ and breaking down current travel choices into their constituent journey 

purposes, lengths and modes as scenario inputs. Arguably the forecasting of the long 

term future beyond say 2020 based on historic values, habits and norms is not an 

appropriate approach – hence the more flexible scenario approach adopted here. 

 

By its nature as a simulation tool, UKTCM does not include the general equilibrium 

modelling and interaction with economy-wide variables (such as the feedback from 

transport fuel prices into effects on GDP and household income). There is partial 

equilibrium, however, in that average transport costs for each mode feedback to the 

demand model. The model is a sectoral model looking primarily at the energy and 

environmental impacts of the movement of people and freight. Although it includes 

effects such as emissions from electricity generation as well as embedded energy use 

and emissions from vehicle production, it is not an energy systems model. UKTCM can 

be, and indeed has been, linked with energy systems models such as MARKAL to 

provide insights into the linkages with and cross-sectoral trade-offs within the energy 

system. An example is the recent Energy2050 work of the UK Energy Research Centre 

(Anable et al., forthcoming; UK Energy Research Centre, 2009) where UKTCM played 

a key role in developing the ‘Lifestyle’ scenarios. 

 

One of the central challenges for policy makers is to prioritise limited resources in order 

to target the most effective policy interventions. As demonstrated above, the UKTCM is 

unique in its ability to model a number of discrete policies as well as integrated policy 

packages over different time horizons. For instance, it was shown that in terms of 

prioritizing policy interventions, speed enforcement emerged as the ‘winner’ over the 
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short-term (2010-2020), with fuel duty and electric vehicles pulling ahead over the 

medium-term (2010-2030). However, over the long-term (2010-2050), electric vehicles 

appear to be the most effective single strategy for reducing emissions. Nevertheless, 

what is clear from the analysis is that an integrated policy approach that considers both 

demand and supply side strategies are far more effective than any single policy 

intervention and therefore necessary for achieving a stringent 80% carbon emissions 

reduction target. The UKTCM can therefore inform decision-makers through 

comparative analysis of single policies or against integrated strategies of energy and 

transport policy interventions. Importantly, the model can give insight into what 

priorities should be given to different policy interventions over variable time-scales. 
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