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Abstract. Divertor detachment may be essential to reduce heat loads to magnetic

fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the

extent of the detached, low pressure, plasma region. At maximum extent the front edge

of the detached region reaches the x-point and can lead to degradation of core plasma

properties. We define the ‘detachment window’ in a given position control variable C (for

example, the upstream plasma density) as the range in C within which the front location

can be stably held at any position from the target to the x-point; increased detachment

window corresponds to better control. We extend a 1D analytic model[1] to determine

the detachment window for the following control variables: the upstream plasma density,

the impurity concentration and the power entering the scrape-off layer (SOL). We find

that variations in magnetic configuration can have strong effects; Increasing the ratio of

the total magnetic field at the x-point to that at the target, B×/Bt, (total flux expansion,

as in the Super-X divertor configuration) strongly increases the detachment window for

all control variables studied, thus strongly improving detachment front control and the

capability of the divertor plasma to passively accommodate transients while still staying

detached. Increasing flux tube length and thus volume in the divertor, through poloidal

flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor,

also increases the detachment window, but less than the total flux expansion does. The

sensitivity of the detachment front location, zh, to each control variable, C, defined as

∂zh/∂C, depends on the magnetic configuration. The size of the radiating volume and

the total divertor radiation increase ∝ (B×/Bt)
2 and ∝ B×/Bt, respectively, but not

by increasing divertor poloidal flux expansion or field line length. We believe this model

is applicable more generally to any thermal fronts in flux tubes with varying magnetic

field, and similar sources and sinks, such as detachment fronts in stellarator divertors

and solar prominences in coronal loops.

Submitted to: Nucl. Fusion
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1. Introduction

Divertor detachment is of central importance for practical tokamak reactor designs. It

refers to strong dissipation of the parallel heat exhaust, including pressure loss, before it

reaches the divertor surface. Detachment has been shown to give large reductions of up to

a factor of 100 in electron pressure at the target, p [2, 3, 4], and similar drops in parallel

heat flux at the target, q|| ∝ pT 1/2, and ion flux to the target, Γi ∝ pT−1/2. However,

as we move towards building a reactor, larger and larger parallel heat fluxes entering the

divertor are anticipated and dissipating them becomes more difficult. It therefore becomes

all the more urgent to understand whether and how divertor detachment can be controlled

so that it dissipates high power densities without degrading the core confinement.

The detachment first starts at the divertor target, where the temperature is lowest.

An approximately uniform low-pressure and temperature region then expands away from

the target along the field. We call the upstream end of that cold region the ‘detachment

front’ or interchangeably ‘thermal front’ as they are contiguous. The thermal front is

a region of steep temperature gradients in which the electron temperature transitions

between the hotter upstream region and the colder region below which is dominated by

ionization, recombination and other neutral processes. The detachment front is often

observed to move all the way to the x-point (fully-detached). (It can move further,

forming poloidal detachment in the main chamber, but this is observed less frequently.)

The presence of a low-temperature region at the x-point can lead to varying degrees of

core energy confinement degradation [5, 6, 7, 8, 9, 10, 2, 11, 12, 4, 13]; either directly by

introducing a cold region next to, or inside the separatrix; or indirectly, through easier

penetration of neutrals and impurities across the separatrix [14, 5, 15, 16, 7, 2, 4, 13, 17].

The compression/enrichment of impurities and neutrals in the divertor has also been

found to degrade during detachment [18, 19, 20, 21, 22], raising concerns for pumping He

in a reactor when the divertor is fully-detached.

The ITER design balances the trade-off between core and divertor performance by

keeping the detachment front close to the outer target, ∼ 15% of the poloidal distance

from target to x-point along the outer separatrix[23]. This conservatively keeps the cold

detachment front far from the core plasma and leads to very good He compression and

pumping. The predicted target heat flux reduction at the plate is of order a factor of

40[24], enough to keep heat fluxes below 10MW/m2, but less than could be achieved – an

appropriately conservative scenario. Feedback control of the detachment front location

is a requirement to maintain any such divertor solution.

There have been several successful detachment feedback control experiments using

impurity seeding gases for control of outer divertor detachment in H-mode plasmas

[6, 7, 25, 26]. The main differences between those impurity seeding feedback techniques

relates to the measurement, or metric, used to determine the appropriate flow of seeding

gas. For example, using bolometer chords passing near the x-point allows the detachment

front location to reach the region of the x-point [7], but no further. On the other hand,

using target thermoelectric currents (correlated with Te assuming that the inner divertor

is already detached) leads to the detachment front being held near to the target (or on

the verge of detachment)[6, 25, 26], more similar to the ITER scenario. To our knowledge
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there has been little study of how feedback control can be used to hold the detachment

front at any chosen position ranging from target to x-point. This prevents the study of

the dependence of the front location in the divertor proper (as opposed to the region of

the x-point[13]) on core and divertor performance, which would (a) be useful in studying

the trade-off between core and divertor performance; and (b) is likely important for ITER

and DEMO. Ultimately, we need to determine if there is a core (radiation, dilution and

confinement) and divertor (power loss, detachment, etc.) scenario that is compatible

with a cost-effective, energy-producing, controllable reactor, and that allows control of

detachment.

The difficulty of holding the front location at a given point within the divertor proper

appears to be due to the sensitivity of its location to control variables such as upstream

separatrix density nu, impurity seeding rate, or/and power flowing into the SOL, PSOL.

A review of the literature has not found studies specifically aimed at characterizing and

understanding that sensitivity, as opposed to stability. However, we have found published

data which can give us some guidance. Early Ohmic C-Mod studies of the detachment

threshold, as measured by Langmuir probes, showed that the range of upstream density,

nu, between start of detachment at the target, nut, and detachment reaching the x-point,

nu×, is small. We call the range nu× − nut the ‘detachment window’ in nu. It ranged

from nu× − nut ∼ 0.05nut (figure 21 in reference [2]) to 0.2nut (figure 3 in reference [2]).

A more recent DIII-D study[27], employing divertor Thomson scattering, also indicates

a small detachment window in upstream density for H-mode plasmas at each of several

different levels of injected neutral beam power. A more localized way of quantifying the

sensitivity of detachment front location to control variables, C (e.g. nu), is to define a

front sensitivity to a particular control variable as ∂zh/∂C, where zh is the front location.

The present work provides theoretical predictions of the detachment position

dependence on plasma parameters, based on further development of an analytic model

by Hutchinson for one-dimensional thermal fronts[1]. For conventional divertors with

vertical divertor plate (e.g. C-Mod, ASDEX-Upgrade, JET and ITER) and flat plate

(e.g. DIII-D and JET), the model predicts, consistent with the experimental data

above, a fairly narrow window in detachment for upstream density. We compare the

predicted detachment windows and ∂zh/∂C for C = nu, PSOL and fractional impurity

concentration, fI (related to seeding rate). We present equations representing the extent

to which the detachment front sensitivity and detachment window are modified by

changing the divertor characteristics: particularly the variation of the total magnetic

field, B, in the divertor, and the field line length from upstream to target, L, emblematic

of ‘unconventional’ divertors such as ‘snowflake’[28], ‘x-divertor’[29] and ‘super-x’[30]

divertor configurations. We find that decreasing total magnetic field strength B from

x-point (B×) to target (Bt) strongly increases the detachment window for all control

variables. The front location sensitivity to control variables also decreases. Increasing

field line length in the divertor, either by poloidal flux expansion or increasing the divertor

depth, also enhances the detachment window, but not as strongly.

The underlying physics in the above enhancements is as follows: the gradient in the

total field, ∇B, pointing towards the x-point, also creates a ∇q‖ in the same direction

due to changes in the flux tube area (∝ 1/|B|). If the front moves towards the x-point
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due to increased radiation such a ∇q‖ reduces the distance the front moves before finding

a new equilibrium between increased radiation and q‖, thus increasing the detachment

window and detachment front control. The variation in total B (total flux expansion)

has other important consequences beyond detachment control: The radiating volume

increases proportional to (B×/Bt)
2 due to both the radiating region length and area

scaling as B×/Bt. Overall this leads to an increase in the total radiation proportional

to B×/Bt. On the other hand increasing the fraction of overall flux tube length in the

divertor, z×/L, does not increase the radiating volume, but it affects the front location

control by modifying the temperature profile upstream of the front. We discuss in detail

these two different effects in subsection 6.2.

The detailed physics of divertors and detachment includes both complicated atomic

physics and multi-dimensional transport effects. The effect of atomic physics on

detachment has been considered in 2D models with full divertor geometry [31, 32],

simplified 2D slab models [33] and 1D models [34, 35, 36, 37]. In all these models,

charge exchange collisions and recombination are important to explain the pressure drop

between the X-point and the divertor plates. Such processes have a significant but more

limited influence on the energy losses, which include radiation of both impurities and

hydrogen [31, 32]. It is generally assumed that the impurity radiation dominates, but

in some cases, the radiation due to hydrogen, aided by very effective recombination, has

been reported to be more important for energy loss [31]. Even when impurity radiation

dominates and is localized in a thin thermal front, theoretical arguments and numerical

evidence suggest that 2D geometrical effects can be important to reproduce observations

[38, 39]. In 1D models, charge exchange collisions appear to be an energy dissipation

mechanism comparable to radiation [34, 36], although these models tend to overpredict

the effect of charge exchange losses by assuming that all charge exchanged ions carry

their entire energy and momentum directly to surrounding surfaces.

In our model we intentionally avoid having to understand and calculate the more

complicated neutral effects in the cold region below the thermal front. We do this by

focussing our attention on the thermal front itself, where the electron temperature is

dropping due to radiation that we take to be mostly from impurities (but could include

hydrogen energy losses and neutral enhancement). The simple rationale for this model is

that bringing the electron temperature down to the few eV level at the downstream end

of the thermal front is a necessary condition for detachment. The complicated processes

that occur beyond the thermal front (e.g. recombination), are important in terms of

particle, momentum, and possibly energy loss, but are ignored here to allow us to derive

a robust, informative model of detachment front location. We believe that their inclusion

will not change the general physics we have uncovered, namely the importance of magnetic

configuration on detachment control, and the relative sensitivity of the detachment front

location to external variables. Rather their inclusion will lead to a more realistic profile

of plasma characteristics between the thermal front and the target. The limitations of

the method will be discussed further in subsection 6.3.
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2. Review of the thermal front model

The one-dimensional treatment balances the divergence of parallel conduction with the

net volumetric energy input H = S−E where S is the source of energy (composed mostly

of perpendicular heat fluxes), and E is the emissive energy loss by radiation. Paper [1]

may be consulted for more details than we provide here. The equation expressing this

balance is

∇·
(

B

B
κ‖

B

B
·∇T

)

= −H, (1)

where κ‖ is the Spitzer parallel conductivity. The divergenceless nature of B, ∇ ·B = 0,

means that ∇ and B commute, that is, ∇·(Bg) = B·∇g for any g. Therefore this

equation can be rearranged as

−H = B
B

B
·∇
(

1

B
κ‖

B

B
·∇T

)

= B∇‖

(

1

B
κ‖∇‖T

)

= B
d

dl

(

κ‖

B

dT

dl

)

, (2)

where l is the length along the field line.

Detachment requires the target temperature to be . 5 eV. In our model that

translates to a strong radiative loss E, giving a region of negative H (see Figure 1 for

a 1D illustration of a temperature profile along with source and sink). The impurity

radiation that we suppose dominates this term is generally well represented for impurity

I as the product nenIQ(T ) = n2
efIQ(T ): the square of the electron density times the

impurity density fraction (fI = nI/ne) times a “radiation function”, Q, that depends

on temperature. We assume the temperature dependence consists of a peak in the

radiation at a particular temperature and falling to small levels at much higher or lower

temperature. That is indeed the form of Q given by the standard collisional-radiative

equilibrium[40], but we do not exclude other effects such as neutral charge-exchange or

finite residency time.

The solutions to the heat conduction equation under those conditions give rise to a

radiative region that is localized in position which we referred to earlier as the ‘thermal

front’. Figure 1 shows such a thermal front. On the cold side of the thermal front,

there is a low temperature region with T ∼ Tc at which (in principle) H = 0. The

hot edge of the front is taken to be at temperature Th where the emissive loss becomes

negligible. Above temperature Th the heat conduction and heat source S determine the

temperature’s spatial dependence. To obtain the thermal front shown in Figure 1, we

have assumed an upstream density nu = 1020 m−3, upstream temperature Tu = 110 eV,

connection length, L, of 26.5m and a nitrogen fraction fI = 0.04. The cooling function

for nitrogen that we have used is

Q = 5.9× 10−34 (T − 1 eV)1/2(80 eV − T )

1 + 3.1× 10−3(T − 1 eV)2
W ·m3 (3)

for 1 eV < T < 80 eV, and is Q = 0 for temperatures outside this range. Our simple

cooling function is similar to that in Fig. 1 of reference [41] for nitrogen which includes

non-coronal effects. Note that Th of 65 eV in Fig. 1 has been chosen to be where the

cooling curve Q drops to 5% of its maximum value. Larger values of Th could be chosen,

up to 80 eV.
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Figure 1. Profiles of a) thermal front solution to the conduction equation; b) the

corresponding energy sources and sinks, H, normalized to fin
2
e to enable the positive

values of H at large z to be non-negligible in the figure; and c) the magnetic field

magnitude assumed in the calculations. The coordinate along the magnetic field line z,

closely related to the parallel length l, is defined in (4). The thermal front is demarcated

by Th and Tc, which correspond to zh and zc. Note that the cooling function utilized in

this calculation is given in equation (3).

Following the derivation of [1], we define a convenient parallel coordinate z by

dz =
B×

B
dl =

B×

Bp

dlp, (4)

where lp is the poloidal length, Bp is the poloidal magnetic field, and B× is any reference

value of the total field magnitude (we take it here to be the value at the x-point). We

take z = 0 at the target, and use subscripts t for values at the target, c and h at the

cold and hot ends of the thermal front, × at the x-point, and u at the upstream end

(z = L). The length z is the volume of the flux tube contained between the divertor plate

and the position of interest normalized by a reference area (∝ 1/B×). Defining a scaled

conductivity,

κ ≡ κ‖B
2
×/B

2, (5)



Sensitivity of detachment extent to magnetic configuration and external parameters 7

the conduction equation is simplified as

dq

dz
= H = S − E, (6)

where

q = −κ
dT

dz
= −κ‖

B2
×

B2

dT

dz
= −κ1T

5/2B
2
×

B2

dT

dz
(7)

using Spitzer conductivity κ‖ = κ1T
5/2. The quantity q is a scaled form of the parallel

heat flux density: q = q‖B×/B. Since the area of a flux tube varies inversely proportional

to B, we can identify q as the total parallel heat flux (not the heat flux density, q‖)

through a flux tube which has unit area where B = B×. In the absence of sources and

sinks q is constant and q|| varies as B. ‡
Paper [1] identifies the heat flux lost in the thermal front through a first integral of

the conduction equation. Multiplying equation (6) by q = −κ(dT/dz), and integrating

in z starting from the cold end of the front, we obtain

[

q2
]z

zc
= −

∫ T

Tc

2κ(T ′)H(T ′)dT ′ = 2fIp
2

∫ T

Tc

κ(T ′)
Q(T ′)

T ′2
dT ′, (8)

where we have assumed that the electron pressure p= neT is constant through the front,

and we have approximated H ≃ −E, assuming radiation overwhelms the local source S

in the thermal front. We have also assumed that fI does not depend on temperature

or position, and that Q only depends on position through the temperature (no localized

enhancement due to transport times or neutrals). This approximation is valid if the front

is thin compared to the characteristic length of variation in fI and Q. The assumption

that the front is thin is important because it allows the front to slide between the plate

and the x-point. A thick front, approaching the size of the divertor, would not allow

movement of the front - our emphasis here. Using equation (8), where we choose as

upper limit of the integral the temperature T = Th at which the radiation falls to a

negligible level, we find the relation between the heat flux qh entering the hot side of the

front and the heat flux qc leaving the cold side, q2h−q2c = 2fIp
2
∫ Th

Tc
κ(T ′)Q(T ′)/T ′2dT ′. We

note that this formulation is the same as the one utilized for estimates of the maximum

power that can be radiated along a field line [42, 43, 44, 41].

Formally within this analysis, the conductive heat flux leaving the front, qc, is

negligible because electron conduction is small at low temperature. Then, the heat flux

dissipated in the front is

qf = qh ≡ −
(

κ
dT

dz

)

h

≃ −
√

2fIp2
∫ Th

Tc

κ(T ′)
Q(T ′)

T ′2
dT ′. (9)

For equilibrium, qf must equal the heat flux entering the thermal front, qi, which is due

to sources upstream, that is:

qi = −
(

κ
dT

dz

)

h

= −
∫ L

zh

Hdz ≃−
∫ L

zh

Sdz, (10)

‡ In an axisymmetric (tokamak) configuration, we might consider two adjacent flux surfaces, separated

by a small perpendicular distance Ap/2πR to define the flux tube (so Ap is the total area between the

flux surfaces). The volume V =
∫ lp(z)

0
Apdlp contained between them and bounded by the divertor plate

(z = 0) and the position z, is V = zBpAp/B×, where BpAp is (of course) invariant on flux surfaces. The

total heat flux through Ap is q‖ApBp/B = qApBp/B×.
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neglecting radiation losses above Th. Note that both qf and qi are negative in this

formulation. We denote the detachment front location by the hot end of the front, zh, for

ease of the analysis. zc, and thus the detachment front, is a small distance away under

the assumption that the front is thin.

The stability of the equilibrium qi = qf depends on how the quantity |qi| − |qf |
changes with position. Consider a front located around the equilibrium position zh = zeq
for which

d

dzh
(|qi| − |qf |) ≥ 0. (11)

In this case, if the front is out of equilibrium at zh > zeq, the incoming power |qi| is larger
than the power dissipated in the front, |qf |, and the temperature in the SOL increases.

Since the front is localized between Tc and Th, and we have assumed in this section that

dT/dz ≥ 0, the front has to move towards the colder region, that is, back to zh = zeq.

Thus, an equilibrium that satisfies (11) is stable to perturbations that drive the front to

a position zh > zeq. A similar argument shows that a front that satisfies equation (11)

is also stable to perturbation that move the front to a position zh < zeq. Conversely, a

front that is around an equilibrium position zh = zeq that satisfies

d

dzh
(|qi| − |qf |) < 0 (12)

is unstable. If the front is at zh > zeq, the incoming power |qi| is smaller than the power

dissipated in the front, |qf |, the temperature in the SOL decreases, and the front moves

to a higher zh, further away from zeq. Thus, equation (11) is the stability condition. Since

in our model, both qi and qf are negative, condition (11) becomes

d

dzh
(qi − qf ) ≤ 0. (13)

Although paper [1] included the important field-magnitude dependence for MARFEs

[45, 46], its analysis of the case of divertor detachment approximated B as uniform over

the entire field line length (not assumed in the current study). Paper [1] predicted that

the range in upstream density where the detachment front is in the divertor (detachment

window in nu) is narrow and dependent on the fractional field line length in the main

chamber 1− z×/L. The ratio of the upstream densities when the front is respectively at

the x-point and the target was shown to be nu×/nut = (1 − z×/L)
−4/7. Numerically

nu×/nut = 1.23 when z×/L = 0.3, which is in the range of C-Mod and DIII-D

experimental observations mentioned earlier. The discussion in paper [1] presages our

current work, saying ‘The variation of κ proportional to 1/B2 produces a quite strong

intrinsic variation, typically a factor of four in a conventional aspect-ratio tokamak SOL.

This will tend to stabilize a front whose cold region is at larger major radius.’ In the next

section we make this stabilization effect explicit for divertor detachment and evaluate its

strength.

3. Explicit inclusion of B-variation in the divertor

The unconventional divertor configurations referred to in the introduction have been

advocated for their potential to enhance cross-field transport and radiating volume
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at or below the x-point. In this study we emphasize instead evaluating how the

various magnetic configuration characteristics modify the control of the location of the

detachment front in the divertor by increasing divertor flux tube volume through (1)

increasing divertor flux tube length (through poloidal flux expansion or longer divertor),

and (2) total flux expansion due to B variation which increases the volume through

increasing the area of the flux tube. In our 1D formulation, there is no distinction

between increasing divertor flux tube volume and increasing z×.

The implicit presumption of the thermal front analysis is to suppose that the

radiating (thermal front) region is sufficiently localized that certain parameters can be

taken as uniform within it. We thus regard the field B, the pressure p, and the impurity

fraction fI as quantities that can be taken outside the integral of equation (9), to give

qf = −
√

2κ1fI nuTu
B×

B

√

∫ Th

Tc

T 1/2Q(T ) dT . (14)

Here we have written the pressure in the front, p = nuTu, setting the pressure

throughout the front equal to the upstream pressure, in the same spirit as the “two

point model”[47, 48, 49, 50]. We are presuming any pressure loss due to atomic effects

to occur in the cold region between the divertor plate and the cold end of the front. The

final square root term is a constant that depends only on the radiating atomic species

(modified perhaps by charge-exchange or non-equilibrium effects).

We now need to calculate self-consistently the incoming upstream heat flux qi at the

front, and also the upstream temperature Tu (and hence pressure, for a given nu). In

order to perform the required integrals we adopt model variations of S and B along z,

given in expressions below. Other assumptions are possible but the simple expressions

that we use are sufficient to represent the overall trends predicted by the thermal front

model.

We approximate the cross-field divergence heat source, S, as uniform on field-lines

adjacent to the core plasma, and zero in the divertor.

S =

{

0 for z < z×
S0 for z ≥ z×

. (15)

This allows us to integrate the full conduction equation for the hot region above zh (where

E is negligible)

d

dz

(

κ1T
5/2B2

×

B2

dT

dz

)

= −S, (16)

to find

2κ1B
2
×

7B2

dT 7/2

dz
=

{

S0(L− z×) for z<z×
S0(L− z) for z≥z×

. (17)

We can immediately deduce that

qi = −
{

S0(L− z×) for zh<z×
S0(L− zh) for zh≥z×

. (18)

The variation in qi is shown in Figure 2, in which −qi increases through the SOL to the

x-point and then stays constant through the divertor region.
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In order to specify Tu we need a model for B. Since we are most interested in B

variation in the divertor leg, we approximate the field variation as linear with z in the

divertor leg but constant in the main chamber,

B

B×

=

{

Bt/B× + (1− Bt/B×) z/z× for z < z×
1 for z ≥ z×

(19)

(see figure 1(c)). We first integrate equation (17) between z and L. For z ≥ z×, we find

[

T 7/2
]L

z
=

7S0

2κ1

∫ L

z

(L− z′)dz′ =
7S0

4κ1

(L− z)2, (20)

recovering equation (16) of paper [1]. For z < z×, the integral becomes

[

T 7/2
]L

z
=

7S0

2κ1

[

∫ z×

z

(

B(z′)

B×

)2

(L− z×)dz
′ +

∫ L

z×

(L− z′)dz′

]

=
7S0(L− z×)

2κ1

[

z×
3(1− Bt/B×)

(

1−
∣

∣

∣

∣

B

B×

∣

∣

∣

∣

3
)

+
L− z×

2

]

=
7S0(L− z×)

2κ1

[

z× − z

3

(

1 +

∣

∣

∣

∣

B

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

B

B×

∣

∣

∣

∣

2
)

+
L− z×

2

]

. (21)

At positions far enough from the upstream end (z = L) that (T/Tu)
7/2 can be ignored,

we can omit the lower limit in the left side of equations (20) and (21). So taking the

lower limit to be z = zh, giving the lowest temperature at which the equation applies, we

obtain for the upstream temperature

Tu ≃
(

7S0

4κ1

)2/7

(L− zh)
4/7 (22)

for zh ≥ z×, and

Tu ≃
(

7S0(L− z×)

2κ1

)2/7
[

z× − zh
3

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+
L− z×

2

]2/7

(23)

for zh < z×. In practice, we shall not analyze quantitatively cases where z is above the

x-point, so we just use equation (23) for the remainder of the paper. The first term inside

the brackets in equation (23), which originated from the integral
∫ z×
zh

(B/B×)
2 (L−z×)dz,

is fairly small compared to the second term, (L− z×)/2, when both B2
t /B

2
× and z×/L are

small.

Substituting this Tu expression into equation (14) we get the front dissipation

qf = −U
√

fI nu
B×

Bh

[S0(L− z×)]
2/7

[

z× − zh
3

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+
L− z×

2

]2/7

, (24)

where the constant U is

U = 72/7(2κ1)
3/14

√

∫ Th

Tc

T 1/2Q(T ) dT . (25)

An important characteristic of tokamak plasmas is the total power transported

from the core plasma into the scrape off layer, often labeled PSOL. For a characteristic

exponential power scrape-off width λq, the parallel heat flux density near the separatrix
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required to exhaust that power, when the poloidal field is Bp, is q‖ = PSOL/(λq2πRBp/B).

We may therefore identify −qi in our model with this expression, giving

S0(L− z×) =
PSOL

λq2πRBp/B×

. (26)

Thus S0(L − z×) ∝ PSOL/λq when other geometrical parameters are constant. And this

enables us to express the detachment sensitivity dependence on PSOL.

Since equilibrium consists of the equality of qf (zh) and qi(zh) we can illustrate the

solution by plotting both these quantities and observing that the front position is where

they intersect. Figure 2 shows examples for a single value of S0, determining qi(zh), from

equation (18). Two different cases for qf from equation (24) are plotted, corresponding

to different values of a control parameter, in this case nu. The qf curves are described by

equation (24) below the x-point, zh < z× = 0.2L. The part of the curves that corresponds

to zh > z× is described by equation (14) with Tu given by (22). We do not consider the

region zh > z× further because using the stability condition (13), one can see that the

only stable solutions lie between the plate and the x-point. (As discussed in [1], other

phenomena not accounted for here must be present to stabilize an x-point MARFE.) The

extreme cases for which stable solutions exist are at the intersections of the qf and qi
curves given in figure 2. These correspond to the intersection (detachment front) lying

at the target plate (zh = 0) or at the x-point zh = z× = 0.2L. There is a continuum

of stable solutions in between. The two subfigures compare a case with negligible field

variation in the divertor B×/Bt → 1 (figure 2a: which was the case considered in [1])

with a case where the target is at substantially smaller total field, B×/Bt = 2 (figure 2b),

which is approximately equal to the major radius ratio Rt/R× in a tokamak.

The solution at zh/L = 0.2, nu×, corresponding to detachment front at the x-point,

is the same in figures 2a and b (blue color in online document); the figures differ in the

target solution. This is because of the large increase in |qf (0)| − |qf (z×)| arising from

B-variation in the divertor (see the effect of Bh in equation (24)). That leads to a much

larger range in control parameters in figure 2b between the detachment front forming

at the target and reaching the x-point. Thus nu or fI , (or PSOL and hence S0) or some

combination thereof, can vary across a much larger detachment window in moving the

front from the x-point to the plate. In other words the detachment window for each

variable, or some combination of them, is much wider.

In figure 2b we have assumed that B×/Bt > 1. When the opposite is true (e.g. the

inner divertor) and for sufficiently small B×/Bt, the variation in B becomes destabilizing.

As we will see later, the exact value of B×/Bt for there not to be a stable solution depends

on z×/L.

4. Detachment window

In the previous section we have graphically found solutions for the upstream densities

nu× and nut for which the front is located at the x-point and the target, and thus we

have obtained the detachment window in nu. We have also qualitatively demonstrated

the importance of B×/Bt in increasing the detachment window in nu. Here we derive

formulae that show the explicit dependences of the detachment windows in several control
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Figure 2. Sketch of the solutions to the equation qi(zh) = qf (zh), represented by

green circles, as a function of the front position zh for: (a) Constant field, B×/Bt = 1.0

(equivalent to figure 5 of [1]), and (b) B×/Bt = 2.0. qi(zh), given in equation (18) and

represented here as a solid black line, is determined by the energy source S in (15).

The function qf (zh), represented by the dashed colored lines, is the heat flux dissipated

by a front located at z = zh. qf (zh) is given by equation (24) below the x-point,

zh < z× = 0.2L, and by equation (14) with Tu given by (22) above the x-point, zh > z×.

Note that whereas there is only one curve qi(zh) for fixed power into the SOL, PSOL, the

curves qf (zh) depend on parameters such us the upstream density nu, and thus there is

a family of such curves. We choose to plot only two curves: in red, the cases with nu

such that the front is located at the divertor target, and in blue, the cases with nu such

that the front is located at the x-point.

variables on each other and on the effect of magnetic topology (B×/Bt, L− z×), starting

first with nu.

The first step is to set qi = qf using equations (18) and (24). From that equality we

can solve directly for nu as a function of front position zh/L (assumed ≤ z×).

nu =
[S0(L− z×)]

5/7

U
√
fI

Bh

B×

[

z× − zh
3

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+
L− z×

2

]−2/7

. (27)

It is convenient to write this as a ratio of the density (nu×) when the front is at the

x-point where B = B×, and (nuh) when it is at some arbitrary position zh where B = Bh:

nu×

nuh

=
B×

Bh

[

2(z× − zh)

3(L− z×)

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+ 1

]2/7

. (28)

In particular, evaluating this density when the detachment front location, zh, is at

the target (zh = 0, nuh = nut and Bh = Bt) we obtain the upstream density ratio

corresponding to the two extremes of divertor front position (detachment window ratio)

nu×

nut

=
B×

Bt

[

2z×
3(L− z×)

(

1 +

∣

∣

∣

∣

Bt

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bt

B×

∣

∣

∣

∣

2
)

+ 1

]2/7

. (29)
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Figure 3. Effect of the variation in B×/Bt and z×/L on the size of the detachment

window; a) detachment window, ∆ñu = nu×/nut − 1, as a function of B×/Bt for three

cases of z×/L; b) the enhancement of the detachment window, for a given B×/Bt, over

that for the case of B×/Bt =1.

Including variation in B from the x-point to the target increases the ratio nu×/nut

approximately linearly with B×/Bt. As mentioned earlier, the density at which the front

is at the x-point, nu×, is not affected by variation of B in the divertor, B×/Bt. Thus any

change in the detachment window comes completely from decreases in nut.

The value of B×/Bt can vary significantly from one magnetic configuration to

another. In typical conventional divertors B×/Bt is of order 1 to 1.3 which does not lead

to a large effect. MAST-U[51], which is under construction, has B×/Bt ∼ 3. TCV[52]

allows for variations of up to B×/Bt ∼ 2. The proposed Advanced Divertor Experiment

(ADX)[53] has B×/Bt ∼ 2. In general, lower aspect ratio tokamaks have the capability

to achieve larger B×/Bt.

We denote the fractional detachment window as ∆ñu = (nu× − nut)/nut =

nu×/nut−1. Figure 3a illustrates ∆ñu from equation (29) for the range of B×/Bt = 1−3.

We find that ∆ñu increases from 0.136 to 2.2 for z×/L = 0.2. The large enhancement

of the detachment window over that for the B×/Bt = 1 case (a factor of ∼ 18 for

B×/Bt = 3) is shown in figure 3b. The effect of varying z×/L, shown in figure 3, is

significant but smaller than changes brought about by a variation of B×/Bt. This points

out that snowflake and x-divertor geometries, without significant variations in B×/Bt,

should derive a modest enhancement of the detachment window over a conventional

divertor by increasing z×/L. Of course, our simple model does not include the effect of
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Figure 4. Extension of figure 3 to include all control variables for z×/L = 0.2: a)

the increase in normalized detachment window, ∆C̃, with changing B×/Bt (the values

of ∆C̃ at B×/Bt = 1 are ∆ñu = 0.12, ∆f̃I = 0.26 and ∆P̃SOL = 0.18); b) all curves

normalized to the case of B×/Bt = 1.

divertor target geometry and material which can affect neutral hydrogen and impurity

sources and the resulting changes in the radiation contained in qf . Our analysis also

omits explicit localization, such as the interaction of neutrals with plasma in the region

of poloidal flux expansion near the target (x-divertor) which Kotschenreuther et al have

pointed out could reduce the ‘tendency for the front to move upstream from the plate to

the core X-point’ [54].

The dependence of zh on other control variables such as fI or PSOL (strictly

S0(L−z×)) can be treated in the same way as nu. We denote the general control variable

as C = [nu, fI , PSOL(or S0)]. Setting qi = qf and using equations (18) and (24), we find

C×

Ch

=







B×

Bh

[

2(z× − zh)

3(L− z×)

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+ 1

]2/7






β

, (30)

where the factor β is 1, 2 and -7/5 for C = [nu, fI , PSOL(or S0)], respectively. The

detachment window ratio C×/Ct is obtained by substituting zh = 0, Bh = Bt. Note that

while increases in fI and nu move the detachment front from the target to the x-point,

decreases in PSOL had the same effect; this is manifested in equation (30) with a negative

β.

Figure 4 displays the scaling of the detachment window ∆C̃ ≡ max(C×, Ct)/min(C×, Ct)−
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Figure 5. The minimum value of B×/Bt for stable solutions of the detachment front

location as a function of z×/L.

1, for nu, fI , and PSOL. (∆ñu = nu×/nut − 1, ∆f̃I = fI×/fIt − 1, but ∆P̃SOL =

PSOLt/PSOL× − 1). We have not included the effect of z×/L as in figure 3. The de-

tachment window in impurity seeding, ∆f̃I , has the strongest increase with increasing

B×/Bt, scaling approximately quadratically with B×/Bt. The increase in the detach-

ment window for PSOL is of particular relevance for transients in core power loss (e.g.

H-L energy confinement transitions or ELMs), which are ideally absorbed in the diver-

tor plasma whilst keeping the divertor region detached and the detachment front in an

optimal position.

At the end of section 3, we concluded that the detachment front location is unstable

for sufficiently small B×/Bt. The transition to instability happens when the detachment

window in any control variable disappears, that is, when C×/Ct = 1 in equation (30):

B×

Bt

[

2z×
3(L− z×)

(

1 +

∣

∣

∣

∣

Bt

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bt

B×

∣

∣

∣

∣

2
)

+ 1

]2/7

= 1. (31)

This equation gives the minimum value that B×/Bt must have for stability. We plot

this minimum value as a function of z×/L in figure 5. If for a given z×/L, we were to

take a value of B×/Bt below the curve in figure 5, the dependence of qf on zh would be

such that the stability condition in equation (13) would not be satisfied. This stability

limit for B×/Bt is of importance for inner divertor regions where B×/Bt can be of order

0.8 and z×/L < 0.2 leading to no stable solutions between the target and x-point; the

detachment front, once it starts at the target, should jump immediately to the x-point.

5. Sensitivity to control variables

More than just the detachment window, the local sensitivity of the detachment front

position to variations of the control variables C is important to the understanding of
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where in the divertor control is most difficult as well as development of detachment

control algorithms.

Recognizing from equation (19) that

dBh

dzh
=

B×

z×

(

1− Bt

B×

)

, (32)

we can differentiate equation (30) to deduce the general sensitivity of zh to control

parameter C = [nu, fI , PSOL(or S0)] (recall β = [1, 2,−7/5] respectively) after some

algebra

C

L

∂zh
∂C

=
1

β

{(

1− Bt

B×

)

B×

Bh

L

z×

+
2

7

[

z× − zh
3L

(

1 +

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

+

∣

∣

∣

∣

Bh

B×

∣

∣

∣

∣

2
)

+
L− z×
2L

]−1 ∣
∣

∣

∣

Bh

B×

∣

∣

∣

∣

2}−1

. (33)

Again, the first term inside the square brackets can be neglected with respect to (L−z×)/2

when both B2
t /B

2
× and z×/L are small.

The variation, as a function of zh, of C/Ct is shown in figure 6a, and its inverse

logarithmic derivative in figure 6b. As before, Ct is the value of C when the front is

at the target. The parameters used are B×/Bt = 2 and z×/L = 0.2. The front moves
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furthest (in zh) for a relative variation in the control parameter C when |C∂(zh/L)/∂C| is
the largest. As expected, the sensitivity of the detachment front location to fI is weaker

than for nu. For PSOL the derivative is negative. The front is most sensitive to relative

variations of nu, particularly for zh near z×. This makes it a powerful control for adjusting

zh, but equally it means that one will not be able to allow large relative changes in nu

without exceeding the detachment window.

The detailed shape of the curves in figure 6 depends on the details of the spatial

variation of B between x-point and target, which we chose to model here as linear. Other

choices will produce different sensitivities as a function of zh but little change in the

detachment window.

6. Discussion

6.1. Relation to the Two-Point model

The “two-point model”[47, 48, 49, 50], which uses one-dimensional parallel heat

conduction and pressure balance to relate the upstream and target temperatures and

densities, is often used as a robust guide to divertor physics. Since the present treatment

uses the same two assumptions, it is closely related. While the two-point model assumes a

fixed level of radiated power, our model self-consistently includes radiative loss controlled

by temperature, and, in effect, allows the lower-temperature control point (detachment

front) to move self-consistently.

Nevertheless, using the two-point model at fixed low target temperature

(corresponding to the onset of detachment) one can deduce the upstream density

threshold for detachment to start at the target as nut ∝ P
5/7
SOL/L

2/7, which is the same

dependence as equation (27). Following the analysis of the effect of changing B on the

super-x divertor[55], the classic two-point model has recently been extended[56, 57] to

include B magnitude variation (expressed as major radius variation), which introduces

an additional factor so that nut ∝ BtP
5/7
SOL/L

2/7. The B factor is also present in (27),

evaluated at zh = 0, B = Bt, and for the same reasons: total flux expansion increases

the flux-tube area and reduces the flux density q‖ for given power flow. Of course, what

the two-point model cannot do is calculate the detachment front location as a function

of control parameters, nor when the detachment front reaches the x-point. Those are the

achievements of the present work, and paper [1].

The concept of a ‘virtual target’ has been discussed by several authors [31, 58, 59].

Modelling has shown that at the interface between ionization and recombination regions

[31] leads to Mach numbers approaching one and a large fraction of ions are ‘recycled’

as neutrals in the recombination region. The implication is that the temperature at the

virtual target is always low and the pressure is constant from virtual target to upstream

thus allowing the 2-point model to be used to relate the upstream and target conditions

in the usual way [59]. The above characteristics of the virtual target are consistent with

our model because Tc is low and essentially fixed as the front moves. In addition we

explicitly specify that pressure is constant from zc to L. Furthermore, the virtual target

does not affect stability because we assume the convective energy flux to be small. In
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terms of the 2-point model, we are assuming that the radiated fraction frad is very close

to unity.

6.2. Intuitive considerations of the thermal front extent, volume and magnitude of

radiation

Implicit to our analysis is the supposition that the front extent, meaning the distance

between the Th and Tc positions, ∆zf = zh − zc, is small compared with L and z×.

Therefore the value and scaling of the front extent is important. That extent can be

obtained using equation (8) for the heat flux q = −κ(dT/dz) inside the front to write

dz

dT
= −κ

q
≃ κ

[

2fIp
2

∫ T

Tc

κ(T ′)
Q(T ′)

T ′2
dT ′

]−1/2

, (34)

where we have neglected qc ≪ q. Integrating equation (34) from Tc to Th, we obtain

∆zf = zh − zc = −
∫ Th

Tc

κ(T ′)

q(T ′)
dT ′

≃
∫ Th

Tc

[

2fIp
2

∫ T ′

Tc

κ(T ′′)
Q(T ′′)

T ′′2
dT ′′

]−1/2

κ(T ′)dT ′. (35)

The exact value of ∆zf depends upon the shape of the radiation coefficient Q(T ) as well

as other parameters. In order of magnitude, ∆zf ≈ κhTh/|q|≈ κ1T
7/2
h /|q|. Assuming

Th of 65 eV, consistent with our Figure 1, with nitrogen as the impurity, and |q| =

500 MW/m2, ∆zf is of order 9 meters; that overestimates, by a factor of, 3 the exact

calculation given by equation (35) and its prediction shown in our Fig. 1. This ∆zf
estimate depends sensitively on the value adopted for Th, which should be taken to be at

least 30 eV for Carbon and Nitrogen impurity radiation. We do not consider higher Z

impurities because a) they radiate in the SOL more towards the midplane (e.g. Ne) and

b) inside the separatrix (e.g. Ne and Ar), thus violating our assumption that the thermal

front width be small compared to zx or L. The effect of b) can be included implicitly in

our model through lower PSOL.

We can make a more accurate estimation of the dependence of ∆zf on heat flux and

position. Using κ = κ1T
5/2(B×/B)2, equation (35) gives ∆zf ∝ p−1f

−1/2
I (B×/B(zh)).

According to equation (14), |qi| = |qf | ∝ pf
1/2
I (B×/B(zh)), leading to

∆zf ∝ B2
×

B2(zh)|qi|
=

B×

B(zh)|q|||
. (36)

Recall that z is proportional to the volume of the flux tube, and for this reason, ∆zf =

zh− zc is proportional to the volume of the thermal front (radiating volume). We can also

calculate the parallel and poloidal length of the front using the definition of z in equation

(4). Assuming that the poloidal and total magnetic field do not change appreciably

across the front, equation (4) gives ∆zf = (B×/B(zh))∆lf = (B×/Bp(zh))∆lpf , where

∆lf = lh − lc and ∆lpf = lph − lpc are the parallel and poloidal length of the front,

respectively. Using these results and equation (36), we obtain

∆lf ∝ B×

B(zh)|qi|
=

1

|q|||
, ∆lpf =

Bp(zh)

B(zh)
∆lf . (37)



Sensitivity of detachment extent to magnetic configuration and external parameters 19

We expect ∆lpf to be ≈ 10 times smaller than ∆zf for typical values of Bp/B.

Equation (36) gives the dependence of the radiating volume on heat flux (and hence

PSOL) and magnetic field magnitude B(zh). Note that it depends on nu, fI , or PSOL only

indirectly, through |qi| and zh: it depends on PSOL through |qi| and zh, and on nu and

fi only through zh (recall that the position of the front zh is determined by equation

(27)). The inverse dependence on |qi| is at first sight counter-intuitive. It says that

higher parallel heat flux (density) leads to smaller front volume, whereas one might have

supposed that higher flux would require a larger front to dissipate it. The explanation

is that (for constant field-line geometry and B×/Bt) if S0 and hence PSOL is increased,

increasing the upstream power flux |qi|, then it is necessary that either nu or fI increase

to keep the thermal front at a particular position (balancing qf = qi). Consequently the

radiative power density in the front increases; and it increases faster than the upstream

heat flux, hence shortening the volume required to radiate |qi| away. It is also possible to

explain the decrease in front width with increasing heat flux by considering the physics

inside the front. As the parallel heat flux is increased, |dT/dz| must increase as well, but

the total temperature jump in the front is fixed to be ∆T = Th − Tc. Thus, the only way

for the gradient to increase is to decrease the front width ∆zf .

Our model does show that longer field lines detach more easily; but the reason is

not simply an increase in radiating volume. It is a more subtle effect of the overall

heat conduction solution. In the present analysis it is represented by the large square

bracket factor [...]−2/7 in equation (27), which says that the upstream density required

for detachment decreases with an increase in L because the upstream temperature in

equation (23), whose product with nu gives pressure, increases with L2/7 (recall that in

equation (27), for constant PSOL, S0(L− z×) = PSOL/(2πRλq(Bp/B×)) is independent of

L). That is an effect of conduction changing upstream pressure, not of radiating volume

increase.

Total flux expansion (B×/Bt > 1), by contrast, does increase the radiating volume

∆zf ∝ 1/B2, given that both the cross-sectional area and the radiating parallel distance

(∆lf ∝ 1/B) increase as 1/B. Given that the total radiation increases as qf ∝ 1/B,

the emissivity within the thermal front drops ∝ B. The increase in radiating volume

gives an intuitive explanation of the stabilizing effect of decrease in B along the field line.

If pressure remains constant, a front that moves toward lower B radiates more power

because of an increase of the radiating volume. If the motion towards lower B is also in

the direction of decreasing temperature (i.e. dB/dz > 0 in our convention) the dissipation

power increase resists the motion because increases of dissipation tend to make the front

move towards higher temperature. If dB/dz < 0, as for the typical inner divertor leg,

the front would be destabilized. The stability criterion dB/dz > 0 is consistent with the

general stability condition (13) in our case because dqi/dz = 0 and |qf | ∝ 1/B.

The ratio of front extent to field line length is inversely proportional to |qi|L.
Therefore this fractional front extent becomes small at high q‖ and large L. Future

high-performance experiments will therefore have increasingly localized thermal fronts.

Although present high-q‖ tokamaks can experience localized fronts, linear “divertor

simulators” are very unlikely to reach the values of q‖L needed to localize the front.
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6.3. Emission localization, neutrals and multidimensional effects

The one-dimensional conduction approximation used here offers a valuable way to

understand the nonlinear dynamics of detachment fronts. Its capability to predict both

the relative effectiveness of different detachment control variables, and the effect of

divertor configuration, is built on a number of simplifications that we review here for

clarity. Our treatment includes only energy transport and that strictly through parallel

conduction, ignoring convection. Only energy sources due to cross-field transport depend

explicitly on position, while energy sinks due to impurities and neutrals are dependent on

position only through the temperature variation; in reality, both sinks and sources can be

locally enhanced e.g at surfaces where recycling and impurity sources are localized. The

lack of direct inclusion of neutrals also means that our model does not describe the effect

of detachment front location on divertor neutrals which several authors have pointed out

as important for the divertor solution [24, 33, 36].

Electron heat conduction is not always a complete description of parallel heat flow.

There is evidence in prior and existing experiments that sometimes substantial heat flux

passes through into the cold side of the radiation front [60, 31, 34, 36]. Because electron

thermal conduction is small at low temperature, convective heat transport by net particle

flow along the field is suggested as the reason for the measured heat fluxes [60]. The

effect of this convective transport is to extend the region of radiative losses more than

is permitted by pure conduction, enhancing the effective front dissipation, perhaps by a

very substantial factor, by maintaining the temperature (and hence radiative loss) higher

over a larger volume extending towards the target. We feel that such an enhancement of

losses as well as their localization may quantitatively change the model scalings but not

the qualitative results (e.g. effect of magnetic field variation) and relative effectiveness of

the various control variables. Even though the above shortcomings could be addressed as

ad hoc modifications to our model, it is probably more appropriate to pursue them with

2D simulations that include more detailed physics.

Figure 2 implies that once the detachment front reaches the region of decreasing |qi|
above the x-point there is no stable solution and poloidal detachment [61] would ensue.

A possible explanation of why this does not often happen in experiments is given in the

discussion of MARFEs in reference [1]; conservation of particles in the flux surface was

invoked to argue that a cold detached region in a closed field line would deplete the hot

region of particles, decreasing the overall pressure and hence the radiation.

Since the equilibrium radiation function Q, without neutral enhancement, is known

for specific atomic species [40], a number of authors [42, 44, 43, 41] have made quantitative

estimates of the maximum parallel heat flux that can be dissipated in the front. For

example [1], |qf | ≃ 0.6 GW/m2 for Carbon in coronal equilibrium, nu = 1020 m−3,

Tu = 100 eV and fI = 0.04. This value is less than the SOL power density currently

predicted for ITER, motivating investigations of whether additional atomic physics or

variations in divertor geometry could further enhance the level of parallel heat flux that

can be detached. That is why 2D effects due to cross-field transport [38, 39, 36, 13],

which are likely significant, as well as the role of configuration, would need to be included

in models to determine whether detachment was possible for a specific case.
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6.4. Applications of our model

The results from this study have implications in several areas. One near-term application

of the model is for detachment feedback control, which is important for studying the

role of detachment location on the tradeoff between maximizing core confinement and

minimizing the divertor heat loads and erosion. Early feedback algorithms for impurity

seeding control of detachment were fairly simple – e.g. stopping the seed gas injection

when the radiation increases at some location[7], or limiting the overall radiated power

fraction and/or the neutral flux density in the divertor[6]. Kallenbach has more recently

developed a more sophisticated feedback algorithm[25, 26, 4] based on radiation in the

core and divertor regions as well as thermoelectric currents at the outer divertor. The

more variables (PSOL, impurity seeding and fueling) that are included in the control

model of the front location the more easily variations in the core plasma conditions can

be handled. Finally, improvements in the characterization of ∂zh/∂C, e.g. through using

2D codes to include additional sources and sinks, or comparing experimental-derived

∂zh/∂C to our model, will improve the fidelity of detachment front location control. Of

course improved models are most helpful if we also have better real-time measurements

of the detachment front location than currently available.

Beyond enhancements in detachment front control, the enlargement of the

detachment window leads to the capability of the divertor plasma to absorb variations

in upstream conditions (e.g. transients such as H-L transitions) without either loss

of detachment or the detachment front reaching the x-point. Said another way, the

divertor plasma can temporarily absorb transients until the feedback system has time to

respond. This ‘shock absorber’ or ‘springiness’ of the divertor plasma, which is enhanced

by increasing B×/Bt (and to a lesser extent, z×/L) is very attractive for a reactor.

A longer-term application of the ideas in the model is to DEMO, and future tokamak

design. Enhancing B×/Bt as much as possible, consistent with engineering contraints

should be pursued for both control and added radiation. If it becomes clear through

experiments that λq in a reactor will really be of order a mm and/or enhanced control is

required, then the benefits brought by maximizing B×/Bt may be required, as opposed to

a choice. We also note that our model indicates that typical inner divertor configurations

lead to poorer, or lack of control of detachment there and little radiating volume. Such

effects could be counteracted by bringing the inner divertor leg to lower field regions (e.g.

‘double-decker’ [62]) and should be explored in code and experiment given the potential

to improve detachment control and radiation.

Nothing about our analysis presupposes axisymmetry. It therefore applies equally

well to non-axisymmetric magnetic configurations like stellarators, which face many

challenges similar to tokamaks in power outflow management. If stellarators can be

designed in which the total magnetic field decreases following a field-line away from the

confined region into a non-axisymmetric divertor, then they will receive the same benefits

of stabilization and control of any detachment region extent that we have shown exist for

tokamaks.

Our model may also have applications beyond fusion. The fundamental physics

of how plasma temperature and density gradients can be supported along B (thermal
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fronts) has much in common with astrophysical and solar plasmas where the high density

regions, corresponding to the tokamak divertor plasma, are known as ‘condensations’[63].

Direct connections have been made between the condensations in solar prominences[64]

and tokamak plasmas, specifically MARFEs (see [45] and references in [46]), which have

much in common with divertor detachment. More recent studies of solar prominences[65,

66, 67], as well as coronal rain [68], provide evidence of density and temperature gradients

along coronal loops with the highest densities and lowest temperatures farthest from

the source of heat/energy (tokamak core plasma or chromosphere). Those same studies

show movement of condensed (high-density, low-temperature) regions from the top of the

coronal loop to the chromosphere. Our model of the detachment front location should be

applicable to such situations which also have B varying along the flux tube.

7. Summary

In this study we use an analytic 1D model to establish the range of different control

variables over which a detachment front remains in the divertor between target and x-

point: the ‘detachment window’. We find that amongst the control variables studied, the

impurity fraction fI possesses a larger normalized detachment window than the upstream

density nu and the scrape-off-layer power PSOL. Thus, the position of the detachment

thermal front is most sensitive to changes in nu, with decreasing sensitivity to PSOL and

then fI . We also find that the detachment window for all control variables is increased

(equivalent to making the front location less sensitive to control variables) as the ratio of

the total magnetic field at the x-point to that at the target, B×/Bt, (total flux expansion)

is increased. Increasing flux tube length in the divertor, typically through poloidal flux

expansion, also increases the detachment window of operation, but significantly less than

for increases in B×/Bt. Characterizing the sensitivity of the detachment front location

zh to a control variable C, we find that ∂zh/∂C has substantial variation as a function

of position of the detachment front. The model also leads to the conclusion that the

size of the radiating volume is not dependent on flux tube length (through poloidal

flux expansion or extending the divertor length). However, both the size of the radiation

region, as well as the total radiation in it, are increased by total flux expansion as included

in the model through B×/Bt > 1. The simple physics-based model presented here may

be useful as a basis for developing better detachment control utilizing multiple control

variables, and organizing experiments to study detachment physics. We also feel that

it can be applicable to the divertor region of Stellarator fusion devices as well as solar

prominences and coronal rain.
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