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AN ALGEBRAIC MODEL FOR RATIONAL TORUS-EQUIVARIANT
SPECTRA

J. P. C. GREENLEES AND B. SHIPLEY

Abstract. We provide a universal de Rham model for rational G-equivariant cohomology
theories for an arbitrary torus G. More precisely, we show that the representing category, of
rational G-spectra, is Quillen equivalent to an explicit small and calculable algebraic model.
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Part 1. Introduction

1. Overview

1.A. Preamble. Cohomology theories are contravariant homotopy functors on topological
spaces satisfying the Eilenberg-Steenrod axioms (except for the dimension axiom), and any
cohomology theory E∗(·) is represented by a homotopy theoretic spectrum E in the sense
that E∗(X) = [X,E]∗. Accordingly, the category of spectra gives an embodiment of the
category of cohomology theories in which one can do homotopy theory. The complexity of
the homotopy theory of spectra is visible even in the homotopy endomorphisms of the unit
object: this is the ring of stable homotopy groups of spheres, which is so intricate that we
cannot expect a complete analysis of the category of spectra in general. However, most
of the complication comes from Z-torsion so we can simplify things by rationalizing. The
resulting category of rational spectra represents cohomology theories with values in rational
vector spaces. The simplicity of this rationalized category is apparent by Serre’s theorem:
the rationalization of the stable homotopy groups of spheres simply consists of Q in degree 0,
and it is a small step to see that there is nothing more to the topology of rational cohomology
theories than their graded rational vector space of coefficients. On the other hand, de Rham
cohomology shows that a large amount of useful geometry remains even when we rationalize.
Accordingly, the study of rational cohomology theories and rational spectra is both accessible
and useful.

These facts are well-known, and it is natural to ask what happens when we consider spaces
with an action of a compact Lie group G. Once again, a G-equivariant cohomology theory is
a contravariant homotopy functor on G-spaces satisfying suitable conditions, and each such
G-equivariant cohomology theory is represented by a G-spectrum [48]. In the equivariant
case, when we rationalize a G-spectrum, considerably more structure remains than in the
non-equivariant case. It is natural to expect rational representation theory to play a role
in understanding rational equivariant cohomology theories, and when G is finite this is the
only ingredient. However in general, the other significant piece of structure is exemplified
by the Localization Theorem: for a torus G this states that (for finite complexes) there is
no difference between the Borel cohomology of a G-space and its G-fixed points once the
Euler classes are inverted. These ingredients can be used to build the algebraic model [24]
for rational G-spectra described in Section 2 below.

The archetype for giving an algebraic model for the homotopy theory of topological origin is
Quillen’s analysis of simply connected rational spaces [55]. To prove the result, he introduced
the axiomatic framework of model categories which underly the homotopy category, and the
notion of a Quillen equivalence between model categories preserving the homotopy theories.
The use of these ideas is now widespread, and we refer to [41] and [40] for details.

Our main result is a Quillen equivalence between the category of rational G-spectra for
a torus G and an explicit and calculable algebraic model. In the course of our proof, we
introduce a number of techniques of broader interest, in equivariant homotopy theory and
in the theory of model categories. In the rest of the introduction, we give a little history,
and then describe our results, methods and conventions.

1.B. Equivariant cohomology theories. Non-equivariantly, rational stable homotopy the-
ory is very simple: the homotopy category of rational spectra is equivalent to the category
of graded rational vector spaces, and all cohomology theories are ordinary in the sense that
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they are naturally equivalent to ordinary cohomology with coefficients in a graded vector
space. The first author has conjectured [23] that for each compact Lie group G, there is an
abelian category A(G), so that the homotopy category of rational G-spectra is equivalent to
the homotopy category of differential graded objects of A(G):

Ho(G-spectra/Q) ≃ Ho(DG−A(G)).

In general terms, the objects ofA(G) are sheaves of graded modules with additional structure
over the space of closed subgroups of G, with the fibre over H giving information about
the geometric H-fixed points. The conjecture describes various properties of A(G), and in
particular asserts that its injective dimension is equal to the rank of G. According to the
conjecture one may therefore expect to make complete calculations in rational equivariant
stable homotopy theory, and one can classify cohomology theories. Indeed, one can construct
a cohomology theory by writing down a differential graded object in A(G): this is how
SO(2)-equivariant elliptic cohomology was constructed in [26], and it is hoped to construct
cohomology theories associated to generic curves of higher genus in a similar way using the
results of this paper.

The conjecture is elementary for finite groups, where A(G) =
∏

(H) QWG(H)-mod [29],

where the product is over conjugacy classes of subgroups H and WG(H) = NG(H)/H .
This means that any cohomology theory is again ordinary in the sense that it is a sum
over conjugacy classes (H) of ordinary cohomology of the H-fixed points with coefficients
in a graded QWG(H)-module. The conjecture has been proved for the rank 1 groups G =
SO(2), O(2), SO(3) in [21, 20, 22], where A(G) is more complicated. It is natural to go on
to conjecture that the equivalence comes from a Quillen equivalence

G-spectra/Q ≃ DG−A(G),

for suitable model structures. The second author proved that for G = SO(2) the Quillen
equivalence would follow from a triangulated equivalence on the derived categories [61]. It
was claimed in [21] that the equivalence of homotopy categories was in fact a triangulated
equivalence, but the proof is incomplete, and subsequent work of Patchkoria [53] shows that
the method of [21] is insufficient. In any case, there is no prospect of extending the methods
of [21] or [61] to higher rank. Even if one only wants an equivalence of triangulated categories,
it appears essential to establish the Quillen equivalence when r ≥ 2. Building on the present
work, Barnes [2, 3] has shown how to deduce the Quillen equivalence for G = O(2) from a
suitable proof for G = SO(2) (such as the one we use here), and Kedziorek [45] has done so
for G = SO(3).

Recently, Barnes, Kedziorek and the present authors have given a separate account of
a Quillen equivalence for the G = SO(2) [5]. This has the merit of avoiding the massive
complication due to the complexity of the space of connected subgroups for a general torus,
and also gives a stronger conclusion than the specialization of our result here, since the
equivalence is monoidal.

1.C. The classification theorem. The present paper completes the programme begun in
[24, 25] and supported by [33, 34, 35, 28]. The purpose of the series is to provide a small
and calculable algebraic model for rational G-equivariant cohomology theories for a torus
G of rank r ≥ 0. Such cohomology theories are represented by rational G-spectra, and in
this paper we show that the category of rational G-spectra is Quillen equivalent to the small
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and concrete abelian category A(G) introduced in [24] (its definition and properties are
summarized in Section 2). The category A(G) is designed as a natural target of a homology
theory

πA∗ : G-spectra −→ A(G);

the idea is that A(G) is a category of sheaves of modules, with the stalk over a closed
subgroup H being the Borel cohomology of the geometric H-fixed point set with suitable
coefficients. A main theorem of [24] shows that A(G) is of finite injective dimension (shown
in [25] to be r).

The main theorem of the present paper and the culmination of the series is as follows.
Model structures will be described in Sections 3 and 12 below.

Theorem 1.1. For any torus G, there is a Quillen equivalence

G-spectra/Q ≃Q DG−A(G)

of model categories. In particular their homotopy categories are equivalent

Ho(G-spectra/Q) ≃ Ho(DG−A(G))

as triangulated categories.

Remark 1.2. The functors involved in these Quillen equivalences are monoidal, but their
interaction with the model structures is not straightforward. For this reason, the extension
of this result to Quillen equivalences on the associated categories of monoids will be discussed
elsewhere (as done in [5] in the rank 1 case).

Because of the nature of the theorem, it is easy to impose restrictions on the isotropy
groups occurring in topology and algebra, and one may deduce versions of this theorem for
categories of spectra with restricted isotropy groups. For example we recover a special case
of the result of [31], which states that if G is any connected compact Lie group there is a
Quillen equivalence

free-G-spectra/Q ≃Q DG-torsion-H∗(BG)-modules,

with a quite different proof. The methods of the present paper are used to extend the result
on free G-spectra to disconnected groups G in [32].

1.D. Applications. Beyond the obvious structural insight, the type of applications we an-
ticipate may be seen from those already given for the circle group T (i.e., the case r = 1).
For example [21] gives a classification of rational T-equivariant cohomology theories, a pre-
cise formulation and proof of the rational T-equivariant Segal conjecture, and an algebraic
analysis of existing theories, such as K-theory. More significant is the construction in [26] of
a rational equivariant cohomology theory associated to an elliptic curve C over a Q-algebra,
and the identification of a part of T-equivariant stable homotopy theory modelled on the de-
rived category of sheaves over C. The philosophy in which equivariant cohomology theories
correspond to algebraic groups is expounded in [27], and there are encouraging signs suggest-
ing that one may use the model described in the present paper to construct torus-equivariant
cohomology theories associated to generic complex curves of higher genus.
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1.E. Outline of strategy. The proof is made possible by the apparatus of model categories
and the existence of a good symmetric monoidal category of spectra, allowing us to talk about
commutative ring spectra and modules over them. The argument also requires several more
delicate formal properties of the model categories of equivariant spectra and the functors
between them, as laid out in Axiom 3.3.

There are two other particular ingredients. The second author’s results [62] gives Quillen
equivalences between algebras over the Eilenberg-Mac Lane spectrum HQ and differential
graded Q-algebras, and between the module categories of corresponding algebras; this allows
us to pass from topology to algebra. Since we are working over Q, we may retain commu-
tativity of the rings in this transition. Finally, the first author’s [24] defining the algebraic
category A(G) provides an algebraic model and the Adams spectral sequence based on it
gives a means for calculation in the homotopy category.

In outline, what we have to achieve is to move from the category of rational G-spectra to
the category of DG objects of the abelian category A(G). There are five main stages to this,
which we first describe and then illustrate on a chain of Quillen equivalences.

(1) Isotropy separation: (Sections 4 to 7) We replace the category of G-spectra,
which is the category of modules over the sphere spectrum, by a category of diagrams
of modules over commutative equivariant ring spectra. Indeed, the sphere spectrum

is shown to be the pullback of a diagram R̃top of ring G-spectra, so the equivalence

follows by the methods of [35]. The diagram R̃top has the shape of a punctured (r+1)-
cube, which we call the ‘formal’ punctured cube PCf . The module category of each
individual ring spectrum captures isotropical information about subgroups with a
specified dimension and the diagram shows how to reassemble this isotropically local
information into a global spectrum.

(2) Removal of equivariance: (Section 8) At each point in the diagram, we replace
the commutative ring G-spectrum by a commutative non-equivariant ring spectrum
by passage to fixed points, and show that the module categories are equivalent using
the general methods described in [34].

(3) Transition to algebra: (Section 9) At each point in the diagram, we apply the
second author’s machinery [62] to replace all the commutative ring spectra in the
diagram by commutative DGAs, and the category of module spectra by the corre-
sponding category of DG modules over the DGAs.

(4) Rigidity: (Section 10) The diagram of commutative DGAs is intrinsically formal
in the sense that it is determined up to equivalence by its homology. Accordingly
the diagram of commutative DGAs may be replaced by a diagram of commutative
algebras.

(5) Simplification: (Sections 12 and 13) At each stage so far, we have used cellular-
ization to pick out the relevant homotopy category as the localizing subcategory built
from certain specified ‘cells’. The final step is to replace this cellularization of the
category of DG-modules over the diagram of commutative rings by a much smaller
category of modules with special properties, so that no cellularization is necessary;
using apparatus from [28], this category turns out to be A(G).

These steps correspond to the following sequence of Quillen equivalences, several of which
are themselves zig-zags of simple Quillen equivalences. The cellularizations are all with
respect to the set of images of the cells G/H+ as H runs through closed subgroups, and the
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diagrams of rings are all punctured (r + 1)-cubes.

G-spectra
(1)
≃ cell-R̃top-mod-G-spectra

(2)
≃ cell-Rtop-mod-spectra

(3)
≃ cell-Rt-mod

(4)
≃ cell-Ra-mod

(5)
≃ pqce-Ra-mod

(5)
≃ A(G)

It is worth highlighting some of the techniques of more general applicability.
First, we constantly use the Cellularization Principle [33]. The idea is that a Quillen

adjunction induces a Quillen equivalence between cellularized model categories, provided we
cellularize with respect to cells that are small and correspond under the adjunction. The
hypotheses are mild, and it may appear like a tautology, but it has been useful innumerable
times in the present paper and deserves emphasis. It can be directly compared to another
extremely powerful formality, that a natural transformation of cohomology theories that is
an isomorphism on spheres is an equivalence.

Second, we make extensive use of categories of modules over diagrams of rings [35], and
prove that up to Quillen equivalence and cellularization, we can replace a category of modules
over a diagram of rings by the category of modules over its pullback.

Third, the fact that if A is a ring G-spectrum, passage to Lewis-May K-fixed points
establishes a close relationship between the category of A-module G-spectra and the category
of AK-module G/K-spectra [34]. More precisely, we consider a Quillen adjunction

A⊗AK (·) : AK-mod-G/K-spectra
//
A-mod-G-spectra : (·)Koo .

This is especially effective in conjunction with the Cellularization Principle.
Finally, we note that at the centre of the proof is rigidity: any two model categories with

suitable specified homotopy level properities are equivalent. The equivariant sphere ring
spectrum should be viewed as the sheaf of functions on a non-affine variety; we find a cover
by affine varieties which are individually rigid, and the configuration of the cover is also
rigid.

In effect, we have used only one basic rigidity result: any two commutative DGAs which
have the same polynomial cohomology are quasi-isomorphic. This elementary result has far
reaching consequences. Our main use of it here is to patch together local rigidity results
(each based on polynomial rings) to give a global rigidity result. In [31] we applied it to
prove rigidity of Koszul duals. We also need a rigidity result for modules, that by an Adams
spectral sequence argument, the standard cells are determined by their homology [24, 12.1].

1.F. Relationship to other results. We should explain the relationship between the strat-
egy implemented here and that used for free spectra in [31]. Both strategies start with a
category of G-spectra and end with a purely algebraic category, and the connection in both
relies on finding an intermediate category which is visibly rigid in the sense that it is de-
termined by its homotopy category (the archetype of this is the category of modules over a
commutative DGA with polynomial cohomology).

The difference comes in the route taken. Roughly speaking, the strategy in [31] is to move
to non-equivariant spectra as soon as possible, whereas that adopted here is to keep working
in the ambient category of G-spectra for as long as possible.

The advantage of the strategy of [31] is that it is close to commutative algebra, and
should be adaptable to proving uniqueness of other algebraic categories. However, it is
hard to retain control of the monoidal structure, and adapting the method to deal with
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many isotropy groups makes the formal framework very complicated. This was our original
approach to the result for tori.

The present method appears to have several advantages. It uses fewer steps, and the
monoidal structures are visible throughout. Furthermore, it reflects traditional approaches
to the homotopy theory of G-spaces in that it displays the category of G-spectra as built
from categories of spectra with restricted isotropy group using Borel cohomology.

Finally, we should explain that early versions of the present paper (specifically arXiv:1101.2511
v1, v2, v3 posted in 2011) differed from the present one in two important respects. Firstly,
they included in condensed form the parts of [33, 34, 35] that they required; we separated
out those papers partly to improve readability and partly because they appeared to be of
wider interest. During the process of revising this paper to take advantage of the separa-
tion, we found a signficant simplification, and this led to the second main difference. The
method for dealing with the equivalence between the category of G-spectra and a category
of diagrams is much more technically complicated in the early versions because the diagrams
themselves are infinite. In the present version, the manipulations with diagrams are now
largely replaced by an equivalence of G-spectra showing how the sphere spectrum S can be
constructed from isotropically simpler pieces. Having made that change, it was necessary to
refer to the paper [28] for the behaviour of an algebraic torsion functor. The present account
was essentially complete by Summer 2014, but we took the decision to work with a set of
foundations that was not fully documented at the time, so we delayed posting this until we
could refer to [11] for precise details.

1.G. Conventions. Certain conventions are in force throughout the paper. The most im-
portant is that everything is rational: henceforth all spectra and homology theories are
rationalized without comment. For example, the category of rational G-spectra will now
be denoted ‘G-spectra’. Whenever possible we work in the derived category; for example,
most equivalences are verified at this level. We also use the standard conventions that ‘DG’
abbreviates ‘differential graded’ and that ‘subgroup’ means ‘closed subgroup’. We attempt
to let inclusion of subgroups follow the alphabet, so that G ⊇ H ⊇ K ⊇ L.

We focus on homological (lower) degrees, with differentials reducing degrees; for clarity,
cohomological (upper) degrees are called codegrees and may be converted to degrees by
negation in the usual way. Finally, we write H∗(X) for the unreduced cohomology of a space
X with rational coefficients.

We have adopted a number of more specific conventions in our choice of notation, and it
may help the reader to be alerted to them.

• There are several cases where we need to talk about ring G-spectra R̃ and their fixed

points R = (R̃)G. The equivariant form is indicated by a tilde on the non-equivariant
one.
• We need to discuss rings in various categories of spectra, and then modules over them.
Since it often needs to be made explicit, we write, for example, R-module-G-spectra
for the category of R-modules in the category of G-spectra.
• We will not usually make explicit the universe over which our spectra are indexed.
The default is that a category ofG-spectra will be indexed over a completeG-universe,
and we only mention the universe when it needs emphasis.
• The purpose of this paper is to give an algebraic model of a topological phenomenon.
Accordingly, characters arise in various worlds, and it is useful to know they play
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corresponding roles. We sometimes point this out by use of subscripts. For example
Ra (with ‘a’ for ‘algebra’) might be a (conventional, graded) ring, Rtop its counterpart

in spectra, R̃top its counterpart in G-spectra, and Rt its counterpart in DG-algebra
(a large and poorly understood DGA).
• We often have to discuss diagrams of rings and diagrams of modules over them, but
we will usually say that R is a diagram of rings and M is an R-module (leaving the
fact that M is also a diagram to be deduced from the context).

1.H. Organization of the paper. Section 2 recalls the definition of the algebraic model
A(G). Section 3 discusses some fundamental technical issues determining which models of
spectra we use; it considerably simplifies our argument to be able to work in a context in
which certain homotopy commutative ring G-spectra have commutative models. Section 4
illustrates the argument by giving a complete outline in the simple case of the circle.

Section 5 introduces the formalism for discussing modules over diagrams of rings.
In Section 6 we explain that the sphere spectrum is the homotopy pullback of a punctured

(r + 1)-cube of isotropically simpler ring spectra, and in Section 7 we explain that it is the

homotopy pullback of a punctured (r+1)-cube diagram R̃top of ring spectra which are formal
in the sense that they are determined by their homotopy. This punctured cube is PCf , and
all the subsequent diagrams have this shape. The results of [35] then establishes Equivalence
(1), showing that the category of rational G-spectra is equivalent to a category of module

G-spectra over the diagram R̃top of ring G-spectra. This completes the isotropy separation
step of the proof.

Until this point, all arguments and calculations are within the category of G-spectra. The
remaining steps change ambient categories. We not only need to recognize the categories of
modules, but we also need to recognize the cells we use to cellularize them. The fact that
the natural cells G/H+ are characterized by their homology ([24, 12.1]) means that we do
not need to comment further on the cells.

Having shown the category of G-spectra is equivalent to a category of modules over the

diagram R̃top of ring G-spectra, we can move from G-spectra to non-equivariant spectra in
Section 8, using the results of [34] to establish that this category is equivalent to a category

of modules over the diagram Rtop = (R̃top)
G of ring spectra (i.e., Equivalence (2)). In Section

9 we use the results of [62] to establish that the category of Rtop-modules is equivalent to a
category of modules over the diagram Rt of DGAs (i.e., Equivalence (3)). It is then quite
straightforward to establish Equivalence (4), showing in Section 10 that the PCf -diagram
Ra = H∗(Rt) is intrinsically formal, so that the category of modules over Rt and Ra are
equivalent.

In Section 11 we recognize our progress by seeing that A(G) can be viewed as a category
of modules over the diagram Ra of graded rings. Finally Sections 12 and 13 establish Equiv-
alence (5), showing that the cellularization is equivalent to the particular category A(G) of
DG-Ra-modules.

2. The algebraic model

In this section we recall relevant results from [24] which constructs an abelian category
A(G) giving an algebraic reflection of the structure of the category of G-spectra and an
Adams spectral sequence based on it; the present account is very brief and readers may need
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to refer to [24] for details. The structures from that analysis will be relevant to much of
what we do here.

More precisely, this model is based on pairs of connected subgroups and is denoted Ap
c(G)

in the more precise notation of [28], and we introduce it as the most convenient and practical
model. In fact the first output of the topological argument is a model based on flags of
dimensions of subgroups which is denoted Af

d(G) in [28]. This was introduced and shown to
be equivalent to Ap

c(G) in [28]; building on [28], we show in Section 11 how to move directly

from the algebraic model coming from our proof (namely Af
d(G)) to Ap

c(G).

2.A. Definition of the category. First we must construct the category A(G), which is
a category of modules over a diagram of rings. For a category D and a diagram of R :
D −→ Rings of rings, an R-module is given by a D-diagram M such that M(x) is an
R(x)-module for each object x in D, and for every morphism a : x −→ y in D, the map
M(a) : M(x) −→M(y) is a module map over the ring map R(a) : R(x) −→ R(y).

The shape of the diagram for A(G) is given by the partially ordered set ConnSub(G) of
connected subgroups of G. To start with we consider the single graded ring

OF =
∏

F∈F

H∗(BG/F ),

where the product is over the family F of finite subgroups of G. To specify the value of
the ring at a connected subgroup K, we use Euler classes: indeed if V is a representation of
G we may define c(V ) ∈ OF by specifying its components. In the factor corresponding to

the finite subgroup F we take c(V )(F ) := c|V F |(V
F ) ∈ H |V

F |(BG/F ) where c|V F |(V
F ) is the

classical Euler class of V H in ordinary rational cohomology.
The diagram of rings ÕF is defined by the following functor on ConnSub(G)

ÕF(K) = E−1K OF

where EK = {c(V ) | V K = 0} ⊆ OF is the multiplicative set of Euler classes of K-essential
representations. Each of the Euler classes is a finite sum of mutually orthogonal homogeneous
terms, and so this localization is again a graded ring.

Next we consider the category of modules M over the diagram ÕF . Thus the value M(K)
is a module over E−1K OF , and if L ⊆ K, the structure map

M(L) −→M(K)

is a map of modules over the map

E−1L OF −→ E
−1
K OF

of rings. Note this map of rings is a localization since V L = 0 implies V K = 0 so that
EL ⊆ EK . The category A(G) is formed from a subcategory of the category of ÕF -modules
by adding structure. There are two requirements which we briefly indicate here. We make
the necessary extra structure explicit in Section 11. Firstly they must be quasi-coherent, in
that they are determined by their value at the trivial subgroup 1 by the formula

M(K) := E−1K M(1).

The second condition involves the relation between G and its quotients. Choosing a
particular connected subgroup K, we consider the relationship between the group G with
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the collection F of its finite subgroups and the quotient group G/K with the collection F/K
of its finite subgroups. For G we have the ring OF and for G/K we have the ring

OF/K =
∏

K̃∈F/K

H∗(BG/K̃)

where we have identified finite subgroups of G/K with their inverse images in G, i.e., with

subgroups K̃ of G having identity component K. Combining the inflation maps associated
to passing to quotients by K for individual groups, there is an inflation map

OF/K −→ OF .

The second condition is that the object should be extended, in the sense that for each
connected subgroup K there is a specified isomorphism

M(K) ∼= E−1K OF ⊗OF/K
φKM

for some OF/K-module φKM , which is a given part of the structure. These identifications
should be compatible when we have inclusions of connected subgroups. If we choose a
subgroup L and then the modules φKM for K ⊇ L fit together to make an object of
A(G/L).

2.B. Diagrams of quotient pairs. For some purposes it is useful to have an alternative
view of A(G) as introduced in [25] making more of the structure explicit. Here the values
φHM are all displayed in a single diagram indexed by pairs of quotient groups. Pairs of
quotient groups are equivalent to pairs of subgroups, but here we will stick with the indexing
by quotients G/K as in [25] since it is the quotients that enter most directly into the model.
We use the notations Rp

c for the ring and Ap
c(G) for the category as in [28], since this is

descriptive of the fact that we use pairs of connected subgroups.

Definition 2.1. The diagram of quotient pairs of G is the partially ordered set with objects
(G/K)G/L for L ⊆ K ⊆ G, and with two types of morphisms. The horizontal morphisms

hH
K : (G/K)G/L −→ (G/H)G/L for L ⊆ K ⊆ H ⊆ G

and the vertical morphisms

vKL : (G/H)G/K −→ (G/H)G/L for L ⊆ K ⊆ H ⊆ G.

One particular diagram will be of special significance for us.

Definition 2.2. The structure diagram for G is the diagram of rings Rp
c defined by

Rp
c(G/K)G/L := E−1K/LOF/L.

Since V K = 0 implies V H = 0, we see that EH/L ⊇ EK/L, so it is legitimate to take the
horizontal maps to be localizations

hH
K : E−1K/LOF/L −→ E

−1
H/LOF/L.

To define the vertical maps, we begin with the inflation map inf
G/L
G/K : OF/K −→ OF/L,

and then observe that if V is a representation of G/K with V H = 0, it may be regarded
10



as a representation of G/L, and Euler classes correspond in the sense that inf(eG/K(V )) =
eG/L(V ). We therefore obtain a map

vLK : E−1H/KOF/K −→ E
−1
H/LOF/L.

Illustrating this for a group G of rank 2 in the usual way, we obtain

OF/G

��

OF/K //

��

E−1G/KOF/K

��

OF // E−1K OF
// E−1G OF

At the top right, of course OF/G = Q, but clarifies the formalism to use the more complicated
notation.

In discussing modules, we need to refer to the structure maps for rings, so for an Rp
c-module

M , if L ⊆ K ⊆ H ⊆ G, we generically write

αL
K : M(G/H)G/K −→M(G/H)G/L

for the vertical map, and

α̃L
K : E−1H/LOF/L ⊗OF/K

M(G/H)G/K = (vLK)∗M(G/H)G/K −→M(G/H)G/L

for the associated map of OF/L-modules. Similarly, we generically write

βH
K : M(G/K)G/L −→M(G/H)G/L

for the horizontal map, and

β̃H
K : E−1H/LM(G/K)G/L = (hH

K)∗M(G/K)G/L −→M(G/H)G/L

for the associated map of E−1H/LOF/L-modules, which we refer to as the basing map after [21].

Definition 2.3. If M is an Rp
c-module, we say that M is extended if whenever L ⊆ K ⊆ H

the vertical map αL
K is an extension of scalars along vLK : E−1H/KOF/K −→ E

−1
H/LOF/L, which

is to say that

α̃L
K : E−1H/LOF/L ⊗OF/K

M(G/H)G/K

∼=
−→ M(G/H)G/L

is an isomorphism of E−1H/LOF/L-modules.

If M is an Rqp-module, we say that M is quasi-coherent if whenever L ⊆ K ⊆ H the
horizontal map βH

K is an extension of scalars along hH
K : E−1K/LOF/L −→ E

−1
H/LOF/L, which is

to say that

β̃H
K : E−1H/LM(G/K)G/L

∼=
−→M(G/H)G/L

is an isomorphism.
We write qc-Rp

c-mod, e-Rp
c-mod and Ap

c(G) := qce-Rp
c-mod. for the full subcategories of

Rc-modules with the indicated properties.
11



Next observe that the most significant part of the information in an extended object is
displayed in its restriction to the leading diagonal. For example in our rank 2 example they
take the form

M(G/G)G/G

��

M(G/K)G/K
//

��

E−1G/KOF/K ⊗OF/G
M(G/G)G/G

��

M(G/1)G/1
// E−1K OF ⊗OF/K

M(G/K)G/K
// E−1G OF ⊗OF/G

M(G/G)G/G

In effect our description of the category A(G) abbreviates such a diagram by just writing
the final row and taking φKM = M(G/K)G/K :

φ1M // E−1K OF ⊗OF/K
φKM // E−1G OF ⊗OF/G

φGM,

leaving it implicit that the particular decomposition as a tensor product is part of the
structure.

Lemma 2.4. [25, 5.5] The functor

i : A(G) −→ Ap
c(G) = qce-Rp

c-mod

defined by

i(M)(G/K)G/L := E−1K/Lφ
LM.

gives an equivalence

A(G) ≃ Ap
c(G).

�

Henceforth we will identify the two, thinking of A(G) as given by the values of Ap
c(G) on

the objects (G/K)G/K with additional structure given by the horizontal and vertical maps.

2.C. Connection with topology. The connection between G-spectra and A(G) is given
by a homotopy functor

πA∗ : G-spectra −→ A(G)

with the exactness properties of a homology theory. It is rather easy to write down the value
of the functor as a diagram of abelian groups.

Definition 2.5. For a G-spectrum X we define πA∗ (X) on K by

πA∗ (X)(K) = πG
∗ (DEF+ ∧ S∞V (K) ∧X).

Here EF+ is the universal space for the family F of finite subgroups with a disjoint basepoint
added and DEF+ = F (EF+, S

0) is its functional dual (the function G-spectrum of maps
from EF+ to S0). The G-space S∞V (K) is defined by

S∞V (K) = lim
→ V K=0

SV ,

12



when K ⊆ H , so there is a map S∞V (K) −→ S∞V (H) inducing the map πA∗ (X)(K) −→
πA∗ (X)(H). �

The definition of πA∗ (X) shows that quasi-coherence for πA∗ (X) is just a matter of under-
standing Euler classes. The extendedness of πA∗ (X) is a little more subtle, and will play a
significant role later. We take

φKπA∗ (X) = πG/K
∗ (DEF/K+ ∧ ΦK(X)),

where ΦK is the geometric fixed point functor, and the extendedness follows from properties
of the geometric fixed point functor.

To see that πA∗ (X) is a module over O, the key is to understand S0.

Theorem 2.6. [24, 1.5] The image of S0 in A(G) is the structure functor:

ÕF = πA∗ (S
0),

with the canonical structure as an extended module.

Some additional work confirms that πA∗ has the appropriate behaviour.

Corollary 2.7. [24, 1.6] The functor πA∗ takes values in the abelian category A(G).

2.D. The Adams spectral sequence. The homology theory πA∗ may be used as the basis
of an Adams spectral sequence for calculating maps between rational G-spectra. The main
theorem of [24] is as follows.

Theorem 2.8. ([24, 9.1]) For any rational G-spectra X and Y there is a natural Adams
spectral sequence

Ext∗,∗A(G)(π
A
∗ (X), πA∗ (Y ))⇒ [X, Y ]G∗ .

It is a finite spectral sequence concentrated in rows 0 to r (the rank of G) and strongly con-
vergent for all X and Y . �

This was what led us to attempt to prove the main theorem of the present paper, and
many of the methods used to construct the Adams spectral sequence are adapted to the
present work. Nonetheless, it appears that the only way we explicitly use the Adams spectral
sequence is in the fact that cells are characterized by their homology.

Corollary 2.9. [24, 12.1] If X is a G-spectrum with πA∗ (X) ∼= πA∗ (G/H+) then X ≃ G/H+.

The proof proceeds by giving an explicit resolution of πA∗ (G/H+) in A(G), and then
observing that this gives appropriate vanishing at the E2-page so as to ensure an isomorphism
πA∗ (X) ∼= πA∗ (G/H+) lifts to a homotopy class of maps G/H+ −→ X . Since πA∗ detects weak
equivalences, this suffices. Evidently, this argument applies in any model category with a
similar Adams spectral sequence.

In the present paper, we often need to know how our chosen cells behave under functors
between model categories. We will apply the corollary repeatedly to see that each cell maps
to the obvious object up to equivalence.

13



3. Cochain ring spectra

The purpose of this section is twofold. First we explain our choice of coefficients in cochains
at a homotopical level in Subsections 3.A and 3.B. In Subsections 3.C and 3.D we turn to the
question of which model category of spectra we use. In fact our argument is not particularly
sensitive to the choice, but it is essential to be clear about commutative rings.

3.A. The sphere spectrum. Just as abelian groups are Z-modules, giving Z a special
role, so too spectra are modules over the sphere spectrum S. Although S is the suspension
spectrum of S0, we will generally use the special notation S to emphasize its special role.
Since we are working rationally, S will denote the rational sphere spectrum.

3.B. Choice of coefficients. Central to our formalism is that we consider ‘rings of func-
tions’ on certain spaces, and then consider modules over these. In effect we take a suitable
model for cochains on the space with coefficients in a ring. The purpose of the present sub-
section is to describe the options, and explain why we end up simply using the functional
dual DX = F (X, S) rather than one of the natural alternatives.

If X is a G-space and k is a ring G-spectrum then we may write

C∗(X ; k) := DkX+ := FS(X+, k)

for the G-spectrum of functions from X to k. The first notation comes from the special
case of an Eilenberg-Mac Lane spectrum, which gives a model for cohomology. The second
notation comes from the special case k = S of the functional dual. This spectrum has a ring
structure using the multiplication on k and the diagonal map of X . If k is a commutative
ring spectrum then so is C∗(X ; k).

There are a number of related ring spectra of this form associated to different choices of
k and we briefly discuss their properties before explaining which is most relevant to us.

First, we could take k to be the rational sphere G-spectrum S, alternatively, we could take
it to be one of two Eilenberg-Mac Lane G-spectra associated to Green functors. The first
Green functor is the Burnside functor A, whose value on G/H is the Burnside ring of H ,
and the second Green functor is the constant functor Q.

To start with we observe that there are maps

S −→ HA −→ HQ

of commutative ring G-spectra where the first map kills higher homotopy groups and the
second kills the augmentation ideal. This induces maps

DSX+ −→ DHAX+ −→ DHQX+.

These are very far from being equivalences in general. For the second map that is clear since
A(G/H) 6= Q if H is a non-trivial finite subgroup. For the first, it is clear from the fact that
S has non-trivial higher homotopy (even rationally) when G is not finite.

Lemma 3.1. (i) If X is free, the above maps induce equivalences

DSX+ ≃ DHAX+ ≃ DHQX+.

(ii) If X has only finite isotropy, then the first map is an equivalence

DSX+ ≃ DHAX+.
14



Proof: For Part (i) we note that S, HA and HQ all have non-equivariant homotopy Q in
degree 0.

For Part (ii), S is (rationally) an Eilenberg-Mac Lane spectrum for any finite group of
equivariance. �

The functor DHQ has the convenient property that

(DHQY )G = DHQ(Y/G)

for any based space Y . On the other hand, this lets us calculate values which show the
functor is not the one we want to use (specifically, the homotopical analysis of [24] makes
clear that the homotopy groups of the cochains on EF+ should be those of DSEF+). Since
we will in fact only apply the duality functor to spaces with finite isotropy, we could equally
well apply the functor DHA.

3.C. Some commutative ring spectra. Our arguments use ideas from commutative al-
gebra, so we want to work in a context where certain G-spectra R behave like commutative
rings. What we need is a symmetric monoidal category of R-modules with a well behaved
homotopy category, and which behaves well under various change of groups constructions.
It is conceptually simplest if we work in a category of G-spectra where the relevant rings R
actually are commutative monoids, and we will describe such a context in Subsection 3.D.
For now we introduce the G-spectra R in question.

The starting point is the function spectrum DEF+. This is a commutative ring since
it consists of maps from a G-space of the form X+ (which has a strictly cocommutative
diagonal) into a commutative ring spectrum. We then wish to consider the spectra DEF+∧
S∞V (H) for subgroups H , where

S∞V (H) =
⋃

V H=0

SV .

These can be obtained as a smash product as written, or as the Bousfield localization of
DEF+ with respect to S∞V (H). The importance of S∞V (H) is firstly that it has geometric
isotropy conisting of precisely the subgroups containing H , and secondly it is built from
spheres.

However S∞V (H) also has excellent multiplicative properties. It is clear that it is a commu-
tative ring up to homotopy. Moreover, for the reasons pointed out by McClure [50] for the
Tate spectrum, S∞V (H) admits an action of the linear isometries operad based on a G-fixed
universe. One may be rather explicit about this action, or alternatively one may apply [37] to
see that Bousfield localization preserves the existence of an action by a non-equivariant E∞
operad. This will serve our purposes because we can do the two things that are required.
Firstly, passage to H-fixed points gives a G/H-spectrum which is also an algebra over a
non-equivariant E∞ operad. Secondly, there is an operadic smash product on the category
of G-spectra based on this operad, making the category a symmetric monoidal model cate-
gory, and so that algebras over the operad correspond precisely to commutative monoids in
this monoidal model category. We can thus form a symmetric monoidal model category of
modules over a naively commutative ring spectrum.
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Remark 3.2. McClure also points out that spectra like this do not admit an action of
the equivariant linear isometries operad on a complete universe. The analogous state-
ment for finite groups of equivariance, is clear, as pointed out by Hill and Hopkins [37]:
a non-equivariantly contractible ring spectrum with multiplicative norms is equivariantly
contractible (the norm from 1 to G takes the non-equivariant unit to the equivariant unit).

3.D. Requirements for categories of equivariant spectra. We lay out in this section
what we require of the category of spectra we work in. We then observe in Subsection 3.E
that the category constructed by Blumberg-Hill in [11] satisfies all of these requirements.
We have adopted the axiomatic approach because the Blumberg-Hill categories have not yet
been proved to have all of the properties we would need for certain monoidal extensions of
our results, and partly because we believe that the properties we require may eventually be
proved for other categories as well.

The properties we require of our category of G-spectra are as follows. The point is that we
want a symmetric monoidal model category in which the commutative monoids (a) include
the examples we need (as laid out in Subsection 3.C) and (b) have a symmetric monoidal
category of modules.

Axiom 3.3. The category of G-spectra has the following properties.

(1) It is a weakly symmetric monoidal proper G-topological model category with weak
equivalences detected by a functor U to orthogonal spectra GSpO.

(2) The functor U induces an equivalence of homotopy categories.
(3) The smash product is the usual one in the homotopy category, and in the non-

equivariant setting is monoidally equivalent to the usual smash product of orthogonal
spectra.

(4) The monoids in the category are non-Σ algebras over the linear isometries operad L
(5) The commutative monoids in the category are algebras over the linear isometries

operad L for a G-fixed universe V.
(6) The rational sphere spectrum S is a commutative monoid.
(7) Commutative monoids are cotensored over unbased spaces.
(8) All localizations preserve commutative monoids over the linear isometries operad for

a G-fixed universe V.

The equivariant categories for G and its quotients are related as follows.

(9) If L ⊆ K then inflation from G/L-spectra to G/K-spectra takes commutative rings
to commutative rings.

(10) The H-fixed point functor is lax symmetric monoidal and hence preserves commuta-
tive monoids.

(11) There is a zig-zag of Quillen equivalences between commutative monoids in 1-spectra
and in symmetric spectra. Denote the derived functor of commutative monoids from
1-spectra to symmetric spectra by F.

(12) For a commutative monoid A in 1-spectra, there is a Quillen equivalence between the
categories of A-modules over 1-spectra and FA-modules over symmetric spectra.

3.E. The category of orthogonal L-spectra. The category is constructed by following
the approach of Elmendorf-Kriz-Mandell-May [16] applied to orthogonal G-spectra. Details
are given in Blumberg-Hill [11]; their main concern is to understand the homotopy theory of
different types of norm and different degrees of commutativity. Since we are only concerned
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with the simplest type of commutativity and not with norms at all, we only need the more
formal parts of their argument. In particular, although their paper is written for finite
groups, the relevant part of it applies to all compact Lie groups. We will comment on this in
more detail below when we have sketched the construction. We are very grateful to Blumberg
and Hill for discussions about their category, and for explicitly including statements from
which the properties we require are apparent. We would also like to thank Blumberg for
suggestions which led to the current approaches to Axiom 3.3 (11) and (12).

The construction starts with the categoryGSpO of orthogonalG-spectra based (additively)
on a complete orthogonal G-universe as usual. For the multiplicative properties, we now
choose a G-fixed universe V (i.e., infinite dimensional but with trivial G-action) with a view
to constructing an operadic smash product based on the V-linear isometries operad.

More precisely, we let L denote the non-equivariant linear isometries operad defined by

L(n) = Isom(Vn,V).

There is an associated monad L given by smashing with L(1)+ and we consider the category
GSpO[L] of L-algebras in orthogonal G-spectra. Applying L is left adjoint to the forgetful
functor relating orthogonal G-spectra to those with an L action. Since L(1) is contractible,
the functors relate objects with the same underlying homotopy type. Precisely as in [16],
the category of L-spectra has a symmetric monoidal smash product ∧L and we restrict to
those which are unital in the sense that the unit map S ∧L X −→ X is an isomorphism.
This category of unital L-orthogonal G-spectra, denoted GSU in [11], is analagous to the
category referred to as S-modules in [16], and is a monoidal model category satisfying the
monoid axiom.

Proposition 3.4. The category of orthogonal equivariant L-spectra, GSU , satisfies Axiom
3.3 (1) through (12).

Proof: Axiom 3.3 (1) is [11, 4.2, 4.8].
Axiom 3.3 (2) is [11, 4.3, 4.10].
Axiom 3.3 (3) is [11, 4.3, 4.11].
Axioms 3.3 (4) and (5) are [11, 3.16].
Axiom 3.3 (6) follows [38, 6.4] and the fact that the sphere spectrum is a commutative

monoid.
Axiom 3.3 (7) is [11, 3.17].
Axiom 3.3 (8) is [38, 6.4].
Axiom 3.3 (9) and (10) are [11, 3.24].
For Axiom 3.3 (11): First, [11, 3.16], referring to [16, II.4.6], shows that commutative

monoids in non-equivariant L-spectra are isomorphic to the category of E∞-algebras in
orthogonal spectra. Then [52, 0.14] shows that E∞-algebras in orthogonal spectra and in
symmetric spectra are Quillen equivalent and both are Quillen equivalent to the respective
categories of commutative monoids.

For Axiom 3.3 (12): The category of modules over a commutative monoid A in non-
equivariant L-spectra is isomorphic to the category of operadic modules over the associated
E∞ orthogonal spectrum UA from [11, 3.16]. As above, this follows by an analogue of
the argument in [16, II.5.1]. See also [17] for a careful definition of operadic modules via
multicategories.
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Next we use the monoidal Quillen equivalence between orthogonal spectra and symmetric
spectra from [52, 0.4] to show that the category of operadic modules over an E∞-algebra
in orthogonal spectra is Quillen equivalent to the category of operadic modules over an as-
sociated E∞-algebra in symmetric spectra by [8, 2.14]. Finally, [17, 1.4] shows that this
category of modules over an E∞-algebra is Quillen equivalent to the category of modules
over a commutative monoid in symmetric spectra. The commutative monoid here may differ
from the image of F, but the two will be weakly equivalent. The statement then follows
by [43, 5.4.5]. �

Remark 3.5. As mentioned above, the paper [11] is written for finite groups. We explain
here that the same proofs show that results we need are true for all compact Lie groups.

First of all, we only need the results when the multiplicative universe is trivial and therefore
fixed by G. This is much simpler than the general case, since at many points G-equivariance
becomes entirely separate from the L-structures. With this in mind, the first three sections of
[11] are purely categorical, and apply directly to compact Lie groups. Section 4 considers the
homotopy theory and the relevant part consists of Subsections 4.1 and 4.2, with Theorems
4.12 and 4.14 being most delicate. Working through it systematically, one sees that the
results we require (as listed in the above proof), involve quoting [51] (which is explicitly
written for compact Lie groups) and especially [39, Appendix B] (there are also alternative
references to [16] (which states that it applies to compact Lie groups)). The main concern
of [39, Appendix B] is again the multiplicative norm for finite groups, so [39] also restricts
attention to finite groups, so that once again we need to check that the relevant facts apply
to compact Lie groups. The first main ingredient is the fact that cofibrant objects admit a
filtration with well behaved subquotients. There are two aspects to this. One relates to G-
equivariance; the relevant subquotients are wedges of induced spectra, so that the equivariant
properties required follow from a change of groups to reduce directly to nonequivariant facts.
The second and more subtle condition is the key one. It relates to the commuting actions of
G and the symmetric group acting on a smash power, essentially saying that the L-structures
ensure enough freeness. Specifically, the results are [39, B.117, B.130]; the core of the proof
of B.117 already uses equivariance for compact Lie groups (because of the role of orthogonal
groups in orthogonal spectra), and the proof applies equally well when G is an arbitrary
compact Lie group.

4. The circle group

Our overall strategy is to assemble a model for all G-spectra from models for G-spectra
with geometric isotropy K as K ranges over all closed subgroups. In fact we will collect
together information from all the isotropy groups with the same identity component, so the
pieces to be assembled are indexed by the connected subgroups of G. This is especially
simple when G is the circle because there are only two connected subgroups 1 and G. In
this section we sketch the argument in this case, since it lets us introduce the techniques in
a simple context. Full details will be given when we turn to the general case.
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4.A. Formal context. Suppose given a commutative square of rings

R
α //

β
��

Rl

γ
��

Rc

δ
// Rt.

To start with these can be genuine rings, but later we will want to consider squares of DGAs,
ring spectra or ring G-spectra.

Delete R and consider the diagram

Ry =




Rl

g
��

Rc

d
// Rt




with three objects. We may form the category Ry-mod of diagrams

M l

g
��

M c

d
// M t

where M l is an Rl-module, M c is an Rc-module, M t is an Rt-module and the maps g and d
are module maps over the corresponding maps of rings.

Since Ry is a diagram of R-algebras, termwise tensor product gives a functor

Ry⊗R : R-mod −→ Ry-mod.

Similarly, since R maps to the pullback PRy, pullback gives a functor

P : Ry-mod −→ R-mod.

It is easily verified that these give an adjoint pair

Ry⊗R : R-mod
//
Ry-mod : Poo .

We may then consider the unit

η : M −→ P (Ry ⊗R M),

and the first condition for it to be a natural isomorphism is that it should be so when M = R,
which is to say the original diagram of rings is a pullback. It is quite easy to identify sufficient
conditions for η to be an isomorphism in general. First we require that the diagram is a
pushout of modules, so that there is a long exact Tor sequence, and second that Rt is a flat
R-module so that the sequence is actually short.

On the other hand, we cannot expect the counit of the adjunction to be an equivalence
since we can add any module to M t without changing PMy. Accordingly, we need to find a
way to focus attention on diagrams arising from actual R-modules.
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4.B. Model structures. We now suppose that the commutative diagram given above is a
diagram of DGAs and use R-mod to denote the category of DG R-modules. We give it the
algebraically projective model structure, with quasi-isomorphisms as weak equivalences and
fibrations the surjections. The cofibrations are retracts of relative cell complexes, where the
spheres are shifted copies of R. The diagram category Ry-mod gets the diagram-injective
model structure in which cofibrations and weak equivalences are maps which have this prop-
erty objectwise; the fibrant objects have γ and δ surjective. This diagram-injective model
structure is shown to exist over ring spectra in [35, Theorem 3.1], and the same proof works
for DGAs.

Since extension of scalars is a left Quillen functor for the algebraically projective model
structure for any map of DGAs, Ry ⊗R − preserves objectwise cofibrations and weak equiv-
alences and is therefore also a left Quillen functor to the diagram-injective model structure.
We then apply the Cellularization Principle [33] to obtain the following result.

Proposition 4.1. Assume given a commutative square of surjections (fibrations) of DGAs
which is a pullback square. The adjunction induces a Quillen equivalence

R-mod
≃
−→ cell-Ry-mod,

where cellularization is with respect to the image, Ry, of the generating R-module R.

Proof: We apply the Cellularization Principle [33], which states that if we cellularize the
model categories with respect to corresponding sets of small objects for which unit and counit
are equivalences, we obtain a Quillen equivalence.

In the present case, we cellularize with respect to the single R-module R on the left, and
the corresponding diagram Ry on the right. It is clear that R is a small R-module, and it
is not hard to show that Ry is a small Ry-module. Since the original diagram of rings is
a pullback of a fibrant diagram (both as rings and as modules), the unit of the adjunction
is an equivalence for R, and we see that the generator R and the generator Ry correspond
under the equivalence, as required in the hypothesis in Part (2) of [33, Theorem 2.7 ].

Since R is cofibrant and generates R-mod, cellularization with respect to R has no effect
on R-mod and we obtain the stated equivalence with the cellularization of Ry-mod with
respect to the diagram coming from R. �

4.C. Rational G-spectra. We can now outline the proof of our general theorem in the
special case of the circle group G = T . Indeed, the diagram analogous to the starting
diagram of rings is

S //

��

ẼF

��

DEF+
// DEF+ ∧ ẼF .

The square of G-spectra is a homotopy pullback square because the map between the
fibres of the two horizontals is S0 ∧ EF+ −→ DEF+ ∧ EF+, which is an equivalence since
EF+ −→ S0 is an F -equivalence. We may replace this diagram by a suitably fibrant diagram
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and we write R̃y

top for the resulting diagram

ẼF

��

DEF+
// DEF+ ∧ ẼF .

An R̃y

top-module is a diagram

M l

��
M c // M t.

where M l is an ẼF -module, M c is a DEF+-module, M t is a DEF+ ∧ ẼF -module, and
M c −→M t and M l −→ M t are maps over the corresponding rings.

The existence of a diagram-injective type model structure on this category of modules is
established in [35, Theorem 3.1]. The discussion proceeds exactly as in the algebraic case,
but when we cellularize we must use a generating set, so we use the cells T/H+ as H runs
through all closed subgroups of T .

Proposition 4.2. The adjunction induces a Quillen equivalence

T -spectra
≃
−→ cell-R̃y

top-mod-G-spectra.

Proof: The proof precisely follows the algebraic case (Proposition 4.1). To see that the unit
is an equivalence for all cells G/H+ (and not just for S0 = G/G+), we observe that smashing
with G/H+ preserves homotopy pullback squares. �

This sets the scene for the rest of the argument, which we sketch only very briefly here. It
proceeds by observing that the categories of ẼF -modules, DEF+-modules and DEF+∧ẼF -
modules are each easy to understand; in fact they are formal in the sense that they are
equivalent to the category of modules over their homotopy rings. This formality is also true

of the diagram as a whole, so that the category of modules over R̃y

top-modules in G-spectra is

equivalent to the category of πG
∗ (R̃

y

top)-modules in Q-modules. It then remains to show that

A(G) gives an economical model of the cellularization of the category of πG
∗ (R̃

y

top)-modules.

Part 2. Formality of the sphere spectrum

5. Diagrams of rings and modules

Throughout this paper we consider categories of modules over diagrams of rings in two
contexts: differential graded modules over DGAs and module spectra over ring spectra. In
this section we describe the context and the basic Quillen equivalences arising from a pullback
diagram of rings. These and related results are discussed more fully and proved in [35].
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5.A. The archetype. Given a diagram shape D, consider a diagram of rings R : D −→ C

in a symmetric monoidal category C. Each map R(a) : R(s) −→ R(t) gives rise to an
extension of scalars functor

R(s)-mod
a∗−→ R(t)-mod

defined by a∗(X) = R(t)⊗R(s) X , with right adjoint the restriction of scalars functor

R(s)-mod
a∗
←− R(t)-mod.

Now consider a category of R-modules; the objects are diagrams X : D −→ C for which
X(s) is an R(s)-module for each object s, and for every morphism a : s −→ t in D, the
map X(a) : X(s) −→ X(t) is a module map over the ring map R(a) : R(s) −→ R(t).
More precisely, there is a map X(s) −→ a∗X(t) of R(s)-modules (the restriction form) or,
equivalently, there is a map

R(t)⊗R(s) X(s) = a∗X(s) −→ X(t)

of modules over the ring R(t) (the extension of scalars form). Although restriction of scalars
seems very simple, we view the left adjoint a∗ as the primary one, following the convention
that the left Quillen functor dicates the direction of a Quillen pair.

5.B. Model structures. We say that M is a diagram of model categories if each category
M(s) has a model structure, the functors a∗ all have right adjoints and the adjoint pair
a∗ ⊣ a∗ of functors relating the model categories form a Quillen pair.

For instance, the motivating example of a diagram of ring spectra (or DGAs) gives a
diagram of model categories if we use the projective model structure on the category M(s)
of R(s)-modules.

When M is a diagram of model categories, there are two ways to attempt to put a model
structure on the category ofM-diagrams {X(s)}s∈D. The diagram-projectivemodel structure
(if it exists) has its fibrations and weak equivalences defined objectwise. The diagram-
injective model structure (if it exists) has its cofibrations and weak equivalences defined
objectwise. It must be checked in each particular case whether or not these specifications
determine a model structure. When both model structures exist, it is clear that the identity
functors define a Quillen equivalence between them.

We will apply [35, Theorem 3.1] to show that the diagram-projective and diagram-injective
model structures exist in the cases of interest to us.

5.C. Pullback diagrams of rings. The basic input from the diagrams of model categories
from [35] is as follows.

Proposition 5.1. [35, Proposition 4.1] For D a finite, inverse category with at most one
morphism in each D(s, t) and R a D-diagram of ring spectra with homotopy inverse limit
R, there is a zig-zag of Quillen equivalences between the category of R-modules and the
cellularization with respect to R of R-modules (with the diagram-injective model structure):

R-mod ≃Q R-cell-R-mod

We will be applying this when D is a punctured cube, and R = S is the sphere spectrum.
Indeed the category of G-spectra is equivalent to the category of module-G-spectra over the
sphere spectrum S. By Proposition 5.1, this is in turn equivalent to the cellularization of a
category of modules over a diagram of ring G-spectra. The rest of the work will be based on
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diagrams of this punctured cube shape. The argument proceeds by replacing the diagram
of ring G-spectra successively by diagrams of nonequivariant ring spectra, DGAs and finally
graded commutative rings.

Our next task is the core of the paper. We show that the sphere is the pullback of a
diagram of spectra which are both isotropically simpler and very rigid.

6. The sphere as an isotropic pullback

Our analysis is based on expressing the sphere spectrum as the homotopy pullback of an
(r+1)-cube of ring G-spectra as we described for the circle in Subsection 4.C. More precisely,

we will construct a diagram R̃top : C −→ Ring-G-spectra where the cube C is the poset of
subsets of {0, . . . , r}, where S is the value on the initial vertex (the empty set) and so that

this is equivalent to the homotopy pullback of the restriction of R̃top to the punctured cube
PC of non-empty subsets.

6.A. Strategy. In the course of the proof, we will need to consider an extension of R̃top

to a bigger diagram, and we introduce this extended diagram as we go along. The cube C
above will appear as C = Cf in due course. The letter f stands for ‘formal’ though the word
‘affine’ or the word ‘rigid’ would be sensible alternatives. Corollary 7.2 will show that the

sphere spectrum is the homotopy pullback of R̃top restricted to the punctured cube PCf ,
so that the results of [35] (as quoted in Proposition 5.1) show that the category of modules
over the sphere spectrum is equivalent to the cellularization of the category of modules over
the PCf -diagram of ring G-spectra. The reason this is useful is that the ring G-spectra A
at the vertices of the punctured cube PCf have two very special rigidity properties. Firstly,
passage to G-fixed points as in [34] gives an equivalence between categories of A-module-G-
spectra and categories of AG-module-spectra. This means we can reduce from considering

R̃top-modules in G-spectra to considering modules over the PCf -diagram Rtop = (R̃top)
G

of non-equivariant ring spectra. We can then use the second author’s results to move to
considering modules over a PCf -diagram Rt of DGAs. The second feature of the spectra
A is that πG

∗ (A) = π∗(A
G) is intrinsically formal in that any commutative DGA with this

homology is equivalent to πG
∗ (A) with zero differential. As shown in Section 10, the proof

of this is compatible with the PCf -diagram, so we are reduced to considering DG-modules
over a PCf -diagram Ra of graded rings. We may then show the cellularized category of
Ra-modules is equivalent to the category A(G) of [24].

Our first task (Sections 6 and 7) is to describe the (r + 1)-cube Cf of ring spectra with
the sphere spectrum at the initial vertex and to show it is a homotopy pullback. We will do
this in steps: we identify Cf inside a larger diagram Cif containing a second cube Ci, giving
inclusions of diagrams

Ci ⊆ Cif ⊇ Cf ,

and we will prove equivalences

S0 1
≃ holim

← v∈PCi

R̃top(v)
2
≃ holim

← v∈PCif

R̃top(v)
3
≃ holim

← v∈PCf

R̃top(v).

Of these, Equivalence 2 is elementary, since PCi is cofinal in PCif . Equivalence 1 (Propo-
sition 6.6) is the essential one, since in fact Equivalence 3 (Proposition 7.1 ) is essentially
given by using Equivalence 1 for quotient groups of lower rank.
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For this reason we will begin with the cube Ci of ring spectra constructed purely on
isotropical principles, and Equivalence 1. Since the ring G-spectra at the vertices of the
punctured cube PCi do not have the rigidity properties we need, we will then take the
further step of reducing to the diagram on the punctured cube PCf .

For the rest of Sections 6 and 7 we simpify notation and write R̃ = R̃top.

6.B. The isotropic cube. We consider the coordinates (a0, a1, . . . , ar) where each coordi-
nate ai can take the value 0 or 1. For 0 ≤ c ≤ r − 1 the cth coordinate refers to subgroups
of codimension c. The rth coordinate also refers to codimension r (i.e., to finite subgroups),
but these must be treated differently, and in effect it refers to whether or not the ring is
complete (roughly speaking, whether it is S0 or DEF+).

To a first approximation, the idea is that the cube is obtained by smashing together r+1
maps of rings, with S0 = Ai(0) −→ Ai(1) in the ith position, so that R̃(a0, . . . , ar) =∧r

i=0Ai(ai). However we need to refine this, so as to assemble information from individual
subgroups, and reflect containments of subgroups.

The simplest coordinates are the 0th and rth, where we have A0(1) = S∞V (G) and Ar(1) =
DEF+. In the rank 1 case, this is everything, so we obtain the usual diagram

S0 ∧ S0 //

��

S0 ∧ S∞V (G)

��

DEF+ ∧ S0 // DEF+ ∧ S∞V (G).

Supposing r ≥ 2 we now move on to the other coordinates. For 1 ≤ i ≤ r − 1, for each
connected subgroup H , we take

AK(1) = S∞V (K),

and then

Ai(1,⊂ H) =
∏

codim(K)=i,K⊂H

AK(1) =
∏

codim(H)=i,K⊂H

S∞V (K).

The formula for codimensions 0 and r fits the same pattern, although there is only one term in
the product and containment imposes no restrictions. To make the formulae typographically
manageable we need to introduce some more notation. Indeed, in the ith spot we need to
have index sets I(i, 0) and I(i, 1) for certain products. The index set I(i, 0) is a singleton
and

(6.1) I(i, 1) = {H | H is connected and codim(H) = i}.

Now we can define the ring spectrum to be placed at the (ar, . . . , a0) vertex.

R̃(a0, . . . , ar) = A0(a0) ∧
∏

H1∈I(1,a1)

[
AH1(a1) ∧

∏

H2∈I(2,a2),H2⊂H<2

[
AH2(a2) ∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
AHr−1(ar−1) ∧ Ar(ar)

]
· · ·

]]

Remark 6.1. (a) To help parse this, note that in the sth term we have S0 if as = 0 and
otherwise it is the product of copies of S∞V (H) as H runs through codimension s subgroups
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contained in the earlier subgroups (the notation Hs ⊂ H<s allows for the fact that only
terms with at = 1 correspond to actual subgroups).

(b) The convention is that the products include everything to the right of them so the
ordering of the vertices is important. From now on, we will often omit parentheses, relying
on this convention.

(c) This notation shows all structure maps clearly, but the formula is easier to digest if
we pick out just those indices with ai 6= 0, say ic0 < ic1 < . . . < ics. In this case if cs < r we
have

R̃(a0, . . . , ar) =
∏

codimH0=c0

[
S∞V (H0) ∧

∏

codimH1=c1,H1⊂H0

[
S∞V (H1)∧

∏

codimH2=c2,H2⊂H1

[
S∞V (H2) ∧ · · · ∧

∏

codimHs=cs,Hs⊂Hs−1

[
S∞V (Hs)

]
· · ·

]]]

and if cs = r we have

R̃(a0, . . . , ar) =
∏

codimH0=c0

[
S∞V (H0) ∧

∏

codimH1=c1,H1⊂H0

[
S∞V (H1)∧

∏

codimH2=c2,H2⊂H1

[
S∞V (H2) ∧ · · · ∧

∏

codimHs−1=cs−1,Hs⊂Hs−2

[
S∞V (Hs−1) ∧DEF+

]
· · ·

]]]

The notation somewhat obscures the simplicity of this construction. Thus in rank 2, we
have

R(a0, 0, a2) = A0(a0) ∧ S0 ∧A2(a2)

and

R(a0, 1, a2) = A0(a0) ∧
∏

dim(H)=1

[
AH(1) ∧ A2(a2)

]
.

It is worth writing the diagram completely in this case. The layout is

(010) //

��

(110)

��

(000) //

��

;;✇✇✇✇✇✇✇✇✇
(100)

��

;;✇✇✇✇✇✇✇✇✇

(011) // (111)

(001) //

;;✇✇✇✇✇✇✇✇✇
(101)

;;✇✇✇✇✇✇✇✇✇
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and the diagram of ring spectra is as follows:
∏

H S∞V (H) //

��

S∞V (G) ∧
∏

H S∞V (H)

��

S0 //

��

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
S∞V (G)

��

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

∏
H S∞V (H) ∧DEF+

// S∞V (G) ∧
∏

H S∞V (H) ∧DEF+

DEF+
//

66♠♠♠♠♠♠♠♠♠♠♠♠♠
S∞V (G) ∧DEF+

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

One r dimensional face will play a preferred role in our proof that this cube is a homotopy
pullback, so we give a special name to the a0 = 0 face (the left hand face in the above
illustration). The r-cube diagram R′ is defined by

R′(a1, . . . , ar) = R(0, a1, . . . , ar).

We note that
R = (S0 −→ S∞V (G)) ∧ R′.

This notation will be even more convenient when we refine the filtration S0 −→ S∞V (G).

6.C. Observations about isotropy. It is natural to consider a filtration of all subgroups
by dimension, so we let

F≤i = {H | dim(H) ≤ i} and C≥i = {H | dim(H) ≥ i}

The first is a family and the second is a cofamily. We also need to consider the subgroups
above and below a fixed group K:

Λ(K) = {H | H ⊆ K} and V (K) = {H | K ⊆ H}.

Again, the first is a family and the second is a cofamily.
The point is that the category of spectra with geometric isotropy in the cofamiliy V (K) of

subgroups (the spectra “over K”) is equivalent to the category of G/K-spectra. To obtain
good inductive arguments we want to express the naturally occurring sets of isotropy in
terms of those of the form V (K).

We are burdened with a standard notation in which the geometric isotropy is given by

GI(ẼF) = All \ F , so we adopt the convention that for any cofamily C

XC := X ∧ Ẽ(All \ C),

so that
GI(XC) = GI(X) ∩ C

and in particular

SC = Ẽ(All \ C), giving GI(SC) = C.

This notation extends naturally to families, and indeed to any collection of subgroups which
can be expressed as an intersection between a family and a cofamily.

We abbreviate further, taking
S≥i = SC≥i
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and consider the filtration

S = S≥0 −→ S≥1 −→ S≥2 −→ · · · −→ S≥r = S∞V (G).

More precisely we realise this filtration in the category of commutative ring spectra by a
process of localization; this is possible by Axiom 3.3 (8)

Lemma 6.2. For any map f : X −→ Y which is an F≤i-equivalence, there is a homotopy
pullback square

S≥i ∧X //

��

S≥i+1 ∧X

��
S≥i ∧ Y // S≥i+1 ∧ Y.

Proof: The space S≥i+1/S≥i has geometric isotropy concentrated on subgroups H of dimen-
sion exactly i. This means it can be built from cells G/K+ where K has dimension ≤ i. �

We will apply this to a large number of slightly different maps, but it is worth highlighting
one which embodies the philosophy.

Corollary 6.3. For any spectrum X, there is a homotopy pullback square

S≥i ∧X //

��

S≥i+1 ∧X

��

S≥i ∧
∏

dim(H)=i S
∞V (H) ∧X // S≥i+1 ∧

∏
dim(H)=i S

∞V (H) ∧X

Remark 6.4. (i) The bottom left hand entry is equivalent to
∏

dim(H)=i S
∞V (H) ∧ X since

all terms are F≤i−1-contractible.
(ii) The essence of the corollary is that we can start with S≥r∧X = S∞V (G)∧X , and build

X = S≥0 ∧ X in steps. At each stage S≥i ∧ X can be constructed as a homotopy pullback
from S≥i+1 ∧X by using only spectra of the form S∞V (H) ∧X for subgroups H of dimension
i.

Since the category of module G-spectra over S∞V (H) is equivalent to the category of G/H-
spectra, this establishes an inductive scheme.

Proof of Proposition 6.3: If K is of dimension less than i then all terms are K-
contractible. If K is of dimension i, there is precisely one factor in the product which
is not K-contractible, and X −→ S∞V (K) ∧X is a K-equivalence. �

The variant that we will apply is obtained by adapting a special case of this corollary.

Corollary 6.5. ForX = R̃(a0, . . . , ai−1, 0, ai+1, . . . , ar) and Y = R̃(a0, . . . , ai−1, 1, ai+1, . . . , ar),
there is a homotopy pullback square

S≥i ∧X //

��

S≥i+1 ∧X

��
S≥i ∧ Y // S≥i+1 ∧ Y
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Proof: First note that if as 6= 0 for some s < i, this is immediate, since if H is of dimension
s > i then S∞V (H) is F≤i-contractible.

Now consider the case a0 = · · · = ai−1 = 0. This is very close to the special case of
Corollary 6.3 in which

X =
∏

Hi+1∈I(i+1,ai+1)

[
AHi+1(ai+1) ∧

∏

Hi+2∈I(i+2,ai+2),Hi+2⊂H<i+2

[
AHi+2(ai+2) ∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
A

Hr−1

r−1 (ar−1) ∧ Ar(ar)
]
· · ·

]]

This is the value of X in the present corollary. The main difference is that instead of taking
Y to be given as

∏
H S∞V (H) ∧ X , the products in the Hth factor are now restricted to

subgroups of H .
To see that this does not alter the fact that we have a pullback square, we need only

observe that the omitted factors in the products in the Hth factor are F/H-contractible.
Indeed, if K is a connected subgroup with K 6⊆ H , and H̃ has identity subgroup H then
K 6⊆ H̃ and so S∞V (K) is H̃-contractible. �

6.D. The isotropic cube is a homotopy pullback. We are ready to prove that the
isotropic cube is a homotopy pullback.

Proposition 6.6. The Ci-diagram R̃ is a homotopy pullback, which is to say that the sphere
spectrum S is the homotopy pullback of R restricted to the punctured cube PCi:

S ≃ holim
← v∈PCi

R̃(v).

Remark 6.7. The corresponding statement is also true for the diagram in which the products
in the definition of the ring spectrum are over all S∞V (H) with H of a fixed codimension
(the proof is the same, except that one applies Corollary 6.3 instead of Corollary 6.5). The
reason for restricting to products over decreasing flags is to obtain an algebraically tractable
result.

Proof of Proposition 6.6: Some readers may find it helpful to refer to the case of Rank
2 made explicit in Subsection 6.E whilst reading this proof.

The method is to use a succession of intermediate homotopy pullbacks inside the cube.
We place the terms of the intermediate homotopy pullbacks along the a0 edges of PCi. It is
helpful to describe first the basic filtration we are using.

The general reconstruction process works by enlarging the diagram to permit the 0th
coordinate to run through the entire filtration

S = S≥0 −→ S≥1 −→ S≥2 −→ · · · −→ S≥r = S∞V (G).

We do this by letting a0 take on the fractional values 0 = 0/r, 1/r, . . . , r/r = 1 and take

R̃(i/r, a1, . . . , ar) = S≥i ∧ R̃′(a1, . . . , ar);

For brevity we write
R̃′(i/r) = S≥i ∧ R̃′

for these r-cube diagrams.
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The idea is to imagine filling in the values of the diagram from scratch. To start with,
we are given the values at PCi (this includes all entries with a0 = 1 = r/r). We then
show successively for a0 = (r − 1)/r, (r − 2)/r, . . . , 1/r, 0/r = 0 that the entries in the

diagrams of ring spectra R̃′(a0) can be filled in (using only homotopy equivalences and
homotopy pullbacks) from values already filled in. The only value of real importance is

S = S≥0 = R̃(0, . . . , 0), but it is easier to describe a uniform procedure which fills in other
entries on the way.

At the start, we are given the ring spectra R̃(a0, . . . , ar) for vertices of PCi. This means
all vertices with ar ∈ {0, 1} and not all entries ai zero. We observe first that the entries at
many other points are equivalent to these.

Lemma 6.8. Provided aj = 1 for some j ≤ i we have an equivalence

S≥i ∧ R̃′(a1, . . . , ar) ≃ R̃′(a1, . . . , ar).

Proof: The mapping cone of the comparison map is EF≤i−1+ ∧ R̃′(a1, . . . , ar). If dim(H) = j
then S∞V (j) is F≤i−1-contractible so the mapping cone is contractible. �

Now suppose that that the entries of R̃′((i + 1)/r) are filled in. To fill in the entries of

R̃′(i/r) with ai = 1 we use Lemma 6.8, and for the points with ai = 0 we apply Corollary
6.5, with X = R̃′(a1, . . . , ai−1, 0, ai+1, . . . , ar) and Y = R̃′(a1, . . . , ai−1, 1, ai+1, . . . , ar).

�

6.E. The case of rank 2. The above inductive scheme is sufficiently complicated that it
seems worth making one case explicit.

Consider the following diagram.

∏
H S∞V (H) ≃ //

��

ẼF ∧
∏

H S∞V (H) //

��

ẼP ∧
∏

H S∞V (H)

��

S0 //

��

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
ẼF //

��

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
ẼP

��

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

∏
H DEF+ ∧ S∞V (H) ≃ // ẼF ∧

∏
H DEF+ ∧ S∞V (H) // ẼP ∧

∏
H DEF+ ∧ S∞V (H)

DEF+
//

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠
ẼF ∧DEF+

//

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ẼP ∧DEF+

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

We have used traditional names S0 = S≥0, ẼF = S≥1 and ẼP = S≥2, where F is the
family of finite subgroups and P is the family of proper subgroups. The zeroth coordinate is
horizontal (left to right on the printed page), the first coordinate is into the paper (diagonally
on the printed page) and the rth coordinate is vertical (downwards on the printed page).

The left hand square is R̃′(0/2), the central square is R̃′(1/2) and the right hand square is
R̃′(2/2).

Thus the left and right hand end (except for S0) are in the PCi-diagram of which we want
to identify the homotopy limit. The back central entries can be filled in by the equivalences
illustrated on the two left hand horizontals without affecting the homotopy limit. Now the
top and bottom faces of the right hand cube are homotopy pullbacks. This means that we
can fill in the two central entries on the front face without affecting the whole homotopy
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limit. Finally the front face of the left hand cube is a homotopy pullback, so that S0 is the
homotopy limit of the original PCi-diagram.

7. The sphere as a formal pullback

We now move towards introducing the formal cube. As described above, we will define
this by extending Ci to a larger diagram Cif and then finding Cf inside it. We briefly explain
the motivation.

The Ci-diagram does not do what we require, since the terms S∞V (K) are not formal unless
K = G. However a strategy is already apparent from our work on the isotropic cube in lower
ranks. To see the idea, we may imagine that we have already completed the proof for lower
ranks, and constructed theG/K-sphere S0 from formal ringG/K-spectra B. Accordingly, we
can construct S∞V (K) = S∞V (K)∧S0 from formal G-spectra S∞V (K)∧B. Most of the spectra
B that occur are products of those of the form S∞V (H/K) (and since S∞V (K) ∧ S∞V (H/K) ≃
S∞V (H) these correspond to ring spectra in our diagram) which have already been constructed
in lower rank. There is only one other spectrum B, namely DEF/K+, and it is the most
important one. This outlines why the sphere can be constructed from spectra of the form
S∞V (K) ∧DEF/K+, and we will give a detailed proof below.

We will extend the Ci-cube to a larger poset Cif also containing the formal cube Cf , and

we will extend R̃ to Cif . Now the ar = 1 face of the Ci cube is the ar = 1 cube of Cf and R̃

already takes formal values on that face. The values of R̃ on the ar = 0 face of Ci are not
formal, and for each point we give a new value at the corresponding point of Cf . The new
formal ring is obtained by identifying the smallest codimension c for which S∞V (K) (rather
than S0) occurs with codim(K) = c and then smashes with DEF/K+.

We flesh out this sketch in the course of the next few subsections, starting by describing
the larger diagram Cif and then identify Cf inside it.

7.A. A subdivision of the isotropic cube. The diagram Cif is obtained from Ci by
inserting new layers in the ar direction.

Altogether we have r + 1 layers placed at ar = i/r for i = 0, 1, . . . , r, so that the ar = 0
and ar = 1 layers are just as before.

We will be using maps to relate the various ring spectra DEF/K+ as K varies. Indeed,
DEF/K+ is a commutative ring G/K-spectrum by Axiom 3.3 (9) and if L ⊆ K there is a
map

inf
G/L
G/KDEF/K+ −→ DEF/L+

of ring G/L-spectra. To see where this comes from, we observe that its adjunct

EF/L+ ∧ inf
G/L
G/KDEF/K+ −→ S0

is obtained by composing the G/L-map EF/L+ −→ EF/K+ with evaluation.
If we have any decreasing sequence

G = H0 ⊇ H1 ⊇ · · · ⊇ Hr−1 ⊇ Hr = 1

of connected subgroups with codim(Hi) = i, then, omitting notation for inflation, we have a
sequence of maps of ring G-spectra

S0 = DE(F/G)+ −→ D(EF/H1)+ −→ . . . −→ D(EF/Hr−1)+ −→ D(EF/1)+ = DEF+
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To define the Cif diagram of rings we use the same formula as before except that the range
of values of ar is extended to the fractional values and the rth entry becomes dependent on
other coordinates. More briefly, Ar(ar) is replaced by Ai1,...,ir

r (a0, . . . , ar). Thus, with I(i, 0)
a singleton and I(i, 1) = {H | H is connected and codim(H) = i} as before, we define the
ring G-spectrum to be placed at the (a0, . . . , ar) vertex:

R̃(a0, . . . , ar) = A0(a0) ∧
∏

H1∈I(1,a1)

[
AH1(a1) ∧

∏

H2∈I(2,a2),H2⊂H<2

[
AH2(a2) ∧ · · ·

· · · ∧
∏

Hr−1∈I(r−1,ar−1),Hr−1⊂H<r−1

[
AHr−1(ar−1, ) ∧ Ai0,...,ir

r (a0, · · · , ar)
]
· · ·

]]

For the last term, we take

Ai1,...,ir
r (a0, · · · , ar) = infGG/HDEF/H+

where the subgroup H = H(i1, . . . , ir; a0, . . . , ar) is determined as follows. When ar = s/r,
we consider the sequence a0, . . . , as; if it is zero we take H = Hi0 = G, and otherwise we find
the last nonzero term at and take the codimension t subgroup Ht:

H(i1, . . . , ir; a0, . . . , ar−1, s/r) := Hlnz(a0,...,as).

where

lnz(a0, . . . , as) = max({t | at 6= 0} ∪ {0}).

Note that since lnz(a0, . . . , as) ≤ lnz(a0, . . . , as, as+1) we have an inclusion

H(i0, . . . , ir−1; a0, . . . , ar−1, s/r) ⊇ H(i0, . . . , ir−1; a0, . . . , ar−1, (s+ 1)/r)

so that we do have the appropriate comparison maps.
The diagram Cif is not a cube, so we should state explicitly that the punctured diagram

PCif is obtained by omitting the r points (0, . . . , 0, ar) with ar 6= 1, which are the points

where R̃ takes the value S.

7.B. Selecting the formal cube. The formal cube Cf consists of the ar = 1 face together
with an opposite face that we need to describe. First, the initial vertex is the point (0, . . . , 0).
Next, the point in the opposite face corresponding to a non-zero (a0, . . . , ar−1) can be found
by looking for the least value of ar for which the entry at (a0, . . . , ar−1, ar) is formal. The
formal entries in the diagram are those with a term DEF/K+ for someK, where we take this
to include the terms DEF/G+ = S0 when a0 = 1. Thus the least value of ar with a formal
entry is ar = lnz(a0, . . . , ar−1)/r. Continuing with the convention that lnz(0, . . . , 0) = 0,

Cf = {(a0, . . . , ar) | ar = 1 or ar =
lnz(a0, . . . , ar−1)

r
}.

As a poset, these vertices form a cube. To see this, we identify the vertex (a0, . . . , ar) of
Cf with the subset

S(a0, . . . , ar) = {i | ai = 1}.

To see that the morphisms correspond to containment of subsets (so that Cf is a cube) we
note that if (a0, . . . , ar−1) and (b0, . . . , br−1) differ only by changing some entries ai = 0 to
bi = 1 (so S(a) ⊆ S(b)) then ar := lnz(a0, . . . , ar−1) ≤ lnz(b0, . . . , br−1) =: br, so that there
is a path from (a0, . . . , ar−1, ar) to (b0, . . . , br−1, br) in Cif .
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Proposition 7.1. The inclusion Cf ⊆ Cif induces an equivalence

holim
← v∈PCf

R̃(v) ≃ holim
← v∈PCif

R̃(v).

Before proving this we note that in view of Proposition 6.6 and the fact that PCi is cofinal
in PCif we immediately see that S is the pullback of the formal ring spectra.

Corollary 7.2. The Cf -diagram R̃ is a homotopy pullback, which is to say that S is the

homotopy pullback of the PCf -diagram R̃:

S ≃ holim
← v∈PCf

R̃(v). �

It then follows from Proposition 5.1 that we have the desired Quillen equivalence. For this

statement we revert to the full notation R̃top = R̃.

Corollary 7.3. There is a Quillen equivalence between equivariant G-spectra, modelled by
the category of S-modules, and the cellularization of the diagram-injective model structure

on R̃top-modules.

G-spectra ≃ cell-R̃top-mod-G-spectra

It remains to give the proof comparing the limits over PCf and PCif .

Proof of Proposition 7.1: Some readers may find it helpful to refer to the case of Rank
2 made explicit in Subsection 7.C whilst reading this proof.

We will work in the diagram Cif (i.e., permitting ar ∈ {0/r, 1/r, . . . , r/r}). In Subsection

7.A we defined R̃(v) for all vertices v. The proof here consists of showing how we could
recover all of them from the entries in PCf alone, using homotopy pullbacks. This will show

in particular that the entry R̃((0, . . . , 0)) = S at the initial vertex is the homotopy pullback

of the PCf -diagram R̃.
We view this as starting with an empty slate, adding the entries at points of PCf and

steadily filling in the values at different vertices by using homotopy pullbacks of entries filled
in previously.

First, we fill in all the points of PCif which admit a map from an entry of PCf ; this
does not change the homotopy pullback, since PCf remains cofinal. For example, since
(1, 0, . . . , 0) is in PCf , we may fill in all vertices (1, 0, . . . , 0, ar) with ar 6= 1, which all have
value S∞V (G) ∧DEF/G+ = S∞V (G).

The Cif -diagram R̃ takes the value S at (0, 0, . . . , 0, ar) for ar 6= 1. The rest of the diagram
is called PCif and has r + 1 initial points, namely the vertices vc = (0, . . . , 0, 1, 0, . . . , 0)
(where the 1 in the cth position) for 0 ≤ c ≤ r. The entries at vr = (0, . . . , 0, 1) (viz DEF+)
and v0 = (1, 0, . . . , 0) (viz S∞V (G)) lie in PCf and are therefore already filled in. The entry
when 0 < c < r is S∞V (c) :=

∏
codim(H)=c S

∞V (H), and we need to explain how this is filled
in by homotopy pullbacks.

Note first that S∞V (c) is also the entry at the points (0, . . . , 0, 1, 0, . . . , ar) for ar =
0/r, 1/r, . . . (c− 1)/r. The point with ar = c/r lies in PCf , and the entry there is therefore
filled in at the start. To fill in the entry at the initial vertex vc = (0, . . . 0, 1, 0, . . .0) we
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consider a (c+ 1)-cube Cf(c) with initial vertex at (0, . . . , 0, 1, 0, . . . , 0). More precisely

Cf(c) = {(a0, a1, . . . , ac−1, 1, 0, . . . , 0, ar) | ar = 0 or c/r}.

We note that entries at PCf(c) are already filled in, and the following lemma shows that the
entry S∞V (c) can be filled in as a homotopy pullback of entries on PCf(c).

Lemma 7.4. The Cf(c)-diagram R̃ is a homotopy pullback, which is to say that S∞V (c) is

the homotopy pullback of the PCf(c)-diagram R̃.

Proof: The proof follows precisely the same pattern as Proposition 6.6 above. The cube
is rather similar to a product of copies of the isotropic pullback diagrams for the rank c
quotients, but it is slightly different, so we provide some reference points for the proof.

We first note that S∞V (c) = S≥c ∧ S∞V (c) and then filter the 0th coordinate by

S≥r−c −→ S≥r−c+1 −→ . . . −→ S≥r = S∞V (G).

We refine the map from a0 = 0 to a0 = 1 into c steps. The structure of the proof
is precisely like that of Proposition 6.6. The only difference is that our application of
Corollary 6.5 is in the special case X = R̃(a0, . . . , ai−1, 0, ai+1, . . . , ac−1, 1, 0, . . . , 0, ar) and

Y = R̃(a0, . . . , ai−1, 1, ai+1, . . . , ac−1, 1, 0, . . . , 0, ar).
�

Since we have now filled in the initial points of PCif , we may fill in the remaining vertices
without changing the homotopy pullback. Accordingly the homotopy pullback over PCf

agrees with that over PCif as required. �

7.C. The case of rank 2. The above account is again sufficiently complicated that it is
worth making one case explicit. For typographical reasons we have only illustrated the case
r = 2, though in fact some features only appear at rank 3. As before, we have used traditional

names S0 = S≥0, ẼF = S≥1 and ẼP = S≥2, where F is the family of finite subgroups and
P is the family of proper subgroups.
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Consider the diagram

∏
H S∞V (H) //

��

ẼP ∧
∏

H S∞V (H)

��

S0 //

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

��

ẼP

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

��

∏
H S∞V (H) ∧DEF/H+

//

��

ẼP ∧
∏

H S∞V (H) ∧DEF/H+

��

S0 //

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

��

ẼP

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

��

∏
H S∞V (H) ∧DEF+

// ẼP ∧
∏

H S∞V (H) ∧DEF+

DEF+
//

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
ẼP ∧DEF+

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

The whole diagram is Cif . The top square has a2 = 0/2 the middle square has a2 = 1/2 and
the bottom square has a2 = 2/2. The cube Cf consists of the bottom square, the middle
horizontal on the back face and the top front edge.

Wiping the slate clean, and starting with the entries in PCf we describe how to fill in the

other entries. First, we may fill in ẼP ∧
∏

H S∞V (H) at the top right back position without

changing the homotopy pullback since it admits a map from ẼP at the top right front. Now
Lemma 7.4 with c = 1 states that the top back square is a homotopy pullback so that we
have filled in

∏
H S∞V (H) at the top, back left. This gives all vertices of PCi from those of

PCf , and S0 is the homotopy pullback of PCi by Proposition 6.6.

7.D. Diagrams. Now that we have a PCf -diagram R̃top of ring G-spectra we should explic-
itly introduce the corresponding diagrams in other context.

Definition 7.5. From the PCf diagram R̃top of commutative ring G-spectra we form

(1) the PCf diagram Rtop = (R̃top)
G of commutative ring spectra.

(2) the PCf diagram Rt of commutative DGAs obtained from Rtop using the fact [62]
that the category of commutative HQ-algebras is equivalent to commutative DGAs
over Q (see Section 9)

(3) the PCf diagram Ra = πG
∗ (R̃top) = π∗(Rtop) = H∗(Rt) of graded rings.

Part 3. From G-spectra, through spectra to algebra

8. Fixed point equivalences for module categories

The category of G-spectra is modelled by S-modules in G-spectra, and since S is a ho-

motopy pullback of the PCf -diagram R̃top of ring G-spectra, G-spectra is also modelled by

a category of R̃top-modules in G-spectra. Our next step is to remove equivariance and find
34



a model in terms of a category of non-equivariant module spectra over a PCf -diagram of
non-equivariant ring spectra.

8.A. The fixed point adjunction for module spectra. We briefly recall some results of
[34] for an individual ring G-spectrum. The context is that when we are given a fibrant ring
G-spectrum, Ã with fixed point spectrum A = ÃG there is a Quillen adjoint pair

ΨG : Ã-mod-G-spectra // A-mod-spectra : infG1
oo .

Here ΨG takes Lewis-May fixed points and then uses the fact that the fixed point functor is
lax monoidal by Axiom 3.3 (10) to view the result as a module over A. The inflation functor
views a non-equivariant spectrum as a G-spectrum by pullback along the quotient and then
extends scalars along infA −→ Ã to give an Ã-module.

Since the category A-mod-spectra is generated by A, the Cellularization Principle gives a
Quillen equivalence

Ã-cell-Ã-mod-G-spectra ≃ A-mod-spectra.

Surprisingly often (in particular [34, 4.4] when G is a torus and A has Thom isomorphisms),
the category Ã-mod-G-spectra is generated by Ã, so that we obtain a Quillen equivalence

Ã-mod-G-spectra ≃ A-mod-spectra

showing that a category of equivariant module spectra is equivalent to a category of non-
equivariant module spectra.

Before turning to our applications it will be helpful to mention three special cases.

Example 8.1. (Eilenberg-Moore Theorem [34, 8.1]) We take Ã = DEG+, so that A =
DBG+ and obtain a version of the Eilenberg-Moore theorem: when G is a torus, there is a
Quillen equivalence

DEG+-mod-G-spectra ≃ DBG+-mod-spectra.

We emphasize that no cellularization is necessary here for a torus.

Example 8.2. (Spectra over G [51, VI.5.3], [34, 3.3] ) We take Ã = S∞V (G) so that A = S0

and note that the category modules over S∞V (G) is a model for spectra over G (i.e., for
spectra with geometric isotropy in {G}), whilst the category of S0-modules is the category
of spectra. Thus we recover the well known result that there is a Quillen equivalence

G-spectra/G ≃ spectra.

The variant of the first example with all finite isotropy collected together is directly relevant
to us.

Example 8.3. (Almost free spectra [34, Corollary 9.2]) Taking Ã = DEF/K+ we obtain

DEF/K+-mod-G/K-spectra ≃ D(EF/K+)
G/K-mod-spectra.

35



8.B. Fixed point adjunctions for diagrams of ring G-spectra. We now move to the
case of diagrams of ring spectra. Suppose R̃ is a diagram of ring G-spectra, fibrant in
the diagram-injective model structure and consider the corresponding diagram R = R̃G of
spectra where fixed points are applied objectwise. We may again consider the diagram-
injective model categories of R̃-module G-spectra and R-module spectra and once again
form the Quillen pair

ΨG : R̃-mod-G-spectra // R-mod-spectra : infG1
oo .

Lemma 8.4. The Quillen adjunction on diagrams with the diagram-injective model structure
is a Quillen equivalence provided it is a Quillen equivalence objectwise.

Proof: We note that unit and counit when evaluated at any vertex give the unit and counit
of the adjunction for a single ring G-spectrum. We claim this is also true for the derived
unit and counit. Since weak equivalences are detected objectwise, this will suffice.

To see that the statement about the derived unit and counit follows from that about the
underived ones, we need to consider fibrant and cofibrant replacement. For fibrant replace-
ment the implication is clear since fibrancy is defined objectwise. For cofibrant replacement,
we note that cofibrant diagrams are objectwise cofibrant. Finally, since fixed points preserve
all weak equivalences, we see that the derived unit and counit of the Quillen pair on diagram
categories are objectwise the derived unit and counit. �

8.C. The fixed point adjunction for R̃top. We consider the special case R̃ = R̃top of the
above discussion. The category of spectra is generated by the cells G/H+ as H varies over
closed subgroups of G and the cellularization in the following statement is with respect to
the images of these generating cells.

Theorem 8.5. There is a Quillen equivalence

ΨG : R̃top-mod-G-spectra // Rtop-mod-spectra : infG1
oo .

It follows by cellularizing both categories that there is a Quillen equivalence

ΨG : cell-R̃top-mod-G-spectra // cell-Rtop-mod-spectra : infG1
oo .

Proof of 8.5: Without changing notation, we take the fibrant replacement of R̃top in
the diagram-injective model category of PCf -diagrams of commutative ring G-spectra [41,
5.1.3]. By [35, Lemma 4.2] the category of modules over this fibrant replacement is Quillen

equivalent to the original category R̃top-mod-G-spectra.
By Lemma 8.4 it suffices to deal with the individual G-spectra at a particular vertex v of

PCf , so we take Ã = R̃(v) for some vertex v.

For any ring G-spectrum Ã we get the equivalence

Ã-cell-Ã-mod-G-spectra ≃ A-cell-A-mod-spectra.

It is clear that A generates the category of A-modules so that the A-cellularization on the
right is a Quillen equivalence. It remains only to show that the cellularization on the left
has no effect.
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To establish that the Ã-cellularization on the right is also a Quillen equivalence, it suffices
to show that Ã generates the category of Ã-modules. The argument (as in [34, 4.4]) is to
show that cells G/H+ are all built from complex representation spheres.

If Ã has Thom isomorphisms this is exactly as in [34, 4.4], but we need the slightly more
general argument from [34, Section 9]. We show that for each complex representation W

we may express Ã as a finite product Ã ≃
∏

i Ãi of factors Ãi so that Ãi ∧ SW is a G-fixed

suspension of Ãi. This shows that Ã∧S
W is in the thick category generated by Ã as required.

Now Ã = R̃top(v) and suppose that the last non-zero entry of v is of codimension c. Then

Ã takes the form

A0(a0) ∧ · · · ∧
∏

codimH=c

S∞V (H) ∧ · · · ∧DEF/H+

Furthermore DEF/H+ ≃
∏

H̃ DE〈H̃〉, where the product is indexed by closed subgroups

H̃ with identity component H . First note that SW is a finite complex, and therefore can be
moved inside all the products. For each H , we have W = WH ⊕W ′(H) and S∞V (H) ∧SW ≃

S∞V (H) ∧ SWH
so that

Ã ∧ SV = A0(a0) ∧ · · · ∧
∏

codimH=c

S∞V (H) ∧ · · · ∧DEF/H+ ∧ SV H

Now we use the Thom isomorphism

DE〈H̃〉 ∧ SV H

≃ DE〈H̃〉 ∧ S |V
H̃ |.

Collecting together all the factors with the same suspension:

Σi = {H̃ | codim(H̃) = c and dim(V H̃) = i}

we obtain a decomposition Ã ≃
∏

i Ãi as required.
�

8.D. Modules over product rings. We are repeatedly working with infinite products
R =

∏
i Ri of ring spectra Ri, and we let ei be the idempotent projecting onto the ith factor.

Even in algebra, such infinite products are poorly behaved (for example infinite products
of Noetherian rings need not be Noetherian). If M is a module over

∏
i Ri and we take

Mi = eiM then we have maps
⊕

i

Mi −→ M −→
∏

i

Mi.

The first is a monomorphism, but typically neither will be an isomorphism (for example if
we take M =

∏
i Ri/

⊕
i Ri then Mi = 0 for all i).

It seems worth observing that from the point of view of model categories we may rather
generally apply the Cellularization Principle [33] to recover the more familiar product cate-
gory from the by suitable cellularization.

Lemma 8.6. We have a Quillen equivalence

{Rs}s-cell-(
∏

sRs)-modules ≃
∏

i

[Ri-modules] .
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Proof : For each s we have projection πs : R −→ Rs inducing a restriction on module
categories. This has both a left and a right adjoint, and they agree up to equivalence.
Combining these we obtain

p : R-mod −→
∏

s

[Rs-modules]

whose right adjoint pR takes the product of the terms and whose left adjoint pL takes the
sum.

The adjoint pair (pL, p) is a Quillen pair if the categories have the injective model struc-
tures. The adjoint pair (p, pR) is a Quillen pair if the categories are given the projective
model structures.

In the second case, the objects Rs are small generators in
∏

s [Rs-modules] . Since both
p and pR preserve all weak equivalences, the unit and counit are equivalences on the gen-
erators Rs and we may apply the Cellularization Principle to give the desired conclusion. �

9. From spectra to DGAs

In this section we use the results from [62] to show that the category of module spectra
over the diagram Rtop of commutative ring spectra is Quillen equivalent to a category of
differential graded modules over a diagram Rt of commutative DGAs. It then follows that
the cellularizations of these model categories are also Quillen equivalent. Since [62] is based
on symmetric spectra, we use Axiom 3.3 (12) to show that there is a Quillen equiavlence
between the respective categories of modules over Rtop and FRtop.

We next apply the functors from [62] to move from symmetric spectra to differential
graded modules. In more detail, in [62, 1.1] a composite functor Θ is defined which produces a
Quillen equivalence between HZ-algebra spectra and DGAs. Given anHZ-algebra spectrum,
B, it is shown in [62, 2.15] that the category of module spectra over B is Quillen equivalent to
the category of differential graded modules over ΘB, a DGA. Furthermore, rationally there
is a second functor Θ′ which is symmetric monoidal, so that it takes rational commutative
rings spectra to rational commutative DGAs. Finally, over the rationals the two functors
are naturally equivalent, so that by [62, 1.2], if B is a commutative HQ-algebra then ΘB is
naturally weakly equivalent to a commutative DGA Θ′B.

Definition 9.1. Applying functors to the PCf -diagram of commutative rational ring spectra
Rtop, we define Rt to be the PCf -diagram Θ′(HQ ∧ FRtop) of commutative DGAs.

Note, throughout this section we are implicitly considering the standard (or diagram
projective) model structures from [35, 3.1(i)] on modules over diagrams of rings.

Proposition 9.2. There is a zig-zag of Quillen equivalences between the category of module
spectra Rtop-mod and the category of differential graded modules Rt-mod.

Proof: As mentioned above, the first step is a Quillen equivalence between Rtop-mod over
1-spectra and FRtop-mod over symmetric spectra by Axiom 3.3 (12) extended to diagrams
of rings. Since Rtop is rational, the unit map FRtop → HQ ∧ FRtop is a weak equivalence
which induces a Quillen equivalence on the associated module categories by extension and
restriction of scalars, [35, 4.2] and [43, 5.4.5].
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Combining these steps with [62, 2.15] produces a Quillen equivalence between Rtop-mod
and Θ(HQ ∧ FRtop)-mod. Since HQ ∧ FRtop is a diagram of commutative HQ-algebras, it
follows from the proof of [62, 1.2] that Θ′(HQ∧FRtop) is a diagram of commutative rational
DGAs which is weakly equivalent to the diagram Θ(HQ ∧ FRtop).

By [35, 4.2] and [43, 5.4.5], extension and restriction of scalars over these weak equiva-
lences produce the last steps in the stated zig-zag of Quillen equivalences. �

The Cellularization Principle, [33, Corollary 2.8] shows that cellularization preserves zig-
zags of Quillen equivalences as long as the cells in the target category are taken to be the
images under the relevant derived functors of the cells in the source category. Here we begin
with the cellularization of Rtop-mod with respect to the images of G/H+ as H runs through
closed subgroups. Then, at each of the next steps, the cells are the images of G/H+ under
the appropriate derived functor.

Corollary 9.3. There is a zig-zag of Quillen equivalences between the cellularizations of the
model categories in Proposition 9.2; that is, cell-Rtop-mod-spectra and cell-Rt-mod-spectra
are Quillen equivalent.

10. Formality

We have shown that the category of rational G-spectra is equivalent to the cellularization
of modules over a suitable PCf diagram of commutative DGAs. On the other hand, we
know very little about the diagram except the fact that the terms are commutative and we
know the homology. The purpose of this section is to show that in fact this determines the
diagram up to equivalence.

10.A. Terminology. A map f : R̃ −→ R̃′ of commutative DGAs inducing an isomor-
phism is called a homology isomorphism. Two commutative DGAs related by a zig-zag of
homology isomorphisms of commutative DGAs are said to be quasi-isomorphic. Of course
isomorphisms of homology need not be induced by maps of DGAs and DGAs with isomorphic
homology need not be quasi-isomorphic.

A commutative DGA which is quasi-isomorphic to its homology is said to be formal. A
graded commutative ring R is said to be intrinsically formal if every commutative DGA
R̃ with H∗(R̃) ∼= R is formal. We say that R̃ is strongly formal if there is a homology
isomorphism H∗(R̃) −→ R̃. A commutative graded ring is strongly intrinsically formal if
every commutative DGA with homology R is strongly formal.

All of these notions apply similarly to diagrams of commutative DGAs, and it is our
purpose to show that the PCf -diagram Ra = πG

∗ (R̃top) is intrinsically formal. This is based
on the fact that polynomial rings are strongly intrinsically formal as commutative rings.
This single fact is extended in generality in both the algebraic and diagrammatic senses.

10.B. Constructing new formal objects from old. The general form of the results is
not surprising, but care is necessary in their formulation.

Lemma 10.1. (i) The k-algebra k[x1, . . . , xr] is strongly intrinsically formal for commu-
tative DG k-algebras.

(ii) If Ri is intrinsically formal for all i then
∏

i Ri is intrinsically formal.
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(iii) If R is strongly intrinsically formal and E is a multiplicatively closed subset of R then

E−1R is intrinsically formal relative to R in the sense that if R̃ −→ R̃E−1 is a map of
DGAs inducing R −→ E−1R in homology, then there exists a homology isomorphism
R̃E−1 → R̃′E−1 such that the diagram

R̃ // R̃E−1

≃
��

R̃′E−1

R

OO

// E−1R

OO✤
✤
✤

can be completed by a dotted arrow which is a homology isomorphism.

Proof : (i) If H∗(R) = k[x1, . . . , xr] then we may pick representative cycles x̃1, . . . , x̃r for
x1, . . . , xr in R and then since k[x1, . . . , xr] is free as a commutative ring, there is a map
k[x1, . . . , xr] −→ R taking xi to x̃i, and this induces an isomorphism in homology.

(ii) Suppose H∗(R̃) =
∏

i Ri. First, we replace R̃ by a DGA which is actually a product.
Indeed, we may choose cycles ẽi representing the idempotents for the factors. Now form
R̃i = holim

→
(R̃, ẽi), so that H∗(R̃i) = Ri. We therefore have a quasi-isomorphism R̃ −→

∏
i R̃i, and then we may take the product of the individual zig zags of quasi-isomorphisms

connecting R̃i and Ri.
(iii) Since R is strongly intrinsically formal, we have a map R→ R̃; let Ẽ denote the image

of the multiplicatively closed subset E in R̃. Then the map R̃E−1 −→ Ẽ−1R̃E−1 is a quasi-
isomorphism and by the universal property of localization we may extend R −→ Ẽ−1R̃E−1

to a quasi-isomorphim E−1R
∼=
−→ Ẽ−1R̃E−1 . �

We now need a tool for using these facts in diagrams.

Lemma 10.2. Suppose given a partially ordered set A, a subset B ⊆ A with no maps out of
it, and a diagram R : A −→ DGAs. If we have a B-diagram R′ : B −→ DGAs and a map
θB : R|B −→ R′, we may extend R′ to an A-diagram R̂′ (taking R̂′(a) = R(a) if a 6∈ B) and

extend θB to a map θ : R −→ R̂′. If θB is a homology isomorphism, so is θ. �

Example 10.3. (Extending a diagram of rings along a map at a vertex v.) Suppose v is a
vertex in a poset A and we have a map R(v) −→ R′(v). We may take B to be the set of
vertices with a map from v, and define R′ on B by taking

R′(b) = R′(v)⊗R(v) R(b).

We obtain a map R|B −→ R′ by identifying R|B(b) as R(v)⊗R(v) R|B(b) and using the map
R(v) −→ R′(v) at each point.

Applying Lemma 10.2 we obtain a map of A diagrams R −→ R̂′. This is a pointwise
homology isomorphism provided R(v) −→ R′(v) is an isomorphism in homology and all the
rings R(b) are flat over R(v).
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10.C. The intrinsic formality of the diagram Ra. We are now prepared to prove the

intrinsic formality of the PCf -diagram Ra = πG
∗ (R̃top) of graded rings.

The reader may find it helpful to refer to Subsections 10.D and 10.E where the rank 1 and
rank 2 cases are made rather explicit.

Proposition 10.4. The PCf-diagram Ra is intrinsically formal, and in particular Rt is
formal.

Proof: The punctured cube PCf is a poset (indeed, it is the barycentric subdivision of the
r-simplex ∆r; we may identify each vertex v of PCf with the non-empty subset S(v) =
{i | ai = 1} of {0, . . . , r}). The collection of vertices is ordered by the size of S(v), and we
will work in order of increasing size.

More precisely, we let PC
(d)
f

denote the (d − 1)-skeleton of the subdivided r-simplex. In other words, it contains all
vertices v with |S(v)| ≤ d.

Given a PCf diagram R̃ with homology isomorphic to Ra, we replace it by an equivalent
cofibrant diagram without change in notation, and then procede to construct a succession
of homology isomorphisms

R̃ = R̃0
i0−→ R̃1

i1−→ · · ·
ir−→ R̃r+1 = R̃

of PCf -diagrams of DGAs, where id−1 : R̃d−1 −→ R̃d is constant on PC
(d−1)
f . As we do this,

we construct maps

θd : Ra|PC
(d)
f
−→ R̃d|PC

(d)
f

for d ≥ 1 which are homology isomorphisms on the diagram on which they are defined. For
d ≥ 2, the map θd extends id−1 ◦ θd−1.

After r + 1 steps we obtain a homology isomorphism

Ra = Ra|
PC

(r+1)
f
−→ R̃r+1|PC

(r+1)
f

= R̃.

To start with, we construct R̃1. Note first that for each of the r + 1 vertices v of ∆r

the DGA Ra(v) is a product of polynomial rings indexed by i (if the vertex corresponds
to connected subgroups of codimension c, then we take a product of all the OF/H with H

connected of codimension c, each of which is a product of the cohomology rings H∗(BG/H̃)

as H̃ runs through the subgroups with identity component H . Altogether, i will run through
all subgroups of codimension c, connected or not).

As in Lemma 10.1 (ii) we construct DGAs R̃(v)i with homology Ra(v)i and a quasi-
isomorphism

R̃(v) −→
∏

i

R̃(v)i.

Choosing some ordering of the vertices, we extend R̃0

along each of these quasi-isomorphisms (as in Example 10.3) in turn to obtain R̃1. We
note that since there are no maps from one vertex to another, all r+ 1 vertices end up with
a product of DGAs. Now using Lemma 10.1 (i) at each vertex we obtain a map

θ1 : R
a|

PC
(1)
f
−→ R̃1|PC

(1)
f
.
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We continue inductively, supposing that after d steps we have defined R̃s for s ≤ d, and

θd : R
a|

PC
(d)
f
−→ R̃d|PC

(d)
f
.

Once again we will form R̃d+1 from R̃d by extending the diagram of rings along ring maps
at the

(
r+1
d+1

)
vertices v with |S(v)| = d + 1 in turn. When it comes to the turn of v, since

there are no maps between these vertices, we still have R̃d(v) at v. This has homology

H∗(R̃d(v)) = H∗(R̃(v)) = Ra(v)

and this is obtained from polynomial rings by alternately taking products and localizing
with respect to sets of Euler classes. Furthermore, we note that the Euler classes concerned
come from the vertices w with |S(w)| ≤ d, so that θd gives their images in the DGAs. We
now form a new PCf -diagram of DGAs by extending R̃d(v) along the alternate products
and localizations

using Lemma 10.1. When we have extended along all these vertices we have obtained R̃d+1

from R̃d, and the products and localizations let us extend θd to θd+1. �

10.D. The example of rank 1. The argument proceeds as follows. We start with the
cofibrant PCf -diagram R̃ as in the top row. Extending along the top left hand vertical we
form the second row. The map from the two outer vertices of Ra on the bottom row can then
be defined. The Euler classes are defined by the image of Ra(0, 1), and those are inverted to
form the third row, after which the middle vertical can be filled in.

R̃

��

R̃(0, 1) //

��

R̃(1, 1)

��

R̃(1, 0)oo

��

R̃1

��

∏
i R̃(0, 1)i //

=

��

∏
i R̃(0, 1)i ⊗R̃(0,1) R̃(1, 1)

��

R̃(1, 0)oo

=

��

R̃2

∏
i R̃(0, 1)i // E−1G

∏
i R̃(0, 1)i ⊗R̃(0,1) R̃(1, 1) R̃(1, 0)oo

Ra

OO

OF //

OO

E−1OF

OO

Qoo

OO

Rtop (DEF+)
G // (S∞V (G) ∧DEF+)

G (S∞V (G))Goo

R̃top DEF+
// S∞V (G) ∧DEF+ S∞V (G)oo
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10.E. The example of rank 2. It is too typographically complicated to display the full

argument in the way we did for rank 1, but it still seems worth displaying Ra and R̃top. This
lets one see the way that extending along (say) a map of rings at the top vertex only affects
the three other points not on the bottom face, and then extending along (say) the middle
vertex on the bottom face only affects the central vertex.∏

F Q[c, d]

))❚❚❚
❚❚❚

❚❚❚❚
❚❚❚

❚❚

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

∏
H E

−1
H

∏
F Q[c, d]

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯
E−1G

∏
F Q[c, d]

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

E−1G

∏
H E

−1
H

∏
F Q[c, d]

∏
H

∏
H̃ Q[c]

<<②②②②②②②②②②②②②②②②②②②②②②②
// E−1G

∏
H

∏
H̃ Q[c]

OO

Qoo

\\✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾

The subgroups F run through finite subgroups, the subgroups H run through circle sub-
groups, and the subgroups H̃ run through subgroups with identity component H . The
polynomial rings Q[c, d] are the cohomology rings of B(G/F ) (all different but isomorphic),

and the polynomial rings Q[c] are the cohomology rings of B(G/H̃) (the polynomial ring Q

is the cohomology ring of B(G/G)!).

The above diagram is obtained by taking homotopy groups of the following diagram R̃top

of ring G-spectra.

DEF+

++❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱

ss❣❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣

∏
H S∞V (H) ∧DEF+

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
S∞V (G) ∧DEF+

ss❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤

S∞V (G) ∧
∏

H S∞V (H) ∧DEF+

∏
H S∞V (H) ∧DEF/H+

99rrrrrrrrrrrrrrrrrrrrrrrrrrr
// S∞V (G) ∧

∏
H S∞V (H) ∧DEF/H+

OO

S∞V (G)oo

__❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

Part 4. Algebra

11. Modules over Ra and the standard model Ap
c(G)

We have now established that the category of G-spectra is equivalent to the cellularization
of the category of DG-Ra-modules, where Ra is a PCf -diagram of rings. We want to show
this is equivalent to the category of DG objects in A(G).

11.A. Strategy. We will use the algebraic machinery and terminology set up in [28]. As
described in Section 2 above, A(G) = Ap

c(G) is a category of modules over the diagram Rp
c

of rings based on pairs of connected subgroups. However the topological argument delivers
a category of modules over the diagram Ra based on subsets of [0, r] = {0, 1, . . . , r} which
are the dimensions of subgroups. For the totally ordered poset [0, r] there is no distinction
between subsets and flags. Taking a subset of [0, r] with s elements in decreasing order, we
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obtain a flag d0 > d1 > · · · > ds. We will make the diagram Ra explicit in Subsection 11.B),

and observe that Ra = R
f
d in the notation of [28].

It is shown in [28] that there is a subcategory Af
d(G) of Rf

d-modules equivalent to Ap
c(G),

namely pqce-modules, which is to say that satisfy a quasi-coherence condition (qc) an ex-
tendedness condition (e) and whose values on vertices are products (p). There is in fact a
diagram of categories and adjoint pairs

Ap
c(G) Af

c (G) Af
d(G)

qce-Rp
c-mod oo ≃

p,f
// qce-Rf

c -mod oo ≃ //

i
��

pqce-Rf
d-mod

��

Rf
c -mod

d∗ //

Γf
c

OO

d∗ //

Γf
c

OO

R
f
d-mod

e
oo

Γf
d

OO

The absence of a label on the functor left adjoint to Γf
d is intentional: the functor is obtained

by following round the other three sides of the square, and is not the inclusion (the inclusion

does not preserve sums). In fact, there is no need to give further details of pqce R
f
d-modules

here, since we will proceed directly between R
f
d-modules and qce-Rf

c -modules. The relevant
result from [28] is as follows.

Proposition 11.1. [28, Subsection 11.C] There is an adjoint pair

l : qce-Rp
c-modules

//
R

f
d-modules : Γoo

where l = d∗if and Γ = pΓf
c e. �

We will briefly describe the functors in Subsection 11.F below.

11.B. The diagram Ra. We will make explicit the diagram Ra = πG
∗ (R̃top) of homotopy

rings of our PCf -diagram R̃top of ring spectra as in Definition 7.5. It will appear that this

is a special case of the machinery of [28], so that Ra = R
f
d in the notation of [28].

Since πG
∗ (S

∞V (H) ∧DEF/H+) = OF/H and since the map S0 −→ SV induces multiplica-
tion by the Euler class c(V ) in πG

∗ (DEF+) = OF , it is straighfroward to read off from the

definition of R̃top in Subsection 7.A an explicit and totally algebraic account.
At the point (a0, . . . , as, 0, . . . , 0) with as = 1, we form a ring from the product

∏

codim(H)=s

OF/H

by taking retracts and alternating products and localizations. To write this down, we recall
from Equation 6.1 the indexing set I(t, at) which is a singleton if at = 0 or all codimension
t connected subgroups otherwise. We also recall that EK consists of Euler classes of all
representations W with WK = 0, and adopt a convention to let us refer to a vacuous
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localization in a similar notation: we take EK,1 = EK and EK,0 = {1}. Now we may write

Ra(a0, . . . , as, 0, . . . , 0) = E
−1
G,a0

∏

H1∈I(1,a1)

E−1H1,a1

∏

H2∈I(2,a2)

E−1H2,a2
· · · E−1Hs−1,as−1

∏

Hs∈I(s,as)

OF/Hs .

To save on the notation required to say we have nested subgroups, we use the convention that
inverting EH is deemed to annihilate factors corresponding to lower dimensional subgroups
K not contained in H .

We will say more about what is meant by inverting Euler classes in Subsection 11.C, but
first it is helpful illustrate the definition in low ranks to show its simplicity.

Example 11.2. (The diagram Ra in rank 1.) In rank 1, if the objects of PCf are layed out
as

v1 = (01) −→ (11)←− (10) = v0

the rings are
OF −→ E

−1
G OF ←− OF/G = Q

Example 11.3. (The diagram Ra in rank 2.) In rank 2, if the objects are layed out as

v2 = (001)

%%▲▲
▲▲

▲▲
▲▲

▲▲

yyrrr
rr
rr
rr
r

(011)

%%▲▲
▲▲

▲▲
▲▲

▲▲
(101)

yyrrr
rr
rr
rr
r

(111)

v1 = (010)

BB✆✆✆✆✆✆✆✆✆✆✆✆✆✆✆✆✆✆
// (110)

OO

(100) = v0oo

\\✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾

the diagram of rings is

OF

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠

∏
H E

−1
H OF

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
E−1G OF

ww♦♦♦
♦♦♦

♦♦♦
♦♦

E−1G

∏
H E

−1
H OF

∏
H OF/H

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁
// E−1G

∏
H OF/H

OO

OF/G = Qoo

\\✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Example 11.4. (The diagram Ra in rank 3.) The diagram in rank 3 is that of a subdi-
vided 3-simplex, and a little too complicated to display in print. However we note that
a new phenomenon occurs in rank 3 since not every circle subgroup is contained in every
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2-torus subgroup (in lower ranks, containment of connected subgroups was determined by
dimension). This means that at points of the form (a011a3), we have

Ra = · · ·
∏

H

E−1H

∏

K

· · · .

where H is of codimension 1 and K of codimension 2. In view of our convention about
inverting EH , the second product is in fact over circle subgroups K contained in H (and not
over all circle subgroups).

11.C. Internal and external Euler classes. The G-equivariant homotopy of S∞V (H)∧X
is always the G/H-equivariant homotopy of the geometric fixed point spectrum ΦHX . Some-
times this is calculated from geometric knowledge of X , but if X has Thom isomorphisms
for representations V with V H = 0 it can also be calculated from πG

∗ (X) by inverting Euler
classes. This leads to the use of algebraic notation for inverting Euler classes is some cases
requiring some explanation.

The issue first arises at (110) in rank 2. A brief explanation of this special case will make
plain the general meaning.

The notation suggests we are inverting G-equivariant Euler classes on something (viz∏
H OF/H), but the object in question is not an OF -module. Considering the geometry of

the situation we see that what is really happening is passage to a direct limit along maps
SW1 −→ SW2 coming from inclusions W1 ⊆ W2 with WG

1 = WG
2 = 0. Since the spheres

are finite complexes this passes inside the product. To see what happens on the Hth factor
we write W = WH ⊕W ′, and note that SW ∧ S∞V (H) ≃ SWH

∧ S∞V (H). Thus when we
write E−1G

∏
H OF/H , this means a colimit over multiplication by the the product elements∏

H c(WH
2 /WH

1 ), which is the Euler class of the inclusion WH
1 −→ WH

2 , as an element of
OF/H .

One might note that this discussion extends one stage further to explain for example why
the S∞V (G) does not lead to any algebraic inversion at (100).

11.D. Structure maps for rings. Next we describe the structure maps in Ra more pre-
cisely. Once again, the only real complication is notational.

If we have an inclusion iτσ : σ −→ τ of subsets of {0, . . . , r} then we have a structure map

Ra(i
τ
σ) : Ra(σ) −→ Ra(τ).

Suppose s is the last non-zero term in σ. We start by describing the case when τ has exactly
one more element than σ, say τ = σ ∪ {t}. There are two cases.

Case 1: t > s. In this case t is the last non-zero term in τ and we may concentrate on
the contribution of the last two non-trivial terms, namely the sth and tth. Thus we must
describe

jts :
∏

Hs∈I(s,1)

OF/Hs −→
∏

Hs∈I(s,1)

E−1Hs

∏

Ht∈I(t,1)

OF/Ht

in the sense that the map is obtained from this by applying alternating products and local-
izations for the 0th to the (s − 1)st terms. Now jts is itself a product over I(s, 1) of terms
given as the composite

OF/Hs −→
∏

Ht∈I(t,1)

OF/Ht −→ E
−1
Hs

∏

Ht∈I(t,1)

OF/Ht .
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The first map has components given by inflations for Hs ⊇ Ht and the second is localization.
Case 2: t < s. In this case s is the last non-zero term in both σ and τ and the only

change is to replace the expression
∏

Ht∈I(t,0)
E−1Ht,0

(which actually means take the product

over a singleton of a localization doing nothing!) with
∏

Ht∈I(t,1)
E−1Ht

, and here a diagonal
map is used.

More precisely if

Ra(at+1, . . . , as, 0, . . . , 0) =∏

Ht+1∈I(t+1,at+1)

E−1Ht+1,at+1

∏

Ht+2∈I(t+2,at+2)

E−1Ht+2,at+2
· · · E−1Hs−1,as−1

∏

Hs∈I(s,as)

OF/Hs

we take the map into the product whose components are localizations

{lit} : Ra(at+1, . . . , as, 0, . . . , 0) −→
∏

Ht∈I(t,1)

E−1Ht
Ra(at+1, . . . , as, 0, . . . , 0)

and then apply alternate products and localizations to incorporate the terms from the 0th
to the (t− 1)st.

When τ has more than one extra vertex than σ the map Ra(i
τ
σ) is the composite of the

maps adding one vertex at a time. It is apparent from the description above that the order
in which this is done makes no difference.

11.E. The algebraic diagram Ra is the diagram R
f
d from [28]. We briefly recall the

framework of [28], so that we may observe that Ra is precisely the diagram of rings appearing

there as Rf
d .

The diagram Rc is the contravariant functor on the poset ConnSub(G) of connected
subgroups ofG with valueOF/K atK, and with inflation maps between them. The dimension
function d : ConnSub(G) −→ [0, r] gives rise to a dimension function on the posets of flags.
The general construction de! described there collects together the subgroups of the same
dimension, and extends to flags using localizations and products. This specializes precisely
to the description of Ra, so that Rf

d = Ra.

11.F. Description of the functors. We now briefly recall from [28] the functors appearing
in the diagram from Subsection 11.A above.

The left hand horizontal translates between indexing over pairs and indexing over flags.
For qce-modules the value of a module on a flag only depends on the largest and smallest
subgroup in the flag, so this translation is nugatory; the letter p is for the translation to
pairs and the letter f for the translation to flags.

The vertical i is the inclusion of qce-modules in all Rf
c -modules, and the functor Γf

c is the
right adjoint to i constructed in [28, Section 11] following the pattern of [25]; we will not
need to use the exact construction.

The functor e is obtained by taking idempotent pieces. Indeed, if M is an R
f
d-module

and F = (K0 ⊃ K1 ⊃ · · · ⊃ Ks) is a flag of connected subgroups with dimension dF =

(d0 > d1 > · · · > ds) there is an idempotent eF ∈ R
f
d(dF ) picking out the flag F ; we take

(eM)(F ) = eF (M(dF )) (see [28, Section 6] for further details).
The functor d∗ is left adjoint to e. The natural idea is to take direct sums: if N is an

Rf
c -module then (d∗N)(d) =

⊕
dF=dN(F ). However this is not compatible with structure

maps and one must take the submodule of the product it generates. There is a little work to
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be done to check this makes sense, and the construction is described in detail in [28, Section
6].

12. Model structures and equivalences on the algebraic categories

The output of the work above is a Quillen equivalence between the category of rational G-
spectra and an algebraic category cell-Ra-mod, the cellularization of the category of modules
over the diagram Ra of rings. The purpose of this section and the next is to simplify the model
by avoiding the need for cellularization: we show that the cellularization of the category of
Ra-modules is Quillen equivalent to the smaller category of objects in the category of qce-
Rc-modules, Ap

c(G).

12.A. Two examples. Before turning to general results we give two examples of this phe-
nomenon in a simpler context.

The first example is for modules over a single polynomial ring.

Example 12.1. (Torsion modules over a polynomial ring.) If G is a connected compact Lie
group, the category of free rational G-spectra is Quillen equivalent to the category of torsion
modules over the polynomial ring H∗(BG) [31].

The topology gives a Quillen equivalence with the model category cell-H∗(BG)-modp:

the category of DG-modules over H∗(BG) with the algebraically projective model structure
cellularized with respect to the residue field Q. This in turn is Quillen equivalent to the
model category cell-H∗(BG)-modi, which has the same underlying category of DG-modules
over H∗(BG), but now endowed with the algebraically injective model structure and again
cellularized with respect to the residue field Q.

Finally, if m is the ideal of positive codegree elements in H∗(BG), we consider the adjunc-
tion

i : tors-H∗(BG)-mod
//
H∗(BG)-modi : Γmoo

where Γm is the m-power torsion functor. The category of torsion modules has an injec-
tive model structure (weak equivalences are homology isomorphisms and cofibrations are
monomorphisms). Accordingly, i preserves cofibrations and acyclic cofibrations and the ad-
junction is a Quillen adjunction. Finally, the Koszul complex is a small generator of the
torsion modules, so the cellularization principle shows this induces a Quillen equivalence

tors-H∗(BG)-mod ≃ cell-H∗(BG)-modi.

This example is directly relevant to the algebraic model A(G) for a torus G. Indeed, if
we consider objects of A(G) which are concentrated at the connected subgroup 1, and for
which there is no contribution from other finite subgroups, the quasicoherence condition on
Rc-modules in A(G) implies that objects concentrated at the subgroup 1 are precisely the
torsion H∗(BG)-modules.

The second example works with a rather small diagram of rings, with each of the rings
Noetherian.

Example 12.2. (Semifree T-spectra.) For the circle group T, our models are over a punc-
tured square of rings. If we simplify the category by restricting attention to semifree spectra,
the rings that occur are much smaller and we can see the issues introduced by diagrams with-
out having the infinite number of subgroups to complicate matters.

48



The diagram of rings for semifree T-spectra is

Ra =




Rv

↓
Rn −→ Rt



 =




Q

↓
Q[c] −→ Q[c, c−1]





An Ra module M consists of a diagram

M =




Mv

↓
Mn −→ M t


 =




V
↓

N −→ P




There are four relevevant model categories. To start with, on each of the three objectwise
module categories we can choose either the algebraically projective model structure or the
algebraically injective model structure. We need to make the same choice at each vertex
so that the maps in the diagram respect the model structures. Secondly, having made that
choice, we may choose either the diagram theoretically projective or injective model. Since
the diagrams are both direct and inverse, the results of [35] show these models all exist, and
it is clear there are Quillen equivalences between either of the two binary choices by using the
identity functors. In fact, we only need three of the four possibilities; a diagram-projective,
algebraically-injective model structure does not appear.

Having made a choice, we cellularize with respect to the two modules corresponding to
basic geometric generators

S = Ra =




Q

↓
Q[c] −→ Q[c, c−1]


 and G+ =




0
↓

Q −→ 0




By [33, Corollary 2.8], cellularization preserves the Quillen equivalences mentioned above.
Finally, for qce-R-mod, the underlying category consists of quasi-coherent extended mod-

ules. The quasi-coherence condition is that the horizontal is localization in the sense that

M t ∼= Mn[1/c].

The extendedness is the condition that the vertical is induction in the sense that

M t ∼= Q[c, c−1]⊗ V.

The inclusion of this category of modules has a right adjoint, and we may argue as in the
previous example. We will give the category of qce-modules a model structure so that it is
Quillen equivalent to the cellularization of the doubly injective model structure.

12.B. Construction of model structures. In the remainder of this section we turn to
the full PCf -diagram Ra of rings. We saw in Section 11 that Ra = R

f
d in the notation of

[28], and we outline here the proof that the cellularization of the doubly projective model
category of Ra-modules is equivalent to the category of DG qce-Rp

c-modules Ap
c(G) as in

Section 11.
We begin by formally introducing the algebraic model structures we use.
These are model structures on diagrams of modules over diagrams of DGAs. For each in-

dividual DGA there is an algebraically projective model structure [58], which is constructed
from free modules in the usual way; the proof may be obtained by adapting [41, 2.3]. Sim-
ilarly, for an individual DGA with 0 differential there is an algebraically injective model
structure [31].
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Making a choice of algebraically projective or injective model structures at all points in
the diagram we may then seek to define a diagram-theoretically projective model structure
(in which weak equivalences and fibrations are given pointwise) or a diagram-theoretically
injective model structure (in which weak equivalences and cofibrations are given pointwise).
Since the finite diagram shapes we are interested in here are both direct and inverse, both
diagram-projective and diagram-injective model structures exist by [35, Proposition 3.1] for
either of the algebraic choices (made consistently throughout the diagram). Only three of the
four choices appear in our work here, the doubly-projective case (which also follows from [60,
6.1]), the doubly-injective case, and the diagram-injective, algebraically-projective case.

12.C. A model structure on torsion modules. We consider the category Ap
c(G) of qce-

Rp
c-modules and show the associated category of DG objects admits a model structure with

quasi-isomorphisms as the weak equivalences.

Proposition 12.3. The category DG−Ap
c(G) of DG qce-Rp

c-modules admits a model struc-
ture with weak equivalences the quasi-isomorphisms and cofibrations the monomorphisms at
each object. The fibrant objects are injective if the differential is forgotten, and fibrations are
surjective maps with fibrant kernel.

Proof : We use the method of [21, Appendix B], where it is shown that one can often
construct a model structure using a type of fibrant generation argument provided one has a
suitable finiteness of injective dimension.

We have an abelian category A = Ap
c(G) and we aim to put a model structure on the

category of DG objects ofA. We will specify a set BI of basic injectives containing sufficiently
many injectives (i.e., any object of A embeds in a product of basic injectives). An injective I
is viewed as an objectK(I) ofDG−A with zero differential. The notation is chosen to suggest
an Eilenberg-Mac Lane object (or cosphere). Next, we let P (I) = fibre(1 : K(I) −→ K(I)),
with the notation chosen to suggest a path object (or codisc). The set L of generating
fibrations consists of the maps P (I) −→ K(I) for I in BI. The setM of generating acyclic
fibrations consists of the maps P (I) −→ 0 for I in BI.

We now take we to consist of quasi-isomorphisms, cof to be the maps with the left lifting
property with respect to M and fib to be the maps with the right lifting property with
respect to (we ∩ cof), and prove this forms the model structure of the lemma. We outline
the four main steps and then turn to proving they can be completed in our current situation.

Step 1: Show that cof consists of objectwise monomorphisms.
Step 2: Show that for any X there is an objectwise monomorphism α : X −→ P (I) for

some injective I.
Step 3: Show that the maps P (I) −→ K(I) and P (I) −→ 0 in L andM respectively are

in fib.
Note that since any injective is a retract of a product of basic injectives, it follows that

P (I) −→ K(I) and P (I) −→ 0 are fibrations for any injective I. Since we have chosen BI
to contain enough injectives, one of the factorization axioms follows immediately, since we
may factorize f : X −→ Y as

X
{f,α}
−→ Y × P (I)

≃
−→ Y,

with α as in Step 2.
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Step 4: Prove the second factorization axiom using only fibrations formed from those
named in Step 3.

More precisely, given f : X −→ Y , we form a factorization X −→ X ′ −→ Y with
X −→ X ′ a quasi-isomorphism and X ′ −→ Y a fibration formed by iterated pullbacks of
fibrations P (I) −→ K(I). This is precisely dual to the usual argument attaching cells to
make a map of spaces into a weak equivalence, but because the dual of the small object
arguement does not apply, we use the finiteness of injective dimension of A to see that
only finitely many steps are involved in the process (details below). The map X −→ X ′

can be made into a cofibration by taking the product of X ′ with a suitable P (I) as in the
proof of the first factorization argument. It follows using the defining right lifting property
that an arbitrary fibration is a retract of one formed by iterated pullbacks of fibrations
P (I) −→ K(I) or P (I) −→ 0.

It remains to verify the four steps can be completed. We follow the pattern from the case
of the circle group in [21, Appendix B]. We note that for each connected subgroup H of G
there is an evaluation functor

evH : Ra-modules −→ OF/H -modules

with right adjoint fH . In particular, if N is a torsion module, fH(N) lies in A(G) and

HomA(G)(X, fH(N)) = HomOF/H
(φHX,N).

We take the basic injectives to be those of the form

IH̃ = fH(H∗(BG/H̃))

where H̃ is any subgroup with identity component H . It is shown in [24, 2.20] that this set
contains sufficiently many injectives.

The following elementary lemma lets us reduce verifications to statements about modules
with zero differential over a (single object) ring. We write Hom for the differential graded
object of graded A-morphisms and let DG−Hom denote the group of morphisms commuting
with the differential. The differential on Hom is defined so that the DG-morphisms are the
0-cycles in Hom.

Lemma 12.4. (i) HomA(X,K(fH(M))) = HomOF/H
(φHX,M)

(ii) DG−Hom(X,K(fH(M))) = Hom(φHX/dφHX,M)
(iii) DG−Hom(X,P (fH(M))) = Hom(ΣφHX,M)

It follows from this lemma by the left lifting property that cof consists of objectwise
monomorphisms (Step 1), see also [21, Lemma B.2], and that we may find a monomorphism α
in the first factorization argument (Step 2): for this we first embed all φHX in some injective
IH(X) ignoring the differential and use Lemma 12.4(iii) to obtain a map to P (fH(IH(X))),
and take the product of these over all H to to obtain P (I).

This lemma also makes it straightforward to verify that objects of L andM are fibrations.
The case of P (I) −→ 0 is simply the defining property of an injective. The problem

A

i

��

α// P (fH(IH̃))

��
B

β//

::t
t

t
t

t
t

h

K(fH(IH̃)))
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is equivalent to

Σ−1φHA/dφHA
d //

i

��

φHA

i

��

α{{✇✇
✇✇
✇✇
✇✇
✇

Σ−1IH̃

Σ−1φHB/dφHB

β̃
77♦♦♦♦♦♦♦♦♦♦♦
d // φHB

cc❍
❍
❍
❍h

To find a solution we use a standard diagram chase. We first use the fact that i is a
homology epimorphism to deduce that β̃ vanishes on cycles and the fact that it is a homology
monomorphism to see that this means that h̃ is consistently defined on φHA+dφHB. Finally,
we use the defining property of injectives to extend it over φHB.

This leaves Step 4. Here we start by forming an exact sequence

0 −→ H∗(X) −→ H∗(Y )⊕ I0 −→ I1 −→ · · · −→ IN −→ 0

in As(G), where the Is are injective. The finite injective dimension of As(G) ensures such
an exact sequence exists. We now realize this by a tower of fibrations

Y ←− X0 ←− · · · ←− XN = X ′,

together with lifts

��
X1

��
X0

��
X

f //

f0
>>⑤⑤⑤⑤⑤⑤⑤

f1

FF✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍
Y.

We take X0 = Y ⊕K(I0), and the subsequent objects and maps are constructed using the
diagram

X

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

""❉
❉❉

❉❉
❉❉

❉❉

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷

Xs

��

// P (Σ−sIs)

��
Xs−1

// K(Σ−sIs)

where the lower horizontal is chosen to realize the inclusion of im(Is−1 −→ Is) in Is. The map
fN : X −→ XN is necessarily a quasi-isomorphism, and can be made into a monomorphism
by taking a product with a suitable P (I).

This completes the sketch proof of the proposition. �
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12.D. Equivalence of models of torsion modules. We recall that Ra = R
f
d , and work

with the adjunction of Proposition 11.1.

Proposition 12.5. The adjunction

l : Ap
c(G) = qce-Rp

c-modules
//
Ra-modii : Γoo .

is a Quillen adjunction, where the subscript ii refers to the use of the doubly injective model
structure on Ra-modules (i.e., injective in both the module theoretic and diagram theoretic
sense) and where l = d∗if and Γ = pΓf

c e
Cellularizing with respect to the images of the topological cells induces a Quillen equivalence

A(G) = Ap
c(G) = qce-Rp

c-modules ≃ cell-Ra-modii.

Proof: First we need to check that l = d∗if preserves cofibrations and acyclic cofibrations
so that we have a Quillen adjunction.

The cofibrations in Ap
c(G) are the monomorphisms, which are the objectwise monomor-

phisms. Similarly, the cofibrations in an algebraically injective model structure are precisely
the monomorphisms. The cofibrations in the doubly injective Ra-module category are pre-
cisely the morphisms which are objectwise cofibrations, namely the objectwise monomor-
phisms. It is obvious that f and i preserve monomorphisms. It is also clear that the functor
d! (given by taking the product of the values) preserves monomorphisms. Since d∗N ⊆ d!N ,
it follows that d∗ also preserves momomorphisms.

The weak equivalences in both categories are objectwise quasi-isomorphisms, and we will
show l preserves all homology isomorphisms. Since l is defined at the level of abelian cat-
egories, it takes mapping cones to mapping cones. It therefore suffices to show that if X
is a qce-module with H∗(X) = 0 then H∗(lX) = 0. For this we use a filtration described
in [28, Section 6] (the map d : Σc −→ [0, r] and the diagram Rf

c take the roles of the map
π : Σ −→ Σ and the ring Rf ). To avoid complicating the notation we will omit the notation
if since ifX takes the same values as X on pairs.

For each flag f = (f0 > · · · > fs) of dimensions we consider the value (d∗X)(f) at f .
Inside this we have the generating submodules Mfi for i = 0, 1, . . . , s (this is the submodule
generated by the image of (d∗X)(fi) =

⊕
dimK=fi

X(K)). There is an associated Mayer-
Vietoris spectral sequence for these, showing that it suffices to show that for each face
e = (e0 > e1 > · · · > et) ⊂ (f0 > f1 > · · · > fs) = f the intersection

Me =
⋂

j

Mej

is acyclic. A combinatorial lemma [28, Lemma 6.7] shows that Me is generated by the image
of the diagonals including e in f . Furthermore

Me =
∑

dimE=e

ME =
⊕

dimE=e

ME

so it suffices to show that ME is acyclic.
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Now consider the diagram

Rd(f)⊗Rd(e) X(E) //

��

(d!M)(f)

∼=
��

d!e[Rd(f)⊗Rd(e) X(E)] // (d!M)(f).

in which ME is the image of the top horizontal. We argue that the top horizontal is in fact
a monomorphism, and it then follows since Rd(f) is flat over Rd(e) that ME is acyclic.

In fact the bottom horizontal is an isomorphism since X is qce; indeed the F th idempotent
piece is the map Rd(F )⊗Rd(E) X(E) −→ X(F ). The left hand vertical is a monomorphism
since it can be viewed as a composite

Rd(f)⊗Rd(e) X(E) −→ Rd(f)⊗Rd(e)

∏
X(E) −→ d!eRd(f)⊗Rd(e) X(E);

the first is a monomorphism since the diagonal is and Rd(f) is flat over Rd(e), and the second
map is an isomorphism. It follows that the top horizontal is a monomorphism as required.

This shows that we have a Quillen pair, and we now cellularize with respect to the images
of the cells G/H+. By the Cellularization Principle [33] this induces a Quillen equivalence
of cellularizations since the cells are small and lie in Ap

c(G).
Finally, it remains to check that cellularization is the identity on Ap

c(G). This will be
completed by Proposition 13.8 which states that cellular equivalences for qce modules are
precisely the quasi-isomorphisms. Thus,

Ap
c(G) = qce-Rp

c-modules = cell-qce-Rp
c-modules.

�

Remark 12.6. In order to obtain monoidal equivalences, we will need a monoidal model
structure on A(G). For this we need to extend Barnes’s flat model structures from the rank
1 case to the arbitrary case, using [25].

13. Cellular equivalences in A(G)

The main purpose of this section is to show that cellular equivalences coincide with quasi-
isomorphisms for A(G). This comes in Subsection 13.E. Since cells are determined by their
homology (by [24, 12.1], quoted as Corollary 2.9), we need not choose particular models.
Nonetheless, we begin by describing some models for the algebraic cells, since this gives us
an opportunity to introduce some essential properties in a concrete fashion.

13.A. Cohomology of subgroups and homotopy of cells. To guide our construction,
we calculate the homology of the natural cells G/K+ as objects of A(G), and then give
the appropriate adaption using Koszul complex constructions. First we need a little more
background. We have already discussed the relationship between G and its quotient groups
G/K, together with the associated inflation map OF/K −→ OF . We now need to discuss
the cohomology of subgroups and the associated restriction maps.

To start with note that rational cohomology of a subgroup K of the torus depends only on

the identity component: the restriction map induces an isomorphismH∗(BK)
∼=
−→ H∗(BK1),

since the component group K/K1 necessarily acts trivially on H∗(BK1).
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Next, write F(K) for the set of finite subgroups of K when emphasis is required, and
similarly

OK
F =

∏

F∈F(K)

H∗(BK/F ),

noting that this makes sense whether or not K is connected. The restriction map is the
composite

OG
F =

∏

F∈F(G)

H∗(BG/F ) −→
∏

F∈F(K)

H∗(BG/F ) −→
∏

F∈F(K)

H∗(BK/F ) = OK
F

where the first map is projection onto the direct summand corresponding to the factors with
F ∈ F(K).

Lemma 13.1. If K is a subgroup of G of codimension c(K) then as an Ra-module πA∗ (G/K+)
is concentrated on the connected subgroups of K and is given by

πA∗ (G/K+)(L) =

{
E−1L OF ⊗OF/L

Σc(K)OK
F/L if L is a connected subgroup of K

0 otherwise.

where bars indicate images in G = G/L.

Proof: We must calculate

πG
∗ (DEF+ ∧ S∞V (L) ∧G/K+) = E

−1
L OF ⊗OF/L

πG/L
∗ (DEF/L+ ∧ ΦLG/K+).

This is evidently zero unless L ⊆ K, and if L ⊆ K, then ΦLG/K+ = (G/K)L+ = G/K+,
where bars indicate the image in G/L. Accordingly,

πG
∗ (DEF/L+ ∧G/K+) ∼= Σc(K)πK

∗ (DEF+/L) = Σc(K)
∏

L⊆L̃⊆K

H∗(B(K/L̃)).

�

13.B. Koszul complexes. To form suitable models, we use a standard construction from
commutative algebra. Given a graded commutative ring B and elements x1, . . . , xn we may
form the Koszul complex

K(x1, . . . , xn) = (Σ|x1|B
x1−→ B)⊗B · · · ⊗B (Σ|xn|B

xn−→ B),

which is finitely generated and free as a B-module. If B is a polynomial ring B = k[x1, . . . , xn]
we write just KosB for the complex; this is independent of the choice of homogeneous gen-
erators up to isomorphism, and the natural map KosB −→ k is a quasi-isomorphism. If M
is a B-module we write KosB(M) = KosB ⊗B M .

We say that L is cotoral in K if L is a normal subgroup of K and K/L is a torus. We note
that if L is cotoral in K then we may choose a map G/L −→ K/L giving an isomorphism
G/L = G/K ×K/L and hence

H∗(BG/L) = H∗(BG/K)⊗H∗(BK/L).

We may therefore form a version of H∗(BG/K) which is flat over H∗(BG/L) by ten-
soring with the Koszul complex model for H∗(BK/L) based on a set of generators for
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ker(H∗(BG/L) −→ H∗(BK/L)). However it is not necessary to make this choice, since
(even if K/L is not a torus), the exact sequence

K/L −→ G/L −→ G/K

induces an exact sequence

H∗(BK/L)←− H∗(BG/L)←− H∗(BG/K)

of Hopf algebras, so that

H∗(BK/L) = H∗(BG/L)⊗H∗(BG/K) k.

Now replace k by the complex KosH∗(BG/K) of projective H∗(BG/K)-modules, indepen-
dent of L, and the tensor product will be a complex of projective H∗(BG/L)-modules,

KosH∗(BG/K)(H
∗(BG/L)) ≃ H∗(BK/L).

If H∗(BG/K) is replaced by a DGA A(K) with the same cohomology, the complexes
Σ|x|B −→ B are replaced by the fibres of the maps Σ|x|A(K) −→ A(K); up to equivalence,
this only depends on the cohomology classes. The full Koszul complex KosA(K) is obtained
as before by tensoring together the DG modules for a chosen set of polynomial generators.

13.C. The flat form of the natural cells. To apply the Koszul complexes in our case
we choose generators for H∗(BG/K) and form the associated Koszul complex, KosH∗(BG/K).
Note that we have a diagonal map

∆ : H∗(BG/K) −→
∏

L̃∈F/L

H∗(BG/L) ∼=
∏

L̃∈F/L

H∗(BG/L̃) = OG
F/L,

so we may form KosH∗(BG/K)(O
G
F/L), which is free as a OG

F/L-module.

Lemma 13.2. The Koszul complex gives good approximations of quotient groups in the sense
that

H∗(eKO
G/L
F/L ⊗OG

F/L
KosH∗(BG/K)(O

G
F/L))

∼= OK
F/L,

where eK is the idempotent corresponding to the finite subgroups of G/L contained in K.

Proof: We have remarked that the short exact sequence

0 −→ H∗(BG/K) −→ H∗(BG/L) −→ H∗(BK/L) −→ 0

of Hopf algebras shows that

H∗(H
∗(BG/L)⊗H∗(BG/K) KosH∗(BG/K)) ∼= H∗(BK/L).

We are just taking a product of instances of this indexed by finite subgroups of G/L con-
tained in K/L. �

This motivates the following definition.

Definition 13.3. The flat form of model for the cell G/K+ is defined by

σK(L) =

{
E−1L eKO

G
F ⊗OF/K

Σc(K)KosH∗(BG/K)(OF/K) if L is cotoral in K1

0 otherwise

We may now prove that this is indeed a model.
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Lemma 13.4. The flat model σK is a model for G/K+ in A(G) and any other model is
weakly equivalent to it.

Proof: The uniqueness theorem [24, 12.1] states that cells are characterized by their homol-
ogy, so it suffices to show that

H∗(σK)
∼= πA∗ (G/K+).

Lemmas 13.1 and 13.2 show that the value at L should be

E−1L O
G
F ⊗OF/L

eKO
G
F/L ⊗OF/K

Σc(K)KosH∗(BG/K)(OF/K),

and we calculate

E−1L O
G
F ⊗OF/L

eKO
G
F/L
∼= E−1L eKO

G
F .

�

It is worth recording the following immediate consequence of the definition.

Lemma 13.5. The flat model σK is built from the model σG = OG
F of the sphere by taking

a retract and then using finitely many fibre sequences. �

13.D. Properties of the flat model σK. By construction the cells themselves have torsion
homology, which gives one of the properties we require.

Lemma 13.6. In the model category cell-Ra-mod the cellular objects have torsion homology.

Proof: By construction, H∗(σK) = πA∗ (G/K+), which lies in A(G). Since the subcategory
of torsion modules is an abelian subcategory closed under sums, any object built from cells
has torsion homology. �

Next, there is a finiteness requirement if we are to use these as the generating objects for
our cofibrantly generated model structure.

Lemma 13.7. For any subgroup K, the flat model σK for the cell G/K+ is small in the
abelian category in the sense that

Hom(σK ,
⊕

i

Ni) =
⊕

i

Hom(σK , Ni).

Proof: In view of Lemma 13.5, it suffices to prove the special case K = G.
The value of a map f : σG −→M is determined by its value at L = 1. On the other hand

f(1) : σG(1) = OF −→ M(1)

is determined by the image of the identity. �
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13.E. Algebraic cells and quasi-isomorphisms. We need to understand weak equiv-
alences between objects of A(G). For clarity, we refer to maps X −→ Y inducing an
isomorphism of H∗(Hom(σK , ·)) for all cells σK as cellular equivalences, and for brevity we
write

πG
∗ (X) = H∗(Hom(σ•, ·))

for the resulting Mackey-functor.
We begin with a warning: the flat models are not cofibrant.
For example if G is a circle, we have

Hom(S0, X) = PB(X),

where X and its pullback are as displayed:

PB(X) −→ V
↓ ↓
N −→ E−1G OF ⊗ V.

It is not hard to construct examples of acyclic X for which PB(X) is not acyclic. This
simply means that we retreat from being so explicit at the level of models. Our remaining
work takes place at the level of homotopy categories.

The key to removing the cellularization process in the formation of A(G) is to show that
there are enough cells in the sense that cellular equivalences of torsion modules are quasi-
isomorphisms.

Proposition 13.8. For objects of A(G), cellular equivalences are homology isomorphisms.

Remark 13.9. Some may find it helpful to consider the corresponding result for spectra
where the isotropic filtration is more familiar.

Taking mapping cones, it suffices to show that cellularly trivial objects of are acyclic.
Suppose then that X is cellularly trivial. Since S0 is built from objects E(F/K)+ ∧ S

∞V (K)

by finitely many cofibre sequences, X is built from X〈F/K〉 = X ∧ E(F/K)+ ∧ S∞V (K)

by finitely many cofibre sequences, and it suffices to show that the homology of X〈F/K〉
is zero. However, for spectra of this form, cellular triviality and acyclicity are equivalent.
Finally, by duality of cells, cellular triviality of X implies that of X ∧ T for any T .

Before we begin, we need two lemmas.

Lemma 13.10. If πG
∗ (X) = 0 then πG

∗ (X ⊗ C) = 0 for any cellular object C.

Proof: The lemma follows from the special case in which C is a cell σL. In fact, we have a
homotopy equivalence of DGAs

Hom(σK , X ⊗ σL) ≃ Σc(L)Hom(σK∩L, X)⊗H∗(G/(KL))

where H∗(G/(KL)) has zero differential and c(L) is the codimension of L.
In fact both sides can be formed from eK∩LHom(S0, X) by taking iterated fibres of

maps which are multiplication by some element of OF obtained by inflation. On the
left we take a set of polynomial generators for H∗(BG/K) and a set y1, . . . , ye of poly-
nomial generators for H∗(BG/L) and inflate them. It is convenient to choose generators
x1, . . . , xd of H∗(BG/(KL)) and extend the collection by y1, . . . , ye to give generators of
H∗(BG/K) and by z1, . . . , zf to give generators of H∗(BG/L). On the left we may then
choose x1, . . . , xd, y1, . . . , yd, z1, . . . , ze as our generators of H

∗(BG/(K ∩L)). Since the map
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x of a Koszul complex K(x) is nullhomotopic, the effect of the second set of generators
x1, . . . , xe simply increases multiplicity. �

We need to use certain standard objects of A(G) constructed from modules. There is a
right adjoint fK to evaluation at G/K. Roughly speaking, for suitable OF/K-modules M ,
the object fK(M) is obtained by putting M at G/K, and filling in other values accordingly
(see [24, Section 4] for further details).

Lemma 13.11. Suppose X is a torsion object with H∗(X) = fK(M) for some connected
subgroup K and some OF/K-module M . If X is cellularly trivial, it is acyclic: if πG

∗ (X) = 0
then H∗(X) = 0.

Proof : Since fK is right adjoint to evaluation at K, and since this is compatible with
resolutions, the Adams spectral sequence for [T,X ]G takes the simple form

Es,t
2 = Ext∗,∗OF/K

(φKH∗(T ),M)⇒ [T,X ]G∗ .

In particular, taking T = S0, we see that H∗(X) is one of the entries in πG
∗ (X). �

Proof of Proposition 13.8: Taking mapping cones, it suffices to show that cellularly
trivial objects of A(G) are acyclic. Suppose then that X is cellularly trivial.

We argue by induction on the dimension of support of H∗(X) that cellularly trivial objects
of A(G) are acyclic. There is nothing to prove if the support is in dimension < 0 (i.e., if
H∗(X) = 0).

Suppose then that the result is proved for objects with support in dimension < d and that
X is supported in dimension ≤ d. We then define X ′ using the fibre sequence

X ′ −→ X −→
⊕

dim(K)=d

fK(φ
KH∗(X)).

Next, note that

fK(φ
KH∗(X)) ≃ X ⊗ S∞V (K).

This is cellularly trivial by Lemma 13.10, and hence also acyclic by Lemma 13.11.
Finally, we claim there is an equivalence

X ′ ≃ X ⊗ F

for suitable F . Indeed, since X is supported in dimension ≤ d we have X ≃ X ⊗ EF(d)+,
where F(d) is the family of subgroups of dimension ≤ d. We may then take F to be defined
by the fibre sequence

F −→ EF(d)+ −→
∨

dim(K)=d

EF(d)+ ⊗ S∞V (K).

Thus X ′ is cellularly trivial by Lemma 13.10 and it is thus acyclic by induction. It follows
that X is acyclic, which completes the inductive step. The general case follows in r+1 steps.

This completes the proof of Proposition 13.8 �
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