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Mutations in Succinate Dehydrogenase B (SDHB) enhance neutrophil survival 

independent of HIF-1alpha expression. 
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Neutrophils are unusual in their reliance on glycolysis to maintain their energy requirements
1
 

despite the presence of mitochondria and TCA cycle intermediaries
2
.  This metabolic 

adaptation is thought in part to underpin their survival and anti-microbial function in tissues 

that are typically hypoxic
3-5

.  Despite their unique metabolism, little is known about the 

importance of flux between metabolic pathways in determining neutrophil survival responses. 

Recent work has demonstrated the importance of the HIF/PHD oxygen-sensing pathway in 

this regard, identifying both HIF-1α and PHD3 as critical regulators of neutrophil survival in 

hypoxia
6,7

, with the extended survival of neutrophils in hypoxia being dependent upon HIF-1α   

expression. In parallel, an expanding body of work has addressed the role of HIF-1α in 

coordinating macrophage functional responses to pro-inflammatory mediators
8-11

.  This work 

led to the observation that, in macrophages, LPS causes an intracellular increase in succinate 

levels resulting in HIF-1α stabilization and enhanced IL-1β signaling
11

. Subsequently, the 

metabolic re-wiring of anti-microbial (M1) and tissue repair (M2) macrophages has been 

elucidated, with important consequences of TCA cycle activity and integrity for regulation of 

NO and N-glycosylation signaling respectively
12

.  Whether TCA cycle activity and succinate 

accumulation regulates HIF-1α activity and hypoxic survival in neutrophils is unknown.  

 

Patients with rare germline mutations in genes encoding the TCA cycle enzyme succinate 

dehydrogenase (SDH) allow us to directly question the role of the TCA cycle and 

mitochondrial respiratory chain in neutrophil survival responses.  SDH oxidises succinate to 

fumarate in the TCA cycle, and is a ubiquinone oxidoreductase, also functioning in complex II 

of the respiratory chain
13

.  SDH comprises four subunits (A-D), with inherited mutations of 

each of the subunits linked to the development of PHAEO and PGL following somatic 

inactivation of the wild type allele, and loss of heterozygosity
14-16

.  We questioned whether 

heterozygous germline mutations in SDHB (SDHBx) would reduce SDH activity in the 

peripheral blood neutrophils of these patients, leading to accumulation of intracellular 

succinate, HIF-1α stabilization and a pseudo-hypoxic survival phenotype given the 

importance of the B subunit for SDH catalytic function and its high prevalence within 

PHAEO/PGL patient populations
13,17,18

. 
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To determine whether succinate is implicated in regulating neutrophil survival responses we 

isolated peripheral blood neutrophils from patients with heterozygous germline SDHBx 

mutations in whom an increase in intracellular succinate would be predicted. In total, 20 

individuals were studied with a combination of frame-shift, splice and non-sense mutations 

(Supplementary Table 1). Although all but one patient displayed plasma succinate levels 

within the normal range, a significantly higher plasma succinate level was observed in 

patients with SDHBx (Figure 1a).  To confirm the consequence of SDHB mutations on 

intracellular succinate and measure other TCA cycle and glycolytic intermediaries, peripheral 

blood neutrophils were isolated from 3 individuals with SDHBx and 3 healthy controls and 

relative metabolite abundance determined by gas chromatography-mass spectrometry 

(Figure 1b).  Succinate was significantly more abundant in neutrophils isolated from patients 

with SDHBx than controls.  This was paralleled by increases in lactic acid and citric acid, but 

no changes in other TCA cycle intermediaries (α-ketoglutaric acid, fumaric acid or malic acid).  

Thus neutrophils hetezygous for mutant SDHB gene expression display the predicted 

elevation in intracellular succinate but with no decrease in downstream TCA cycle 

intermediaries. Citric acid levels were increased, which may reflect an increase in biosynthetic 

requirements out-with the TCA cycle.  In keeping with the increased succinate in SDHBx 

neutrophils, a detectable increase in protein succinylation was also observed (Figure 1c).   

 

The consequence of SDHB heterozygosity for constitutive rates of neutrophil apoptosis and 

hypoxic survival responses was determined.  SDHBx neutrophils displayed both reduced 

constitutive apoptosis and enhanced survival in hypoxia, as assessed both by cellular 

morphology (Figure 1d) and Annexin-V positivity (Figure 1e).  Given the previous report of 

succinate-mediated HIF-1α stabilization in BMDMs
11

, and the importance of HIF-1α for 

hypoxic neutrophil survival
6
, we asked whether the reduced apoptosis in SDHBx neutrophils 

was secondary to increased HIF-1α activity.  HIF-1α protein in SDHBx neutrophils was 

elevated in hypoxia (Figure 2a,b), but undetectable in normoxic cells, in which reduced rates 

of apoptosis were observed.  Thus, the phenotype of enhanced neutrophil survival in the 

setting of SDHB heterozygosity occurs independently of HIF-1α protein expression.  In 

keeping with unaltered HIF-1α activity in normoxic SDHBx neutrophils, we saw no alterations 
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either in glucose uptake (Figure 2c,d), in which a hypoxic uplift is observed in healthy control 

cells, or in extracellular acidification rates, an indirect measure of glycolytic activity (Figure 

2e).  Interestingly, we observed that neutrophils isolated from individuals with SDHB 

mutations displayed significantly reduced levels of oxidant stress (Figure 2f), a phenotype 

associated with enhanced neutrophil survival in CGD patients
19

. However, no differences in 

NADP/NADPH redox ratios were detected between patients and controls suggesting the 

SDHB phenotype to be independent of altered NOX2 activity (Figure 2g).  This led us to 

question whether SDH was regulating apoptosis through its role as a mitochondrial 

ubiquinone oxidoreductase. SDHBx neutrophils demonstrated an increased ratio of oxidized 

to reduced NAD
+
 (Figure 2h) and treatment of healthy human neutrophils with the irreversible 

SDH inhibitor 3-nitropropionic acid reduced constitutive neutrophil apoptosis (Figure 2i), thus 

implicating impaired mitochondrial complex II and compensatory changes in the electron 

transport chain in the enhanced survival of SDHB-mutant neutrophils.  

 

These studies utilize a valuable patient group with a specific mutation in SDHB as an 

experimental system in which to delineate the role of the TCA cycle and mitochondrial 

respiratory chain in neutrophil survival responses.  It provides the first description of elevated 

intra-cellular succinate levels in neutrophils isolated from patients with heterozygous 

mutations in SDHB and the first evidence of a dysfunctional TCA cycle in resting state 

peripheral blood neutrophils.  In marked contrast to the role of succinate in facilitating HIF-

1α−dependent inflammatory responses in LPS-stimulated macrophages, we dissociate 

enhanced neutrophil survival from HIF-1α stabilization in the context of germline mutations in 

SDH, linking it instead to a phenotype of impaired mitochondrial complex II function and 

reduced oxidative stress. Taken together, his work identifies key metabolic differences 

between neutrophils and macrophages, and raises further important questions as to the 

metabolic control of neutrophil function and survival.  Future work dissecting the 

consequences of SDHB mutations for neutrophil host-pathogen responses and inflammation 

resolution will be key in this regard. 
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Figure Legends 

Figure 1. Heterozygous SDHB neutrophils display a specific metabolic signature and 

enhanced survival. 

(A) Plasma succinate concentrations were determined for 97 controls and 19 patients with 

germline mutations in SDHB.  Filled, half-filled and open circles represent patients without, 

with previous, and with current tumours respectively.  Solid lines represent median values 

and dashed lines upper and lower limits of reference.  (B-E) Human peripheral blood 

neutrophils from healthy controls (HC, filled) and SDHBx patients (open) were studied in 

parallel.  (B) Relative metabolite abundance. Freshly isolated neutrophils were lysed in 

methanol and the liquid phase subjected to gas chromatography-mass spectrometry, and 

relative quantification of 20 key metabolic intermediaries performed.  Data represents mean 

+/- SEM, n=3.  (C) Succinylation. Freshly isolated neutrophil lysates were separated by SDS-

PAGE and membranes probed for succinylated protein expression relative to β-actin control, 

blot representative of n=3.  (D,E) Apoptosis.  Neutrophils were cultured for 20 hours in 

normoxia or hypoxia and apoptosis determined by morphology (D) and flow cytometry 

(Annexin V) (E).  Solid bars represent mean, P values were determined by Mann-Whitney U 

test (A), unpaired t-test (B) or 2-way ANOVA (D,E). 

  

Figure 2. SDHBx neutrophil survival is independent of HIF-1α  expression and linked to 

uncoupling of the mitochondrial electron transport chain.  

Human peripheral blood neutrophils from healthy controls (HC, filled) and SDHB patients 

(open) were studied in parallel.  (A,B) HIF-1α protein expression. Freshly isolated neutrophils 

and neutrophils aged for 4 hours in normoxia (N) or hypoxia (H) were lysed, separated by 

SDS-PAGE, membranes probed for HIF-1α and p38 MAPK expression and densitometry on 

hypoxic samples performed.  Representative blot shown (A) with mean densitometry +/- SEM, 

n=6 (B).  (C,D) Glucose uptake. Neutrophils were pre-incubated in glucose-free PBS in 

normoxia (N) or hypoxia (H) for 1 hour prior to stimulation with 100nM fMLP in the presence 

of 200µM 2-NBDG for 20 mins.  Uptake was determined by flow cytometry (FL1 geometric 

mean fluorescence).  Data represents mean +/- SEM, n=5.  (E) Glycolytic capacity. 

Neutrophils were cultured +/- glucose, 2DG (10mM) or LPS (1mg/ml) for 2 hours prior to 
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stimulation with 100nM fMLP and peak extracellular acidification rates determined by 

Seahorse.  Data represents mean +/- SEM, n=4.  (F) Intra-cellular ROS.  DCF fluorescence 

was quantified following 45 mins neutrophil culture in the presence or absence of fMLP (100 

nM), and fold change in patient neutrophil fluorescence calculated relative to healthy controls.  

(G,H) Electron transport.  Ratios of oxidized to reduced NADP (G) and NAD (H) were 

measured by fluorimetric enzyme cycling assay in freshly isolated and aged neutrophils (6 

hours).  (I) Apoptosis. Neutrophils were cultured for 20 hours in the presence or absence of 

3NP (0-2 mM) and apoptosis determined by morphological appearance, data represents 

mean +/- SEM, n=4. P values were determined by unpaired (B), paired (C,D,I) or one-sample 

(F) t-tests or 2-way ANOVA (G,H). 
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