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Abstract 

This paper reports on a collaborative exercise designed to generate a coherent agenda for 

research on mathematical cognition.  Following an established method, the exercise brought 

together 16 mathematical cognition researchers from across the fields of mathematics 

education, psychology and neuroscience.  These participants engaged in a process in which 

they generated an initial list of research questions with the potential to significantly advance 

understanding of mathematical cognition, winnowed this list to a smaller set of priority 

questions, and refined the eventual questions to meet criteria related to clarity, specificity and 

practicability.  The resulting list comprises 26 questions divided into six broad topic areas: 

elucidating the nature of mathematical thinking, mapping predictors and processes of 

competence development, charting developmental trajectories and their interactions, 

fostering conceptual understanding and procedural skill, designing effective interventions, 

and developing valid and reliable measures.  In presenting these questions in this paper, we 

intend to support greater coherence in both investigation and reporting, to build a stronger 

base of information for consideration by policymakers, and to encourage researchers to take 

a consilient approach to addressing important challenges in mathematical cognition. 

Keywords 

mathematical cognition, numerical cognition, research agenda, mathematics education 
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Introduction 

Research on mathematical cognition has made substantial advances in recent years, in 

areas that span diverse theoretical frameworks both within and across disciplines.  For 

instance, neuroscience research has revealed potential mechanisms contributing to the 

representation of number and related concepts in the brain (De Smedt, Noël, Gilmore, & 

Ansari, 2013). Behavioural research has identified distinctive characteristics in the 

mathematical thinking of young children with atypical development (Geary, 2010; Kaufmann 

et al., 2013; Dennis, Berch, & Mazzocco, 2009), individual differences in typical mathematics 

learning (Geary, 2011; Raghubar, Barnes, & Hecht, 2010), and the nature and variety of 

mathematical expertise (Weber, Inglis, & Mejía-Ramos, 2014). Studies on the effects of the 

environment, including home (LeFevre et al., 2009) school (Clements & Sarama, 2004; 

Beilock, Gunderson, Ramirez & Levine, 2010), and culture (e.g., Jones, Inglis, Gilmore, & 

Dowens, 2012), have also influenced theoretical conceptualisations of mathematical learning 

and contributed to the design of interventions to support that learning (Cohen Kadosh, 

Dowker, Heine, Kaufmann, & Kucian, 2013). 

Collectively, this work could have substantial international policy implications, and indeed 

specific research programmes have led to large-scale trials of teaching practices and 

materials development (Torgerson, Wiggins, Torgerson, Ainsworth, & Hewitt, 2013).  

However, the potential of the field as a whole has yet to be fully realised, perhaps in part due 

to its diverse nature.  This diversity affords the benefits that accompany multiple 

perspectives, but also generates obstacles resulting from discrepant methodologies.  So, 

while mathematical cognition researchers share central concerns – the desire to understand 

and support mathematical thinking and learning at all educational levels – they have different 

priorities, methods and conceptions of central theoretical constructs, and their work is 

published across a diverse range of outlets.  Arguably this is an appropriate time to draw 

together current thinking from these fields and to articulate a mutually understood view of 

research priorities that can inform and shape future research in mathematical cognition.  
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This paper is designed to do that.  It reports the results of an exercise that brought together 

16 researchers from six countries with expertise in mathematics education, psychology and 

cognitive neuroscience, and that sought to identify key open questions in mathematical 

cognition.  The questions were generated using a collaborative process modelled on 

previous exercises in other fields (Sutherland et al., 2006, 2012; Sutherland, Fleishman, 

Mascia, Pretty, & Rudd, 2011), with adaptations appropriate to the comparatively focused 

research topic and small number of participants.  We followed a six-stage process to 

generate an initial list of questions, select questions that participants collectively viewed as 

most important, refine these so as to meet a list of inclusion criteria, and organise them in a 

form conducive to the discussion and planning of new and ongoing research programmes 

(for details see the Method section).  From these questions, practical suggestions evolved 

regarding how to maximize the field’s ability to share both work and findings across research 

laboratories and disciplines.   

The final question list, as presented in the Results section, is narrow in the sense that it is 

specifically focused on research related to the cognitive aspects of human mathematical 

thinking and learning.  But the list is broad in that it reflects priorities ranging from issues of 

representation in the brain, through the mathematical thinking and learning of very young and 

older children, up to and including the practices and reasoning of expert mathematicians.  

We intend the questions to support greater coherence in both investigation and reporting of 

issues in mathematical cognition, and thus to build a stronger base of information for 

consideration by researchers and policymakers.  We hope that the questions will inspire 

researchers in the relevant fields to likewise address big challenges in mathematical 

cognition and, in the process, to develop methods that promote interconnected theories. 

Background 

Researchers with interests in mathematical cognition represent a variety of disciplines.   
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Those working in mathematics education have often trained initially as mathematicians or 

teachers; some have moved from an undergraduate or masters experience in mathematics 

straight through to a doctorate in education, but many have moved into educational research 

later in their careers after teaching in schools, working to prepare teachers, or working as 

mathematicians.  They typically publish in outlets such as the Journal for Research in 

Mathematics Educationi, Educational Studies in Mathematics and the Journal of 

Mathematical Behavior and share work at conferences such as that of the International 

Group for the Psychology of Mathematics Education.  Much work in all of these outlets 

comprises detailed qualitative studies (including case studies) on students’ understandings of 

specific mathematical concepts, from those in early number right up through undergraduate 

study and into work on the reasoning of mathematical experts.  Other work takes the form of 

design research (Prediger, Gravemeijer & Confrey, 2015), and experimental studies are 

comparatively rare (Alcock, Gilmore, & Inglis, 2013). 

Those working in psychology have usually trained initially in developmental, experimental, or 

cognitive psychology; some pursue research in mathematical cognition due to an interest in 

mathematics per se, but others are interested in more general cognitive functioning and use 

mathematical ideas primarily as a vehicle to study this.  These researchers typically publish 

in journals including Cognition, Child Development, Developmental Science, Journal of 

Experimental Child Psychology, Journal of Educational Psychology and Learning and 

Instruction, and share work at conferences such as that of the European Association for 

Research on Learning and Instruction and the Society for Research in Child Development.  

Unlike those with backgrounds in education, they frequently conduct experimental or quasi-

experimental studies, but the mathematical concepts involved are often based in simple 

arithmetic and its precursors. 

Those working in cognitive neuroscience have often trained initially in experimental or 

cognitive psychology, cognitive science or neuroscience.  Most have moved into 

developmental cognitive neuroscience after doctoral training in adult cognitive neuroscience 
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and/or developmental disorders.  These researchers typically publish in journals such as the 

Journal of Cognitive Neuroscience, Neuropsychologia and Trends in Education and 

Neuroscience, and share work at conferences such as the Annual Meeting of the Cognitive 

Neuroscience Society and Conference of the European Society for Cognitive Psychology.  

Typical studies in this area include measures of brain activity during number processing and 

arithmetic; often the work relates these to behavioural measures.  Central research questions 

involve investigating the brain correlates of number processing and arithmetic, how these 

change with development, skill acquisition and training, and their role in dyscalculia. 

Crucially for the development of research in mathematical cognition, there has traditionally 

been little communication between researchers working in these areas; cross-citations (with 

education in particular) are comparatively rare.  If this is a fault then it is a common and 

predictable one: researchers across all disciplines publish their work primarily in those 

journals that most closely reflect their influences and methods, so it is natural that citation 

silos should evolve.  But this clearly limits an interdisciplinary endeavour: insights from one 

area might well inform, accelerate, or supplant theoretical developments in another, and 

methodological diversity should be embraced as a means of developing both different types 

of insight and individual researcher skills.  For these reasons we sought to assemble 

researchers with a diverse range of interests in human mathematical cognition, and to 

implement a process that would focus their attention on their common goals, clarify 

similarities and differences in theories and methods, and facilitate future communication.  In 

communicating the outcomes of this process in the form of a paper, we aim to further these 

goals by stimulating a similar debate across the broader mathematical cognition community.  

We believe that the time is right for this because a collective desire for communication is 

evident in the establishment of interdisciplinary societies (e.g., the International Mind, Brain, 

and Education Society) and journals like this one, and because one way to maximise the 

gains from structured cross-talk is to focus on the big questions we would all like to see 

answered. We return to this point in the Discussion section of this paper.    
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Method 

We modelled our method on that described in Sutherland et al. (2012), who pursued a 

Delphi-like process (Hsu & Sandford, 2007) to identify a list of unanswered questions on the 

relationship between science and policy; Sutherland has also been involved in similar 

exercises in ecology and conservation (e.g., Sutherland et al., 2006)ii.  We were conscious 

throughout that, as Sutherland et al. (2011, p.246) note “[a]ny priority-setting exercise is the 

product of the people who participate. The results can be influenced by the interests present. 

Furthermore, individuals may have agendas. However, a diverse and moderately large 

group, clear criteria, and a democratic process all help reduce the impact of any individual.”  

In this section we explain how we addressed these issues.  

Compared with fields like science policy, our research domain is small.  But we aimed 

nevertheless to act in the spirit of Sutherland et al.’s (2012) approach, seeking participants 

who would represent a range of disciplines and who would ideally have experience or at 

least knowledge of the theories and methods typically in use in two or more areas.  Because 

resources were limited and because we were interested in drawing together a community of 

researchers whose work could be expected to influence the field for an extended time, we 

sought particularly to invite early- to mid-career academics with research programs that were 

established enough to have a high probability of making substantial further contributions in 

the coming decades.  With these goals in mind, we invited 16 scholars from the disciplines of 

mathematics education, psychology and cognitive neuroscience to take part (the 16 are the 

authors of this paper); 15 attended as delegates at the Royal Society-funded conference 

Grand Challenges in Mathematical Cognitioniii and one participated in all the non-conference 

stages and had a particular role in organising the questions for presentation.  Table 1 lists 

the participants’ countries of affiliation, main research areas, and specific illustrative research 

foci. 
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Table 1: Participants’ Main Research Areas and Specific Illustrative Research Foci 

Participant Country Edu Psych Neuro Illustrative Research Foci 

Lara Alcock UK X   Undergraduate proof comprehension 

     Expert and novice mathematical reading 

     Learning interventions in undergraduate mathematics 

Daniel Ansari Canada  X X Basic number processing and individual differences 

     Cognitive and neuronal correlates of developmental dyscalculia 

     Symbolic and non-symbolic magnitudes at behaviour and brain levels 

Sophie Batchelor UK X X  Children’s magnitude representations and counting skills 

     Spontaneous focusing on numerosity and arithmetic skills 

     Mathematics anxiety in primary school children 

Marie-Josée Bisson UK X X  Measuring conceptual understanding in mathematics 

     Using comparative judgement in randomised controlled trials 

     Incidental learning 
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Participant Country Edu Psych Neuro Illustrative Research Foci 

Bert De Smedt Belgium X X X Basic number processing and individual differences 

     Dyscalculia; mathematics learning difficulties 

     Arithmetic (strategy use) 

Camilla Gilmore UK  X  Early numerical development 

     Executive functions and mathematics 

     Educational outcomes of prematurity 

Silke Melanie Göbel UK  X X Longitudinal predictors of arithmetic growth in primary school 

     Number-space associations 

     Language influences on number processing 

Minna Hannula-Sormunen Finland X X  Early numerical development 

     Spontaneous focusing on numerosity and quantitative relations 

     Learning environments for early numeracy and flexible arithmetic skills 

Jeremy Hodgen UK X   Learning interventions in school mathematics 
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Participant Country Edu Psych Neuro Illustrative Research Foci 

     Educational standards over time 

     Post-compulsory mathematics participation 

Matthew Inglis UK X   Mathematical problem solving and reasoning development 

     Expert mathematical practice 

     The Approximate Number System 

Ian Jones UK X   Assessing mathematical understanding 

     Children’s understanding of equivalence 

     Students’ understanding and progression in school mathematics 

Michèle Mazzocco USA X X  Individual differences in mathematical cognition  

     The development of early number concepts 

     Mathematics learning difficulties; dyscalculia 

Nicole McNeil USA  X  Optimising input to facilitate children’s understandings of key mathematical concepts 

     Benefits and disadvantages of concrete and abstract representations 
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Participant Country Edu Psych Neuro Illustrative Research Foci 

     Predicting individual differences in early mathematical achievement 

Michael Schneider Germany  X  Development of conceptual and procedural knowledge 

     Conceptual change 

     Numerical magnitude processing 

Victoria Simms UK  X  Disordered mathematical cognition 

     Estimation skills and their impact on mathematical development 

     General cognitive factors influencing mathematical cognition 

Keith Weber USA X   Mathematical reasoning 

     Undergraduate mathematics education 

     Construction and comprehension of mathematical proofs 

Note. Edu = Education; Psych = Psychology; Neuro = Neuroscience
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With the participants in place, the questions that form the core of this paper were generated 

in six stages: Stages 1 and 2 were completed online, Stages 3 to 5 occurred at the 

conference and Stage 6 took place after the meeting.   

In Stage 1, all participants were invited to draw up a list of research questions for which 

answers would significantly advance our understanding of mathematical cognition.  They 

were encouraged to draw on their own work and that of their broader discipline, as well as 

their knowledge of classic problems or recent developments; they were also encouraged to 

solicit input from colleagues and contacts.  The team of organisers collated these questions, 

amalgamated or removed duplicates, and organised the resulting 155 questions into themes.   

In Stage 2, these questions were anonymised and made available in an online survey via 

which all participants rated all questions on a scale of 1 (low) to 10 (high) according to their 

importance for advancing the field.  The original questions and original and summarised 

rankings are available at https://figshare.com/articles/S1_Dataset_xlsx/1299358.  After the 

survey, the 63 questions with a median score of 8 or higher were retained for the conference 

stages.  

At the conference, Stages 3, 4 and 5 of the question winnowing and refinement process were 

completed.  Delegates were asked to base their question selection and refinement on criteria 

drawn from Sutherland et al. (2011) stating that the eventual questions should: 

• address an important gap in knowledge; 

• be formulated specifically (not as a general topic area); 

• be clear, where appropriate, about specific interventions and outcome measures; 

• be answerable specifically (not by ‘it all depends’); 

• have a factual answer that does not depend on value judgements; 

• be answerable through a realistic research design; 

• be of a scope that could reasonably be addressed by a research team. 
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For Stage 3, delegates were assigned to subgroups of three or four participants representing 

the variety of research backgrounds present across the assembly of 16.  Sufficient time was 

provided for members of the mixed groups to discuss all the questions, noting ambiguities 

and suggesting initial rephrasings.  For Stage 4, delegates were assigned to topic groups 

composed of four or five participants, where the topics were named numerical 

representations and developmental dyscalculia, cognitive factors beyond basic 

representations, and beyond basic numeracy.  The topic groups were tasked with reducing 

their respective question lists by half, and with rewriting questions where appropriate to 

reduce ambiguity or duplication and to ensure that the questions met the aforementioned 

inclusion criteria.  For Stage 5, all 15 participants reconvened and reviewed the remaining 

lists.  At this stage further refinements to wording were suggested and questions that 

appeared essentially equivalent across two of the lists were combined.  We note that the 

discussions were extremely constructive throughout, and we found that our conceptions of 

key constructs and issues in learning were remarkably similar.  Resolving differences was 

therefore largely a matter of settling on terminology that did not evoke unintended ideas or 

assumptions for any one group. 

Stage 6 took place after the conference.  We were conscious that the assignment of 

delegates to topic groups necessarily stratified the questions by the educational stage of their 

typical research participants.  Thus the question lists were merged and were sent to the non-

attending participant for sorting into smaller groups without this restriction.  The outcome 

grouped the questions in a way that focused on conceptual relationships rather than 

educational stage; these groups of questions appear in the Results section.  

Results: Research Questions 

We present the results of the exercise in two sections.  In the first section, we list the groups 

of questions that emerged from Stage 3 (as described above); each group (labeled A-F) is 

accompanied by a brief commentary.  We present the questions in generic forms, rather than 
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from the perspectives of any specific theoretical frameworks, because each might profitably 

be addressed using multiple frameworks (as is reflected in the field).  Where there have been 

recent developments in competing theories, we endeavour to draw attention to these.  In the 

second section, we take two subgroups of questions – those on the nature of mathematical 

thinking and those on developmental trajectories and their interactions – and offer more 

detailed critical review of recent developments in these areas.  We take this approach 

because it enables us not only to illustrate the range of work taking place across research in 

mathematical cognition but also to discuss the relative maturity of different parts of the field, 

thereby highlighting the shifting theoretical and methodological demands that arise as 

research areas develop. 

A. Elucidating the Nature of Mathematical Thinking 

1. Do infants really have a ‘sense of number’ or are they merely sensitive to quantitative 

dimensions? 

2. How do feelings of correctness or doubt arise when people are doing mathematics, 

and how do they influence mathematical reasoning and response to instruction? 

3. What strategies do experts and students use when evaluating whether a 

mathematical assertion is true or false? 

4. What mathematical cognition do experts use in their practice and what methods can 

researchers use to provide an accurate portrayal of this? 

These questions reflect the ambitious long-term goal of understanding mathematical 

cognition from infancy to mature expertise.  Collectively they address the contribution of 

nativist theories in proposing foundational “number sense” capacities seen in nearly all 

human infants (e.g., Feigenson, Dehaene, & Spelke, 2004; Geary, 2007), the mature state of 

refined formal cognitive capabilities associated with highly successful mathematicians 

(Weber, Inglis, & Mejía-Ramos, 2014), and the as-yet unexplained mechanisms that link the 

two.  Although individual research studies necessarily focus on a relatively narrow part of this 
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spectrum, participants in the exercise recognised the importance of working towards an 

empirically evidenced understanding of mathematical cognition that accurately captures 

effective mathematical reasoning, that provides reliable ways of diagnosing atypical 

development, and that is specific enough to be leveraged for the design of interventions. In 

the Critical Review section to follow, we discuss the methodological challenges associated 

with studying expertise in particular. 

B. Mapping Predictors and Processes of Competence Development 

5. How do children learn the meaning of non-iconic representations of number? 

6. What are the key mathematical concepts and skills that children should have in place 

prior to the start of compulsory education?  

7. Do causal mechanisms underlie the correlational evidence between domain-specific 

foundational competencies (e.g., the Approximate Number System, (ANS)) and 

mathematics performance?  What are reliable early and later longitudinal predictors 

of the development of number skills, arithmetic and other aspects of mathematics? 

These might include: 

a. domain specific factors; 

b. domain general factors (working memory, executive functions, language, 

spatial skills); 

c. non-cognitive factors (motivation, anxiety); 

d. environmental factors (home, school, outside of school learning, early 

education). 

8. What are the interactions amongst these predictors? 

9. What are the directions of associations? 

These questions are motivated by concerns about the large proportion of individuals of all 

ages whose achievement in mathematics is considered inadequate relative to standards or 

criteria specified by governments or related agencies.  Compared with the questions in Set 

A, they are more specific in several ways.  First, they explicitly acknowledge that both typical 
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and atypical mathematical development might be influenced by a wide range of 

environmental and affective factors, as well as by domain-specific and domain-general 

cognitive competences.  As such, it is necessary to consider the full range of influences (and 

the ways in which we measure these) because such factors might interact in complex ways.  

Moreover, the nature of these interactions might vary across periods of development.  This 

issue becomes more salient as apparent inconsistencies across research studies come to 

light, as illustrated by studies of the Approximate Number System (ANS) and formal 

numerical skills (De Smedt, Noël, Gilmore & Ansari, 2013; Gilmore et al., 2013).  The time is 

ripe for studies designed to disentangle the effects of different predictors and to map patterns 

of development, and such studies are beginning to be reported (Fuchs et al., 2010; Göbel, 

Watson, Lervåg, & Hulme, 2014; Klibanoff, Levine, Huttenlocher, Vasilyeva & Hedges, 2006; 

Mazzocco, Feigenson & Halberda, 2011).  

C.  Charting Developmental Trajectories and Their Interactions 

10. Are there alternative cognitive pathways by which one can be a successful 

mathematics student? If yes, what does this imply for typical research methods used 

by mathematical cognition researchers?  

11. How are different mathematical skills (including representing number, counting, 

performing arithmetic, using fractions) and their developmental trajectories related to 

each other?  

12. Is developmental dyscalculia qualitatively different from arithmetic performance at the 

lower end of the normal distribution? 

13. As we build causal models of pathways to mathematics learning and thinking, what 

models emerge for compensatory mechanisms – cognitive skills or abilities that allow 

individuals to overcome shortcomings in foundational skills, and that contribute to 

patterns of behaviors? 

The questions in Set B acknowledge the continuum of typical and atypical development, but 

there is no reason to presume that pathways to mathematical understanding are 
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homogeneous among all children whose path is considered either “typical” or “atypical”; in 

both scenarios, individual differences are likely (Geary, 2011; Kaufmann et al., 2013, 

respectively).  The questions in Set C thus consider how research might capture variations in 

mathematical learning.  They are particularly pertinent for researchers considering cognition 

about mathematical concepts beyond basic arithmetic because, earlier points 

notwithstanding, early number and basic arithmetic have been comparatively well studied.  

This is partly because arithmetic concepts provide a clean context for setting and evaluating 

performance on a restricted set of problems with definite right and wrong answers, meaning 

that these concepts provide a sensible setting for investigating more general cognitive 

processes (e.g., strategy use, for which see Siegler, 1988; Wu et al., 2008; gesture, for which 

see Goldin-Meadow, Wagner Cook & Mitchell, 2009).  They are also amenable to 

investigation in the sense that research has identified a fairly restricted number of strategies 

that a student might use to solve, for instance, a single-digit addition problem.  But 

mathematics as a whole has a hierarchical structure that builds rapidly through many levels 

of abstraction.  At every level, it might be possible to explain learning not only in terms of 

what students lack – mature working memory systems, proficiency with basic arithmetic facts 

– but also in terms of what they already know: previous knowledge can interfere with the 

learning of higher-level ideas (e.g., McNeil, 2014).  Researchers have developed pockets of 

knowledge about how this might play out (e.g., the natural number bias as discussed by Van 

Hoof, Lijnen, Verschaffel, & Van Dooren, 2013).  But knowledge development is currently 

understood only in single steps in which a particular existing conception is known to influence 

interpretations of a new concept – we know very little about longitudinal development in 

mathematical cognition, and the questions in this section reflect this.  

D. Fostering Conceptual Understanding and Procedural Skill 

14. How can educators effectively capitalise on informal mathematical knowledge when 

teaching mathematical concepts?  
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15. How can instruction help students to identify normatively-valued similarities between 

mathematical domains, problems, representations, and situations? 

16. How can we help children develop fluency with basic facts and skills while still 

promoting understanding of the underlying concepts? 

17. How can we teach/learn so that useful mathematical knowledge gets automated, 

while also promoting understanding of the underlying concepts?  

18. For specific concepts, which students profit from different sequences of exposure to 

more and less concrete representations? 

Mathematical thinking does not emerge in a vacuum. By definition, emergence of formal 

mathematics requires instructional input, but what form should this instruction take?  The 

questions in Set D sit at the heart of a distinction that causes consternation and controversy.  

Students at all levels must develop procedural fluency so that they can efficiently execute 

standard manipulations, and conceptual understanding so that they can identify and work 

effectively with mathematical structures that arise in a variety of situations (NRC, 2001).  The 

fundamental distinction between the two is conceptualised in various guises and 

terminologies in both education (Skemp, 1976; Star, 2005) and psychology (Rittle-Johnson & 

Schneider, 2015), and the apparent tension manifests itself most dramatically in the so-called 

“math wars” (Schoenfeld, 2004), which contrast “back to basics” movements advocating drill 

and practice – intended to develop factual knowledge and procedural fluency – with 

programmes designed to foster conceptual understanding by providing mathematical 

learning situations that are personally meaningful to the student (Gravemeijer, 1994; Heuvel-

Panhuizen, 2003).  A similar tension also appears in a more moderate guise in programmes 

designed to test the relative efficacy of learning via concrete or abstract representations (De 

Bock, Deprez, Van Dooren, Roelens, & Verschaffel, 2011; Kaminski, Sloutsky, & Heckler, 

2008).  If one of these approaches were truly superior in a straightforward way then we 

would surely by now have conclusive evidence of this, so it seems likely that progress will be 

made by asking not about the extremes of the dichotomy but about the specific 

implementation and combination of different types of learning experience.  As indicated by 
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the questions in this section, there is much potential for developing and testing specific 

instructional sequences. 

E. Designing Effective Interventions 

19. Which domain-specific foundational competencies are most malleable and when in 

developmental time? And does their malleability impact on other aspects of 

mathematical performance? 

20. What are the features (including content of intervention or instruction and 

characteristics of children) of current successful interventions and instruction? 

21. What concepts and skills need to be in place for success in algebra, how are these 

treated in different curricula, and what learning outcomes result if these treatments 

and their sequencing are experimentally compared?  

22. What are the most effective interventions for children with dyscalculia, when is the 

best time for intervention, and which factors best predict the response to intervention? 

These questions address issues already raised, but in a more practical way.  They focus on 

the nuances of applied settings, recognising that the effectiveness of any given intervention 

might depend upon characteristics of the individuals for whom it is intended.  The questions 

also highlight the two-way relationship between theoretical development and experimental 

testing: by interceding with an intervention based on theoretical propositions about the 

causes of mathematical errors and difficulties, researchers test both the intervention and the 

underlying theoretical propositions.  It is therefore encouraging that effective interventions do 

exist and have been tested at scale.  Some of these have been designed to allow for 

individual differences among students who are falling seriously behind, by tailoring research-

based interventions to individuals after detailed diagnoses (Holmes & Dowker, 2013; 

Torgerson et al., 2013).  Others have been designed to change instruction in ordinary 

classrooms by reducing unhelpful regularities in teaching materials and by deliberately 

designing activities that have demonstrable positive effects (McNeil, Fyfe, & Dunwiddie, 

2015).  Such interventions so far have been primarily directed at comparatively young 
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children, which is natural due to levels of research-based knowledge and to serious concerns 

about the cultural and economic implications of children falling behind at early educational 

stages.  But the forms of such interventions, when combined with localised knowledge about 

typical understandings of a broader range of concepts, have potential for improving 

instruction at higher levels too. 

F. Developing Valid and Reliable Measures 

23. Are there reliable and valid methods for measuring ANS acuity that can be used to 

track development over an extended period of time (infancy – childhood – 

adulthood)? 

24. How can we measure informal numeracy experiences validly and reliably? 

25. How can we measure the variability in children’s mathematical experiences outside of 

school?  

26. How can we develop reliable and valid measures of understanding of key 

mathematical concepts? 

These questions capture issues that pervade the entire list: to obtain convincing evidence 

within and across these questions, we must give appropriate attention to our measures of 

key predictors and outcomes.  In some parts of the literature, debates about these issues are 

both obvious and detailed.  For example, in the substantial body of work on the ANS, 

methods have become an overt subject of debate as comparisons across research studies 

reveal serious inconsistencies (Clayton, Gilmore, & Inglis, 2015; De Smedt et al., 2013).  In 

other areas, the discussion is less specific: for instance, methods have been advanced for 

measuring constructs such as understanding in relation to certain concepts, but there is a 

lack of agreement over what constitutes evidence of conceptual understanding (Crooks & 

Alibali, 2014).  At higher levels, with exceptions such as the Calculus Concept Inventory 

(Epstein, 2013), there are few posited standard measures of mathematical knowledge and 

understanding. The listed questions reflect the need for valid and reliable measures of 
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understanding and performance across all levels of mathematics.  Attention to multiple 

methods, to their details and differences, is certainly a positive step. 

Critical Reviews 

In this section we extend the preceding commentaries for those questions from two sections: 

Section A (the nature of mathematical thinking) and Section B (developmental trajectories 

and their interactions). 

Elucidating the Nature of Mathematical Thinking 

Recall that the questions in this section are: 

1. Do infants really have a ‘sense of number’ or are they merely sensitive to quantitative 

dimensions? 

2. How do feelings of correctness or doubt arise when people are doing mathematics, 

and how do they influence mathematical reasoning and response to instruction? 

3. What strategies do experts and students use when evaluating whether a 

mathematical assertion is true or false? 

4. What mathematical cognition do experts use in their practice and what methods can 

researchers use to provide an accurate portrayal of this? 

By their nature these questions present serious methodological challenges.  A wealth of data 

suggests that infants have an innate ability to process quantitative information (Izard, San, 

Spelke & Streri, 2009); habituation and preferential-looking studies indicate that infants can 

discriminate between sets of small (Starkey & Cooper, 1980) or large quantities (Xu  & 

Spelke, 2000; but see Clearfield & Mix, 2001, for an alternative perspective).  It has been 

argued that these numerical discrimination abilities are guided by two separate systems, 

Parallel Individuation for small quantities and the ANS for large quantities (Feigenson et al., 

2004); both systems are believed to be multi-modal in the sense that they aid the 

discrimination of visual, auditory and action-based quantitative stimuli (Carey, 2009; Lipton & 
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Spelke, 2004).  But a variety of additional characteristics can vary with quantity: for visual 

stimuli, for instance, increases in quantity generally co-occur with increases in surface area 

or contour length (Mix & Cheng, 2012).  Although researchers may attempt to control for 

these extraneous perceptual variables, they cannot all be controlled simultaneously (see 

Cantrell & Smith, 2013 for an extensive review).  Therefore, previous findings may be 

interpreted as indicating that infants are sensitive to changes in a variety of general 

magnitude dimensions, such as duration, length, convex hull, and area, in addition to 

quantity (Gebuis & Reynvoet, 2012; Newcombe, Levine & Mix, 2015).  The question of which 

is the most accurate interpretation has yet to be resolved.  

Regarding more complex mathematics we know even less.  This is important because in 

mathematics education there is a large movement for students to engage in authentic 

mathematical practices – to learn to approach problems in a manner epistemologically 

consistent with the thinking of professional mathematicians (e.g., CCCSI, 2012; Lampert, 

1990; NCTM, 2000; Sfard, 1998). Designing for such learning requires an understanding of 

how mathematical experts complete mathematical tasks and how professional 

mathematicians practise their craft.  

In particular, a desired outcome is for students to learn to solve non-routine problems (e.g., 

CCCSI, 2012; NCTM, 2000; Schoenfeld, 1985), a process that often involves making 

conjectures and estimating their veracity.  Such activity likely involves many behaviors and 

competences, one of which is constructing and interpreting mathematical representations.  

Both analysis of expert protocols (Koedinger & Anderson, 1990; Schoenfeld, 1985; Weber & 

Alcock, 2004) and mathematicians’ reflections on their own practice (Hadamard, 1945; 

Polya, 1957) indicate that mathematicians’ judgments about truth values often involve 

diagrams, and that their use of these can interact with symbolic reasoning in complex ways 

(e.g., Koedinger & Anderson, 1990). But there is a growing body of literature indicating that 

students’ propensities to use diagrams have little correlation with their mathematical 
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achievement (Presmeg, 2006), and we do not yet know why students do not typically reap 

the same benefits from multiple representations as do mathematicians. 

We also lack a clear understanding of what evidence mathematicians use to gain certainty 

(or high degrees of confidence) in mathematical conjectures.  The traditional claim is that 

mathematicians rely on proofs – logically rigorous deductive arguments (e.g., Griffiths, 2000). 

But this only raises questions about how such proofs are produced and how mathematicians 

judge whether they are valid.  Given that students usually lack proficiency in constructing and 

evaluating deductive proofs (e.g., Healy & Hoyles, 2000), even after completing curricula 

explicitly designed to teach these skills, better models of the proving process could have 

important implications for mathematics instruction. 

Even in the absence of proof, mathematicians must still sometimes make subjective 

estimations about the plausibility of conjectures.  Franklin (2013) argued that such judgments 

partially determine what problems a mathematician chooses to investigate, and Devlin (2002) 

proposed that the way mathematicians check arguments for correctness is determined by 

how much confidence or doubt they have in those arguments.  However, there is almost no 

systematic research into how mathematicians do, or students should, make such judgments.  

Clearly mathematicians and students do experience varying levels of confidence and doubt 

about mathematical claims and arguments, so it is natural to ask how these arise and how 

they influence reasoning and behavior; these are open questions. 

We conclude this section by acknowledging the methodological difficulties inherent in 

investigating students’ and mathematicians’ mathematical practices.  Developing conjectures 

and forming and evaluating arguments are time-consuming tasks that rely extensively on an 

individual’s background knowledge.  Experts do not necessarily address these tasks in the 

same ways, and the obvious approaches to investigating their practices each have 

limitations.  An investigator can ask individuals to describe their own reasoning processes, 

and many researchers have employed verbal protocol analyses in attempts to model 
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students’ and mathematicians’ problem solving (e.g., Schoenfeld, 1985).  But we know that 

individuals’ self-reports about their own reasoning are often inaccurate (e.g., Nisbett & 

Wilson, 1977).  An alternative is to conduct a naturalistic study, but much mathematical 

reasoning is done in isolation and silence, so this might provide only limited information.  

Moreover, a naturalistic study incurs substantial time costs: even in school environments, 

developing and testing a single conjecture can take a class period or longer, and in expert 

practice, creating and testing a conjecture can span months or years.  Naturalistic studies 

have taken on this challenge, observing mathematicians in meetings over several months 

(e.g., Greiffenhagen & Sharrock, 2011; Smith, 2012).  But they necessarily have relatively 

small numbers of participants, making it difficult to generalize the findings to the broader 

population of mathematicians, especially those who work in different domains.  And, of 

course, analyzing the data requires the investigators to be at least partially conversant with 

cutting-edge mathematics.  

One more tractable methodological alternative is to present individuals with proxy tasks, 

simplified versions of the activities that we would like to investigate that can be completed in 

a relatively short time and that do not require extensive background knowledge.  Using proxy 

tasks does not guarantee that behavioral patterns observed would be present in authentic 

situations, but such tasks do permit the investigator to competently analyze the data, and 

they are beginning to enable progress at least in confirming or debunking common claims.  

Recent eye-movement studies, for instance, have confirmed that undergraduate students 

pay less attention than mathematicians to words (as compared with symbols) in purported 

proofs, and that they are less likely to shift their attention around in a manner consistent with 

seeking deductive justifications (Inglis & Alcock, 2012).  Other recent studies have revealed 

that mathematicians disagree on the validity of even fairly simple mathematical arguments 

(Inglis, Mejía-Ramos, Weber, & Alcock, 2013), that they respond in more nuanced ways than 

is traditionally believed to arguments based on diagrams (Inglis & Mejía-Ramos, 2009a) or 

presented as from an authoritative source (Inglis & Mejía-Ramos, 2009b), and that their 
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sense of beauty in a mathematical proof is not systematically related to that proof’s perceived 

simplicity (Inglis & Aberdein, 2014).  Several of these findings challenge conventional claims 

about the nature of mathematical expertise by revealing more than expected heterogeneity in 

the experiences and judgments of mathematicians.  They thus constitute steps toward a 

more informed view of what mathematics students should learn. 

Charting Developmental Trajectories and Their Interactions 

The questions in this section are: 

1. Are there alternative cognitive pathways by which one can be a successful 

mathematics student? If yes, what does this imply for typical research methods used 

by mathematical cognition researchers?  

2. How are different mathematical skills (including representing number, counting, 

performing arithmetic, using fractions) and their developmental trajectories related to 

each other?  

3. How is developmental dyscalculia qualitatively different from arithmetic performance 

at the lower end of the normal distribution? 

4. As we build causal models of pathways to mathematics learning and thinking, what 

models emerge for compensatory mechanisms – cognitive skills or abilities that allow 

individuals to overcome shortcomings in essential skills, and that contribute to 

patterns of behaviors? 

In comparison with the questions discussed in the previous section, research pertaining to 

these is comparatively advanced.  But it is by no means conclusive: the available data 

suggest that multiple potential pathways to mathematical success exist, but do not specify 

precisely what those pathways are.  This is evident among children who have mathematical 

difficulties of known (e.g., Dennis et al., 2009) or unknown etiology (e.g., Geary, 2011, 

Kaufmann et al., 2013), the most easily differentiated of whom have readily classifiable 

developmental diagnoses such as fragile X syndrome, spina bifida, and 22q deletion 
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syndrome (De Smedt, Swillen, Verschaffel, & Ghesquière, 2009; Mazzocco, Quintero, 

Murphy, & McCloskey, 2016).  Some group differences, while disorder-specific, may provide 

models for variation in the general public if origins for and mechanisms underlying different 

pathways and trajectories were well understood.  This makes inquiry into these trajectories 

particularly valuable.  

To understand differences in developmental trajectories, researchers attend to relative 

deficits and assets – a neuropsychological approach that reveals potential dissociations of 

mathematics skills and that thus extends knowledge of basic cognitive processes and 

potential routes to both dyscalculia and typical mathematical achievement.  For instance, 

school-age children with 22q deletion syndrome (22qDS) have intact fact retrieval skills but 

relatively impaired enumeration of quantities (see the review by de Smedt et al., 2009); they 

also exhibit intact word learning, but under-count enumeration errors for sets exceeding four 

(Quintero, Beaton, Harvey, Ross, & Simon, 2014).  Whether these enumeration errors reflect 

difficulties with mapping of numbers to quantities (e.g., Dehaene, Piazza, Pinel, & Cohen, 

2003), with spatial attention (Simon, Bearden, Mc-Ginn, & Zackai, 2005), or with other basic 

processes has important implications for the origins of developmental trajectories. But, in all 

possible cases, their existence demonstrates a dissociation between components of 

mathematical cognition.   

Similar dissociations are evident across other conditions.  For instance, mathematical 

performance remains comparatively unimpaired in children with 22qDS when tapping the 

verbal system (Mazzocco et al., 2016), but not when engaging in nonverbal tasks.  In 

contrast, whereas children with spina bifida meningomyelocele show delayed counting 

principles in early childhood and poor numeracy across the lifespan, their mathematical fact 

retrieval performance is not correlated with presence or absence of a learning disability 

(English, Barnes, Taylor, & Landry, 2009) but rather with level of fine motor skills (Barnes et 

al., 2006).  In children with Williams syndrome, the dissociation between numerical skills is 

not only in nature but also in timing: abstract representations of small quantity are age 
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appropriate during infancy, as is the ability to track small item sets.  But these skills do not 

remain intact throughout life, and impaired approximate number representations of large sets 

emerge even in early childhood.  Remarkably, despite this profile, young children with 

Williams Syndrome (WS) outperform other young girls with fragile X syndrome on counting 

principles such as cardinality.    

These systematic profile analyses are each guided by theories linked to specific biochemical, 

neuroanatomical, or neuropsychological characteristics of known conditions (as reviewed by 

Dennis et al., 2009).  As such, principled approaches allow us to test theories of the origins 

of mathematics learning trajectories, or to ask when pathways diverge or become unique.  

Possible factors in divergence include impaired motor function that prevents motor 

exploration in infants and toddlers with spina bifida (and that limits finger use in older 

children), and disrupted development of the visuospatial processing system in 22qDS or WS.  

But these factors are not syndrome specific, so the mathematical assets observed in these 

and other populations have implications for potential compensatory mechanisms – routes via 

which we might promote mathematical learning in any children who share assets in these 

domains.   

This argument about assets extends to domain-general skills like working memory (English 

et al., 2009), and of course developmental differences are also observed in children with 

typical mathematics achievement (LeFevre et al., 2010).  To date, studies of typical 

populations have focused on numerical skills, fractions, fact retrieval/word problem solving, 

or general mathematical achievement, depending on the researcher’s discipline.  Measured 

potential mediators or moderators frequently include executive functions (e.g., working 

memory, inhibitory control; Bull, Espy, & Wiebe, 2008), processing speed, and, more 

recently, indices of mathematics anxiety or motivational factors (Beilock et al., 2010; Wang et 

al., 2015).  Importantly, most of the relationships to emerge from these studies are nonlinear. 

Outcomes may interact with problem type (Agostino, Johnson, & Pascual-Leone, 2010), 

stage of development (Ansari, 2010), motivation or mathematics anxiety (Beilock et al., 2010; 
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Wang et al., 2015), and other known influences (e.g., reading disability, stereotype threat, 

motor function) work directly on mathematical outcomes or indirectly moderate known 

associations (for instance, children with a reading disability or moderate math anxiety might 

be more or less responsive to an intervention). 

Ideally, we would draw comparisons across studies that ask similar questions or address 

different disorders; this would help to identify common dissociations, alternative 

compensatory paths, and indicators of whether children are good candidates for specific 

compensation-based interventions.  But, at present, an explicit comparison of this sort is 

problematic.  At minimum it requires commonality in at least some of the measures used to 

assess skills (mathematical or otherwise), overlap in ages assessed, and similar 

methodological approaches to study design and data analysis.  This returns us to the 

overarching questions about methodology raised in Section F: better consistency in design 

and reporting would contribute to both disorder-specific knowledge and knowledge of 

mathematical cognition in the broadest sense.   

Discussion 

The exercise reported in this paper led to a list of questions that reflects a broad approach to 

understanding human mathematical cognition, encompassing the effects of environmental 

and affective factors, of domain-general and domain-specific cognitive factors, and of 

teaching interventions.  It covers mathematical cognition as it does or can develop from 

infancy to expertise: from basic representations of number in the brain, through informal and 

formal learning and ways in which these might be studied and supported, to the thinking of 

expert mathematicians.  This variation, however, should not be seen as overwhelming: the 

list exhibits an encouraging level of coherence among the main concerns of researchers at 

all mathematical levels and from all of the disciplines involved in our exercise.  Indeed, 

although the conference was characterised by a spirit of openness, engagement, and a 

willingness to do the work necessary to iron out any misunderstandings that arose due to 
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different terminologies, this was hardly required – genuine disagreements were few, which 

encourages us to believe that our different approaches are converging on similar 

conceptions of the key issues.  

That said, any exercise like this is naturally limited by the experience and knowledge of its 

participants, and must trade off breadth of representation against depth of focus.  With a 

comparatively small exercise like this, we leant towards depth: all of our participants work on 

mathematical cognition as a major strand of their own research.  One consequence was that 

minority interests are less well reflected in our list of questions; in particular, although 

questions related to cognitive neuroscience arose in the drafting stages (see 

https://figshare.com/articles/S1_Dataset_xlsx/1299358), they did not survive the winnowing 

process.  This could be seen as reflecting a primary focus among our participants on 

questions of fairly direct concern to educators; fundamental questions about representations 

in the brain are perhaps, at present, a step further removed from these concerns. Similarly, 

resource restrictions and the UK location of the funder skewed the participation toward local 

participants and toward those who publish primarily in English.  We fully acknowledge that 

other researchers – especially those with broader interests, or those working primarily in 

other regions or languages – might take different views, and we hope that one function of this 

paper will be to stimulate debate. 

We hope also to stimulate debate on prioritisation of research endeavours, toward which end 

we should clarify that we intend this paper as a resource, not a manifesto: we do not wish to 

make actual or speculative value judgments about how our fellow researchers use their time 

and resources.  Some bodies do make such judgments: funders are entitled to establish 

agendas and research priorities.  But we consider it inappropriate to use our list – whether 

pre-emptively or retrospectively – as a basis for judging the worthiness of others’ work.  We 

nevertheless believe that the spirit of academic freedom would be preserved if an outcome of 

our exercise is a set of important shared considerations that becomes refined by greater 

interdisciplinary communication.  Accordingly we hope that others will consider addressing 
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some questions directly, and relating their ongoing work to a broader swathe of research 

pertinent to mathematical cognition.   

We are also aware that our list of questions raises issues about practicality: some questions 

could be addressed via small research projects run by small teams, but some would 

necessitate larger-scale, multi-lab investigations.  The list also raises natural questions about 

sequencing; for instance, it may seem that question 25 (How can we measure the variability 

in children’s mathematical experiences outside of school?) must be answered before 

question 7 (including What are reliable early and later longitudinal predictors of the 

development of number skills, arithmetic and other aspects of mathematics?).  But this 

presupposes that a perfect measure is possible, and that it is possible to know in isolation 

that we have found it.  In fact, such a measure must necessarily be constructed in 

conjunction with research about the influence of various factors on development: there is no 

point in measuring perfectly a quantity that turns out not to have influence in the world 

(arguably, the abstract nature of theoretical constructs means that this is not even possible).  

There are also more prosaic concerns: we could invest in developing excellent measures for 

constructs that we currently believe to be important, but what if they turn out not to be?  

Without some concurrent effort to establish at a rough level whether outside-of-school 

experiences have as much influence as, say, the first year in school, that investment could 

be wasted (at least from the perspective of educational development, if not from that of basic 

research).   

So, although our questions represent an informed, collective, current perspective, it would be 

folly to set ourselves up as able to make predictions about what is destined to become the 

really important breakthroughs or insights.  These will come about due to continued reflection 

informed by new developments across our fields, so we hope – as stated in the introduction – 

to promote communication and interdisciplinary work across the fields of mathematics 

education, psychology and cognitive neuroscience by drawing attention to what is common in 

their methods, theories, and ultimate research goals.    
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Endnotes 

i The journals and conferences in this section are not intended to be exhaustive or typical for 

all researchers within a specific discipline; instead they serve to illustrate the diverse 

publication outlets within the field of mathematical cognition. 

ii These exercises have typically been influential, with the resulting papers attracting large 

numbers of citations both in academic research and in policy documents.   

iii A conference that took place at the Kavli Royal Society International Centre in August 

2014. 

 


