

Policy Research Unit in Economic Evaluation of Health and Social Care Interventions

Research Report

Title Examining productivity losses associated with health related quality of life using patient and general population data.

Authors Ara R, Kearns, Mukuria C, van Hout B, Brazier J.

Correspondence to: Roberta Ara, HEDS, ScHARR, Regent Court, 30 Regent Street, Sheffield, S1 4DA. Email: <u>r.m.ara@sheffield.ac.uk</u>

Number RR0008

Date 2013

The University Of Sheffield.

The Policy Research Unit in Economic Evaluation of Health and Care interventions is funded by the Department of Health Policy Research Programme. It is a collaboration between researchers from then University of Sheffield and the University of York.

The Department of Health's Policy Research Unit in Economic Evaluation of Health and Care Interventions is a 5 year programme of work that started in January 2011. The unit is led by Professor John Brazier (Director, University of Sheffield) and Professor Mark Sculpher (Deputy Director, University of York) with the aim of assisting policy makers in the Department of Health to improve the allocation of resources in health and social care.

This is an independent report commissioned and funded by the Policy Research Programme in the Department of Health. The views expressed are not necessarily those of the Department.

INDEX

- 1 BACKGROUND
 - 1.1 Objective
- 2 METHODS
 - 2.1 Data
 - 2.2 Measures
- 3 ANALYSIS
 - 3.1 Analysis overview
 - 3.2 Descriptive statistics
 - 3.3 Exploring the relationship between EQ-5D and SF12
 - 3.4 Exploring the relationship between SF12 and absence from work
 - 3.5 Number of days of work given the probability of being off work sick
 - 3.6 Combining the elements to predict time off work by EQ-5D and ICD-10
 - 3.7 Predicting productivity using employment data
- 4 RESULTS
 - 4.1 Descriptive statistics
 - 4.2 Results of regressions to predict the the relationship between EQ-5D and SF12
 - 4.3 Results of regressions to predict probability of being off work sick
 - 4.4 Results of regressions exploring the number of days off work sick
 - 4.5 Combining the results
 - 4.6 Predicting productivity using employment data
- 5 DISCUSSION
 - 5.1 Data
 - 5.2 Existing literature
 - 5.3 Limitations
 - 5.4 Summary

REFERENCES

APPENDIX 1 International Classification of Diseases

- APPENDIX 2 Comparing HODaR and US data
- APPENDIX 3 Additional tables and figures

TABLES

Table 1	Summary stats for HODaR and US datasets
Table 2	Comparing US data (respondents with/without a condition)
Table 3	Regression models to predict the probability of being off work sick in the previous week
Table 4	Comparing observed and predicted days off work
Table 5	Exemplars for number of days of work sick by EQ-5D and ICD category
Table 6	Summary statistics for the US data used for the alternative employment analysis
Table 7	Model coefficients for the model predicting productivity using employment
Table 8	Estimated productivity in the last week

FIGURES

Figure 1	Off work sick by SF-6D band
Figure 2	Observed and predicted mean SF-6D scores sub-grouped by EQ-5D scores
Figure 3	Observed and predicted values against EQ-5D value
Figure 4	Observed and predicted probabilities of absence from work by SF-6D
Figure 5	Observed and predicted probabilities of absence from work (groups 5 to 10 only
Figure 6	Distibution of SF12 measures
Figure 7	Distibution of productivity by age, SF-6D, MCS and PCS
Figure 8	Observed versus expected values for probability of employment by SF-6D
Figure 9	Estimated productivity by selected ICD groups and EQ-5D values

1. BACKGROUND

Economic evaluation is used to inform decisions related to setting priorities in health care and whether health care interventions should be reimbursed by combining information on costs with benefits. The key focus when assessing the benefits from health care interventions is health which may be assessed in natural units such as life years saved or quality adjusted life years (QALY) for use in cost effectiveness and cost utility analysis respectively. QALYs focus on the health related quality of life (HRQoL) associated with different health states which are valued by members of the general public. Costs are the direct costs of providing health care but indirect costs (not funded directly through the health care system), which result from having poor health may also be included. Indirect costs include productivity losses which refer to costs associated with time off paid and unpaid work due to illness.

Measuring the productivity losses associated with specific health conditions has typically focused on self-reported or objective data on time off work (Zhang et al.2011). A different approach relies on estimating productivity directly from the health states. This allows productivity losses associated with different health states to be predicted where this information is not available. In order to assess the relationship between productivity and health, patient datasets containing information on health related quality of life (HRQoL) on a wide range of conditions measured using accepted HRQoL measures (such as EQ-5D) alongside productivity information are required. This would allow productivity losses, for example days off work, to be linked to particular health states described by these HRQoL measures. In addition to patient data, the recall period for the HRQoL measures should match the recall period of the productivity losses to minimise bias associated with mismatch due to different recall periods. For example, the recall period in the EQ-5D is today whereas measures of productivity such as the Health and Labour Questionnaire (van Roijen et al. 1996) use a two-week recall period. Larger studies focusing on productivity tend to ask respondents to consider longer periods such as four weeks, three (six or twelve) months (Zhang et al.2011). Linking longer productivity losses to current HRQoL may either overestimate or underestimate the effect of conditions.

This aggregate approach of estimating productivity has been used by Krol *et al.*(2013) using Dutch general public data, and Rowen *et al.*(2013) using UK patient data. Krol et al.(2013) used the EQ-5D and hypothetical time off work estimated by the respondents to develop their model. Rowen *et al.*(2013) used EQ-5D, International Classification of Diseases (ICD 10) codes and self-reported days of work to develop models to predict productivity losses. Models from Rowen *et al.*(2013) are

applicable in the UK setting as they use the recommended heatlh technology assessment measure, the EQ-5D, and have clinical diagnosis data based on ICD which is used by the Department of Health in the UK. However, Rowen *et al.*(2013) identified a number of limitations which may limit applicability of their research.

The patient dataset that was used represents individuals who had recently been hospitalised and on average, these patients are likely to be sicker than the typical patient treated by the National Health Service (NHS) in the UK. Sicker respondents are likely to have higher productivity losses and models derived from these data would overestimate the productivity effects in typical patients. There were also concerns that different recall periods were used for the HRQoL measure (EQ-5D) and the number of days off work. The EQ-5D recall period was today while productivity information related to the previous 6 weeks. Some individuals who reported full health (EQ-5D=1) also reported having a large number of days off work and this may have been a result of the mismatch in recall periods.

The work described in this report was commissioned by the Department of Health to inform its work on Value-Based-Pricing (VBP) (Department of Health, 2010), which is due to replace the current Pharmaceutical Pricing Regulation Scheme (PPS) in January 2014 for pricing medicines in the UK. VBP will include additional payments to interventions that are deemed to provide benefit that is of greater social value instead of the current narrow focus on outcomes relevant to the NHS and Personal Social Services (PSS). This requires taking into account wider societal benefits of medicines beyond the health of the patient including productivity.

1.1 Objective

The objective of the analyses was to provide a model to predict productivity losses associated with paid work that were representative of all patients that are likely to be seen in the NHS.

2. METHODS

In order to avoid some of the limitiaions in the existing UK analyses described earlier, an existing dataset with both HRQoL and productivity information with similar recall periods was required. The dataset also needed to be representative of typical patients seen by the NHS, and provide both EQ-5D data and ICD codes. No datasets were available which satisfied all these criteria. Two datasets which partially satisfied the requirements were identified and data from both datasets were used to fill the gaps in the other dataset.

The first dataset was the Health Outcomes Data Repository (HODaR), the patient dataset used by

Rowen et al.(2013). The second dataset was a general population dataset, Understanding Society (US). HODaR provided HRQoL data (both EQ-5D and SF-36), ICD codes, and information on productivity, but had the limitations identified above relating to generalisability and recall periods. US contained information on HRQoL based on the SF12 (but not EQ-5D), productivity information based on whether or not someone had time off work sick (but not the actual number of days), and self-reported health conditions (but not ICD codes). HODaR was used to develop mapping models to predict the SF12 from the EQ-5D, and models to predict the number of days of work. US was used to determine the probability of absence from paid work due to ill health. The methods section describes the data and methods of analysis in more detail.

2.1 Data

2.1.1 The Health Outcomes Data Repository

The Health Outcomes Data Repository (HODaR), is a dataset collated by Cardiff Research Consortium (Currie et al.2005). The data are collected using a prospective survey of recently discharged (within previous 6 weeks) inpatients and outpatients at Cardiff and Vale NHS Hospitals Trust, which is a large University hospital in South Wales, UK. The survey is linked to existing routine hospital health data to provide a dataset with socio-demographic, HRQoL and ICD classification data. The survey includes all subjects aged 18 years or older and excludes individuals who are known to have died. The survey also excludes people with a primary diagnosis on admission of a psychological illness or learning disability. The sample used in the current analyses is from inpatients and provides 96,282 eligible observations across 66,113 individuals discharged from hospital between April 2002 and January 2009. A total of 35,126 patients have a primary diagnosis (ICD-10 code) and provide a full set of responses for HRQoL, age and gender.

2.1.2 Understanding Society

Understanding Society (US), is an annual longitudinal study of 40,000 randomly selected households in the UK. The study was designed to capture social and economic information and attitudes of the respondents. The survey includes HRQoL information (measured using the SF12 instrument) and questions relating to employment. Current health status is self-reported and categorised into 9 broadly defined condition areas. The data used in the current analyses were collected during Wave 1 which covers the years 2009 and 2010 inclusively. Respondents were excluded if they were proxy respondents (n=3,262), aged 66 years or older (n=8,609), or if they had missing SF12 data (n=238). This gave a dataset of 26,658 individuals, of which 25% had a self-reported health condition. The five most common conditions were asthma (8.97%), high blood pressure (7.41%), arthritis (6.26%), diabetes (2.75%) and clinical depression (2.58%).

2.2 Measures

2.2.1 Demographs

Information on age and gender was available in both datasets. Age and gender may be related to both health status and productivity.

2.2.2 Conditions

The International Classification of Diseases (ICD) is the standard method for classifying diseases and other health problems. The 10th version (ICD-10) (<u>http://www.who.int/classifications/icd/en/</u>) was recorded for patients in HODaR. ICD classifications were recorded in the hospital data as primary diagnosis (reason for admission) as well as for secondary diagnosis and these were linked to the HODaR survey data. Consequently, diagnosis was clinically determined in the HODaR data. In the US data, respondents self-reported health conditions from a list limited to 9 very broadly defined prevalent conditions.

The HODaR data were sub-grouped according to ICD categories, taking into account the DH requirements (i.e. disaggregation for ICD-10 chapters C, E, G, I, J & M where possible), the broad programme budget categories (PBC) sub-groups used in recent research on the NICE cost-effectiveness threshold (Appendix 1 Table A1.1), and the sizes of the resulting sub-groups (sub-group size \geq 100). The final sub-groups used in the regressions are provided in Appendix 1 Table A1.2.

2.2.3 Health related quality of life

EQ-5D: The EQ-5D (collected in HODaR) consists of 5 questions describing different dimensions of health (Mobility, Self Care, Usual Activities, Pain, Anxiety/depression). With three possible responses to each question this produces a maximum of 243 (5^3) unique health states. Using weights elicited from a sample of the UK general population, the accompanying preference-based index (range -0.59 to 1) is anchored at 1 for full health and 0 for death with negative values representing health states considered worse than death (Dolan 1997). The EQ-5D is the recommended HRQoL measure for health technology assessment (HTA) in England and was the required measure for the current project.

SF-36/SF12: The SF-36 was collected in HODaR while the SF12 was collected in US data. The SF-36 is a generic measure of HRQoL with 36 questions. Responses to these are used to generate two summary scores (mental component score (MCS), physical component score (PCS)). The SF12 is a shorter version of the SF-36 consisting of 12 of the 36 questions in the original measure. There is a slight variation in the wording of two of the 12 questions but these are unlikely to elicit different

responses. Both the SF-36 and SF12 can be used to generate the SF-6D, a health state classification system with 6 dimensions (Physical, Role, Social, Pain, Mental, Vital). The dimensions have 4-6 health states each and have been valued by a representative sample in the UK population using standard gamble to generate a preference-based index with values ranging from 0.34 to 1 (Brazier 2003).

2.2.4 Productivity Loss

Single item questions were used to record responses related to days off work in both HODaR and US. In HODaR, respondents reported the actual number of days off work during the previous six weeks. In US, respondents were defined as being off work sick in the previous week if their stated reason for being off work was "sick/injured". It should be noted that respondents were only able to state one reason for being off work in the previous week. Hence if respondents were sick/injured, but already off work due to (say) maternity leave or holiday, then they may not have responded as being off work sick.

In addition to productivity information, information on employment status was also required. In HODaR, employment status was reported and this included past employment for those who had retired. As productivity losses from work only relate to those who are employed, using the whole sample would likely overestimate the work productivity losses associated with poor health. To test whether this was the case, a smaller sample of individuals who were aged below 66 and were not recorded as 'never worked/unemployed/in full time education' was used to represent those who were likely to be employed at the time they completed the survey. In US, respondents were defined as being in paid work in the previous week if they answered 'yes' to either of the following questions: 'did paid work last week' or 'no work last week but have paid job'.

2.2.5 Summary overview of datasets

Patients in the HODaR database are sent a questionnaire within 6 weeks of discharge from hospital. While some of the patients who receive the questionnaire will presumably have recovered from the acute effects of the health condition for which they were hospitalised, it is reasonable to assume that there will be a degree of random variation in recovery time and patients who receive the questionnaire relatively soon after discharge will certainly be in the post-hospital recovery stage. Suffice to say, as all the respondents have recently been hospitalised, the effects of any relationships between EQ-5D scores and time off work identified in these data may not generalise to patients who have not been hospitalised recently. Conversely, respondents in the US database are sampled from

the general population which includes respondents with prevalent health conditions who have not been hospitalised recently and thus this sample is more representative of the population of interest. HRQoL in HODaR is captured using the EQ-5D and the SF-36, whereas HRQoL in US is captured using the SF12 questionnaire. In addition, the differences in the recall period for the EQ-5D (1 day) and the time off work sick (6 weeks) in the HODaR questionnaire means that these data are unlikely to provide a strong relationship between these variables. Conversely, the recall periods used in US for the SF12 (previous 4 weeks) and time off work sick (previous 1 week) are more likely to show a relationship between HRQoL and absence from work due to ill health. Presence of health conditions in HODaR are indicated by clinically noted ICD-10 codes whereas health conditions in US are selfreported and limited to 9 very broadly defined conditions.

3. ANALYSIS

3.1 Analysis overview

The relationship between EQ-5D and absence from work due to ill health was explored using the following method:

Step 1: the HODaR and US data were compared using descriptive statistics
Step 2: a relationship between EQ-5D and SF12 (controlling for age, gender and ICD category) was derived from the HODaR data
Step 3: a relationship between SF12 and absence from work due to ill health (controlling for age and gender) was derived from the US data
Step 4: a relationship to predict the number of days off work, given off work due to ill health, (controlling for age, gender and ICD categories) was derived from the HODaR data
Step 5: the models obtained in Steps 2-4 were used to determine the number of days off work due to sickness by EQ-5D and ICD category.

An alternative approach was also used to capture productivity losses, whereby employment was used (as opposed to absence from paid employment due to ill health) in Step 3 above.

3.2 Descriptive statistics

The HODaR and US descriptive statistics were compared in order to determine how representative the HODaR data was. Comparisons were based on age and HRQoL sub-groups. The self-reported health conditions in the US were "matched" to the ICD codes in HODaR using 9 sub-groups

(Appendix 2 Table A2.1) to enable more detailed comparison. The results of these analysis helped inform the subsequent mapping analysis.

3.3 Exploring the relationship between EQ-5D and SF12 (HODaR data)

A number of models and regression methods were used to explore possible relationships between the two HRQoL instruments including: two-step models combining logistic regressions for the extremes, with linear, logit and beta-regression for the other values; and ordered logistic models to predict responses for each of the SF12 six health dimensions. In addition, the effect of using the alternative measures available from both the SF12 (SF-6D preference index, MCS-12, PCS-12, responses to the six SF12 health dimensions), and the EQ-5D (EQ-5D preference index, responses to the EQ-5D health dimensions) were explored. The results presented here are linear models estimated using ordinary least squared (OLS):

Model 1:

SF-6D = β_0 + β *Gender+ β *Age/10 + β_i *ICD group_i +... + β_n *ICD group_n + β_i *EQ-5D dimension + + β_n *EQ-5D dimension + ϵ (1)

Model 2:

PCS-12 = β_0 + β *Gender+ β *Age/10 + β_i *ICD group_i +... + β_n *ICD group_n + β_i *EQ-5D dimension + + β_n *EQ-5D dimension + ϵ (2)

Model 3:

$$\begin{split} \mathsf{MCS-12} = & \beta_0 + \beta^* \mathsf{Gender} + \beta^* \mathsf{Age}/10 + \beta_i^* \mathsf{ICD} \ \mathsf{group}_i + ... + \beta_n^* \mathsf{ICD} \ \mathsf{group}_n + \beta_i^* \mathsf{EQ-5D} \ \mathsf{dimension} \\ + + & \beta_n^* \mathsf{EQ-5D} \ \mathsf{dimension} + \epsilon \end{split}$$
(3)

For all models, gender (female = 1) and ICD category were modelled as binary data, the EQ-5D health dimensions, and age were treated as continuous. Due to issues with the distribution of the EQ-5D preference-based scores, and based on results of exploratory analyses (not shown), the responses to the five EQ-5D questions were used as explanatory variables as opposed to the EQ-5D preference based index. There was concern as to how dimension levels would relate to the EQ-5D preference scores typically reported in HTA analysis. 223/243 health states have a unique EQ-5D preference-based score (i.e. the particular EQ-5D score can only be obtained from one specific combination of responses to the five questions) while for the remaining 10 EQ-5D preference based scores, each of these can be obtained from two different combinations of responses to the five questions. It is therefore possible to use dimensions in the predictions to map to a particular EQ-5D preference score. However, the use of the EQ-5D preference score as an explanatory variable as opposed to the EQ-5D dimensions was also explored.

3.4 Exploring the relationship between SF12 and absence from work (US data)

Multivariate logistic regression was performed to model the impact of the variables age, SF measure (either SF-6D or PCS_12 and MCS_12) and gender on the probability of being off-work sick. All of the covariates were continuous with the exception of gender. The possibility of non-linear relationships between the continuous variables and the probability of being off-work sick was explored using fractional polynomials. Briefly, each continuous variable was represented by a combination of polynomials (either one or two), where the powers for the polynomials are estimated from the data and taken from the set $\{-2, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 2, 3\}$, or the logarithm of the variable is selected. As there were no *a priori* interactions specified, none were considered.

The results of the fractional polynomial modelling indicated that age and SF-6D could be modelled as continuous variables, but the natural logarithm transformation of MCS_12 was required and PCS_12 should be modelled to the power -2. These transformations were applied, and the models re-estimated using logistic regression without centring or scaling any of the covariates (as occurs during fractional polynomial logistic regression).

3.5 Number of days off work given the probability of being off work (HODaR)

The number of days off work in HODaR is recorded as a discrete value (range 1 to 30), with a large spike at 30 days. Count and non-count data models allow these properties to be taken into account when modelling the data. A number of models were tested including Tobit models to take into account the bounded nature of the data; two part models to take into account the spike at 30 days; and truncated negative binomial models which are count data models and allow the lowest value to be a different value from zero.

The spike at 30 days could be generated by a different process to the rest of the days off work, or it could represent individuals who are different from the rest of the sample, for example, those who are sicker or who are on long-term sickness. A two-part model was used to model the data to allow for this. The first part used a probit model to predict the probability of having 30 days off work and the second part used a truncated negative binomial model for those who have less than 30 days off work. The two parts are combined using an expected value method.

Expected(Days off work) = Probability(30 days off work) + (Predicted days off work < 30)* (1 - Probability(30 days off work))) (4) Previous work indicated that there is over-dispersion in the HODaR days off work data (Rowen et al.2013). As a consequence, a zero truncated negative binomial model was fit using data from employed respondents under the age of 66. The zero truncated version was used to allow for the absence of zeros in the data. The models were used to predict the number of days off work and the final model was selected based on predictive performance across the ICD groups.

3.6 Combining the elements to predict time off work by EQ-5D and ICD

The elements described above were combined to predict the number of days off work sick as follows:

Step 2 (HODaR data) provides the expected SF* (SF-6D, or MCS, PCS) controlled for EQ-5D (dimension scores or preference index), age, gender and ICD category

$$E(SF^*) = f(EQ-5D, age, gender, ICD category) + \varepsilon$$
 (5)

Step 3 (US data) provides the probability of being off work sick (OWS) controlled for a SF* (SF-6D, or MCS, PCS) score, age and gender

$$P(OWS) = f(SF^*, age, gender) + \varepsilon$$
 (6)

Step 4 (HODaR data) provides the number of days off work sick (DOWS), given the probability of being OWS controlled for age, gender and ICD category

$$E(DOWS \mid OWS) = f(age, gender, ICD category) + \varepsilon$$
(7)

Combining the above provides the average (mean) number of days off work sick by EQ-5D, age, gender and ICD category:

E(DoWS) = f(age, gender, ICD category) | P(OWS).

As the steps involve probabilities relating to being off work sick, the estimated values cannot equal zero days.

3.7 Predicting productivity using employment data (US data)

In contrast to the previous analyses which measured productivity using the probability of being off work sick (US) and the number of days off work sick (HODaR), the analyses below examine productivity in terms of whether respondents indicated they did paid employment in the previous week in US data. Respondents were defined as being productive in the previous week if they answered 'yes' to the following question: 'Did you do paid work last week'.

As SF12 may be described using either the SF-6D preference index, or both the mental and physical component summary scores (MCS-12 and PCS-12), models were obtained to explore each of these relationships. Two different models were considered; one which included the log of SF-6D, and one which included PCS, PCS², MCS and MCS². Both models also included gender, age and age². Logistic regression was used to model the probability of being productive in the last week. The two models were of the form:

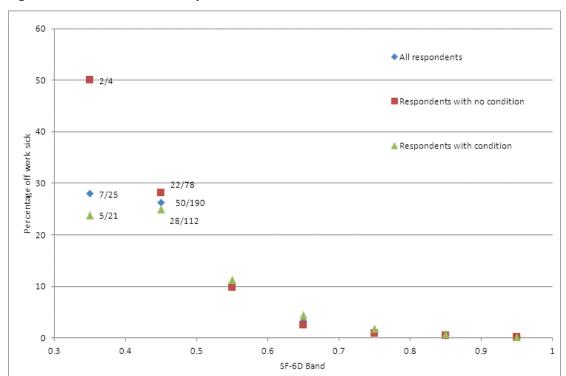
Logit(productivity) =
$$\beta_0 + \beta^* Age/10 + \beta^* (Age/10)^2 + \beta^* Gender + \beta^* Ln(SF-6D) + \epsilon$$
 (8)
Logit(productivity) = $\beta_0 + \beta^* Age/10 + \beta^* (Age/10)^2 + \beta^* Gender + \beta^* PCS/10 + \beta^* (PCS/10)^2 + \beta^* MCS/10 + \beta^* (MCS/10)^2 + \epsilon$ (9)

4. **RESULTS**

4.1 Descriptive statistics

All respondents in HODaR (n=35,126) have at least one condition (Table 1), while just a proportion (25%) of respondents in US data (n=25,658) indicate they have a condition (using the self-reported responses for the nine named prevalent conditions). On average, the respondents in HODaR are older (mean age 48 vs 40 years), have a lower HRQoL (mean SF-6D 0.689 vs 0.822), with greater problems on the SF12 MCS (mean 43.8 vs 53.0) and PCS (mean 47.8 vs 51.2) (Table 1 and Appendix 2 Figure A2.1).

	HODaR N	=35,126 at least one condition)	Understanding Society N=25,658 (25% have a condition)		
	mean	sd	mean	sd	
Age	47.84	12.81	40.37	12.16	
SF-6D	0.6889	0.1648	0.8223	0.1224	
MCS	43.81	11.61	53.03	7.79	
PCS	47.82	8.64	51.24	8.71	
	N	%	N	%	
SFPhysical					
Not limited	17,314	49.29	23,413	91.25	
Limited a bit	9,907	28.2	1,719	6.70	
Limited a lot	7,905	22.5	526	2.05	
SFRole					
No problems	10,271	29.24	16,848	65.66	
Physical health	7,816	22.25	2,862	11.15	
Emotional problems	2,412	6.87	3,472	13.53	
Physical & emotional problems	14,627	41.64	2,476	9.65	
SFSocial					
Not limited	12,752	36.3	19,795	77.15	
Limited a little	5,841	16.63	2,994	11.67	
Limited some times	8,475	24.13	1,969	7.67	
Limited most times	5,351	15.23	673	2.62	
Limited all the time	2,707	7.71	227	0.88	
SFPain					
No interference	12,047	34.30	17,470	68.09	
A little interference	7,403	21.08	4,670	18.20	
Moderate interference	5,781	16.46	1,622	6.32	
Interferes quite a bit	6,608	18.81	1,260	4.91	
Extreme interference	3,287	9.36	636	2.48	
SFMental					
None of the time	13,267	37.77	13,031	50.79	
A little of the time	10,299	29.32	7,895	30.77	
some of the time	7,046	20.06	3,653	14.24	
Most of the time	3,058	8.71	878	3.42	
All of the time	1,456	4.15	201	0.78	
SFVital					
None of the time	1,341	3.82	2,514	9.80	
A little of the time	8,478	24.14	11,180	43.57	
some of the time	9,760	27.79	8,347	32.53	
Most of the time	7,181	20.44	2,679	10.44	
All of the time	8,366	23.82	938	3.66	


When comparing sub-groups of nine broadly defined health conditions in the two datasets, there are similar differences in general across the datasets in the characteristics of the sub-groups (Appendix 2, Table A2.2). However, there was some similarity when comparing means for the matched groups: thyroid, depressive illness, cancer (95% CI overlap for age); depressive illness, cancer (95% CI overlap for SF-6D); thyroid, liver, cancer (95% CI overlap for MCS_12); diabetes, thyroid, CHD, cancer (95% CI overlap for PCS_12) (see Appendix 2 for more details).

Comparing respondents who had time off work due to ill health in the previous week with those who did not in US, the mean SF-6D score was lower for those who had been off work than those who had not (mean SF-6D=0.62 vs. 0.83) irrespective of whether they indicated that they had a condition or not (Table 2). The percentage of respondents who had been off work was higher in those who indicated that they had a condition (192/6684=2.9%) than those who indicated they did not (192/18974=1.0%). Sub-grouping by SF-6D index, the numbers in Figure 1 represent the absolute number of respondents who reported they were off work sick. The percentage of respondents who indicated they were off sick increases as their HRQoL decreases, irrespective of whether they indicated they had a health condition or not. Very few respondents who indicate they had good HRQoL (SF-6D > 0.8) indicated they were off work sick in the previous week. When comparing the off work sick rates for respondents in the "poor" HRQoL bands (i.e. SF-6D < 0.5), the rate is higher for respondents who did not have one of the named conditions. However, these are very small numbers, and presumably, if their HRQoL was this low, it is reasonable to assume that they had a condition not identified in the US questionnaire. This provides an argument that if all conditions are not identified by the US questionnaire the full dataset should be used in the regressions, as opposed to just the respondents who indicate they had at least one of the named conditions.

		Age		SF-6D		PCS		MCS	
	Ν	mean	sd	mean	sd	mean	sd	mean	sd
US (all)									
Not off sick	25,274	40.31	12.16	0.8253	0.12	53.24	7.49	51.35	8.55
Off sick	384	44.11	12.08	0.6243	0.13	39.18	13.26	43.84	12.08
US (With co	ndition)								
Not off sick	6,492	45.52	11.98	0.7848	0.13	49.80	9.58	49.80	10.04
Off sick	192	47.64	10.99	0.6029	0.12	36.62	13.73	42.49	15.03
US (No cond	ition)								
Not off sick	18,782	38.51	11.69	0.8393	0.11	54.43	6.18	51.89	7.90
Off sick	192	40.58	12.11	0.6458	0.14	41.74	12.28	45.20	13.48
/		-				_			_

Table 2: Comparing US data	(respondents with/without a condition)

384/26658 = 1.5% who indicate off work sick in previous week; 192/6684 = 2.9% who indicate off work sick in previous week; 192/18974 = 1.0% who indicate off work sick in previous week

Figure 1: Off work sick by SF-6D band

4.2 Results of regressions to predict the relationship between EQ-5D and SF12

Using the EQ-5D dimensions as explanatory variables, the results of the SF-6D model show that the five EQ-5D dimensions all have the expected signs (as the level of problems increases, HRQoL measured using the SF-6D decreases), and are statistically significant (p<0.001) with the largest effect observed for the Anxiety/depression dimension (Appendix 3, Table A3.1). The effects of the health conditions (group1 to group56) are in general relatively small compared to the effects of the health dimensions and are statistically significant (p<0.05) in less than one third (17/56) of the categories. This is not unexpected as the effects on HRQoL are more appropriately described by the responses to the 5 health dimensions as these are more indicative of the SF12 score than the ICD group definitions. The results suggest that as age increases, HRQoL increases (Beta 0.005; p<0.001). This is counter-intuitive, as the majority of the literature shows HRQoL decreases by age. The effect is possibly confounded due to the inclusion of the EQ-5D health dimensions as the effects of age will likely be captured in these responses.

For the PCS model (Appendix 3, Table A3.1), with the exception of the dimension Anxiety/depression the effects for the other four health dimensions are statistically significant (p< 0.001) with Mobility and Usual activities having the largest effect. Conversely, for the MCS model, the effect for the dimension Mobility is relatively small compared to the other dimensions, and is not statistically

significant (p=0.075). Not surprisingly the dimension Anxiety/depression has the largest effect (Beta -8.66). The models for the MCS and PCS scales follow a similar trend to the SF-6D model in terms of the relative magnitude of the effects for the health dimensions in comparison to the effects of the ICD categories (Groups 1 to 56) and the small number of these that are statistically significant.

All three models predict mean scores for SF-6D, MCS and PCS accurately when sub-grouping by the ICD categories (Appendix 3, Table A3.2) although there is reduced variation in the individual level predicted scores (data not shown). There is nothing to choose between the models in terms of accuracy in predicting mean scores. The final model choice (either SF-6D or the MCS_12 and PCS_12) will be informed by which of these variables (SF-6D or both MCS_12 and PCS_12) produce the most accurate results when used as explanatory variables to predict the probability of being off work sick in the US data.

The alternative models (which use the EQ-5D preference-based index as an explanatory variable) gave similar results for the ICD groups and age (Appendix 3, Table A3.3). The EQ-5D preference-based index has the expected positive effect (SF-6D increases as EQ-5D increases) and is statistically significant (p<0.001). Both models perform well in terms of mean SF-6D scores for categories (Appendix 3 Table A3.4) although there is reduced variation in the individual level predicted scores when using the EQ-5D preference-based index. However, when sub-grouping by actual EQ-5D preference-based scores (Appendix 3 Table A3.5, Figure 2), and plotting the corresponding observed and predicted mean SF-6D preference-based scores, the model using the EQ-5D five health dimensions as the explanatory variables outperforms the model using the EQ-5D preference-based scores, in the majority of the subgroups.

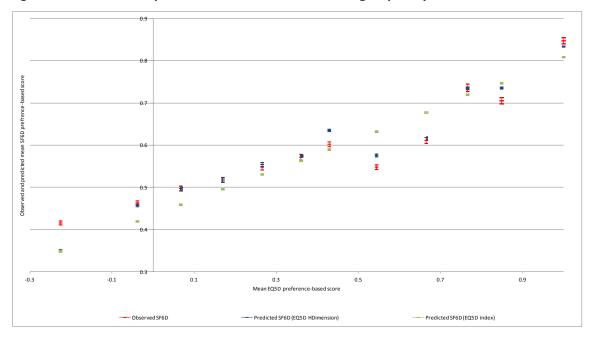
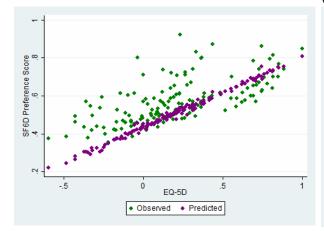



Figure 2: Observed and predicted mean SF-6D scores sub-grouped by EQ-5D scores

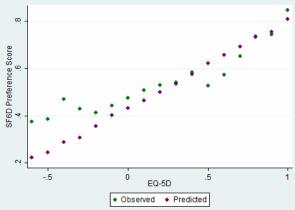
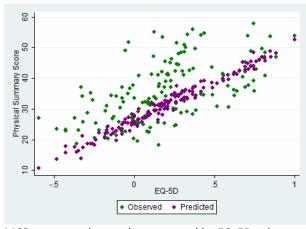
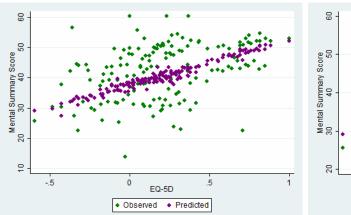
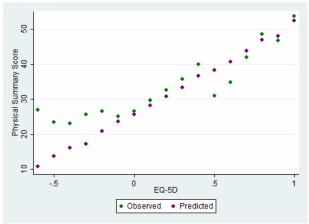

Graphical comparisons of observed and predicted values against EQ-5D value for each of these models are provided in Figure 3. For each outcome two graphs are displayed; one using the original EQ-5D values (of which there are 154 unique values), the other using broad EQ-5D values (calculated by rounding the original EQ-5D values to the nearest 0.1, resulting in 17 unique values). The figures indicate that for very low EQ-5D values (less than 0) the model over-predicts values for both SF-6D and PCS, but that the predictions for MCS appear reasonable. However, it should be noted that only a small proportion of the dataset has EQ-5D values less than 0 (7%, n = 2,427). Observed and predicted values were also compared for each of the three outcomes (SF-6D, PCS and MCS), for each ICD group, and for five sub-groups of EQ-5D values. These five subgroups were chosen to cover a roughly equal number of observations [less than 0.5 (n = 6,246); 0.5 \leq to < 0.69 (n = 5,991); 0.69 \leq to < 0.79 (n = 6,469); 0.79 <= to < 1 (n = 6,575); = 1 (n = 9,845)].

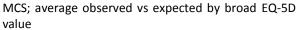
Figure 3: Observed and predicted values against EQ-5D value

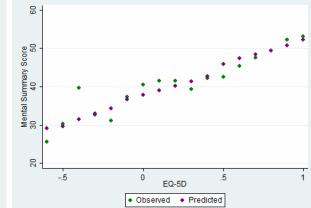


SF-6D; average observed vs expected by EQ-5D value


SF-6D; average observed vs expected by broad EQ-5D value


PCS; average observed vs expected by EQ-5D value




MCS; average observed vs expected by EQ-5D value

PCS; average observed vs expected by broad EQ-5D value

Results showed there was close agreement between observed and predicted values for each of the outcomes across all of the ICD groups and all of the EQ-5D subgroups.

4.3 Results of regressions to redict the probability of being off work sick

Table 3 provides the results for predicting probability of being off work with either SF-6D or MCS and PCS as explanatory variables. Coefficients for the SF12 variables show that the probability of being off work sick in the previous week increases with greater SF-6D or PCS_12 values, or lower MCS_12 values. The estimated effect of age is consistent for all four models, with each increase in age (by a year) increasing the log-odds of being off work sick in the previous week by 0.02. The effect for gender varies between positive and negative for the different models, but is highly not statistically significant for all of the models.

	Model 4		Model 5	Model 5		Model 6		
	Coef	P>z	Coef	P>z	Coef	P>z	Coef	P>z
	N=25533	(full datas	set)		N=6619 (responder	nts with a c	ondition)
Age	0.02	< 0.001	0.02	< 0.001	0.02	0.003	0.02	0.007
Female	-0.04	0.683	0.08	0.470	-0.07	0.683	0.07	0.660
SF-6D	-11.32	< 0.001	NA	NA	-10.15	< 0.001	NA	NA
PCS_12	NA	NA	8.11	< 0.001	NA	NA	6.04	< 0.001
MCS_12	NA	NA	-2.41	< 0.001	NA	NA	-2.16	< 0.001
Constant	3.13	<0.001	-1.89	<0.001	2.58	<0.001	-1.70	<0.001
AUROC	0.8684		0.8684					
Sensitivity	0.52%		3.39%					
Specificity	99.98%		99.91%					
Correctly classified	98.49%		98.46%					
AIC	3110.57		3442.55					
BIC	3143.16		3493.29					

Table 3: Regressions models to predict the probability of being off work sick in the previous week

N.B. values for PCS_12 and MCS_12 are both divided by 10. Additionally, the natural logarithm of MCS_12 is used, whilst PCS_12 is modelled to the power -2. All four continuous variables were modelled using fractional polynomials (up to 2 terms) to explore the possibility of non-linear relationships. AUROC: Area under the receiver operating characteristic curve. AIC: Akaike's information criteria. BIC: Bayesian information criteria.

Using the full dataset, there is a choice between using the model with SF-6D or the model with the two summary scores (PCS_12 and MCS_12). Summary measures comparing these two models show that there is little to choose between them; both models have area under the receiver operating characteristic curve (AUROC) values of 0.864, indicating excellent discrimination. The model with SF-6D has lower sensitivity (0.52% vs 3.39%), but slightly higher specificity (99.98% vs 99.91%). Overall however, the model with SF-6D is to be preferred as it has slightly better performance measures for the proportion correctly classified (98.49% vs 98.46%), and lower values for both of the information criteria (Akaike's information criteria (AIC): 3110.57 vs 3442.55, Bayesian information criteria (BIC): 3143.16 vs 3493.29).

The two models were also compared by considering their predictions for different sub-groups, defined by their SF-6D value (Appendix 3, Table A3.6). The model including the explanatory variables MCS_12 and PCS_12 gives closer predictions for the 'medium' category, but for all the other categories the model including the explanatory variables SF-6D provides more accurate predictions. As quality of life decreases, the observed and predicted values show a substantial increase in the probability of being OWS in the previous week (Figure 4). Due to large differences in probabilities across the full SF-6D range, Figure 5 shows the results for Groups 5 to 10 on a different y-axis.

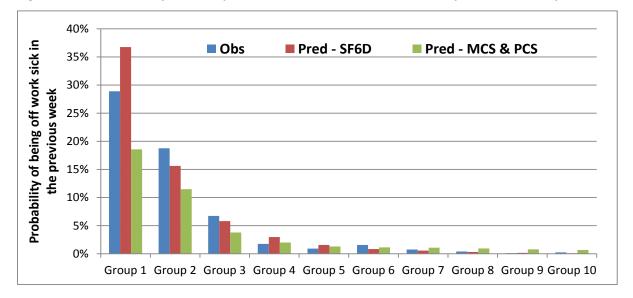
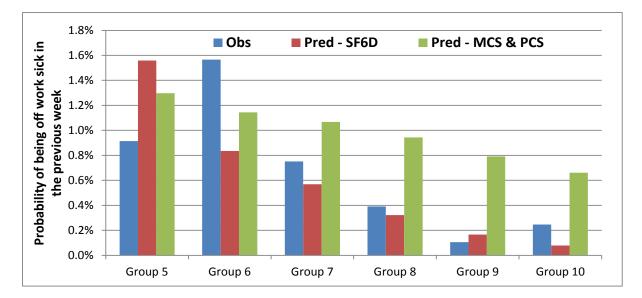



Figure 4: Observed and predicted probabilities of absence from work in previous week by SF-6D

NB: Pred – SF-6D are the predictions from the model which has SF-6D preference-based scores as an explanatory variable, Pred – MCS & PCS are the predictions from the model which has the SF12 summary scales as explanatory variables. (See Appendix 3, Table A3.6 for SF-6D groupings)

Figure 5: Observed and predicted probabilities of absence from work (groups 5 to 10 only)

NB: Data in Figure 5 are as used in Figure 4, the difference is the y-axis scale

4.4 Results of regressions exploring the number of days off work sick (HODaR)

Table 4 show the summary statistics of the observed and predicted days-off based on different modelling techniques. The two part model and truncated negative binomial predict the mean well but they underestimate the variance around the mean. When predicted days are grouped by ICD code groups, these models perform well (Table A3.7). However, the two part model missed one group (group 30) as those in this group all report less than 30 days off work which means part 1 of the model could not be estimated. The truncated negative binomial model is recommended to predict days off (Table A3.8). The main thing to note about this model is that it does not predict well on the lower range with a minimum value of 4.8 days compared to 1 day in the observed data. This is to be expected as the large peak at 30 days is pulling the distribution to the higher values.

Variable	Mean	Std. Dev.	Median	Minimum	Maximum
Observed	17.6	12.05	20	1	30
Predicted Tobit	19.2	4.16	19	8.2	29.3
Predicted two part model	17.0	4.67	16	6.1	29.1
Predicted truncated negative binomial	17.1	4.62	16	4.8	31.4
Predicted negative binomial	8.2	4.05	7	1.0	35.6

Table 4: Comparing observed and predicted days off work

4.5 Combining the results

The number of days of work is estimated as a function of EQ-5D score, age, gender and ICD code. Exemplars are provided in Table 5 and an excel spread sheet is available (separate file) which can be used to generate the probability of being off work sick, and the average number of days off work sick, given the probability of being off work sick for each age, gender, EQ-5D score and ICD category.

ICD group (ICD code)	EQ-5D score	Level (M,S,U,P,A)	Age (years)	Gender	P(OWS)	DOWS OWS
Group 51 (A04)	1	11111	18	М	0.27%	0.031
Group 51 (A04)	-0.594	33333	18	М	67.74%	7.712
Group 51 (A04)	1	11111	65	М	0.53%	0.089
Group 51 (A04)	-0.594	33333	65	М	80.21%	13.43
Group 14 (E29)	1	11111	18	М	0.27%	0.026
Group 14 (E29)	-0.594	33333	18	М	67.12%	6.623
Group 14 (E29)	1	11111	65	М	0.51%	0.075
Group 14 (E29)	-0.594	33333	65	М	79.76%	11.58
Group 04 (C50)	1	11111	18	F	0.48%	0.090
Group 04 (C50)	-0.594	33333	18	F	78.67%	14.660
Group 04 (C50)	1	11111	65	F	0.93%	0.254
Group 04 (C50)	-0.594	33333	65	F	87.69%	24.037

Table 5: Exemplars for number of days of work sick by EQ-5D and ICD category

4.6 Predicting productivity using employment data (US data)

4.6.1 Descrivitive analysis results

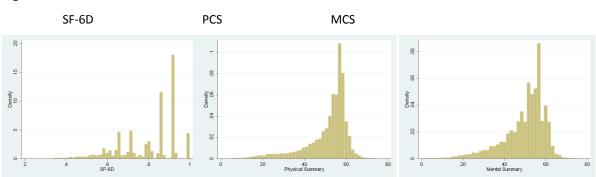
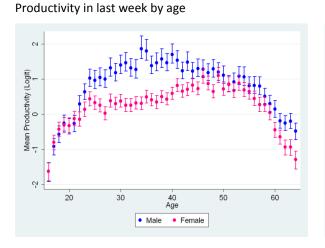
For this analysis, 61.7% (n = 23,989/38,871) of respondents were classified as being productive in the last week. Responses to the SF12 may be described by either the SF-6D preference-based score (observed range: 0.345 to 1) or by both the physical component summary (PCS) score (observed range: 11.39 to 66.13) and the mental component summary (MCS) score (observed range: 10.73 to 68.67). Summary statistics for these variables are presented in Table 6.

	Age		SF-6D	SF-6D PCS		MCS			
	Ν	Mean	S.Dev.	Mean	S.Dev.	Mean	S.Dev.	Mean	S.Dev.
Full dataset	38,871	39.81	13.56	0.7984	0.14	51.30	10.11	50.11	10.15
Not productive	14,882	39.05	15.66	0.7542	0.16	48.08	12.65	48.01	11.94
Productive	23,989	40.29	12.04	0.8257	0.12	53.29	7.49	51.42	8.60

Table 6: Summary statistics for the US data used for the alternative employment analysis

Figure 6 shows the distributions of the SF12 variables considered for this analysis. Figure 6 shows the distribution of productivity by age, SF-6D, MCS and PCS (with Wald-based 95% confidence intervals). The figures are on the logit scale, as logistic regression assumes that the association

between response and explanatory covariates is a straight-line on this scale. The figures suggest that linear functions are not likely to be good fits. For SF-6D taking the logarithm looks reasonable, for the remaining variables, use of a linear and a squared term appears reasonable. The graphs (with the possible exception of SF-6D) also suggest that separate models may be required for male and female genders. However, for consistency with existing work, gender is included in the models as a covariate.

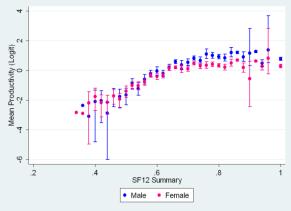
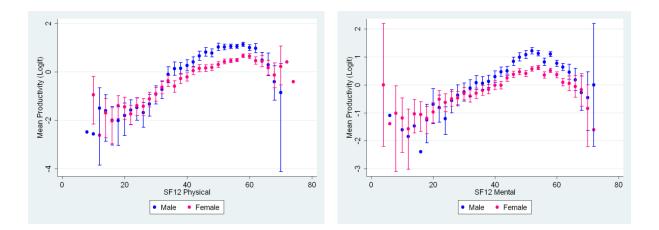

Figure 6: Distribution of SF12 measures

Figure 7: Distibution of productivity by age, SF-6D, MCS and PCS



Productivity in last week by PCS

Productivity in last week by SF-6D

Productivity in last week by MCS

4.6.2 Results of regressions estimating employment

Model coefficients, 95% confidence intervals and p-values are summarised in Table 7. The summary goodness of fit values show that for all of the values considered, the PCS and MCS model shows better goodness of fit than the SF-6D model.

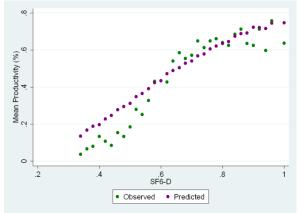
	Model 1 (SF-6D)			Model 2 (F	Model 2 (PCS & MCS)			
	Coef	95% C.I.	P>z	Coef	95% C.I.	P>z		
Age	3.04	(2.93 to 3.14)	< 0.001	3.00	(2.90 to 3.11)	< 0.001		
Age ²	-0.36	(-0.38 to -0.35)	< 0.001	-0.35	(-0.37 to -0.34)	< 0.001		
Female	-0.48	(-0.53 to -0.44)	< 0.001	-0.5	(-0.55 to -0.46)	< 0.001		
Ln(SF-6D)	3.1	(2.98 to 3.22)	< 0.001	NA	NA	< 0.001		
PCS	NA	NA	NA	1.39	(1.22 to 1.55)	<0.001		
PCS ²	NA	NA	NA	-0.09	(-0.11 to -0.07)	<0.001		
MCS2	NA	NA	NA	1.2	(1.06 to 1.35)	<0.001		
MCS ²	NA	NA	NA	-0.1	(-0.11 to -0.08)	<0.001		
Constant	-3.59	(-3.79 to -3.40)	<0.001	-12.5	(-13.01 to -11.99)	<0.001		
AUROC		0.7356			0.7513			
Sensitivity		84.70%			86.06%			
Specificity		46.52%			47.92%			
Correctly classified		70.08%			71.45			
AIC		45162.67			44038.39			
BIC		45205.51			44106.93			
Excluding gender								
Age	2.98	(2.88 to 3.08)	< 0.001	2.95	(2.84 to 3.05)	<0.001		
Age ²	-0.36	(-0.37 to -0.34)	< 0.001	-0.35	(-0.36 to -0.33)	<0.001		
Ln(SF-6D)	3.19	(3.07 to 3.31)	< 0.001	NA	NA	NA		
PCS	NA	NA	NA	1.37	(1.20 to 1.53)	<0.001		
PCS ²	NA	NA	NA	-0.09	(-0.11 to -0.07)	<0.001		
MCS2	NA	NA	NA	1.19	(1.04 to 1.33)	<0.001		
MCS ²	NA	NA	NA	-0.09	(-0.11 to -0.07)	<0.001		
Constant	-4.24	(-4.42 to -4.05)	<0.001	-13.2	(-13.70 to -12.70)	<0.001		
AUROC	0.7255			0.7394				
Sensitivity	85.14%			86.41%				
Specificity	45.62%			46.96%				
Correctly classified	70.01%			71.31%				
AIC	45597.59			44489.63				
BIC	45631.86			44549.61				

 Table 7:
 Model coefficients for the model predicting productivity using employment

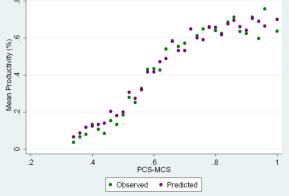
N.B. Age, PCS and MCS were all divided by 10 (this was done before squaring PCS and MCS).

Figure 8 shows observed versus expected values for both models. For consistency all figures use the same x-axis (SF-6D). For each model two graphs are displayed; one using the original SF-6D values (of which there are 348 unique values), the other using broad SF-6D values (calculated by rounding the original SF-6D values to the nearest 0.02, resulting in 33 unique values). The Figures show that the SF-6D model tends to over-predict productivity at lower health values, whilst the MCS and PCS model provides good estimates throughout. The results from both the goodness of fit measures and the graphical comparisons indicate that the MCS and PCS model is to be preferred to the SF-6D model.

The analyses looking at the relationship between SF12 and productivity were repeated excluding the gender explanatory variable. Figure 8 show observed versus expected values for both models. As


before, the SF-6D model tends to over-predict productivity at lower health values, whilst the MCS and PCS model provides good estimates throughout. The results from both the goodness of fit measures and the graphical comparisons indicate that the MCS and PCS model is to be preferred to the SF-6D model. A comparison of the summary goodness of fit measures presented indicates that models which included gender are preferred. Separate models for males and females may be required.

Model 1 (SF-6D); average observed vs expected by SF-6D value


Model 1 (SF-6D); average observed vs expected by broad SF-6D value

Model 2 (PCS-MCS); average observed vs expected by SF-6D value

Model 2 (PCS-MCS); average observed vs expected by broad SF-6D value

4.6.3 Estimating productivity from EQ-5D

Example productivity estimates were generated for a sample of ICD groups, and a sample of EQ-5D states (Table 8, Figure 9). These examples were generated using both the SF-6D model and the MCS and PCS model, for 45-year old females. The results indicate that there is generally good agreement between the method using SF-6D and the method using PCS and MCS, with the exception of EQ-5D scores roughly equal to zero. This may be because both the mapping from EQ-5D to SF-6D and from

SF-6D to productivity were relatively poor for low values of EQ-5D and low values of SF-6D respectively. The results also indicate that there is generally little change in productivity for EQ-5D values above about 0.25, with productivity ranging from about 70% to about 85%.

Table 8: Estimated productivity in the last week

	EQ-5D = -0.2	255	EQ-5D = -0.	001	EQ-5D = 0.2	44	
	(State 2,3,1	.3,3)	(State 3,3,1	,2,1)	(State 2,3,1	(State 2,3,1,2,1)	
	SF-6D	MCS&PCS	SF-6D	MCS&PCS	SF-6D	MCS&PCS	
Group 01	35.36%	32.24%	61.49%	36.70%	70.33%	59.50%	
Group 11	39.66%	36.91%	64.55%	41.40%	72.68%	63.37%	
Group 17	39.75%	39.32%	64.61%	44.85%	72.73%	65.95%	
Group 25	43.26%	39.15%	66.97%	43.81%	74.53%	65.22%	
Group 30	42.77%	40.02%	66.65%	44.82%	74.29%	65.97%	
Group 43	36.09%	29.75%	65.61%	45.21%	73.50%	66.20%	
Group 56	38.93%	31.71%	67.44%	46.71%	74.90%	67.33%	
	EQ-5D = 0.4	87	EQ-5D = 0.7	46	EQ-5D = 1		
	(State 2,1,3)	.1,1)	(State 2,2,1	,1,1)	(State 1,1,1,1,1)		
	SF-6D	MCS&PCS	SF-6D	MCS&PCS	SF-6D	MCS&PCS	
Group 01	66.36%	59.72%	77.70%	74.27%	82.63%	83.93%	
Group 11	69.04%	63.55%	79.42%	76.71%	83.92%	85.21%	
Group 17	69.10%	66.17%	79.46%	78.29%	83.94%	85.98%	
Group 25	71.16%	65.40%	80.77%	77.85%	84.93%	85.79%	
Group 30	70.88%	66.14%	80.59%	78.30%	84.80%	86.01%	
Group 43	69.98%	66.43%	80.02%	78.44%	84.36%	86.04%	
Group 56	71.57%	67.52%	81.04%	79.12%	85.13%	86.41%	

(by selected ICD group and EQ-5D preference-based scores)

Figure 9: Estimated productivity by selected ICD groups and EQ-5D values

5. DISCUSSION

The research described above was commissioned to address concerns relating to the representativeness of the HODaR respondents compared with the general population, the differences in recall periods for the EQ-5D and the periods of absence from work due to illness, and the use of the ICD-10 chapter headings. Results from models that have been developed show that they are able to predict productivity losses at the aggregate level. As decision making is usually based on groups of patients, productivity loss estimates from these models may be sufficiently accurate.

5.1 Data

The approach used in this study involved using two different datasets and it is important to consider whether these were suitable for developing the final models. The comparison of the HODaR and US data shows that in general the respondents in the HODaR data are older and have lower HRQoL than the general population. However, comparing matched sub-groups using the self-reported conditions in Understanding Society and the corresponding relevant ICD-10 codes in HODaR, the 95% confidence intervals of the means overlap for several comparisons and in particular for cancer, depressive illness and thyroid. These results suggest that while the characteristics of the HODaR respondents are not directly representative of people in the general population with similar conditions, the people are not totally dissimilar and increases confidence in using the HODaR data to generalise to patients with some of the health conditions.

The US data exhibit a clear relationship between HRQoL (SF-6D) and reported absence from work due to ill health. The probability of absence from work in these data increases rapidly as quality of life decreases. Very few respondents who indicated they had good HRQoL (SF-6D>0.8) also indicated they were off work sick in the previous week. This is in stark contrast to the results from the HODaR data where a substantial proportion of respondents who indicated they were in full health (EQ-5D=1) also reported absence from work during the previous 6 weeks due to ill health. These results provide support for the critique relating to the difference in recall periods for the quality of life instruments and absence of work due to ill health, and provides strong evidence that the recall periods used in Understanding Society (SF12: previous 4 weeks; absence from work: previous 6 weeks). The use of general population data to represent the probability of absence from work due to sickness is also a potential improvement compared to the HODaR data.

In the US data, respondents who reported they did not have one of the named prevalent health conditions were also less likely to be off work sick than those who reported they had at least one of the conditions (1% vs 3%). However, when comparing these two sub-groups categorised by SF-6D band, the converse is true for respondents with lower levels of quality of life (SF-6D < 0.5) with respondents who indicated they did not have a condition being more likely to have been off work sick (NB the sample size is relatively small in this comparison). The latter results may be due to the fact that not all health conditions are captured by the named conditions in the US questionnaire. However, it also raises concerns relating to the reliability of self-reported conditions compared to responses derived from clinically recorded diagnoses, such as in the HODaR data. Collectively, these points indicate that a) it is more appropriate to use the full US dataset when exploring the

probability of absence from work, as opposed to using sub-groups of respondents identified by positive responses to the health conditions question and b) it is more appropriate to use the HODaR data when informing relationships relating to health conditions/ICD-10 codes such as predicting SF-6D scores controlling for age, gender, EQ-5D responses and ICD category and predicting the number of days off work sick, given the probability of absence from work controlling for age, gender and ICD category.

Where possible, ICD-10 codes were disaggregated and a total of 57 sub-groups categorised by 3-digit ICD-10 codes were used in the current analyses. Subject to the number of respondents in the HODaR data, the selections for the final sub-groups were informed by the preferred categories provided by the DH, and the programme budget categories (PBC) used in a related piece of research. Despite the relatively large sample from HODaR (n=35,126), it was not possible to cover every possible health condition defined in the ICD-10 dictionary, but it should be possible to identify "similar" conditions for those ICD-10 codes which are not explicitly mentioned.

5.2 Existing data

There is little existing literature looking at the relationship between EQ-5D and productivity. Lamers *et al.*considered days absent from work in the last 6-weeks and EQ-5D scores (Lamers 2005) However, they looked at average EQ-5D score by productivity, as opposed to average productivity by EQ-5D score, hence the results cannot be directly compared with those reported from US. However, the authors found that lower rates of productivity had lower average EQ-5D scores, consistent with the association observed for this work.

Krol looked at estimating productivity by EQ-5D health state where health state was defined using the possible responses to the five EQ-5D health dimensions.(Krol 2012) Productivity was assessed via an online questionnaire, where a sample of the Dutch general population (n = 1,100) were asked, hypothetically, what proportion of people would be absent from work for given EQ-5D health states. Results were presented for 40-year old males, and use the Dutch national tariff for EQ-5D (as opposed to the United Kingdom tariff used for this work). Selected comparisons between the results found by Krol and those found in this study (Appendix 3, Table A3.9). They show close agreement for the EQ-5D states "1,1,1,1,1" and "2,2,1,1,1", but large disagreement for the remaining states, with the estimates produced for this work much greater than the estimates produced by Krol. It should be noted that the estimates produced by Krol are based on hypothetical productivity levels, as opposed to observed levels of productivity.

5.3 Limitations

There are limitations with the research presented here. Firstly, it is never ideal to use a "double mapping" approach. However, the comparisons of the observed and predicted values illustrate that the individual models perform extremely well on the aggregate level for all the sub-groups tested. While the end product (the number of days off work for each age, gender, ICD group and EQ-5D score) appear reasonable, it is not currently possible to validate these predictions in external data as such data do not exist. A second related limitation is that the predictions are currently limited to point estimates. It would be more appropriate to characterise the uncertainty around these estimates but this was not possible due to the time constraints of the current project.

Thirdly, although the US data are used to determine the probability of absence from work due to ill health, the current analyses retain the HODaR data for estimating the number of days off work. It is possible that the total number of days of work due to ill health is over-estimated by using the data from people who have been recently discharged from hospital. However, as mentioned previously, a proportion of the HODaR patients will have recovered from the effects of the condition or event they were hospitalised for, and given that the probability of being off work is derived from the general population, it is not believed that the over-estimation would be substantial.

Finally, although the data were sub-grouped by ICD-10 categories, it was not possible to identify either severity or duration of the particular conditions. However, as the EQ-5D health dimensions are used as explanatory variables, the additional knowledge of disease duration and or disease severity could possibly confound these effects. Further work is undeway to collect more robust data that can be used to address the limitations addressed here. In addtion, external validation of the models presented here needs to be undertaken once suitable data are available.

5.4 Summary

The analysis reported here allows productivity losses associated with HRQoL based on EQ-5D and ICD codes to be predicted for inclusion in health technology assessment. It addressed some of the limitations of existing work using two datasets. The results show that models can predict productivity accurately at the aggregate level. Further work is recommended to valdate these models as well as primary data collection of productivity and HRQoL to avoid the 'double-mapping' approach used here.

6. **REFERENCES**

Brooks R and EuroQol Group (1996). EuroQol: the current state of play. *Health Policy* 37:53-72

Currie CJ, McEwan P, Peters JR, Patel TC, Dixon S. The routine collation of health outcomes data from hospital treated subjects in the Health Outcomes Data Repository (HODaR): Descriptive analysis from the first 20,000 subjects. *Value in Health* 2005; 8:581-590.

Department of Health. Value base pricing: impact assessment. London. Department of Health, 2010 (available at: http://www.dh.gov.uk/en/Consultations/Liveconsultations/DH_122760).

Dolan P. (1997) Modeling valuations for EuroQol health states. *Medical Care*; 35: 1095-108

Koopmanschap M A, van Ineveld B M (1992). Towards a new approach for estimating indirect costs of disease. *Social Science and Medicine* 34:1005-1010.

Krol M. "Productivity costs in economic evaluations" Dissertation, 2012.

Krol, M., Stolk, E., & Brouwer, W. (2013). Predicting productivity based on EQ-5D: an explorative study. *The European Journal of Health Economics*, 1-11.

Lamers, L. M., Meerding, W. J., Severens, J. L., & Brouwer, W. B. (2005). The relationship between productivity and health-related quality of life: an empirical exploration in persons with low back pain. *Quality of life research*, *14*(3), 805-813.

van Roijen, L., Essink-Bot, M. L., Koopmanschap, M. A., Bonsel, G., & Rutten, F. F. (1996). Labor and health status in economic evaluation of health care. The health and labor questionnaire. *International Journal of Technology Assessment in Health Care*, 12(3), 405e415.

APPENDIX 1: International Classification of Diseases

PBC	Definition	ICD10 categories						
01	Infectious Diseases	B20-B24	A30-A49	A20-A28	A90-A99	A75-A79	A65-A69	
		B00-B09	B35-B49	B50-B64	B25-B34	B65-B83	B85-B89	
		A80-A89	B98-B99	R50-R69	R70-R99	Z20-Z29	Z80-Z99	
02	Cancer & Tumours	C50-C58	C15-C26	C60-C63	C64-C68	C30-C39	C81-C96	
		C43-C44	C45-C49	C76-C80	C69-C72	C00-C14	C73-C75	
		J95-J99	C40-C41	C97-	D00-D09	D10-D36	D37-D48	
		N30-N39	Z00-Z13	Z40-Z54	Z80-Z99			
03	Disorders of Blood	D60-D64	D50-D53	D70-D77	D80-D89	D55-D59	D65-D69	
		Q80-Q89	R70-R99					
04	Endocrine, Nutritional & Metabolic Issues	E10-E14	E79-E90	E00-E07	E24-E27	E28-E30	E31-E35	
		E70-E72	E15-E16	E20-E21	E22-E23	E65-E68	E73-E74	
		E76-E78	E75	E50-E64	E40-E46	R50-R69	R70-R99	
05	Mental Health Disorders	F10-F19	F30-F39	F40-F48	F50-F59	F00-F09	F20-F29	
		G30-G32	F60-F69	F90-F98	F99	Z55-Z65		
06	Problems of Learning	F80-F89	F70-F79	Q90-Q99	F90-F98	Z80-Z99		
	Disability							
07	DNeurological	G40-G47	G20-G26	G30-G32	G90-G99	G50-G59	G35-G37	
		G60-G64	G80-G83	G00-G09	G10-G13	G70-G73	A80-A89	
		H90-H95	Q00-Q07	B00-B09	N30-N39	A30-A49	B25-B34	
		B65-B83	A15-A19	B50-B64	R00-R09	R20-R23	R25-R29	
		R30-R39	R40-R46	R47-R49	R50-R69	R70-R99	Z80-Z99	
08	Problems of Vision	H49-H52	H40-H42	H25-H28	H00-H06	H30-H36	H15-H19	
		H55-H59	H10-H13	H20-H22	H43-H45	H46-H48	H53-H54	
		A70-A74	B25-B34	B50-B64	B65-B83	Q10-Q18	Z40-Z54	
		Z80-Z99						
09	Problems of Hearing	H90-H95	H65-H75	H80-H83	H60-H62	Q10-Q18		
10	Problems of Circulation	120-125	160-169	Q20-Q28	130-152	180-189	170-179	
		110-115	126-128	195-199	100-102	105-109	B50-B64	
		R00-R09	R50-R69	Z40-Z54	Z80-Z99			
11	Problems of Respiratory System	J40-J47	100-106	J09-J18	J60-J70	130-139	J20-J22	
		J80-J84	J90-J94	J95-J99	A30-A49	J85-J86	B35-B49	
		A15-A19	A70-A74	B25-B34	R00-R09	R70-R99	Z00-Z13	
		Z40-Z54	Z80-Z99	Q30-Q34				
12	Dental Problems	K00-K14						
13	Problems of the Gastro	A00-A09	K20-K31	K35-K38	K55-K63	K70-K77	К80-К87	
	Intestinal System	K50-K52	K65-K67	K90-K93	Q35-Q45	B65-B83	180-189	
		B15-B19	K00-K14	A20-A28	A65-A69	A90-A99	B35-B49	
		R10-R19	R70-R99	Z80-Z99				
·								

Table A1.1: PBC groups (Source: CHE Research Paper 81)

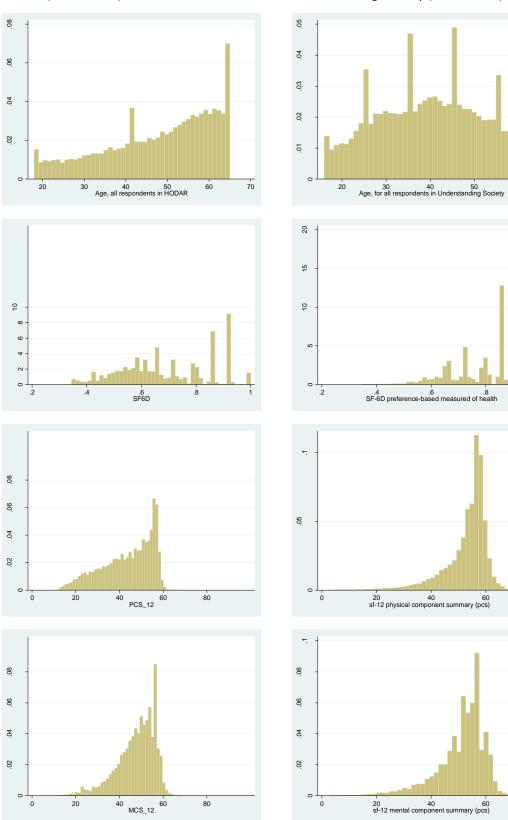
PBC	Definition	ICD10 cate	gories				
14	Problems of the Skin	L80-L99	L60-L75	L20-L30	L00-L08	L40-L45	L10-L14
		L50-L54	L55-L59	N30-N39	B00-B09	B35-B49	B85-B89
		A20-A28	A30-A49	A65-A69	Q80-Q89	Z40-Z54	Z80-Z99
		R20-R23	R70-R99	T20-T32			
15	Problems of the Musculoskeletal System	M15-M19	M05-M14	M45-M49	M80-M90	M70-M79	M20-M25
		M30-M36	M40-M43	M50-M54	M91-M94	M60-M63	M65-M68
		M95-M99	M00-M03	A15-A19	Q65-Q79	Q10-Q18	
		Q80-Q89	Z40-Z54				
16	Problems due to Trauma and Injuries	S00-S99	Т00-Т79	Z57-Z59			
17	Problems of the Genito- urinary System	N30-N39	A50-A64	N25-N29	110-115	N00-N08	N20-N23
		N10-N16	N17-N19	B25-B34	Q60-Q64	B65-B83	Q50-Q56
		R30-R39	R70-R99	Z40-Z54	Z80-Z99		
18, 19	Maternity and Reproductive Health & Conditions of Neonates	030-048	060-075	P05-P08	020-029	080-084	P20-P29
		085-092	095-099	P10-P15	P50-P61	P90-P96	P00-P04
		P35-P39	P70-P74	N30-N39	P75-P78	P80-P83	010-016
		A30-A49	000-008	A30-A49	R70-R99	Z30-Z39	Z80-Z99
20	Adverse Effects and Poisoning	085-092	095-099	К90-К93	020-029	060-075	L55-L59
		L60-L75	Q80-Q89	R70-R99	T36-T50	T51-T65	T66-T78
		T80-T88	Z80-Z99	000-008	N30-N39		
21	Health Individuals	E65-E68	E76-E78	Z00-Z13	Z20-Z29	Z40-Z54	Z55-Z65
22	Social Care Needs	Z74-Z75					
23	Other areas of Spend/Conditions	Q92-Q99	R53-R98	Z09-Z91			

Source: K Claxton, S Martin, M Soares, N Rice, E Spackman, S Hinde, N Devlin, P C Smith, M Sculpher. Methods for the Estimation of the NICE Cost Effectiveness Threshold. CHE Research Paper 81.

ICD Group	Definition of h	ealth co	onditior	and co	rrespon	ding IC	D-10 cc	odes					
1	Malignant nec C15 C16	oplasms C17	of dige C18	stive or C19	gans C20	C21	C22	C24	C25	C26			
2	Malignant nec C30 C31								025	020			
3	Melanoma an C43 C44					of skin,	mesoth	nelial an	d soft t	issue			
4	Malignant nec C50												
5	Malignant nec C51 C52	plasms C53	of fema C54	ale geni C55	tal orga C56	ns C57							
6	Malignant nec C60 C61												
7	Malignant nec C64 C67			ary trac	t								
8	Malignant neo	-		-		-	-	-	-	haemat	topoieti	c and r	elate
9	C81 C82 In situ neoplas	C83 sms	C84	C85	C88	C90	C91	C92	C96				
10	D00 D01 Benign neopla	D02	D03	D04	D05	D06	D07	D09					
10	D10 D11	D12	D13	D14	D15	D16	D17	D18	D19	D21	D22	D23	D24
	D25 D26	D27	D28	D29	D30	D31	D32	D33	D34	D35	D36		
11	Neoplasms of												
2	D37 D38	D39	D40	D41	D42	D43	D44	D45	D46	D47	D48	4 h a 1 m	
12	Diseases of t												
	D50 D51	D52	D53	D57	D58	D59	D61	D64	D66	D67	D68	D69	D7
12	D72 D73	D75	D80	D83	D84	D86	D89	Q89					
13	Diabetes melli E10 E11	E14											
14	Other disorde		coco ro	gulatio	n nancr	oatic in	tornal	ocratia	a of on	docrine	alando		
14	E16 E20	E21	E22	E23	E24	E26	E27	E28	E29	E31	E32	E34	
15	Endocrine, Nu					220	227	220	225	201	232	234	
	E46 E53	E61	E71	E72	E75	E80	E83	E84	E85	E86	E87	E88	E89
16	Disorders of th		land		-			-			-		
	E03 E04	, E02	E06	E07									
17	Mental Health	Disorde	ers										
	F06 F07	F10	F11	F13	F15	F30	F41	F43	F45	F50	F51	F52	F62
	F64 F80	R63	R74	R79	Z72								
18	Demyelinating G35 G37	g disease	es of th	e centra	al nervo	us syste	em						
19	Episodic and p G40 G41		nal diso G44	rders G45	G47								
20	Nerve, nerve r	oot and	plexus	disorde	ers	050							
21	G50 G51 Other disorde		G54	G56		G58							
21	G60 G61		G70	G71	G72	G80	G81	G82	G83	G90	G91	G93	G9.
	000 001	G98	0/0	0/1	0/2	000	001	002	005	0.50	0,51	055	0.5
	G96 G97				horo								
22	Infectious Dise B58 H00	ease not	covere H02	d elsew H04	H05	H10	H11	H16	H17	H18	H20	H21	H2
	Infectious Dise B58 H00 Q10 Z46	ease not H01				H10	H11	H16	H17	H18	H20	H21	H2
22 23	Infectious Dise B58 H00 Q10 Z46 Disorders of le	ease not H01				H10	H11	H16	H17	H18	H20	H21	H2
	Infectious Dise B58 H00 Q10 Z46 Disorders of le H25 H26 Disorders of cl	ease not H01 ens horoid a	H02 nd reti	H04		H10	H11	H16	H17	H18	H20	H21	H2
23	Infectious Dise B58 H00 Q10 Z46 Disorders of le H25 H26 Disorders of cl	ease not H01 ens horoid a H34	H02 nd retii H35	H04 na		H10	H11	H16	H17	H18	H20	H21	H2.

Table A1.2: ICD-10 codes as used in the ICD groups in the current project

ICD Group	Defini	tion of	health o	conditio	n and c	orrespo	nding IC	CD-10 co	odes					
26				and mas H66			H71	H72	H73	H74	H80	H81	H83	H90
27		nic Hea I21			125	126								
28				e and ce 160			disease 163	s 164	165	166	167			
29	Disea	ses of a	rteries,	veins an	nd lymp	hatic ve	ssels ar	nd nodes	5			105	10.0	107
30				173 ory infe		177	178	180	182	183	184	185	186	187
31		J01 nza and	-		J04	J05	J06							
32	J10 Other		J12 ower re	J13 spirator	J14 y infect	J15 tions	J18							
33	J20 Othor	J21	J22		instand	tract								
	J30	J31	J32	per resp J33	J34	J35	J36	J37	J38	J39				
34	J40	J42	J43	atory dis J44	J45	J47								
35	Proble J64	ems of I J67	Respirat J69	tory Syst J81	em not: J82	covere J84	d elsew J85	here J86	J90	J92	J93	J94	J95	J96
36	M00	opathie M05 M22	M06	rthrosis M08	M10	M11	M12	M13	M15	M16	M17	M18	M19	M20
37	M21 Doi M40	rsopath M41	M23 ies M42	M24 M43	M25 M45	M30 M46	M31 M47	M32 M48	M33 M50	M34 M51	M35 M53	M54		
38	-			s, synovi M67						M77	M79	10134		
39		-		ensity &					-		14175			
40	M80 Disea:	M81 ses of th	M84 ne genit	M86 ourinary	M87 y syster	M89 n (1)	M92	M93	M94					
	N02 N28	N04 N30	N05 N31	N06 N32	N10 N35	N12 N36	N13 N39	N17	N18	N19	N20	N21	N23	N25
41				nital orga										
42			-	N44 ourinary			N48	N49	N50					
	N46 N84	N61 N85	N62 N86	N64 N87	N70 N88	N71 N89	N72 N90	N73 N91	N75 N92	N76 N93	N80 N95	N81 N97	N82 N98	N83 N99
43	Infect A40 Z22	ious Dis A41 Z83	seases (A48	1) A49	B20	B23	B24	B27	B34	B51	B59	B60	B99	R50
44			nours n	ot ident	ified in	other gi	roups							
	C00 C73	C01 C75	C02 C76	C03 C77	C04 C78	C06 C79	C07 C80	C09 N60	C11 N63	C41 Z08	C69 Z51	C70 Z80	C71 Z85	C72
45				ot ident R59					Z48	Z52	Z53	Z54	Z76	Z91
46	DNeu	rologica	al											
	A39	A86	A87	B01	B02	B50	G00	G03	G06	G08	G10	G11	G12	G20
	G21 P27	G23	G24	G25 R40	G31 R41	N94 R42	Q04 R45	Q05	Q06	Q07 R51	R07	R20	R25	R26
	R27 R90	R29 R93	R30 R94	R40	R41	R42	R45	R47	R49	R51	R52	R55	R56	R61
47				tro Intes	tinal Sv	stem								
	K91	L56	008	086	090	R78	T36	T38	T39	T40	T41	T42	T43	T44
	T45	T46	T48	T49	T50	T51	T52	T54	T56	T62	T63	T65	T78	T81
	T82	T83	T84	T85	T86	T87	T88	T91	Z88		. •		-	
48				ion not d										
	105	106	107	108	127	128	130	131	133	134	135	138	142	144
	145	146	147	148	149	150	151	Q21	Q23	Q24	Q25	Q27	Q28	R00
	R01	R02	R03	Z45	Z50									


ICD		ion of he							des					
49	Proble	ms of Re	spirato	ry Syste		covered	l elsewł	nere						
	A15	A31	B25	B44	Q33	R04	R05	R06	R09	R91	Z03	Z43	Z87	Z9
50	Disease	es of ora	l cavity		y gland	s and ja								
	K00	K01	K02	K04	K05	K06	K07	K08	K09	K10				
51	Proble	m Gastr	o intest	inal sys	tem inc	luding g	gallblad	der, pa	ncreas,	periton	eum, liv	er, dige	estive s	ystem
	A04	A06	A07	A08	A09	B15	B16	B18	B19	B37	B67	K11	K12	K13
	K14	K20	K21	K22	K25	K26	K27	K29	K30	K31	K35	K37	K38	K40
	K41	K42	K43	K44	K45	K46	K50	K51	K52	K55	K56	K57	K58	K59
	K60	K61	K62	K63	K65	K66	K70	K71	K72	K73	K74	K75	K76	K80
	K81	K82	K83	K85	K86	K90	K92	Q38	Q39	Q43	R10	R11	R12	R13
	R14	R15	R17	R18	R19	Z98								
52	Proble	ms of th	e Skin											
	A46	B00	B07	B08	B35	B36	L02	L03	L04	L05	L08	L10	L12	L20
	L23	L27	L28	L29	L30	L40	L42	L43	L50	L51	L52	L53	L57	L60
	L66	L68	L70	L71	L72	L73	L74	L81	L82	L84	L85	L88	L89	L90
	L91	L92	L94	L95	L97	L98	Q82	Q83	Q84	Q85	R21	R22	R23	R92
	Z41	Z42												
53	Proble	Problems due to Trauma and Injuries												
	S00	S01	S02	S03	S05	S06	S09	S10	S11	S12	S13	S14	S19	S20
	S21	S22	S23	S26	S27	S29	S30	S31	S32	S33	S35	S36	S37	S39
	S41	S42	S43	S46	S49	S50	S51	S52	S53	S56	S60	S61	S62	S63
	S64	S66	S68	S69	S70	S71	S72	S73	S76	S80	S81	S82	S83	S86
	S89	S90	S91	S92	S93	S96	S99	T02	T08	T13	T14	T15	T16	T17
	T18	T19	T21	T70	T79									
54	Proble	ms of th	e Genit	o-urina	ry Syste	em								
	A52	A56	A60	A63	B26	Q52	Q53	Q54	Q55	Q61	Q64	R31	R32	R33
	R35	R36	R39	R80	R86	R87	Z94	Z96						
55	Proble	ms of Re	spirato	ry Syste	em not	covered	l elsewł	nere						
	A18	M95	M96	Q18	Q66	Q76	Q78	Q79	Z44	Z47				
56	Materr	nity and	Reprod	uctive I	lealth 8	& Condi	tions of	Neona	tes					
	000	001	002	003	004	006	010	012	013	014	015	016	020	021
	023	026	O 30	032	033	034	035	036	040	041	042	043	044	045
	046	047	048	060	061	062	063	064	066	068	069	070	072	075
	080	082	098	099	Z30	Z31	Z34	Z35	Z36	Z37	Z38	Z39	Z92	
	Health													
	E78	, Z00	Z01	Z04	Z12	Z13	Z26	Z29	Z40	Z63	Z71	Z75		

APPENDIX 2: COMPARING HODAR AND US DATA

	HODaf	२		Unders	tanding Society
Group	Ν	ICD codes		Ν	Self-reported "Current" condition
1	468	J20-J22	Other acute lower	2371	Asthma,
			respiratory infections		emphysema,
		J40-J47	Chronic lower respiratory		bronchitis
			diseases		
2	4457	M05-M95	Diseases of the	1,613	Arthritis
			musculoskeletal system and		
			connective tissue		
3	3331	110-115	Hypertensive diseases	181	Congestive heart failure,
		120-125	Ischaemic heart diseases		CHD, angina, heart attack or MI,
		126-128	Pulmonary heart disease and		stroke,
			diseases of pulmonary		HBP
			circulation		
		130-150	Other forms of heart disease		
		160-169	Cerebrovascular diseases		
4	106	E00-E07	Disorders of thyroid gland	570	Hyperthyroid
					Hypothyroid
5	97	K70-K77	Diseases of liver	127	Any Liver Condition
6	3422	C00-D48	Neoplasms	110	Cancer/malignancy
7	148	E10-E14	Diabetes mellitus	714	Diabetes
8	271	G40-G47	Episodic and paroxysmal	116	Epilepsy
			disorders		
9	74	F00-F99	Mental and behavioural	658	Clinical depression
			disorders		

Table A2.1: Groups used when matching the ICD in HODaR to the conditions in Understanding Society

Figure A2.1: Comparing the data in HODaR and Understanding Society

HODaR (full dataset)

Understanding Society (full dataset)

60

80

80

Comparing the matched sub-groups (n=9), the summary statistics in Table A2.2 show, on average the groups in HODaR are:

- older (except DM)
- have lower HRQoL scores (except MCS for clinical depression)
- greater proportions report problems on all health dimensions (data not shown)

	HODaR		US		HODaR		US		HODaR		US	
	mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	mean	sd
	Respirato	ory			Arthritis				CHD			
Ν	468		2371		4457		1613		3331		181	
Age	49.60	12.75	39.84	12.5	59.65	11.37	51.25	9.31	55.66	8.14	53.32	9.96
SF-6D	0.642	0.16	0.792	0.13	0.6205	0.16	0.7471	0.14	0.655	0.15	0.750	0.14
MCS	45.67	9.38	50.03	9.65	47.65	8.88	50.67	10.4	47.56	8.46	50.93	9.49
PCS	38.97	11.97	50.54	9.34	37.44	11.62	44.58	11.9	40.30	11.19	42.2	11.8
	Diabetes				Epilepsy	,			Depress			
Ν	148		714		271		116		74		658	
Age	44.33	13.49	49.63	9.94	45.19	13.23	39.91	11.84	45.04	11.64	42.36	11.04
SF-6D	0.6802	0.15	0.7818	0.14	0.6613	0.16	0.7872	0.13	0.619	0.13	0.6519	0.12
MCS	45.62	9.14	50.89	9.78	45.72	8.84	49.68	9.50	42.07	9.01	37.07	12.35
PCS	44.37	11.57	46.77	10.05	42.81	11.90	50.2	8.92	43.62	11.12	50.03	11.17
	Thyroid				Liver				Cancer			
Ν	106		570		97		127		3422		110	
Age	46.41	11.21	47.4	10.33	49.96	9.10	45.72	11.12	50.66	11.46	48.61	10.59
SF-6D	0.7226	0.14	0.7778	0.13	0.6119	0.16	0.7383	0.14	0.7073	0.16	0.7202	0.16
MCS	48.09	8.48	49.36	9.32	44.27	11.27	46.48	11.08	48.55	7.88	48.75	10.53
PCS	47.03	9.40	49.67	9.71	38.52	11.46	45.93	10.95	45.13	11.19	42.19	12.77
r CJ	47.05	9.40	49.07	9.71	30.32	11.40	45.55	10.95	45.15	11.19	42.15	12

Table A2.2:Summary stats from HODaR & US for 9 Broad conditions groups

While the results reported in the main report show differences in the characteristics of the sub-groups, the 95% confidence intervals of the mean overlap for some matched groups for age (thyroid, depressive illness, cancer, Figure A2.1), SF-6D (depressive illness, cancer, Figure A2.2), MCS_12 (thyroid, liver, cancer, Figure A2.3) and PCS_12 (diabetes, thyroid, CHD, cancer, Figure A2.4).

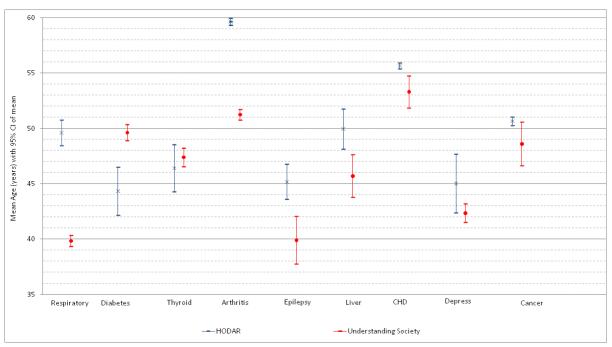
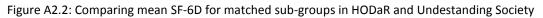
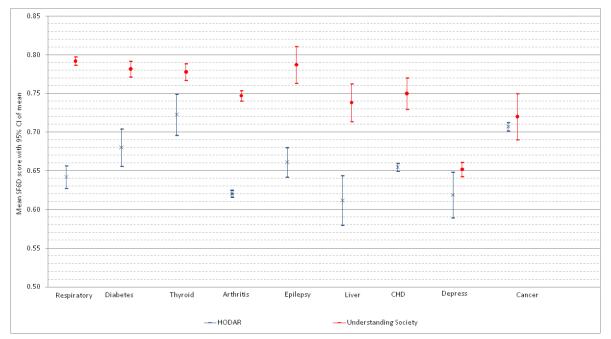




Figure A2.1: Comparing mean age for matched sub-groups in HODaR and Undestanding Society

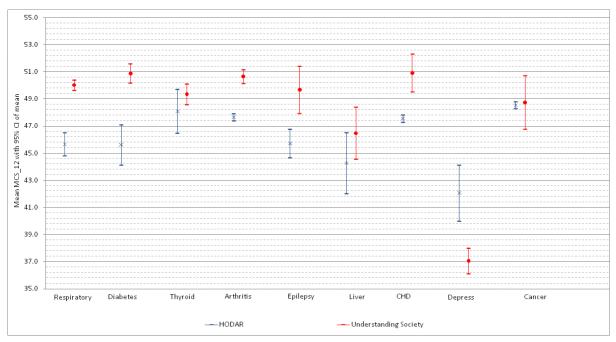


Figure A2.3: Comparing mean MCS_12 for matched sub-groups in HODaR and Undestanding Society

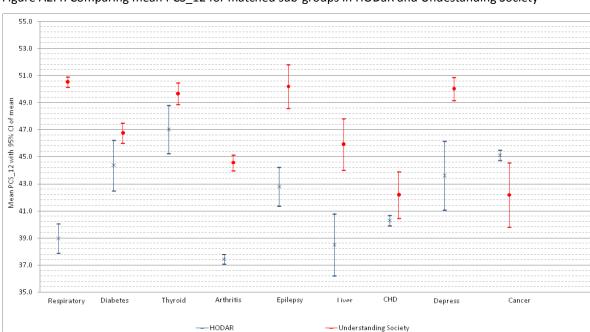


Figure A2.4: Comparing mean PCS_12 for matched sub-groups in HODaR and Undestanding Society

APPENDIX 3: Additional tables and figures

Table A3.1:			els to pred			scores (usi	ng EQ-5D hea		ions)
	SF-6D Coef.	Robust Std. Err.	P>t	PCS_12 Coef.	Robust Std. Err.	P>t	MCS_12 Coef.	Robust Std. Err.	P>t
Age/10	0.0053	0.0005	<0.001	-0.3081	0.0285	<0.001	0.7701	0.0282	<0.001
Sex	-0.0154	0.0003	<0.001	-0.6485	0.0285	<0.001	-0.2462	0.0282	0.001
Mobility	-0.0154	0.0011	<0.001 <0.001	-5.9385	0.0730	<0.001	0.1827	0.1026	0.075
Self Care	-0.0482	0.0018	< 0.001	-3.9585	0.1134 0.1286	< 0.001	-1.3176	0.1028	< 0.075
_									
Usual_Act	-0.0735	0.0012	< 0.001	-6.3047	0.0893	< 0.001	-1.3089	0.0848	< 0.001
Pain	-0.0542	0.0011	< 0.001	-4.4361	0.0754	< 0.001	-1.0195	0.0733	< 0.001
Anxiety	-0.0906	0.0009	< 0.001	0.0900	0.0683	0.188	-8.6647	0.0711	< 0.001
group01	-0.0328	0.0107	0.002	-3.2109	0.7726	< 0.001	-1.1575	0.6675	0.083
group02	-0.0373	0.0122	0.002	-3.7750	0.8929	< 0.001	-2.0939	0.8400	0.013
group03	0.0341	0.0095	<0.001	1.0431	0.5328	0.050	0.6035	0.5214	0.247
group04	-0.0252	0.0099	0.011	-0.8522	0.5896	0.148	-1.2922	0.5788	0.026
group05	-0.0308	0.0115	0.008	-3.2474	0.7193	<0.001	-0.8251	0.7076	0.244
group06	-0.0214	0.0126	0.091	-0.9201	0.7351	0.211	-0.1408	0.7039	0.842
group07	-0.0224	0.0128	0.081	-1.4133	0.7722	0.067	-1.3099	0.7106	0.065
group08	-0.0090	0.0099	0.363	-2.5096	0.6203	<0.001	-0.6381	0.6110	0.296
group09	0.0085	0.0111	0.443	0.1511	0.6504	0.816	-0.1330	0.6059	0.826
group10	0.0182	0.0089	0.042	0.6678	0.4990	0.181	0.0468	0.4915	0.924
group11	-0.0090	0.0124	0.468	-1.3983	0.7013	0.046	-0.3593	0.7113	0.613
group12	0.0124	0.0096	0.194	-0.5465	0.5601	0.329	0.4641	0.5430	0.393
group13	-0.0004	0.0111	0.970	-0.5811	0.7360	0.430	-1.3031	0.7079	0.066
group14	0.0152	0.0099	0.125	0.1428	0.5644	0.800	0.0104	0.5643	0.985
group15	0.0162	0.0116	0.165	-1.3575	0.7184	0.059	1.1601	0.6741	0.085
group16	0.0027	0.0125	0.826	-0.2922	0.7058	0.679	-0.9385	0.7573	0.215
group17	-0.0085	0.0118	0.472	0.2512	0.7501	0.738	-0.9959	0.7087	0.160
group18	0.0090	0.0105	0.389	-2.5299	0.7898	0.001	1.7135	0.6737	0.011
group10	0.0086	0.0105	0.396	-0.0295	0.6023	0.961	-0.3246	0.6242	0.603
group20	0.0225	0.0098	0.022	0.5933	0.5617	0.291	0.7043	0.5527	0.203
group20	0.0225	0.0005	0.507	-0.7326	0.6747	0.278	1.2727	0.6469	0.049
group21 group22	0.0229	0.0105	0.037	0.7712	0.6556	0.278	-0.2229	0.6149	0.717
	0.0229	0.00110	0.0037	0.7590	0.5559	0.239	0.0382	0.5572	0.945
group23	0.0298	0.0099	0.818	0.7390	0.5559	0.172	-1.0544	0.5572	0.945
group24									
group25	0.0112	0.0107	0.294	-0.4088	0.6190	0.509	-0.1758	0.6222	0.777
group26	0.0282	0.0108	0.009	0.9383	0.5956	0.115	0.3034	0.5898	0.607
group27	-0.0097	0.0087	0.264	-1.6308	0.4923	0.001	-0.1244	0.4863	0.798
group28	-0.0128	0.0100	0.201	-1.6836	0.6064	0.005	-1.0826	0.5903	0.067
group29	0.0243	0.0090	0.007	0.9893	0.5077	0.051	-0.1095	0.5034	0.828
group30	0.0085	0.0133	0.524	0.0195	0.6552	0.976	-0.1662	0.6936	0.811
group31	-0.0071	0.0111	0.522	-1.8423	0.6451	0.004	-0.8846	0.6537	0.176
group32	0.0085	0.0120	0.480	0.1504	0.7684	0.845	-0.0729	0.7053	0.918
group33	0.0315	0.0095	0.001	0.9167	0.5214	0.079	-0.0605	0.5251	0.908
group34	0.0073	0.0099	0.461	-1.9856	0.5917	0.001	-0.7706	0.5999	0.199
group35	-0.0020	0.0113	0.858	-2.4050	0.7312	0.001	0.2380	0.6884	0.730
group36	0.0139	0.0087	0.111	0.2564	0.4964	0.605	1.4096	0.4888	0.004
group37	-0.0043	0.0088	0.620	-1.4465	0.5051	0.004	1.2143	0.4982	0.015
group38	0.0150	0.0092	0.103	0.4508	0.5198	0.386	0.7464	0.5143	0.147
group39	0.0123	0.0112	0.271	-0.2609	0.7318	0.721	0.4512	0.7158	0.528
group40	0.0115	0.0092	0.214	0.0891	0.5212	0.864	-0.1228	0.5195	0.813
group41	0.0293	0.0109	0.007	0.5803	0.6141	0.345	0.7713	0.5856	0.188
group42	0.0130	0.0088	0.138	0.5559	0.4906	0.257	-0.1577	0.4889	0.747
group43	-0.0003	0.0122	0.982	0.4926	0.6971	0.480	-1.3068	0.6844	0.056
group44	0.0081	0.0094	0.390	-0.6871	0.5577	0.218	-0.1641	0.5328	0.758
group45	0.0155	0.0097	0.109	0.2369	0.5582	0.671	-0.0051	0.5526	0.993
group45	0.0133	0.0088	0.426	-0.3506	0.4967	0.480	-0.4128	0.4905	0.400
group40 group47	-0.0088	0.0088	0.420	-0.0635	0.4907	0.480	-0.4128 -1.5944	0.4903	0.400
			0.330						
group48	0.0093	0.0089		-1.0365	0.5142	0.044	0.6955	0.5018	0.166
group49	0.0125	0.0095	0.187	-0.8383	0.5540	0.130	0.1109	0.5372	0.836

SF-6D	Robust		PCS_12	Robust		MCS_12	Robust	
Coef.	Std. Err.	P>t	Coef.	Std. Err.	P>t	Coef.	Std. Err.	P>t
0.0313	0.0105	0.003	1.5477	0.5862	0.008	-0.6236	0.6305	0.323
0.0127	0.0085	0.136	0.0693	0.4774	0.885	-0.1262	0.4738	0.790
0.0223	0.0089	0.012	0.9823	0.4960	0.048	0.1018	0.4951	0.837
-0.0008	0.0089	0.929	-0.2631	0.4998	0.599	0.6018	0.4955	0.225
0.0218	0.0094	0.021	0.4638	0.5309	0.382	0.4528	0.5310	0.394
0.0263	0.0109	0.016	0.5396	0.6320	0.393	1.2578	0.6174	0.042
0.0154	0.0090	0.087	0.9051	0.4917	0.066	-0.4166	0.4972	0.402
1.0999	0.0089	< 0.001	75.9777	0.5008	< 0.001	61.9277	0.4981	< 0.001
	Coef. 0.0313 0.0127 0.0223 -0.0008 0.0218 0.0263 0.0154	Coef. Std. Err. 0.0313 0.0105 0.0127 0.0085 0.0223 0.0089 -0.0008 0.0089 0.0218 0.0094 0.0263 0.0109 0.0154 0.0090	Coef. Std. Err. P>t 0.0313 0.0105 0.003 0.0127 0.0085 0.136 0.0223 0.0089 0.012 -0.0008 0.0089 0.929 0.0218 0.0094 0.021 0.0263 0.0109 0.016 0.0154 0.0090 0.087	Coef. Std. Err. P>t Coef. 0.0313 0.0105 0.003 1.5477 0.0127 0.0085 0.136 0.0693 0.0223 0.0089 0.012 0.9823 -0.0008 0.0089 0.929 -0.2631 0.0218 0.0094 0.021 0.4638 0.0263 0.0109 0.016 0.5396 0.0154 0.0090 0.087 0.9051	Coef. Std. Err. P>t Coef. Std. Err. 0.0313 0.0105 0.003 1.5477 0.5862 0.0127 0.0085 0.136 0.0693 0.4774 0.0223 0.0089 0.012 0.9823 0.4960 -0.0008 0.0089 0.929 -0.2631 0.4998 0.0218 0.0094 0.021 0.4638 0.5309 0.0263 0.0109 0.016 0.5396 0.6320 0.0154 0.0090 0.087 0.9051 0.4917	Coef. Std. Err. P>t Coef. Std. Err. P>t 0.0313 0.0105 0.003 1.5477 0.5862 0.008 0.0127 0.0085 0.136 0.0693 0.4774 0.885 0.0223 0.0089 0.012 0.9823 0.4960 0.048 -0.0008 0.0089 0.929 -0.2631 0.4998 0.599 0.0218 0.0094 0.021 0.4638 0.5309 0.382 0.0263 0.0109 0.016 0.5396 0.6320 0.393 0.0154 0.0090 0.087 0.9051 0.4917 0.066	Coef. Std. Err. P>t Coef. Std. Err. P>t Coef. 0.0313 0.0105 0.003 1.5477 0.5862 0.008 -0.6236 0.0127 0.0085 0.136 0.0693 0.4774 0.885 -0.1262 0.0223 0.0089 0.012 0.9823 0.4960 0.048 0.1018 -0.0008 0.0089 0.929 -0.2631 0.4998 0.599 0.6018 0.0218 0.0094 0.021 0.4638 0.5309 0.382 0.4528 0.0263 0.0109 0.016 0.5396 0.6320 0.393 1.2578 0.0154 0.0090 0.087 0.9051 0.4917 0.066 -0.4166	Coef. Std. Err. P>t Coef. Std. Err. O.0313 0.0105 0.003 1.5477 0.5862 0.008 -0.6236 0.6305 0.0127 0.0085 0.136 0.0693 0.4774 0.885 -0.1262 0.4738 0.0223 0.0089 0.012 0.9823 0.4960 0.048 0.1018 0.4951 -0.0008 0.0089 0.929 -0.2631 0.4998 0.599 0.6018 0.4955 0.0218 0.0094 0.021 0.4638 0.5309 0.382 0.4528 0.5310 0.0263 0.0109 0.016 0.5396 0.6320 0.393 1.2578 0.6174 0.0154 0.0090 0.087 0.9051 0.4917 0.066 -0.4166 0.4972

		SF-6D		PCS_12		MCS_12	2	ICD		SF-6D		PCS_12		MCS_12	2
ICD								group							
group	Ν	Obs	Pred	Obs	Pred	Obs	Pred		Ν	Obs	Pred	Obs	Pred	Obs	Pred
Healthy	117	0.726	0.726	47.42	47.42	49.33	49.33								
group1	181	0.608	0.608	37.25	37.25	45.61	45.61	group29	940	0.736	0.736	47.25	47.25	48.84	48.84
group2	100	0.603	0.603	36.08	36.08	45.24	45.24	group30	108	0.760	0.760	50.22	50.22	49.31	49.31
group3	442	0.771	0.771	48.50	48.50	50.90	50.90	group31	207	0.667	0.667	42.03	42.03	46.37	46.37
group4	319	0.657	0.657	43.93	43.93	46.48	46.48	group32	121	0.660	0.660	42.82	42.82	45.97	45.97
group5	149	0.651	0.651	40.98	40.98	47.29	47.29	group33	476	0.774	0.774	50.11	50.11	49.32	49.32
group6	123	0.709	0.709	45.89	45.89	49.81	49.81	group34	347	0.636	0.636	37.63	37.63	45.57	45.57
group7	135	0.692	0.692	44.42	44.42	48.07	48.07	group35	175	0.651	0.651	38.84	38.84	47.48	47.48
group8	272	0.653	0.653	39.21	39.21	47.07	47.07	group36	1978	0.641	0.641	38.45	38.45	48.92	48.92
group9	163	0.733	0.733	47.63	47.63	49.27	49.27	group37	1574	0.562	0.562	33.36	33.36	45.65	45.65
group10	1198	0.752	0.752	48.86	48.86	49.64	49.64	group38	752	0.686	0.686	43.15	43.15	48.77	48.77
group11	163	0.699	0.699	44.25	44.25	48.63	48.63	group39	165	0.616	0.616	37.72	37.72	45.83	45.83
group12	418	0.692	0.692	43.32	43.32	48.18	48.18	group40	747	0.701	0.701	45.01	45.01	47.74	47.74
group13	148	0.680	0.680	44.37	44.37	45.62	45.62	group41	220	0.764	0.764	48.58	48.58	49.97	49.97
group14	316	0.713	0.713	45.59	45.59	48.29	48.29	group42	1636	0.734	0.734	48.51	48.51	48.58	48.58
group15	156	0.693	0.693	42.28	42.28	48.74	48.74	group43	128	0.687	0.687	45.42	45.42	46.39	46.39
group16	106	0.723	0.723	47.03	47.03	48.09	48.09	group44	491	0.707	0.707	44.21	44.21	48.50	48.50
group17	122	0.625	0.625	43.11	43.11	43.14	43.14	group45	438	0.707	0.707	45.10	45.10	48.02	48.02
group18	130	0.604	0.604	33.45	33.45	47.65	47.65	group46	1756	0.666	0.666	42.43	42.43	46.38	46.38
group19	271	0.661	0.661	42.81	42.81	45.72	45.72	group47	892	0.603	0.603	40.68	40.68	42.28	42.28
group20	397	0.703	0.703	44.37	44.37	48.91	48.91	group48	1022	0.684	0.684	42.09	42.09	48.60	48.60
group21	219	0.603	0.603	36.75	36.75	46.03	46.03	group49	528	0.690	0.690	43.03	43.03	47.69	47.69
group22	207	0.728	0.728	46.14	46.14	48.87	48.87	group50	234	0.763	0.763	50.93	50.93	47.64	47.64
group23	349	0.748	0.748	46.51	46.51	49.85	49.85	group51	5845	0.702	0.702	45.15	45.15	47.73	47.73
group24	224	0.733	0.733	47.78	47.78	48.97	48.97	group52	1317	0.723	0.723	46.88	46.88	48.22	48.22
group25	209	0.723	0.723	45.92	45.92	48.66	48.66	group53	1549	0.673	0.673	43.17	43.17	48.24	48.24
group26	224	0.763	0.763	49.39	49.39	49.60	49.60	group54	517	0.732	0.732	46.36	46.36	49.43	49.43
group27	2297	0.648	0.648	39.74	39.74	47.45	47.45	group55	223	0.686	0.686	42.31	42.31	48.84	48.84
group28	305	0.634	0.634	39.90	39.90	45.33	45.33	group56	1280	0.777	0.777	52.78	52.78	48.78	48.78

Table A3.2: Observed and predicted mean SF-6D (MCS-12, PCS-12) (obtained using the health dimension models)

	SF-6D			MCS			PCS		
	Coef.	95% Conf. Interval	P>t	Coef.	95% Conf. Interval	P>t	Coef	95% Conf. Interval	P>t
Age/10	0.0031	(0.0021 to 0.0041)	<0.001	1.0463	(0.9827 to 1.1100)	<0.001	-0.8967	(-0.9631 to -0.8304)	<0.001
Female	-0.0164	(-0.0189 to -0.0139)	<0.001	-0.3638	(-0.5260 to -0.2017)	<0.001	-0.5284	(-0.7019 to -0.3549)	<0.00
EQ-5D	0.3664	(0.3630 to 0.3698)	<0.001	15.4859	(15.2035 to 15.7683)	<0.001	24.6795	(24.4046 to 24.9544)	<0.002
Group01	-0.056	(-0.0786 to -0.0335)	<0.001	-1.8756	(-3.4074 to -0.3439)	0.016	-4.6293	(-6.3586 to -2.9001)	<0.002
Group02	-0.064	(-0.0909 to -0.0371)	<0.001	-2.2881	(-4.1662 to -0.4099)	0.017	-6.2497	(-8.3223 to -4.1771)	<0.001
Group03	0.0422	(0.0215 to 0.0630)	<0.001	0.7621	(-0.5043 to 2.0285)	0.238	1.9065	(0.6092 to 3.2038)	0.004
Group04	-0.0365	(-0.0578 to -0.0153)	0.001	-2.1675	(-3.5298 to -0.8052)	0.002	-0.7471	(-2.1427 to 0.6485)	0.294
Group05	-0.0404	(-0.0649 to -0.0160)	0.001	-1.1907	(-2.8014 to 0.4201)	0.147	-3.7135	(-5.3588 to -2.0682)	<0.002
Group06	-0.027	(-0.0544 to 0.0004)	0.054	-0.5358	(-2.1703 to 1.0987)	0.521	-0.7749	(-2.4846 to 0.9347)	0.374
Group07	-0.0212	(-0.0486 to 0.0062)	0.13	-1.687	(-3.3316 to -0.0424)	0.044	-0.6145	(-2.4859 to 1.2568)	0.52
Group08	-0.025	(-0.0468 to -0.0032)	0.024	-0.6011	(-2.0180 to 0.8158)	0.406	-4.2651	(-5.7565 to -2.7737)	<0.00
Group09	0.0085	(-0.0159 to 0.0329)	0.494	-0.1541	(-1.6193 to 1.3111)	0.837	0.314	(-1.2387 to 1.8668)	0.692
Group10	0.027	(0.0076 to 0.0463)	0.006	0.3734	(-0.8213 to 1.5682)	0.54	1.405	(0.1975 to 2.6124)	0.023
Group11	-0.0102	(-0.0369 to 0.0165)	0.454	-0.2303	(-1.9018 to 1.4412)	0.787	-1.5722	(-3.2694 to 0.1251)	0.069
Group12	0.0159	(-0.0050 to 0.0368)	0.136	0.922	(-0.4114 to 2.2554)	0.175	-0.5661	(-1.9433 to 0.8111)	0.42
Group13	-0.005	(-0.0294 to 0.0195)	0.691	-1.7194	(-3.4110 to -0.0278)	0.046	-0.4332	(-2.2122 to 1.3459)	0.633
Group14	0.0153	(-0.0061 to 0.0368)	0.162	0.0977	(-1.2583 to 1.4537)	0.888	0.1914	(-1.1797 to 1.5624)	0.784
Group15	0.0087	(-0.0173 to 0.0346)	0.513	1.7551	(0.2130 to 3.2972)	0.026	-2.8307	(-4.5576 to -1.1038)	0.001
Group16	0.0039	(-0.0240 to 0.0318)	0.785	-0.9688	(-2.7773 to 0.8398)	0.294	0.0216	(-1.7083 to 1.7514)	0.981
Group17	-0.0214	(-0.0472 to 0.0043)	0.102	-2.6172	(-4.3437 to -0.8907)	0.003	1.0556	(-0.8283 to 2.9394)	0.272
Group18	-0.0196	(-0.0428 to 0.0036)	0.098	3.0227	(1.3725 to 4.6728)	<0.001	-7.5451	(-9.4375 to -5.6528)	<0.00
Group19	0.0013	(-0.0208 to 0.0234)	0.909	-0.6319	(-2.1107 to 0.8469)	0.402	-0.1892	(-1.6382 to 1.2598)	0.798
Group20	0.0274	(0.0062 to 0.0486)	0.011	1.2966	(-0.0418 to 2.6351)	0.058	0.8216	(-0.5170 to 2.1602)	0.229
Group21	-0.0068	(-0.0301 to 0.0165)	0.567	1.8191	(0.2587 to 3.3794)	0.022	-2.9989	(-4.6129 to -1.3848)	<0.00
Group22	0.0285	(0.0044 to 0.0525)	0.021	0.3601	(-1.1400 to 1.8603)	0.638	0.9263	(-0.6260 to 2.4786)	0.242
Group23	0.0408	(0.0193 to 0.0622)	< 0.001	0.3977	(-0.9356 to 1.7311)	0.559	1.6825	(0.3254 to 3.0396)	0.015
Group24	0.0044	(-0.0184 to 0.0272)	0.708	-0.9829	(-2.4182 to 0.4524)	0.18	1.1024	(-0.3240 to 2.5288)	0.13
Group25	0.0127	(-0.0109 to 0.0364)	0.292	-0.1649	(-1.6526 to 1.3228)	0.828	-0.1267	(-1.6343 to 1.3810)	0.869

Table A3.3: Regression models to predict SF-6D, MCS or PCS scores (using EQ-5D preference scores)

Group26	0.0404	(0.0169 to 0.0638)	0.001	0.5577	(-0.8476 to 1.9630)	0.437	2.1756	(0.7734 to 3.5778)	0.002
Group27	-0.0255	(-0.0443 to -0.0067)	0.008	-0.4436	(-1.6248 to 0.7376)	0.462	-2.7245	(-3.9150 to -1.5340)	< 0.001
Group28	-0.0288	(-0.0506 to -0.0069)	0.01	-1.8314	(-3.2305 to -0.4323)	0.01	-2.4371	(-3.9327 to -0.9416)	0.001
Group29	0.0281	(0.0085 to 0.0477)	0.005	0.0624	(-1.1484 to 1.2731)	0.92	1.3949	(0.1704 to 2.6194)	0.026
Group30	0.0209	(-0.0085 to 0.0503)	0.164	0.5718	(-1.1393 to 2.2829)	0.512	0.4844	(-1.0823 to 2.0512)	0.544
Group31	-0.0071	(-0.0312 to 0.0169)	0.561	-0.9091	(-2.4068 to 0.5886)	0.234	-1.6271	(-3.1546 to -0.0995)	0.037
Group32	0.0047	(-0.0207 to 0.0301)	0.715	-0.5233	(-2.2326 to 1.1861)	0.549	0.3981	(-1.4079 to 2.2041)	0.666
Group33	0.0429	(0.0222 to 0.0636)	<0.001	0.2889	(-0.9882 to 1.5659)	0.657	1.8934	(0.6344 to 3.1525)	0.003
Group34	-0.0089	(-0.0306 to 0.0128)	0.419	-0.6311	(-2.0361 to 0.7739)	0.379	-3.887	(-5.3241 to -2.4499)	< 0.001
Group35	-0.0121	(-0.0371 to 0.0129)	0.342	0.8199	(-0.7725 to 2.4122)	0.313	-3.9735	(-5.6829 to -2.2640)	< 0.001
Group36	0.0051	(-0.0138 to 0.0239)	0.598	3.0384	(1.8512 to 4.2256)	< 0.001	-2.3949	(-3.5922 to -1.1977)	< 0.001
Group37	-0.0107	(-0.0297 to 0.0083)	0.269	2.7012	(1.4925 to 3.9099)	< 0.001	-3.4941	(-4.7125 to -2.2758)	< 0.001
Group38	0.0183	(-0.0017 to 0.0384)	0.072	1.4881	(0.2424 to 2.7337)	0.019	0.2659	(-0.9899 to 1.5216)	0.678
Group39	0.0063	(-0.0188 to 0.0315)	0.621	1.5956	(-0.0738 to 3.2650)	0.061	-1.9591	(-3.5908 to -0.3274)	0.019
Group40	0.0139	(-0.0060 to 0.0339)	0.171	0.0747	(-1.1724 to 1.3217)	0.907	0.396	(-0.8654 to 1.6575)	0.538
Group41	0.0421	(0.0189 to 0.0654)	<0.001	0.8709	(-0.5351 to 2.2769)	0.225	2.0181	(0.5461 to 3.4901)	0.007
Group42	0.0215	(0.0025 to 0.0405)	0.026	-0.061	(-1.2474 to 1.1253)	0.92	1.6068	(0.4180 to 2.7956)	0.008
Group43	-0.0028	(-0.0297 to 0.0241)	0.839	-1.1611	(-2.8161 to 0.4938)	0.169	0.2262	(-1.4137 to 1.8661)	0.787
Group44	0.0069	(-0.0138 to 0.0276)	0.516	-0.3042	(-1.5832 to 0.9748)	0.641	-0.5424	(-1.8960 to 0.8112)	0.432
Group45	0.0127	(-0.0083 to 0.0337)	0.236	-0.0911	(-1.4090 to 1.2268)	0.892	0.1659	(-1.1733 to 1.5051)	0.808
Group46	0.0008	(-0.0181 to 0.0198)	0.932	-0.5691	(-1.7635 to 0.6253)	0.35	-0.5374	(-1.7395 to 0.6647)	0.381
Group47	-0.0176	(-0.0371 to 0.0018)	0.076	-2.3566	(-3.6616 to -1.0517)	<0.001	0.1523	(-1.1337 to 1.4382)	0.816
Group48	-0.0008	(-0.0201 to 0.0186)	0.939	0.5948	(-0.6169 to 1.8066)	0.336	-1.8065	(-3.0520 to -0.5610)	0.004
Group49	0.012	(-0.0085 to 0.0326)	0.252	0.2065	(-1.0814 to 1.4943)	0.753	-0.7034	(-2.0434 to 0.6366)	0.304
Group50	0.0414	(0.0186 to 0.0642)	<0.001	-0.637	(-2.1660 to 0.8919)	0.414	2.7809	(1.3550 to 4.2068)	< 0.001
Group51	0.0157	(-0.0028 to 0.0341)	0.096	-0.0071	(-1.1636 to 1.1493)	0.99	0.5806	(-0.5774 to 1.7386)	0.326
Group52	0.0273	(0.0081 to 0.0465)	0.005	0.3828	(-0.8204 to 1.5860)	0.533	1.4161	(0.2149 to 2.6173)	0.021
Group53	-0.0117	(-0.0309 to 0.0075)	0.231	1.2996	(0.0958 to 2.5033)	0.034	-1.9972	(-3.2051 to -0.7893)	0.001
Group54	0.0262	(0.0057 to 0.0467)	0.012	0.5337	(-0.7487 to 1.8161)	0.415	1.1281	(-0.1692 to 2.4253)	0.088
Group55	0.0218	(-0.0018 to 0.0454)	0.07	2.5512	(1.1129 to 3.9895)	0.001	-1.2728	(-2.7608 to 0.2152)	0.094
Group56	0.0292	(0.0099 to 0.0485)	0.003	-0.2264	(-1.4300 to 0.9773)	0.712	2.1549	(0.9686 to 3.3412)	< 0.001

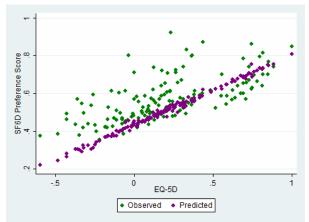
			Predicted	Predicted				Predicted	Predicted
			using	Using				using	using
ICD			Health	Preference-	ICD			Health	Preference-
group	Ν	Obs	dimensions	based index	group	Ν	Obs	dimensions	based index
Healthy	117	0.72617	0.72617	0.72617					
group1	181	0.60767	0.60767	0.60767	group29	940	0.73630	0.73630	0.73630
group2	100	0.60252	0.60252	0.60252	group30	108	0.76009	0.76009	0.76009
group3	442	0.77104	0.77104	0.77104	group31	207	0.66738	0.66738	0.66738
group4	319	0.65680	0.65680	0.65680	group32	121	0.66033	0.66033	0.66033
group5	149	0.65133	0.65133	0.65133	group33	476	0.77405	0.77405	0.77405
group6	123	0.70868	0.70868	0.70868	group34	347	0.63570	0.63570	0.63570
group7	135	0.69237	0.69237	0.69237	group35	175	0.65073	0.65073	0.65073
group8	272	0.65283	0.65283	0.65283	group36	1978	0.64150	0.64150	0.64150
group9	163	0.73267	0.73267	0.73267	group37	1574	0.56186	0.56186	0.56186
group10	1198	0.75245	0.75245	0.75245	group38	752	0.68645	0.68645	0.68645
group11	163	0.69948	0.69948	0.69948	group39	165	0.61646	0.61646	0.61646
group12	418	0.69186	0.69186	0.69186	group40	747	0.70066	0.70066	0.70066
group13	148	0.68018	0.68018	0.68018	group41	220	0.76418	0.76418	0.76418
group14	316	0.71301	0.71301	0.71301	group42	1636	0.73364	0.73364	0.73364
group15	156	0.69257	0.69257	0.69257	group43	128	0.68745	0.68745	0.68745
group16	106	0.72262	0.72262	0.72262	group44	491	0.70674	0.70674	0.70674
group17	122	0.62499	0.62499	0.62499	group45	438	0.70656	0.70656	0.70656
group18	130	0.60398	0.60398	0.60398	group46	1756	0.66628	0.66628	0.66628
group19	271	0.66128	0.66128	0.66128	group47	892	0.60280	0.60280	0.60280
group20	397	0.70288	0.70288	0.70288	group48	1022	0.68427	0.68427	0.68427
group21	219	0.60341	0.60341	0.60341	group49	528	0.68991	0.68991	0.68991
group22	207	0.72844	0.72844	0.72844	group50	234	0.76307	0.76307	0.76307
group23	349	0.74781	0.74781	0.74781	group51	5845	0.70242	0.70242	0.70242
group24	224	0.73288	0.73288	0.73288	group52	1317	0.72266	0.72266	0.72266

Table A3.4 : Observed (Obs) and predicted mean SF-6D

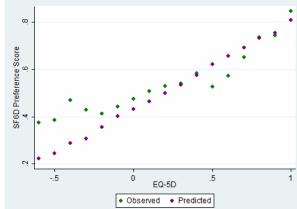
group262240.762510.76251group545170.731990.731990.73199group2722970.648000.64800group552230.685860.685860.68586group283050.633760.63376group5612800.776740.776740.77674	g	roup25	209	0.72327	0.72327	0.72327	group53	1549	0.67344	0.67344	0.67344
	g	roup26	224	0.76251	0.76251	0.76251	group54	517	0.73199	0.73199	0.73199
group28 305 0.63376 0.63376 0.63376 group56 1280 0.77674 0.77674 0.77674	g	roup27	2297	0.64800	0.64800	0.64800	group55	223	0.68586	0.68586	0.68586
	g	roup28	305	0.63376	0.63376	0.63376	group56	1280	0.77674	0.77674	0.77674

ICD Group	Ν	SF-6D		PCS		MCS	
EQ-5D < 0.5		Observed	Predicted	Observed	Predicted	Observed	Predicted
1	38	0.49	0.43	27.81	25.34	39.63	38.27
2	16	0.55	0.44	30.29	25.79	43.00	38.30
3	30	0.52	0.52	31.56	31.49	42.86	40.51
4	32	0.50	0.43	29.45	29.05	39.37	36.82
5	20	0.48	0.44	27.00	26.86	39.58	38.52
5	10	0.54	0.52	33.48	33.40	43.84	41.62
7	11	0.51	0.47	32.56	29.88	38.50	38.52
8	54	0.50	0.46	26.65	26.30	41.30	39.25
9	9	0.49	0.47	31.88	29.40	37.87	38.48
10	93	0.52	0.50	34.76	31.95	39.18	39.33
11	17	0.50	0.45	28.10	26.93	41.63	38.60
12	83	0.51	0.47	30.56	28.46	41.08	38.82
13	29	0.54	0.50	36.25	32.43	38.41	37.99
14	40	0.50	0.46	30.89	28.37	38.54	37.56
14	40 20	0.50	0.46	25.05	26.03	42.60	39.46
16	8	0.54	0.46	33.95	29.62	36.27	36.87
17	36	0.53	0.45	35.60	31.07	36.34	36.04
18	34	0.51	0.45	28.36	22.71	43.03	41.54
19	64	0.50	0.45	29.68	28.79	40.05	37.12
20	68	0.51	0.48	30.83	29.44	41.46	39.91
21	80	0.52	0.46	28.44	26.29	43.75	40.11
22	29	0.54	0.49	31.94	29.95	42.00	38.80
23	46	0.49	0.49	28.65	29.58	39.26	39.02
24	16	0.45	0.47	29.80	30.32	32.12	38.08
25	23	0.49	0.48	29.21	29.16	37.51	38.28
26	22	0.51	0.52	35.81	32.41	38.63	39.65
27	427	0.49	0.44	28.34	25.93	39.34	38.69
28	65	0.49	0.43	27.73	26.17	37.71	36.96
29	102	0.50	0.48	31.60	29.90	37.46	38.28
30	5	0.51	0.45	25.00	27.98	47.82	37.86
31	44	0.49	0.44	29.34	26.76	36.44	36.93
32	32	0.49	0.45	31.19	28.17	38.22	37.24
33	40	0.54	0.52	35.56	32.42	40.05	39.38
33	40 84	0.34	0.32	27.33	23.85	37.35	37.46
35	84 40	0.48	0.44 0.48	27.55	26.92	42.84	40.33
36	40 492	0.51			26.92 25.71	42.66 42.66	
			0.45	28.20			41.12
37	705	0.47	0.42	26.28	23.72	40.95	39.66
38	163	0.50	0.48	30.59	29.03	40.33	39.90
39	65	0.49	0.46	27.33	26.72	40.90	39.63
40	122	0.52	0.47	32.37	29.40	39.50	38.24
41	32	0.52	0.53	36.10	32.39	38.28	40.00
42	157	0.51	0.49	35.88	32.09	38.32	37.99
43	18	0.49	0.47	30.07	30.88	39.30	37.40
44	69	0.50	0.48	28.53	28.96	40.30	38.96
45	57	0.48	0.46	29.06	28.80	37.44	37.90
46	367	0.49	0.45	30.14	27.97	38.13	37.46
47	327	0.49	0.45	32.87	29.93	35.19	35.74
18	165	0.50	0.47	29.14	27.31	40.50	39.61
49	104	0.49	0.46	29.82	27.66	37.58	38.17
50	29	0.55	0.55	42.57	36.08	34.49	38.94
51	2 <i>5</i> 969	0.50	0.35	31.51	29.63	38.57	38.24
52	209	0.50	0.47	32.16	30.55	39.11	38.19
52							
	253	0.51	0.48	32.06	29.82	41.61	40.41
54	67	0.51	0.50	31.32	30.50	39.60	39.44
55	46	0.47	0.47	27.01	26.94	41.22	40.03
56	57	0.53	0.52	41.40	35.67	34.58	37.52

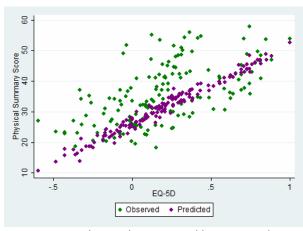
Table A3.5: Observed and predicted mean SF-6D, PCS and MCS values by EQ-5D score

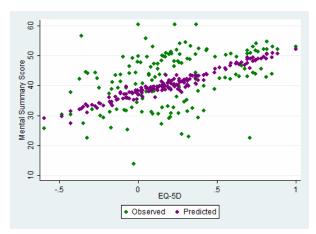

ICD Group	N	SF-6D		PCS		MCS	
0.5 <= EQ-5D		0. 02					
		Observed	Predicted	Observed	Predicted	Observed	Predicted
1	62	0.58	0.61	34.93	37.21	44.6	45.56
2	32	0.50	0.59	29.66	34.83	40.23	44.80
3	55	0.60	0.70	37.16	43.72	46.67	47.94
4	78	0.58	0.63	38.85	41.70	43.13	45.33
5 6	34	0.56	0.61	35.76	38.34	43.33	45.83
6	21	0.56	0.65	38.90	42.05	43.39	47.27
7	31	0.56	0.65	34.98	41.39	42.06	46.13
8	64	0.55	0.63	32.61	37.40	43.53	45.97
9	26	0.57	0.67	39.50	43.21	43.18	46.84
10	125	0.57	0.68	38.37	43.92	43.18	47.09
11	24	0.57	0.65	34.51	40.69	44.28	46.63
12	61	0.58	0.67	35.94	41.13	44.85	47.31
13	27	0.56	0.64	35.37	41.21	41.04	44.58
14 15	52	0.58	0.66	36.68	42.05	43.82	46.51
15 16	30 16	0.56	0.66	34.56	40.11	44.41 42.66	47.50
16 17	16 28	0.59 0.55	0.67 0.64	40.27 37.89	43.37 43.86	43.66 43.21	45.72 43.85
17 18	28 49	0.55	0.64 0.62	37.89 30.82	43.86 34.89	43.21 46.91	43.85 48.22
18	49 60	0.58	0.62	30.82 38.64	34.89 42.29	46.91 43.19	48.22 45.99
19 20	65	0.59	0.68	38.04 39.22	42.29 43.01	45.19	43.99 48.16
20	59	0.57	0.64	34.39	39.02	40.12	47.74
22	29	0.57	0.69	36.47	43.00	43.36	47.60
23	40	0.59	0.70	35.12	42.96	44.69	47.93
24	28	0.60	0.67	37.64	42.90	45.83	46.61
25	30	0.59	0.67	37.79	42.12	44.96	46.77
26	15	0.57	0.70	39.36	45.15	40.20	47.39
27	615	0.57	0.64	35.35	38.95	44.10	46.97
28	69	0.55	0.63	32.07	39.35	44.31	44.99
29	125	0.58	0.69	36.82	43.42	45.31	47.11
30	8	0.53	0.67	34.57	42.62	44.80	46.83
31	31	0.56	0.65	35.81	40.43	43.06	45.84
32	13	0.61	0.66	39.61	42.24	44.85	46.71
33	44	0.59	0.71	38.97	44.93	42.91	46.94
34	94	0.55	0.64	32.63	37.74	42.95	45.76
35	39	0.54	0.64	31.90	37.91	44.14	47.09
36	479	0.58	0.65	35.14	39.05	46.99	49.66
37	356	0.55	0.64	33.45	38.47	45.76	48.96
38	140	0.58	0.68	37.83	42.62	45.68	48.56
39	29	0.56	0.66	34.36	40.03	44.83	47.88
40	118	0.59	0.67	38.30	42.86	44.04	46.71
41	18	0.60	0.71	39.42	43.81	45.31	48.31
42	165	0.58	0.68	38.91	44.53	43.11	46.33
43	25	0.56	0.65	41.36	42.35	40.30	45.07
44	86	0.56	0.66	34.21	41.27	43.76	46.66
45	83	0.59	0.67	36.99	41.92	44.97	46.61
46	360	0.58	0.66	36.70	41.60	43.60	46.31
47	166	0.56	0.64	36.69	42.46	42.06	44.05
48	204	0.58	0.66	35.10	40.02	44.63	47.66
49 50	77 17	0.57	0.67	35.86	41.33	43.59	47.21
50 51	17 872	0.58	0.70	39.33	45.38	43.06	45.92
51 52	872	0.58	0.67	37.97	43.08	43.57	46.73
52 53	163 289	0.59 0.56	0.68 0.64	38.27	43.82	44.26 43.57	46.98 47.31
53 54	289 71	0.56	0.64 0.69	37.06 36.80	40.87 43.33	43.57 44.15	47.31 47.95
54 55	38	0.58	0.69	36.80 37.81	43.33 41.00	44.15 44.50	47.95 48.52
55 56	38 36	0.58	0.69	37.81 41.50	41.00 46.95	44.50 42.54	48.52 44.95
30	50	0.00	0.05	41.30	40.53	42.04	44.33

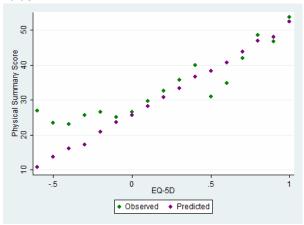
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICD Group	Ν	SF-6D		PCS		MCS	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69 <= EQ-5I) < 0.79						
2 28 0.63 0.63 7.98 38.25 46.87 46.87 3 75 0.71 0.74 43.98 44.03 46.87 49.81 4 63 0.64 0.66 43.23 44.03 48.03 46.63 5 22 0.63 0.65 35.34 43.78 50.78 49.22 7 25 0.68 0.68 43.53 43.77 48.99 47.61 8 43 0.67 0.70 40.48 45.07 51.07 48.53 10 176 0.70 0.72 44.19 46.37 49.77 48.78 11 27 0.66 0.70 41.91 45.10 47.53 46.63 14 46 0.69 0.71 42.12 44.96 50.17 48.29 15 35 0.68 0.70 41.91 45.10 47.59 47.18 14 45 0.59 0.71								
3 75 0.71 0.74 4.3.98 4.6.29 50.37 4.981 4 63 0.64 0.66 42.3 40.81 47.93 47.54 6 20 0.62 0.68 37.33 43.78 50.78 49.22 7 25 0.68 0.68 43.53 43.77 48.99 47.61 8 43 0.64 0.67 36.78 40.28 48.92 48.16 9 24 0.67 0.70 40.48 45.07 50.49 48.53 10 176 0.70 0.72 44.19 46.37 49.77 48.78 11 27 0.69 0.71 40.91 44.40 50.73 49.15 13 24 0.66 0.70 41.91 45.10 47.53 46.66 14 46 0.69 0.71 42.95 49.93 49.05 14 0.65 0.67 45.48 46.64								
4 63 0.64 0.66 43.23 44.03 48.03 46.63 5 22 0.63 0.65 36.54 40.81 47.93 47.54 6 20 0.62 0.68 37.33 43.76 50.78 49.22 7 25 0.68 0.68 43.53 43.77 48.99 47.61 8 43 0.67 0.70 40.48 45.07 51.07 48.78 10 176 0.70 0.72 44.19 46.37 49.77 48.78 11 27 0.69 0.69 39.33 43.17 50.49 48.14 12 72 0.68 0.70 41.91 44.00 50.77 48.79 15 35 0.68 0.70 49.95 49.93 49.05 50.37 16 14 0.65 0.67 41.97 45.27 47.69 47.18 20 94 0.70 0.72								
5 22 0.63 0.65 36.54 40.81 47.93 47.54 6 20 0.62 0.68 37.33 43.78 50.78 49.22 7 25 0.68 0.67 36.78 40.28 48.99 47.61 8 43 0.64 0.67 36.78 40.28 48.92 48.16 9 24 0.67 0.70 40.48 45.07 51.07 48.53 11 27 0.68 0.70 41.91 45.10 47.53 49.66 12 72 0.68 0.70 41.91 45.10 47.53 49.66 14 46 0.69 0.71 42.12 44.40 50.37 49.15 15 35 0.68 0.70 39.95 42.95 49.93 49.05 16 14 0.65 0.67 45.84 6.64 44.32 45.23 17 12 0.66 0.70								
6 20 0.62 0.68 37.33 43.78 50.78 49.22 7 25 0.68 0.68 43.53 43.77 48.99 47.61 8 43 0.64 0.67 36.78 40.28 48.92 48.16 9 24 0.67 0.70 40.48 45.07 51.07 48.73 11 27 0.69 0.69 39.33 43.17 50.49 48.14 12 72 0.66 0.70 41.91 45.10 47.53 46.66 14 46 0.69 0.71 42.12 44.96 50.17 48.29 15 35 0.68 0.70 39.91 44.93 50.97 49.05 16 14 0.65 0.67 45.48 46.64 44.32 45.23 17 12 0.66 0.70 41.97 45.27 47.69 47.18 20 94 0.70 0.72								
7 25 0.68 0.66 35.78 43.77 48.99 47.61 8 43 0.64 0.67 36.78 40.28 48.92 48.16 9 24 0.67 0.70 40.48 45.07 51.07 48.73 10 176 0.70 0.72 44.19 46.37 49.77 48.78 11 27 0.68 0.71 40.91 44.40 50.73 49.15 13 24 0.66 0.70 41.91 45.10 47.53 46.66 14 46 0.69 0.71 42.12 44.96 50.17 48.29 15 35 0.68 0.70 39.95 42.95 49.93 49.05 16 14 0.65 0.67 45.48 46.64 44.32 45.23 18 25 0.63 0.66 33.22 37.27 51.95 50.37 19 32 0.66 0.71 43.12 45.70 49.56 48.84 22 34 0.67	5							
8 43 0.64 0.67 36.78 40.28 48.92 48.16 9 24 0.67 0.70 40.48 45.07 49.77 48.73 11 27 0.69 0.69 39.33 43.17 50.49 48.14 12 72 0.68 0.71 40.91 44.40 50.73 49.15 13 24 0.66 0.70 41.91 45.10 47.53 46.66 14 46 0.69 0.71 42.12 44.96 50.17 48.29 15 35 0.68 0.70 43.95 42.95 49.33 49.05 16 14 0.65 0.67 45.48 46.64 44.32 45.23 18 25 0.63 0.66 33.22 37.27 51.95 50.37 19 32 0.66 0.70 41.97 45.74 50.18 49.25 21 31 0.68 0.69								
9 24 0.67 0.70 40.48 45.07 51.07 48.53 10 176 0.70 0.72 44.19 46.37 49.77 48.73 11 27 0.68 0.71 40.91 44.40 50.73 49.15 13 24 0.66 0.70 41.91 45.10 47.53 46.66 14 46 0.69 0.71 42.12 44.96 50.17 48.29 15 35 0.68 0.70 39.95 42.95 49.93 49.05 16 14 0.65 0.69 39.71 44.93 50.37 45.94 17 12 0.66 0.70 41.97 45.74 50.18 49.70 21 31 0.66 0.70 41.97 45.74 50.18 49.70 21 31 0.66 0.71 43.67 48.57 48.12 22 34 0.69 0.73 43.12								
101760.700.7244.1946.3749.7748.7811270.690.6939.3343.1750.4948.1412720.680.7140.9144.4050.7349.1513240.660.7041.9145.1047.5346.6614460.690.7142.1244.9650.1748.2915350.680.7039.9542.9549.9349.0516140.650.6745.4846.6444.3245.2318250.630.6633.2237.2751.9550.3719320.660.7041.9745.7447.6947.1820940.700.7244.8945.7450.1849.7021310.680.6942.6142.7850.4149.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.4624370.670.7143.6745.6448.2748.7225400.660.7141.9744.7748.5948.0226350.690.7446.6447.5148.4848.792745.80.670.6839.2241.6151.0248.7728630.660.6740.9842.1346.8746.86								
11270.690.6939.3343.1750.4948.1412720.680.7140.9144.4050.7349.1513240.660.7041.9145.1047.5346.6614460.690.7142.1244.9650.1748.2915350.680.7039.9542.9549.9349.0516140.650.6939.7144.9350.9746.9417120.650.6633.2237.2751.9550.3719320.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1449.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.4624370.670.7143.6745.6448.2748.1225400.660.7141.9744.7748.5948.0226350.690.7243.7646.6047.5148.482745.80.670.6839.2241.6151.0248.7728630.660.6740.9842.1346.8748.1034600.700.7243.7646.2049.7448.5730100.610.7145.1946.5745.2449.13<								
12720.680.7140.9144.4050.7349.1513240.660.7041.9145.1047.5346.6614460.690.7142.1244.9650.1748.2915350.680.7039.9542.9549.9349.0516140.650.6939.7144.9350.9746.9417120.650.6745.4846.6444.3245.2318250.630.6633.2237.2751.9550.3719320.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1849.7021310.680.6942.6142.7850.4149.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.4624370.670.7141.9744.7748.5948.0226350.690.7141.9744.7748.5948.0226350.690.7446.6249.7448.5730100.610.7143.7646.2049.7448.5731280.650.6937.7543.4350.0147.5332270.670.7041.2543.4350.1347.5233 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
13240.660.7041.9145.1047.5346.6614460.690.7142.1244.9650.1748.2915350.680.7039.9542.9549.9349.0516140.650.6939.7144.9350.9746.9417120.650.6745.4846.6444.3245.2318250.630.6633.2237.2751.9550.3719320.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1849.7021310.680.6942.6142.7850.4149.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.4624370.670.7141.9744.7748.5948.0225400.660.7141.9744.7748.5948.0226350.690.7446.6742.1346.8746.86291670.700.7243.7646.2049.7448.5730100.610.7145.1946.5742.1247.3731280.650.6937.7543.4350.0147.5233470.690.7446.0247.4847.2648.10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
14460.690.7142.1244.9650.1748.2915350.680.7039.9542.9549.9349.0516140.650.6745.4846.6444.3245.2317120.650.6745.4846.6444.3245.2318250.630.6633.2237.2751.9550.3719320.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1849.0521310.680.6942.6142.7850.4149.2522340.690.7444.6745.8150.6249.4624370.670.7143.6745.6448.2748.1225400.660.7141.9744.7748.5948.0226350.690.7446.647.5148.4848.79274580.670.6839.2241.6151.0248.7728630.660.6740.9842.1346.8746.86291670.700.7243.7646.2049.7448.5730100.610.7145.1946.5742.1247.3731280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.52 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
15350.680.7039.9542.9549.9349.0516140.650.6939.7144.9350.9746.9417120.650.6633.2237.2751.9550.3719320.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1849.7021310.680.6942.6142.7850.4149.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.6624370.670.7143.6745.6448.2748.1225400.660.7141.9744.7748.5948.0226350.690.7446.6447.5148.4848.79274580.670.6839.2241.6151.0248.7728630.660.6740.9842.1346.8746.86291670.700.7243.7646.0249.5147.5231280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.5233470.6937.7543.4350.0147.5233470.6937.7543.4350.0147.5233347								
16140.650.6939.7144.9350.9746.9417120.650.6745.4846.6444.3245.2318250.660.7041.9745.2747.6947.1820940.700.7244.8945.7450.1849.7021310.680.6942.6142.7850.4149.2522340.690.7343.1245.7049.5648.8423640.720.7444.2745.8150.6249.4624370.670.7141.9744.7748.5948.0226350.690.7446.647.5148.4848.79274580.660.6740.9842.1346.8746.86291670.700.7243.7646.2049.7448.5730100.610.7141.2545.4449.5147.5233470.690.7541.2749.7849.1834600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7741.2749.7849.18373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1437330								
17 12 0.65 0.67 45.48 46.64 44.32 45.23 18 25 0.63 0.66 33.22 37.27 51.95 50.37 19 32 0.66 0.70 41.97 45.27 47.69 47.18 20 94 0.70 0.72 44.89 45.74 50.18 49.70 21 31 0.68 0.69 42.61 42.78 50.41 49.25 22 34 0.69 0.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 48.48 48.79 27 45.8 0.67 0.68 39.22 41.61 51.02 48.77 28 63 0.66 0.67 40.98 42.13 46.86 29 167 0.70 0.72 43.76 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
18 25 0.63 0.66 33.22 37.27 51.95 50.37 19 32 0.66 0.70 41.97 45.27 47.69 47.18 20 94 0.70 0.72 44.89 45.74 50.18 49.70 21 31 0.68 0.69 42.61 42.78 50.41 49.25 22 34 0.69 0.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.48 47.77 28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 45.57 30 10 0.61 0.71								
19 32 0.66 0.70 41.97 45.27 47.69 47.18 20 94 0.70 0.72 44.89 45.74 50.18 49.70 21 31 0.68 0.69 9.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.48 48.79 27 458 0.67 0.68 39.22 41.61 51.02 45.77 28 63 0.66 0.67 49.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 0.61 0.71 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
20 94 0.70 0.72 44.89 45.74 50.18 49.70 21 31 0.68 0.69 42.61 42.78 50.41 49.25 22 34 0.69 0.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.48 48.79 27 458 0.67 0.68 39.22 41.61 51.02 48.77 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.52 33 47 0.67 0.70								
21 31 0.68 0.69 42.61 42.78 50.41 49.25 22 34 0.69 0.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.48 48.79 27 458 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 36 568 0.69 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
22 34 0.69 0.73 43.12 45.70 49.56 48.84 23 64 0.72 0.74 44.27 45.81 50.62 49.46 24 37 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.48 48.79 27 458 0.67 0.68 39.22 41.61 51.02 48.77 28 63 0.66 0.67 49.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 31 28 0.65 0.69 37.75 43.43 50.01 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.72								
2364 0.72 0.74 44.27 45.81 50.62 49.46 2437 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.84 48.79 27 458 0.67 0.68 39.22 41.61 51.02 48.77 28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.53 32 27 0.67 0.70 41.25 45.44 49.51 47.52 33 47 0.69 0.74 46.02 47.48 47.60 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 35 38 0.68 0.69 40.57 41.27 49.78 49.18 36 568 0.69 0.70 40.71 42.14 52.73 51.25 37 330 0.66 0.68 39.74 41.37 51.86 50.73 38 146 0.70 0.72 42.36 45.59 51.76 50.14								
24 37 0.67 0.71 43.67 45.64 48.27 48.12 25 40 0.66 0.71 41.97 44.77 48.59 48.02 26 35 0.69 0.74 46.6 47.51 48.8 48.77 28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.53 32 27 0.67 0.70 41.25 45.44 49.51 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 35 38 0.68 0.68								
25400.660.7141.9744.7748.5948.0226350.690.7446.647.5148.4848.79274580.670.6839.2241.6151.0248.7728630.660.6740.9842.1346.8746.86291670.700.7243.7646.2049.7448.5730100.610.7145.1946.5742.1247.3731280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.5233470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.5541250.670.7144.5046.8949.3947.7743230.640.6943.1246.0645.7946.28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
26 35 0.69 0.74 46.6 47.51 48.48 48.79 27 458 0.67 0.68 39.22 41.61 51.02 48.77 28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.53 32 27 0.67 0.70 41.25 45.44 49.51 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 35 38 0.66 0.68 39.74 41.37 51.86 50.73 37 330 0.66 0.68 39.74 41.37 51.86 50.73 38 146 0.70 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
27 458 0.67 0.68 39.22 41.61 51.02 48.77 28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.53 32 27 0.67 0.70 41.25 45.44 49.51 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 35 38 0.66 0.69 40.57 41.27 49.78 49.18 36 568 0.69 0.70 40.71 42.14 52.73 51.25 37 330 0.66 0.68 39.74 41.37 51.86 50.73 38 146 0.70 0.72 42.86 45.29 51.76 50.14 39 32 0.68 0.71 43.23 45.45 49.25 48.45 41 25 0.71 0.75 44.10 47.04 49.28 49.39 42 264 0.67 0.71 44.50 46.89 48.19 47.77 43 23 0.67 0.70 42.18 43.95								
28 63 0.66 0.67 40.98 42.13 46.87 46.86 29 167 0.70 0.72 43.76 46.20 49.74 48.57 30 10 0.61 0.71 45.19 46.57 42.12 47.37 31 28 0.65 0.69 37.75 43.43 50.01 47.53 32 27 0.67 0.70 41.25 45.44 49.51 47.52 33 47 0.69 0.74 46.02 47.48 47.26 48.10 34 60 0.70 0.69 38.75 40.67 50.35 47.91 35 38 0.68 0.69 40.57 41.27 49.78 49.18 36 568 0.69 0.70 40.71 42.14 52.73 51.25 37 330 0.66 0.68 39.74 41.37 51.86 50.73 38 146 0.70 0.72 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
291670.700.7243.7646.2049.7448.5730100.610.7145.1946.5742.1247.3731280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.5233470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9950.7349.2949<								
30100.610.7145.1946.5742.1247.3731280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.5233470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.660.6841.9945.4348.6045.57482170.680.7041.7044.3749.1347.87471330.660.6841.9950.7349.2949<								46.86
31280.650.6937.7543.4350.0147.5332270.670.7041.2545.4449.5147.5233470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7346.8748.0646.6447.02491020.690.7140.0844.0851.6748.74<								
32270.670.7041.2545.4449.5147.5233470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7042.1843.9549.5248.5545690.690.7144.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7140.8674.8748.6447.0251								
33470.690.7446.0247.4847.2648.1034600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44 </td <td></td> <td></td> <td></td> <td></td> <td>37.75</td> <td></td> <td></td> <td></td>					37.75			
34600.700.6938.7540.6750.3547.9135380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
35380.680.6940.5741.2749.7849.18365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7140.0844.0851.6748.7450240.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.24 <td></td> <td></td> <td></td> <td></td> <td>46.02</td> <td></td> <td></td> <td>48.10</td>					46.02			48.10
365680.690.7040.7142.1452.7351.25373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.8844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78					38.75			47.91
373300.660.6839.7441.3751.8650.73381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.8844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.24								
381460.700.7242.8645.2951.7650.1439320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06<								
39320.680.7045.2143.8048.2148.82401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
401300.680.7143.2345.4549.2548.4541250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
41250.710.7544.1047.0449.2849.39422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
422640.670.7144.5046.8948.1947.7743230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
43230.640.6943.1246.0645.7946.2844760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
44760.670.7042.1843.9549.5248.5545690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
45690.690.7144.2145.0349.1148.32463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
463230.670.7041.7044.3749.1347.87471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
471330.660.6841.9945.4348.6045.57482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
482170.680.7040.6642.9950.7349.29491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
491020.690.7140.0844.0851.6748.7450240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
50240.680.7346.8748.0646.6447.02511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
511,1050.680.7143.8045.6548.3348.23522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
522250.700.7244.8046.7049.3048.44533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
533890.660.6841.1743.8650.5548.78541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
541080.710.7344.4245.9650.7249.2455560.700.7242.0544.3751.5350.06								
55 56 0.70 0.72 42.05 44.37 51.53 50.06								
56 90 0.68 0.72 46.47 48.50 46.10 46.30								
	56	90	0.68	0.72	46.47	48.50	46.10	46.30

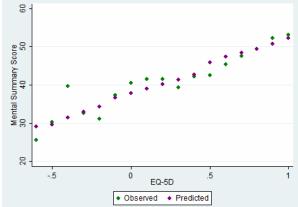

ICD Group	N	SF-6D		PCS		MCS	
0.79 <= EQ-5	D<1						
		Observed	Predicted	Observed	Predicted	Observed	Predicted
1	38	0.65	0.68	42.71	42.20	47.36	48.98
2	15	0.69	0.67	41.65	40.44	51.01	47.88
3	94	0.79	0.77	51.69	48.77	50.26	51.05
4	75	0.70	0.69	47.76	46.32	47.91	47.79
5 6	30	0.68	0.69	45.52	43.95	49.36	48.72
6 7	28	0.73	0.72	49.94	47.07	49.66	50.33
8	31	0.74	0.72	48.95	45.99 43.13	50.82	49.03
8 9	40 34	0.72 0.73	0.71 0.74	46.57	43.13 47.92	49.22 48.11	49.89 49.45
9 10	265	0.75	0.74	50.10 50.58	47.92 48.96	48.11 49.12	49.45 49.75
10	205 40	0.75	0.75	48.33	48.90 45.9	49.12 47.86	49.75 49.61
11 12	40 86	0.70	0.72	48.55 49.22	43.9 47.06	47.80	49.01 50.54
12	26	0.73	0.73	49.22	47.67	48.90	47.28
15 14	20 66	0.72	0.72	49.97	47.82	47.20	47.28 49.59
14	38	0.72	0.74	49.90	47.82	50.86	49.39 50.66
15 16	25	0.77	0.74	49.93	47.58	46.41	48.65
17	26	0.68	0.73	50.23	49.29	44.02	46.56
17 18	20 14	0.08	0.71	44.50	49.29	44.02 51.29	40.50 51.75
19	56	0.72	0.71	51.50	40.89	46.93	48.32
20	85	0.75	0.75	49.33	47.63	40.55 51.38	48.52 51.02
20	28	0.78	0.72	48.82	45.43	46.91	50.55
22	41	0.72	0.72	40.02 51.43	48.10	49.61	49.97
23	65	0.79	0.77	51.14	48.37	50.65	50.90
24	56	0.76	0.75	50.80	48.60	49.57	49.60
25	34	0.74	0.75	49.75	47.50	48.13	49.69
26	60	0.80	0.77	51.70	49.86	50.62	50.05
27	375	0.73	0.72	47.03	44.46	50.38	50.39
28	55	0.71	0.71	50.06	45.26	47.58	48.41
29	207	0.78	0.76	51.84	48.73	49.36	49.70
30	23	0.74	0.75	51.91	49.15	47.11	49.09
31	46	0.71	0.73	47.74	46.34	47.81	48.62
32	19	0.72	0.74	50.23	48.64	45.28	49.19
33	109	0.78	0.77	52.17	49.84	49.21	49.28
34	45	0.74	0.72	45.17	43.92	49.96	49.06
35	28	0.75	0.72	47.90	43.57	49.16	50.19
36	237	0.78	0.74	48.38	45.08	52.30	52.78
37	106	0.77	0.72	48.83	44.07	52.02	51.95
38	129	0.79	0.75	50.31	47.07	52.10	51.48
39	13	0.76	0.73	48.74	46.06	51.63	50.72
40	170	0.75	0.74	50.16	48.08	49.10	49.38
41	43	0.80	0.78	49.84	49.64	51.91	50.69
42	391	0.75	0.74	50.98	49.22	48.68	49.00
43	25	0.75	0.72	49.79	47.64	48.89	48.03
44	96	0.75	0.74	49.21	46.46	49.05	49.87
45	97	0.76	0.74	49.85	47.51	48.83	49.67
46	326	0.75	0.73	50.07	47.00	48.87	49.03
47	154	0.69	0.71	51.03	48.77	44.89	46.42
48	193	0.75	0.74	48.47	45.69	50.91	50.90
49	96	0.76	0.74	50.47	46.94	49.31	49.78
50	50	0.73	0.76	52.77	51.74	44.01	47.24
51	1,219	0.76	0.74	50.49	48.08	49.66	49.41
52	238	0.75	0.76	51.57	49.30	48.15	49.70
53	256	0.74	0.72	49.51	46.71	50.11	50.03
54	99	0.77	0.76	51.55	48.24	50.24	50.70
55	27	0.79	0.75	49.45	46.75	52.12	51.31
56	287	0.71	0.75	52.71	51.25	44.92	47.68

ICD Group	N	SF-6D		PCS		MCS	
for EQ-5D val	ues = 1	Observed	Predicted	Observed	Predicted	Observed	Predicted
1	21	0.81	0.75	51.95	46.95	52.85	51.22
2	9	0.82	0.74	54.09	44.87	52.37	51.25
3	188	0.87	0.84	54.74	53.37	53.96	53.80
4	71	0.77	0.75	52.62	50.48	50.49	50.59
5	43	0.79	0.75	50.72	47.65	52.25	51.40
6	44	0.84	0.78	53.36	50.77	53.89	52.83
7	37	0.82	0.78	52.68	50.43	53.02	52.03
8	71	0.83	0.77	52.02	47.79	52.32	51.76
9	70	0.84	0.80	53.93	52.35	52.95	51.73
10	539	0.85	0.82	54.39	53.68	53.15	52.23
11	55	0.82	0.79	52.93	50.48	52.33	52.12
12	116	0.85	0.81	53.44	51.65	52.90	52.99
13	42	0.84	0.79	53.68	52.17	51.48	49.95
14	112	0.85	0.81	53.84	52.34	53.29	52.19
15	33	0.85	0.80	53.36	50.06	52.70	52.96
16	43	0.83	0.80	53.82	52.00	51.97	51.10
17	20	0.81	0.78	53.28	53.60	53.40	49.19
18	8	0.83	0.77	52.51	45.25	52.02	54.44
19	59	0.84	0.80	53.49	52.06	52.22	51.51
20	85	0.85	0.82	53.60	52.58	53.14	53.72
21	21	0.76	0.78	50.34	49.79	49.53	52.95
22	74	0.86	0.82	53.96	52.84	53.00	52.72
23	134	0.88	0.84	54.88	52.83	54.27	53.82
24	87	0.84	0.80	54.15	52.94	52.99	51.68
25	82	0.86	0.81	53.93	51.92	53.39	52.14
26	92	0.86	0.83	53.83	54.55	53.52	52.36
27	422	0.83	0.78	51.78	48.68	54.05	52.94
28	53	0.82	0.77	53.16	49.22	51.81	51.00
29	339	0.86	0.82	54.71	53.48	52.80	52.25
30	62	0.84	0.81	54.45	53.97	51.99	50.95
31	58	0.83	0.79	52.50	50.37	52.77	51.46
32	30	0.82	0.80	53.33	52.64	51.96	51.51
33	236	0.86	0.84	54.51	54.71	52.54	51.71
34	64	0.83	0.78	52.14	48.28	52.63	51.26
35	30	0.85	0.79	51.56	48.43	53.55	52.86
36	202	0.86	0.80	53.24	49.91	54.10	55.12
37	77	0.78	0.79	49.09	48.88	52.68	54.65
38	174	0.86	0.82	54.12	52.09	54.18	54.09
39	26	0.85	0.80	52.73	51.03	53.46	52.94
40	207	0.84	0.81	53.18	52.65	52.65	52.15
41	102	0.87	0.85	54.67	54.42	53.81	53.23
42 43	659 37	0.84 0.85	0.81 0.79	54.07	53.65 52.66	52.49	51.74
43 44	37 164			54.11		52.63	50.61 52.64
		0.86	0.81	54.08	50.98	53.63	
45 46	132 380	0.85 0.84	0.81 0.80	54.11 53.78	52.42 51.61	53.36 52.53	51.93 51.53
40 47	112	0.84	0.80	53.63	52.69	52.55 52.21	49.16
47 48	243	0.82	0.77	53.63 52.96	52.69 50.20	52.21 53.70	49.16 53.05
48 49	245 149	0.85	0.80 0.81	53.18	50.20 51.39	53.09	53.05 52.51
49 50	149	0.85	0.81	53.18 54.84	51.39 55.79	53.09 53.46	52.51 50.40
50 51	1,680	0.88	0.85	54.84 53.77	52.73	53.40 53.38	50.40 52.18
51	482	0.85	0.81	55.77 54.84	53.89	53.04	52.18
53	482 362	0.88	0.82	54.84 53.47	55.89 51.10	53.04 52.82	52.62
54	172	0.84	0.79	54.40	52.96	54.15	53.30
55	56	0.87	0.83	54.74	51.62	53.79	53.89
56	810	0.87	0.82	54.80	55.26	51.72	50.40
50	010	0.04	0.01	54.00	55.20	J1.12	50.40


SF-6D; average observed vs expected by EQ-5D value


SF-6D; average observed vs expected by broad EQ-5D value


PCS; average observed vs expected by EQ-5D value


MCS; average observed vs expected by EQ-5D value

PCS; average observed vs expected by broad EQ-5D value

MCS; average observed vs expected by broad EQ-5D value

SF-6D Groups	SF-6D Range	Ν	Observed	Predicted using SF-6D	Predicted using MCS & PCS
Group 1	0.345 to 0.45	90	0.2889	0.3674	0.1856
Group 2	0.451 to 0.548	459	0.1874	0.1561	0.1148
Group 3	0.551 to 0.65	2,067	0.0672	0.0580	0.0379
Group 4	0.651 to 0.699	2,169	0.0175	0.0297	0.0199
Group 5	0.701 to 0.749	2,626	0.0091	0.0156	0.0130
Group 6	0.751 to 0.797	1,533	0.0157	0.0084	0.0114
Group 7	0.800 to 0.846	1,864	0.0075	0.0057	0.0107
Group 8	0.856 to 0.899	5,115	0.0039	0.0032	0.0094
Group 9	0.922 to 0.922	7,580	0.0011	0.0017	0.0079
Group 10	0.934 to 1	2,030	0.0025	0.0008	0.0066

 Table A3.6:
 Observed and predicted probability of being Off work sick

Table A3.7: Observed and predicted mean number of days off work by ICD categories

ICD categories	Observed	Tobit	Two-part model	Truncated negative binomial	Negative binomial
1	26.9	27.5	26.5	26.6	17.4
2	28.8	28.9	28.8	28.5	16.2
3	10.4	12.8	9.6	9.7	2.7
1	24.8	25.8	24.5	24.4	17.0
5	25.2	26.1	24.9	24.8	17.5
5	24.8	25.6	24.4	24.5	17.7
7	21.7	22.6	21.2	21.4	7.5
8	23.3	24.4	22.9	22.8	12.1
9	17.1	19.2	16.6	16.2	9.4
10	16.8	18.2	16.2	16.3	6.3
11	18.2	19.6	17.5	18.0	7.8
12	12.6	14.3	11.8	12.1	4.3
13	16.6	18.3	15.7	15.5	8.6
14	12.3	13.4	11.6	11.7	3.4
15	12.5	14.8	11.9	12.1	4.7
16	12.7	14.8	17.2	17.5	9.9
17	20.2	19.5 22.0	19.7	17.5	9.9 8.1
17		22.0 20.7		19.7	
	19.8 15.2		19.1		8.2
19	15.2	16.6	14.4	14.8	6.4
20	15.8	17.3	15.0	15.3	6.8
21	23.6	25.0	23.2	23.2	12.6
22	13.9	16.1	13.1	13.7	3.2
23	12.3	13.7	11.2	11.6	3.0
24	20.1	20.9	19.4	19.5	7.7
25	16.8	17.8	15.9	15.9	6.8
26	14.5	16.7	13.6	13.7	6.0
27	23.9	25.3	23.5	23.4	10.7
28	25.2	26.2	24.9	24.8	15.3
29	14.0	15.6	13.1	13.4	4.8
30	6.1	9.9	•	5.4	1.2
31	16.4	17.2	15.6	15.8	7.9
32	17.4	19.3	16.7	16.2	8.5
33	11.2	13.6	10.2	10.5	3.9
34	14.4	15.8	13.5	13.6	5.2
35	21.6	23.1	21.1	21.1	10.5
36	20.9	22.0	20.3	20.3	10.4
37	21.5	22.7	20.9	21.0	11.2
38	19.5	20.7	18.9	19.0	7.9
39	20.2	21.7	19.6	19.7	10.5
40	12.2	14.3	11.3	11.4	4.8
41	14.6	16.6	13.6	13.7	4.2
+1 12	13.9	15.8	13.1	13.7	6.8
13	16.8	13.8	16.1	16.2	7.4
+5 14	22.2	23.8	21.8	21.7	7.4
14 15				16.3	6.3
	16.8 15.4	18.7 17.2	16.2		
16	15.4	17.2	14.7	14.8	6.3
17	19.9	21.4	19.3	19.4	9.7
18	20.2	21.7	19.7	19.7	8.8
19	13.7	15.4	12.8	13.0	5.1
50	8.8	11.4	7.8	8.1	3.7
51	14.5	16.1	13.6	13.9	5.7
52	13.3	14.9	12.4	12.8	4.6
53	20.4	21.6	19.8	20.0	13.8
54	10.6	13.0	9.6	9.9	2.9
55	20.5	21.8	20.0	19.7	8.1
56	11.2	13.3	10.3	10.6	4.4
Healthy	19.8	21.1	19.2	19.3	8.1
Total	17.6	19.2	17.0	17.1	8.2

Table A3.8: Truncated negative binomial model used	d to predict the number of days off work
--	--

Daysoff NO_zero	Coef.	Robust Std. Err.	Z	P>z	[95% Cor Interval]	ıf.
group01	0.225	0.100	2.25	0.025	0.029	0.421
group02	0.303	0.098	3.1	0.002	0.111	0.495
group03	-0.739	0.153	-4.82	0.000	-1.039	-0.438
group04	0.204	0.098	2.08	0.037	0.012	0.396
group05	0.220	0.102	2.15	0.032	0.019	0.420
group06	0.135	0.106	1.28	0.202	-0.072	0.342
group07	0.015	0.129	0.11	0.910	-0.238	0.267
group08	0.128	0.113	1.13	0.257	-0.093	0.348
group09	-0.166	0.131	-1.27	0.205	-0.423	0.091
group10	-0.170	0.103	-1.66	0.097	-0.371	0.031
group11	-0.088	0.142	-0.62	0.534	-0.366	0.190
group12	-0.471	0.144	-3.28	0.001	-0.752	-0.189
group13	-0.190	0.162	-1.17	0.242	-0.508	0.128
group14	-0.476	0.168	-2.83	0.005	-0.805	-0.146
group15	-0.424	0.218	-1.95	0.052	-0.852	0.003
group16	-0.091	0.132	-0.69	0.490	-0.350	0.167
group17	0.012	0.160	0.08	0.938	-0.301	0.325
group18	0.031	0.140	0.22	0.825	-0.243	0.306
group19	-0.278	0.142	-1.96	0.050	-0.556	0.000
group20	-0.261	0.115	-2.27	0.023	-0.486	-0.036
group21	0.216	0.109	1.97	0.049	0.001	0.430
group22	-0.366	0.186	-1.97	0.049	-0.731	-0.002
group23	-0.601	0.144	-4.18	0.000	-0.883	-0.319
group24	-0.032	0.117	-0.27	0.787	-0.261	0.198
group25	-0.210	0.136	-1.54	0.123	-0.476	0.057
group26	-0.336	0.142	-2.36	0.018	-0.615	-0.057
group27	0.093	0.097	0.96	0.335	-0.096	0.282
group28	0.193	0.101	1.91	0.056	-0.005	0.390
group29	-0.402	0.109	-3.68	0.000	-0.615	-0.188
group30	-1.176	0.231	-5.09	0.000	-1.629	-0.723
group31	-0.202	0.139	-1.45	0.146	-0.473	0.070
group32	-0.219	0.161	-1.36	0.174	-0.534	0.096
group33	-0.570	0.133	-4.29	0.000	-0.830	-0.309
group34	-0.338	0.150	-2.25	0.025	-0.633	-0.043
group35	0.080	0.123	0.65	0.515	-0.161	0.322
group36	0.017	0.096	0.17	0.863	-0.172	0.205
group37	0.085	0.097	0.88	0.380	-0.105	0.276
group38	-0.069	0.103	-0.67	0.500	-0.271	0.132
group39	0.021	0.128	0.17	0.868	-0.230	0.273
group40	-0.537	0.121	-4.45	0.000	-0.773	-0.300
group41	-0.396	0.162	-2.45	0.014	-0.713	-0.080
group42	-0.342	0.101	-3.39	0.001	-0.539	-0.144

Daysoff NO_zero	Coef.	Robust Std. Err.	Z	P>z	[95% C	onf. Interval]
group43	-0.140	0.162	-0.87	0.386	-0.457	0.177
group44	0.069	0.107	0.64	0.521	-0.142	0.279
group45	-0.166	0.120	-1.38	0.169	-0.402	0.070
group46	-0.284	0.103	-2.76	0.006	-0.487	-0.082
group47	0.021	0.102	0.2	0.841	-0.180	0.221
group48	-0.029	0.101	-0.29	0.775	-0.226	0.169
group49	-0.429	0.125	-3.44	0.001	-0.674	-0.185
group50	-0.803	0.185	-4.34	0.000	-1.166	-0.441
group51	-0.333	0.097	-3.45	0.001	-0.522	-0.144
group52	-0.404	0.111	-3.65	0.000	-0.621	-0.187
group53	0.056	0.097	0.58	0.562	-0.133	0.245
group54	-0.712	0.141	-5.06	0.000	-0.988	-0.436
group55	0.031	0.123	0.25	0.802	-0.211	0.272
group56	-0.481	0.109	-4.4	0.000	-0.695	-0.267
Age/10	0.082	0.008	10.43	0.000	0.067	0.098
female	-0.044	0.018	-2.49	0.013	-0.079	-0.009
Constant	2.617	0.102	25.61	0.000	2.417	2.818
/Inalpha	-0.269	0.022			-0.312	-0.226
alpha	0.764	0.017			0.732	0.798
Observations	10964					

Table A3.8: Truncated negative binomial model contd

Table A3.9: Comparison of productivity estimates

EQ-5D	Krol*	This work; SF-	This work; PCS
Health state		6D	& MCS
2,3,1,3,3	11%	50%	45%
3,3,1,2,1	17%	77%	61%
2,3,1,2,1	56%	80%	72%
2,1,3,1,1	51%	77%	72%
2,2,1,1,1	81%	86%	83%
1,1,1,1,1	89%	89%	89%

All results are for 40-year old males. The values for this work are for ICD-10 group 1.