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HIGHLIGHTS 

 The seismic behaviour of CFS strap-braced walls is evaluated by experimental investigation. 

 The global inelastic response of a wide range of X-braced walls is discussed. 

 The local behaviour is investigated by tests on material and connection systems. 

 The behaviour factor provided by AISI S213 are confirmed by the experimental tests. 

 The capacity design rules of Eurocodes are also reliable for the CFS structures. 

ABSTRACT 

The development of light weight steel structures in seismic area as Italy requires the upgrading of 

National Codes. To this end, in the last years a theoretical and experimental study was undertaken at 

the University of Naples within the Italian research project RELUIS-DPC 2010-2013. The study 

focused on "all-steel design" solutions and investigated the seismic behaviour of strap-braced stud 

walls. Three typical wall configurations were defined according to both elastic and dissipative design 

criteria for three different seismic scenarios. The lateral in-plane inelastic behaviour of these systems 

was evaluated by twelve tests performed on full-scale Cold-formed strap-braced stud wall specimens 

with dimensions 2400 x 2700 m subjected to monotonic and reversed cyclic loading protocols. The 

experimental campaign was completed with seventeen tests on materials, eight shear tests on 

elementary steel connections and twenty-eight shear tests on strap-framing connection systems. This 

paper provides the main outcomes of the experimental investigation. Furthermore, the design 

prescriptions, with particular reference to the behaviour factor and the capacity design rules for these 

systems, have been proved on the basis of experimental results. 

INTRODUCTION 

The Cold-Formed Steel (CFS) structures are able to ensure a good structural response in seismic 

areas. In these structures, the lateral load bearing systems are CFS stud walls, that are generally 

realized with frames in CFS profiles braced by sheathing panels or light gauge steel straps installed 

in a X configuration. The seismic behaviour of CFS structures laterally braced by panels ("sheathing-

braced" approach) was the object of several studies carried out at the University of Naples "Federico 

II" in the last years. In particular, different experimental investigations were conducted on full-scale 

substructure prototypes (global response) and connections (local response) [1, 2, 3, 4, 5, 6, 7, 8]. 

When X-braced configuration is adopted, the design is carried out according to "all-steel" approach 

and steel straps are generally used to obtain the diagonal elements. In particular, because of the steel 

straps slenderness, only those in tension are considered active. Therefore, the lateral load applied on 

a wall is adsorbed only by the diagonal in tension, which transmits a significant axial compression 
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force to the ends of the wall. For this reason, the design of members and connections located at wall 

corners is crucial, especially for the chord studs, tracks, strap connections, gusset plate and anchors. 

Guidelines for the seismic design of CFS structures are not provided by the European codes (EN 

1998-1 [9]). Hence, as an attempt to provide a contribution to the introduction of these systems in the 

European codes, a theoretical and experimental study was carried out at University of Naples Federico 

II. The research program, developed within the Italian research project RELUIS-DPC 2010-2013, 

was articulated in two main phases. An experimental phase devoted to the evaluation of the local and 

global behaviour of CFS strap-braced stud walls by means of laboratory tests on walls, materials and 

connection systems, which is presented in this paper, and a theoretical phase mainly devoted to define 

seismic design criteria, which is illustrated in the companion paper [10]. In the following, the results 

of the experimental phase are presented and discussed. In addition, on the basis of the experimental 

results, the adopted design assumptions for the seismic design of strap braced CFS structures are 

validated. 

1 TEST PROGRAM 

In order to investigate a wide range of possible CFS solutions for low-rise dwellings, three buildings 

to be located in different seismic area were designed. Each of them has a rectangular plan with 

dimensions 12.2 m x 18.1 m and storey height of 3.00 m. The lateral resisting system is made of CFS 

strap-braced stud walls that were designed according to elastic or dissipative design approaches. 

Therefore, three wall configurations were defined as follows: elastic light (WLE), dissipative light 

(WLD) and dissipative heavy (WHD) walls (Fig. 1). Table 1 shows the criteria adopted for the design 

of the diagonal straps, the non dissipative elements and the connections for the three different wall 

configurations. More details about the development of the case study and the design of walls are 

presented in the companion paper [10].  

a) b) c) 

Figure 1. Schematic drawings of the three wall configurations: a) elastic light wall (WLE); b) dissipative 
light wall (WLD); c) dissipative heavy wall (WHD). 
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The lateral response of these systems was investigated by testing each of the three selected 
configurations by two monotonic and two cyclic tests for a total of twelve tests on full-scale wall 
specimens in size of 2400 x 2700 mm. Moreover, taking into account that materials and components 
influence the wall seismic global response in terms of lateral resistance, stiffness and ductility, the 
components response was investigated by means of seventeen tests on materials, eight shear tests on 
elementary screwed connections between steel profiles and twenty-eight shear tests on screwed 
connections between gussets and strap-bracings. The experimental campaign is summarized in Table 
2. All tests were carried out in the laboratory of the Department of Structures for Engineering and 
Architecture of the University of Naples Federico II.  
 

Table 1. Adopted design criteria. 
Wall configuration  WLE WLD WHD 

Net section fracture prevention Eq (1): Rd,uRd,pl NN   NO YES YES 

Forces for non dissipative 
elements 

Eq (2): fyovd RR  1.1  NO YES YES 

Brittle failure of fasteners Eq (3): RdbRdv FF ,, 2.1  or  RdnRdv FF ,, 2.1  YES YES YES 

Npl,Rd: design plastic resistance of the diagonal cross section 
Nu,Rd: ultimate design resistance of the net cross section at fasteners holes 
Rd: connection resistance 
Rfy: design plastic resistance of the connected dissipative member 
ov = 1.25: material overstrength factor 
Fv,Rd: shear resistance of the screw 
Fb,Rd: bearing resistance of the connection 
Fn,Rd: net area resistance of the connected member 
More details about Equations (1), (2) and (3) are given in the companion paper [10] 

 

Table 2. Test matrix. 
WALLS 

 

label WLE WLD WHD 

no. monotonic tests 2 2 2 

no. cyclic tests 2 2 2 

MATERIALS 

 

label 
(steel grade - thickness in mm) S350 - 1.5 S235 – 2.0 S350 – 3.0 

no. tests 3a + 3b 2a + 3b 3a + 3b 

ELEMENTARY CONNECTIONS 

 

label SLE SLD SHD 

no. tests 3b 3b 2b 

JOINTS between GUSSETS and STRAP-BRACINGS 

 

label CLE CLD CHD 

configuration 1 1 2 3 4 1 2 3 4 

no. tests 3a + 3b 3a + 3b 2b 2b 2b 1a + 3b 2b 2b 2b 

a stands for test speed equal to 50 mm/s; 
b stands for test speed equal to 0.05 mm/s; 
WLE is Elastic Light Wall; 
WLD is Dissipative Light Wall; 
WHD is Dissipative Heavy Wall; 
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SLE is Single connection for Elastic Light wall; 
SLD is Single connection for Dissipative Light wall; 
SHD is Single connection for Dissipative Heavy wall; 
CLE is Connection joint for Elastic Light wall; 
CLD is Connection joint for Dissipative Light wall; 
CHD is Connection joint for Dissipative Heavy wall 

 

2 TESTS ON FULL-SCALE CFS STRAP-BRACED STUD WALLS 

The lateral in-plane behaviour of the selected wall configurations (WLE, WLD, WHD) was 

investigated by means of twelve physical tests, including six monotonic tests and six cyclic tests on 

full-scale 2400 mm long and 2700 mm high wall specimens. The wall framing (Fig. 2a) was made 

with stud members, having lipped channel sections (C-sections), spaced at 600 mm on the center and 

connected at the ends to track members, having unlipped channel sections (U-sections). Since chord 

studs are subjected to higher axial load, aiming to avoid any buckling and failure of those studs, they 

were composed by double C-sections screwed back-to-back. In order to reduce the unbraced length 

of the chord and interior studs, flat straps were placed at the mid-height of the wall specimens and 

were screwed to blocking members placed at the ends of walls. The local buckling phenomena of 

tracks were avoided by reinforcing the ends of members with C-section profiles assembled in a box 

sections (Fig. 2b). Hold-down devices were placed within the lower and upper tracks at the four 

corners of the walls. They were made with steel grade S700 (characteristic yield strength fy= 700 MPa 

and characteristic ultimate strength fu = 750 MPa) and were connected to the studs by four M16 class 

8.8 bolts and to the beams of the testing frame by one M24 class 8.8 bolt. The hold-downs transfer 

the uplift forces from the chord studs to the testing frame. The upper and bottom tracks of the tested 

walls were connected respectively to the loading (top) and bottom beams of the testing frame by M8 

class 8.8 bolts spaced at 300 mm on the center, which were used as shear connections. The wall 

specimens were completed with strap braces installed in an X configuration on both sides and 

connected to the wall framing by gusset plates. For each wall configuration an appropriate fastener 

was chosen: 6.3 x 40 mm (diameter x length) hexagonal flat washer head self-drilling screws (AB 04 

63 040 type) for WLE and WHD specimens, and 4.8 x 16 mm modified truss head self-drilling screws 

(CI 01 48 016 type) for WLD prototypes, produced by Tecfi S.p.A. [11]. All the steel members were 

fabricated by steel grade S350GD+Z (fy = 350 MPa and fu = 420 MPa), except the diagonal straps of 

dissipative systems, which were made with steel grade S235 (fy = 235 MPa and fu = 360 MPa). Table 

3 lists the nominal design dimensions and material properties of the tested wall components and Table 

4 summarizes the adopted connection systems. Schematic drawings of the WHD configuration is 

provided in Figure 2 and photos of the three wall configurations with the corresponding corner details 

are provided in Figure 3 through Figure 5.  
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a) b) 

Figure 2. WHD wall configuration: a) indication of the wall components and their dimensions; b) track 
reinforcement detail. 

 

Table 3. Nominal design dimensions and material properties of the tested wall components. 

 
WLE WLD WHD 

Section [mm] Grade Section [mm] Grade Section [mm] Grade 
Studs C150x50x20x1.5a S350 C150x50x20x1.5a S350 C150x50x20x3.0a S350 

Tracks U153x50x1.5b S350 U153x50x1.5b S350 U153x50x1.5b S350 
Diagonal straps 90x1.5c S350 70x2.0c S235 140x2.0c S235 

Gusset plates 270x270x1.5d S350 290x290x1.5d S350 365x365x1.5d S350 
Track 

reinforcements 
C150x50x20x1.5a S350 C150x50x20x1.5a S350 C150x50x20x3.0a S350 

Blocking members C150x50x20x1.5a S350 C150x50x20x1.5a S350 C150x50x20x3.0a S350 
Flat straps 50x1.5c S350 50x1.5c S350 50x1.5c S350 

a C-section: outside-to-outside web depth x outside-to-outside flange size x outside-to-outside lip size x thickness; 
b U-section: outside-to-outside web depth x outside-to-outside flange size x thickness; 
c width x thickness; 
d height x width  x thickness 

 

Table 4. Adopted connection systems. 

 WLE WLD WHD 

Screws AB 04 63 040 CI 01 48 016 AB 04 63 040 

Shear anchors M8 class 8.8 bolts spaced at 300 mm on centre 

Hold-down_to_chord stud fasteners no.4 M16 class 8.8 bolts 

Hold-down_to_steel beam fasteners M24 class 8.8 bolt rods  
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Figure 3. WLE_M1 general view and corner detail. 

  
Figure 4. WLD_M2 general view and corner detail. 

  
Figure 5. WHD_M1 general view and corner detail. 

 

Tests on full-scale wall specimens were carried out by using a specifically designed testing frame for 

in-plane shear loading (Fig. 6). Horizontal loads were transmitted to the upper wall track by means 

of a steel beam made of a 200x120x10 mm (width x height x thickness) rectangular hollow section. 
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The wall prototype was constrained to the laboratory strong floor by the bottom beam of testing frame. 

The horizontal component of the brace force was transfer through the track to the supporting structure. 

The out-of-plane displacements of the wall were avoided by two lateral supports realized with HEB 

140 columns and equipped with double roller wheels. The tests were performed by using a hydraulic 

actuator having ±250 mm stroke displacement and 500 kN load capacity. A sliding-hinge was placed 

between the actuator and the tested wall in order to avoid the transmission of external vertical load 

components. Eight LVDTs were used to measure the specimen displacements. In particular, three 

LVDTs (W1, W2 e W3) were installed to record the horizontal displacements (W1 for the top 

displacements, W2 and W3 for the displacements at the bottom of the walls) and two LVDTs (W4, 

W5) for the vertical displacements. The local deformations of the diagonal straps were recorded by 

means of two strain-gauges for each diagonal (S1 and S4 placed at the end and S2 and S3 placed in the 

center of the straps). A load cell was used to measure the applied loads. 

 
Figure 6. Test on full-scale walls. 

 

2.1 Monotonic tests 

In the monotonic loading regime, the tests were performed by applying a loading protocol organized 

in two phases. In the first phase the wall specimens were pulled and in the second phase they were 



 

9 
 

pushed. Both phases have been followed by the unloading of the wall prototypes in order to lead them 

back to the initial position. Figure 7 shows the response curve in terms of load vs. displacement for 

WLE-M2 specimen. This testing protocol involved displacements at a rate of 0.10 mm/s up to a 

maximum of ± 240 mm defined by the stroke limit of the actuator or until the occurred collapse.  

Test results in terms of yield strength (Hy), maximum strength (Hmax), displacement at the 

conventional elastic limit (dy), maximum displacement (dmax), conventional elastic stiffness (ke), 

defined as the secant stiffness at 40% of the maximum strength, and observed failure mechanisms are 

shown in Table 5. In addition, Table 5 provides the theoretical predicted values of the wall strength 

and stiffness together with the ratios between the average experimental and theoretical values. The 

latter were evaluated according to the EN 1993-1-3 [12] through the methodolgy illustrated in 

Sections 3 of the companion paper [10] by using the average experimental mechanical properties. 

Figure 8 through Figure 10 show the acting load (H) vs top wall displacement (d) curves for the WLE-

M1, WLD-M1 and WHD-M2 prototypes with the experimental values measured in the pulling and 

pushing phases (indicated with subscripts - and +, respectively) and the predicted parameters 

(indicated with subscript p), which are used to evaluate the structural response. Moreover, the 

interstorey-drift levels, which are defined as the ratio (d/h) between the top wall displacement and 

wall height set equal to 2700 mm, are also provided in the wall specimen curves. 

Test results reveal a decrement of maximum strength contained within 12% in the pushing phase with 

respect to the pulling phase, while the conventional elastic stiffness records significant decrement up 

to 42% in the pushing phase, due to the occurrence of local damages of some wall components in the 

previous pulling phase. Moreover, the strength prediction is very close to the experimental results, 

with a maximum difference of 9% of the average experimental values compared to the theoretical 

strength values. In addition, the ratios between the average experimental and theoretical stiffness 

demonstrate that the experimental values are lower than the theoretical predictions, with variations 

ranging between 8% and 47%. 

In agreement with the predicted failure mechanisms, the WLE configurations collapse was reached 

with the net section failure of diagonal straps (Fig. 11a), while the performance of WLD and WHD 

specimens was governed by the brace yielding up to the maximum stroke of the actuator without 

reaching the wall failure (Fig. 11b, Fig. 11c and Fig. 11d). The dissipative walls were displaced to 

significantly higher drift levels (in the range of 5.1% through 9.0% for WLD walls and in the range 

of 5.8% through 8.1% for WHD specimens) compared with elastic walls (in the range of 1.0% through 

1.4%).  

Regarding the dissipative heavy wall, in the first test (WHD-M1) a temporary strength loss was 

recorded (Fig. 12a), which was due to the occurrence of local buckling at the non-reinforced fields of 

the track for effect of high compression loads (Fig. 12b). In order to prevent this phenomenon, in the 
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second test (WHD-M2) the track reinforcement was extended to the full tracks (Fig. 12c) and the 

experimental response demonstrated the effectiveness of the intervention (Fig. 12a). 

The wall stiffness can be evaluated by taking into account the stiffness contributions due to main wall 

structural components: (Kd) related to the axial deformability of the diagonals in tension, (Kc) due to 

the deformability of the diagonal-to-frame connections and (Ka) corresponding to the deformation of 

the anchors in tension. In particular, this last can be evaluated on the basis of the wall monotonic 

tests, as defined in [10]. Specifically, the stiffness (ka) experimental value of the anchorage system in 

tension (chord stud bolts, hold-down device and rod) was defined as the ratio between the vertical 

force acting in the chord stud and the up-lift displacements registered at the bottom of the wall (W5 

LVDT) in the pulling phase (Fig. 13a). Figure 13b shows the curves in terms of the axial stiffness of 

the anchorage system in tension (ka) vs the displacement (d) registered at the top of the wall. Taking 

into account that the recorded conventional elastic limit displacement (dy) is in the range of about 15 

and 30 mm, the axial stiffness for the tension anchors range in the range from 15 to 24 kN/mm, with 

an average value of about 20 kN/mm. 

Table 5. Test results of monotonic tests on full-scale walls. 

Label 
Hy [kN] Hmax [kN] dy [mm] dmax [mm] ke [kN/mm] Failure mode 

pull push pull push pull push pull push pull push pull push 

WLE-M1 64.9 65.6 66.3 66.6 18.5 24.3 36.7 35.3 3.5 2.7 NSF NSF 

WLE-M2 65.9 63.7 67.6 64.3 15.0 15.5 30.2 27.1 4.4 4.1 NSF NSF 

exp,AV 65.4 64.7 67.0 65.5 16.8 19.9 33.5 31.2 4.0 3.4 - - 

th - - 61.4 61.4 - - -  -  4.4 4.4 NSF NSF 

exp,AV / th - - 1.09 1.07 - - - - 0.90 0.77 - - 

WLD-M1 56.7 58.8 61.7 62.3 14.2 18.4 214.5 244.2 4.0 3.2 BY BY 

WLD-M2 56.0 54.4 64.2 56.5 13.0 17.0 237.9 139.0 4.3 3.2 BY BY 

exp,AV 56.4 56.6 63.0 59.4 13.6 17.7 226.2 191.6 4.2 3.2 - - 

th 55.0 55.0 - - - - -  -  4.9 4.9 BY BY 

exp,AV / th 1.02 1.03 - - - - - - 0.85 0.65 - - 

WHD-M1 110.3 107.8 116.9 119.3 17.8 29.9 157.6 159.7 6.2 3.6 BY BY 

WHD-M2 109.5 114.2 118.4 119.3 18.6 33.6 203.5 220.0 5.9 3.4 BY BY 

exp,AV 109.9 111.0 117.7 119.3 18.2 31.8 180.6 189.9 6.1 3.5 - - 

th 110.0 110.0 - - -  -  -  -  6.6 6.6 BY BY 

exp,AV / th 1.00 1.01 - - -  -  -  -  0.92 0.53 - - 
exp,AV : average experimental values; 
th: theoretical values; 
BY: brace yielding; 
NSF: net section failure of strap-bracing 
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Figure 7. Response curve in terms of load vs. 
displacement for WLE-M2. 

Figure 8. Monotonic test on WLE-M1 specimen: load 
vs. displacement curve. 

 
Figure 9. Monotonic test on WLD-M1 specimen: 

load vs. displacement curve. 

 
Figure 10. Monotonic test on WHD-M2 specimen: 

load vs. displacement curve. 
 

 
a) 

 
b) 

 
c)  

 
d) 

Figure 11. Collapse mechanism for the monotonic tests: a) net section failure for WLE-M1; b) brace 
yielding for WLD-M1; c) and d) brace yielding for WHD-M1. 
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a) 

  
b) c) 

Figure 12. Dissipative heavy walls: a) comparison between the response curve of WHD-M1 and WHD-M2; 
b) track reinforcement adopted in WHD-M1 and; c) track reinforcement adopted in WHD-M2. 

 

  
a) b) 

Figure 13. Definition of the stiffness experimental value of the tension device: a) hold-down detail for 
WHD-M1; b) curve in terms of ka vs. d. 

 

2.2 Cyclic tests 

The cyclic tests were carried out by adopting a loading protocol known as "CUREE ordinary ground 

motions reversed cyclic load protocol" developed for wood walls by Krawinkler et al. [14] and 

modified for CFS strap-braced stud walls by Velchev et al. [15]. The cyclic loading test protocol 

consists of a series of stepwise increasing deformation cycles. The displacement amplitudes were 
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defined starting from a reference deformation ȴ = 2.667ȴy, where ȴy was defined as the displacement 

at the conventional elastic limit evaluated in the nominally identical monotonic wall tests. The cyclic 

protocol involved displacements at a rate of 0.5 mm/s, for displacements up to 9.97 mm, 7.36 mm e 

7.27 mm for WLE, WLD and WHD walls respectively, and of 2.0 mm/s for displacement greater 

than those above mentioned. The adopted test protocol for WLE specimens is shown in Fig. 14.  

The results of the cyclic tests are shown in Table 6, in which the theoretical values of the wall strength 

and stiffness are the same ones provided for the monotonic tests. Figure 15 through Figure 17 provide 

the acting load (H) versus the measured displacement (d) curves and the analyzed parameters for the 

WLE-C1, WLD-C2 and WHD-C1 specimens.  

Table 6. Test results of cyclic tests on full-scale walls. 

Label 
Hy [kN] Hmax [kN] dmax [mm] ke [kN/mm] Failure mode 

pull push pull push pull push pull push pull Push 

WLE-C1 69.6 68.9 70.6 69.4 38.1 35.7 3.7 3.4 NSF NSF 

WLE-C2 68.0 69.9 68.3 70.5 26.5 31.3 4.0 4.7 NSF NSF 

exp,AV 68.8 69.4 69.5 70.0 32.3 33.5 3.9 4.1 - - 

th - - 61.4 61.4 -  -  4.4 4.4 NSF NSF 

exp,AV / th - - 1.13 1.14 -  -  0.88 0.92 - - 

WLD-C1 58.7 59.8 63.1 64.4 176.2 165.5 3.8 4.0 NSF NSF 
WLD-C2 58.7 60.0 66.6 64.9 141.2 144.8 4.6 4.5 NSF NSF 

exp,AV 58.7 59.9 64.9 64.7 158.7 155.2 4.2 4.3 - - 

th 55.0 55.0 - - -  -  4.9 4.9 BY BY 

exp,AV / th 1.07 1.09 - - -  -  0.86 0.87 - - 

WHD-C1 116.7 116.0 124.0 124.2 197.0 221.0 5.7 7.7 NSF BY 
WHD-C2 112.9 111.6 118.9 124.2 67.5 221.8 7.5 6.7 NSF BY 

exp,AV 114.8 113.8 121.5 124.2 132.3 221.4 6.6 7.2 - - 

th 110.0 110.0 - - -  -  6.6 6.6 BY BY 
exp,AV / th 1.04 1.03 - - -  -  1.00 1.09 - - 

exp,AV : average experimental values; 
th: theoretical values; 
BY: brace yielding; 
NSF: net section failure of strap-bracing 

 
The results show that the strength and stiffness recorded in the pushing phase with respect to the 

pulling phases have maximum differences of 4% and 18%, respectively, except a variation of 35% 

for the stiffness of WHD-C1 specimen. The ratios between the average experimental and theoretical 

values highlight that the experimental strengths are higher than the theoretical predictions with 

maximum difference of 14%, while the measured stiffness values are lower than the predicted 

parameters with a variation up to 14%. 

For all prototypes the observed collapse mode was the net section failure of diagonal straps (Fig. 18), 

except for WHD wall specimens, that showed the brace yielding in the pushing. As in the case of 

monotonic tests, the dissipative walls exhibited significantly higher drift levels (in the range of 5.2% 

through 6.5% for WLD walls and in the range of 2.5% through 8.2% for WHD specimens) compared 

with elastic walls (in the range of 1.0% through 1.4%). 
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The comparison between the monotonic and cyclic test results reveals that the average experimental 

shear strength and stiffness values registered under monotonic loads are lower than the one recorded 

in the cyclic tests with maximum variations of 8% and 16%, respectively, except the case of the WHD 

specimens affected by local damages in the monotonic tests. 

 
Figure 14. Cyclic protocol for WLE specimens. 

 
Figure 15. Cyclic test on WLE-C1 specimen: load vs. 

displacement curve. 

 
Figure 16. Cyclic test on WLD-C2 specimen: load vs. 

displacement curve. 
Figure 17. Cyclic test on WHD-C1 specimen: load vs. 

displacement curve. 
 

 
a) 

 
b) 

 
c) 

Figure 18. Net cross-section fracture for a) WLE-C2 and b) WLD-C2; c) strap yielding registered in WHD-
C1. 
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3 TESTS ON MATERIAL AND COMPONENTS 

3.1 Test on materials 

The material coupons of straps and frame members were subjected to conventional tension tests 

according to EN ISO 6892-1 [16]. In particular, tests were performed on three specimen types S235-

2.0, S350-1.5, S350-3.0, characterized by steel grades S235 with thickness of 2.0 mm and S350GD+Z 

with thicknesses of 1.5 mm and 3.0 mm (Table 7). Since the effects of "strain rate" were not assessed 

with the wall tests, in which the maximum displacement rate was 0.5 mm/s, therefore tests on material 

at standard rate (0.05 mm/s) and high rate (50 mm/s) were carried out for each specimen type. The 

high displacement rate corresponds to strain rate in the range from 0.10 to 0.15 s-1. It was selected in 

such a way to obtain strain rates comparable with those used in wall cyclic tests with high rate 

displacements, i.e. wall tests carried out by Velchev and Rogers [17] and Serrette [18], in which 

maximum strain rates of about 0.08 and 0.12 s-1 was nominally imposed at straps, respectively. 

Table 7. Mechanical properties for tests on materials. 

Specimen type Steel grade Thickness [mm] fy,n [MPa] fu,n [MPa] fu,n / fy,n 
S235-2.0 S235 2.0 235 360 1.5 
S350-1.5 S350GD+Z 1.5 350 420 1.2 
S350-3.0 S350GD+Z 3.0 350 420 1.2 

fy,n: nominal yield strength; 
fu,n: nominal ultimate strength 

 

Table 8. Tests results on materials. 

Label fy,exp [MPa] fu,exp [MPa] fy,exp/fy,n fu,exp/fu,n fu,exp / fy,exp fy,exp(H) / 
fy,exp (S) 

fu,exp(H) 

/ fu,exp(S) S H S H S H S H S H 
S235-2.0-01 311 335 381 403 1.32 1.43 1.06 1.12 1,23 1,20 1.08 1.06 
S235-2.0-02 294 310 360 376 1.25 1.32 1.00 1.04 1,22 1,21 1.05 1.04 
S235-2.0-03 300 - 358 - 1.28 - 0.99 - 1,19 - - - 

Average 
values 

302 323 366 390 1.28 1.37 1.02 1.08 1,21 1,21 1.07 1.05 

S350-1.5-01 355 390 408 431 1.01 1.11 0.97 1.03 1,15 1,11 1.10 1.06 
S350-1.5-02 359 374 412 431 1.03 1.07 0.98 1.03 1,15 1,15 1.04 1.05 
S350-1.5-03 352 376 407 430 1.01 1.07 0.97 1.02 1,16 1,14 1.07 1.06 

Average 
values 

355 380 409 431 1.02 1.09 0.97 1.03 1,15 1,13 1.07 1.05 

S350-3.0-01 368 389 430 453 1.05 1.11 1.02 1.08 1,17 1,16 1.06 1.05 
S350-3.0-02 363 385 423 454 1.04 1.10 1.01 1.08 1,17 1,18 1.06 1.07 
S350-3.0-03 361 388 423 455 1.03 1.11 1.01 1.08 1,17 1,17 1.07 1.08 

Average 
values 

364 387 425 454 1.04 1.11 1.01 1.08 1,17 1,17 1.06 1.07 

fy,exp: experimental yield strength;  
fu,exp: experimental ultimate strength; 
fy,n: nominal yield strength; 
fu,n: nominal ultimate strength; 
H: high rate (50 mm/s); 
S: standard rate (0.05 mm/s); 

 

Table 8 shows the experimental yield (fy,exp) and ultimate strength (fu,exp) for each test and the average 

values. In addition, Table 8 shows the ratio between experimental and nominal values of yield and 

ultimate strength for standard and high rates, the ratio between experimental ultimate and yield 
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strength and the ratio between experimental values of yield and ultimate strength obtained at high 

(fy,exp(H) and fu,exp(H)) and standard (fy,exp(S) and fu,exp(S)) rates.  

As regard the tests at standard rate, the average experimental values of the yield strength are larger 

than the nominal values (28%, 2%, 4% for S235-2.0, S350-1.5, S350-3.0, respectively), while the 

results in terms of average experimental ultimate strength record a moderate increment for S235-2.0 

and S350-3.0 specimens (2% e 1%, respectively) and a reduction of 3% for S350-1.5 specimens.  

In order to achieve the gross cross-section yielding of the diagonal strap bracing member prior than 

the net section failure, the AISI S213 [19] provides an important requirement about the steel material 

property used for straps. This requirement can be expressed as the ratio between expected ultimate 

and yield strength, that should be greater than or equal to 1.2. The ratios between experimental 

ultimate and yield strength (fu,exp / fy,exp) obtained by material tests are provided for each test in Table 

8. 

Considering the S235 steel grade, which is that used for dissipative walls (walls designed in such a 

way that the design plastic resistance of the diagonal cross section is less than the ultimate design 

resistance of the net cross section at fasteners holes), the fu,exp / fy,exp ratios ranged from 1.19 to 1.23, 

thus are very close to the limit imposed by AISI S213 (1.2). This circumstance increased the 

possibility of net section rupture in the braces. 

The "strain-rate" effect produced an increment of the strength. In particular, the yield and ultimate 

strength increased between 5% and 7% as the test rate increased. 

3.2 Test on elementary connections 

In order to investigate the shear behaviour of the elementary connections between frame and strap-

bracing, lap shear tests were carried out according to the procedure described in ECCS TC7 TWG 

7.10 [20]. Three connection configurations, corresponding to each of the investigated wall typologies, 

were tested at standard rate (0.05 mm/s) (Table 9): (SLE) connections between 1.5 mm thick 

S350GD+Z steel plates with 6.3 mm diameter self-drilling screws; (SLD) connections between 1.5 

mm thick S350GD+Z and 2.0 mm thick S235 steel plates with 4.8 mm diameter self-drilling screws; 

(SHD) connections between 1.5 mm thick S350GD+Z and 2.0 mm thick S235 steel plates with 6.3 

mm diameter self-drilling screws. Table 10 lists the results in terms of failure load (Ft), stiffness (ke) 

and failure mechanisms. Furthermore, Table 10 provides the average experimental values, standard 

deviation and coefficient of variation (C.O.V.) for strength and stiffness and the ratios between the 

average experimental and theoretical strength values, which are evaluated according to the EN 1993-

1-3 [12] and using the average experimental mechanical properties.  
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Table 9. Nominal dimensions and material properties of the elementary connections. 

Specimen type 
Plate type 

Screw type 
Steel grade Thickness [mm] 

SLE S350GD+Z 1.5 AB 04 63 040 

SLD 
S350GD+Z 1.5 

CI 01 48 016 
S235 2.0 

SHD 
S350GD+Z 1.5 

AB 04 63 040 
S235 2.0 

Table 10. Test results on elementary connections. 

Label Ft [kN] ke [kN/mm] Failure mode 
SLE-01 7.7 2.8 T + PO 
SLE-02 7.5 4.6 T + PO 
SLE-03 7.6 3.1 T + PO 
exp,AV 7.7 3.5 - 

exp,DEV.ST 0.1 1.0 - 
exp,COV 0.01 0.28 - 

th 6.8 - B 
exp,AV / th 1.13 - - 
SLD-01 6.5 3.2 S 
SLD-02 6.6 3.9 S 
SLD-03 6.5 3.0 S 
exp,AV 6.5 3.4 - 

exp,DEV.ST 0.1 0.5 - 
exp,COV 0.01 0.14 - 

th 5.2 - B 
exp,AV / th 1.26 - - 
SHD-01 9.0 5.7 T + PO 
SHD-02 8.9 3.5 T + PO 
exp,AV 9.0 4.6 - 

exp,DEV.ST 0.1 1.6 - 
exp,COV 0.01 0.34 - 

th 5.8 - B 
exp,AV / th 1.54 - - 
exp,AV : average experimental values; 
exp,DEV.ST: standard deviation of the experimental values; 
exp,COV: coefficient of variation of the experimental values; 
th: theoretical values; 
T: tilting of screw; 
PO: pull-out of screw; 
B: bearing failure; 
S: shear failure of screw 

 

The results show that the average failure loads of SLE and SHD types are greater than the failure 

value of SLD specimen, respectively by 17% and 37%. The coefficients of variation show that data 

have a low scatter distribution, in fact the failure loads have C.O.V. always equal to 1% and the 

stiffness values have C.O.V. contained between 14% and 34%. The ratios between the average 

experimental and theoretical values highlight that the experimental strengths are higher of 13%, 26% 

and 54% for SLE, SLD and SHD specimens, respectively, compared to the theoretical predictions. In 

addition, the force-displacement curves (Fig. 19a) show a very limited deformation capacity of SLD 

specimens. The different behaviour is due to dissimilar failure mechanisms: tilting and pull-out of 

screws for SLE and SHD configurations and shear failure for SLD connections (Fig. 19b). 
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a) 
 

SLE 
 

SLD 
 b) 

SHD 

Figure 19. Test on elementary connection: a) F vs. d curves; b) failure modes for SLE, SLD and SHD 
specimens. 

3.3 Tests on frame-to-strap connections 

The CFS strap-braced stud walls behaviour is particularly influenced by the design of frame-to-strap 

connections, which in this case takes place through steel gussets. For this reason, the local response 

evaluation of the investigated X-braced CFS systems was completed with shear tests on connection 

prototypes reproducing the joints between gusset and strap-bracing. Table 11 lists the nominal 

dimensions and material properties of the tested connections. The behaviour of the connections 

adopted for the three selected wall configurations (indicated with subscript 1) was investigated. 

Furthermore, three additional connection types for WLD and WHD systems, corresponding to 

different screw layouts in strap-bracing cross-section, were tested. Therefore, by naming An1 and An2 

the minimum net areas defined by considering perpendicular cross-sections to strap-bracing axis and 

cross-sections obtained by a broken line, respectively, the following joint typologies for dissipative 

walls were considered (Fig. 20a): (1) connection configuration adopted in the selected walls, in which 

An1 < An2; (2) connection with aligned screws arrangement; (3) connection with staggered screws, in 

which An1 = An2; (4) connection with staggered screws, in which An1 > An2. The phenomenon of "strain-

rate" was investigated only for the (1) configurations. The experimental values of failure load (Ft) 

and stiffness (ke) and the observed failure mechanisms for each test are summarized in Table 12. In 

addition, Table 12 provides the average experimental values, standard deviation and coefficient of 

variation (C.O.V.) for strength and stiffness of CLE, CLD and CHD configurations and the ratios 

between the average experimental and theoretical strength values for only the (1) configurations, 

which are evaluated according to the EN 1993-1-3 [12] and using the average experimental 

mechanical properties. The force-displacement curves obtained for the (1) configurations (Fig. 20b) 

demonstrate that the CHD-1 specimens show the best response in terms of strength and stiffness, with 

average failure load values approximately twice the values obtained for the CLE-1 and CLD-1 

specimens. Furthermore, the strength increases between 5% and 9% and the deformation capacity 

decreases between 50% and 65% as the test rate increases. As regards the connection response 

evaluation for different screw geometrical arrangements (Fig. 20c), the configurations do not play 

significant influence in terms of strength and stiffness, but the (1) connections have larger 
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deformation capability. The coefficients of variation show that the experimental failure loads are 

narrowly distributed, with C.O.V. always less than 4%. On the other hand, the stiffness values 

scattered with C.O.V. up to 25%. The comparison between the average experimental and theoretical 

values reveals that the experimental strengths recorded at standard rate have maximum differences of 

9% compared to the theoretical predictions. For all tests the failure mechanism was screw tilting with 

subsequent net section failure of straps (Fig. 20d). 

The results of tests on elementary and frame-to-strap connection are compared in order to assess the 

shear stiffness for a single screw. In particular, the average stiffness of a single fastener ranges from 

3.4 to 4.6 kN/mm and from 3.8 to 6.0 kN/mm in the tests carried out on elementary connections and 

on frame-to-strap connections, respectively. Therefore it can be noted that the stiffness values for 

single screws obtained with frame-to-strap connection tests increases for effect of the group action, 

with increments of 9%, 18% and 30% for CLE, CLD and CHD compared to SLE, SLD and SHD 

specimens. The stiffness values of a single screw were considered for the calculation of the wall 

stiffness due to the deformability of the diagonal-to-frame connections, which is used to evaluate the 

wall lateral stiffness. More details about this aspect are provided in the companion paper [10]. 

Table 11. Nominal dimensions and material properties of the frame-to-strap connections. 

Specimen type 
Plate type 

Screw type No. screws 
Steel grade Thickness [mm] 

CLE S350GD+Z 1.5 AB 04 63 040 10 

CLD 
S350GD+Z 1.5 

CI 01 48 016 15 
S235 2.0 

CHD 
S350GD+Z 1.5 

AB 04 63 040 25 
S235 2.0 

 

Table 12. Test results on frame-to-strap connections. 

Specimen 
type 

Configuration Label 
Ft [kN] ke [kN/mm] ke/n [kN/mm] Failure 

mode S H S S 

CLE 

CLE-1 

CLE-1-01 50.5 55.1 39.4 3.9 T+NSF 

CLE-1-02 50.1 54.8 38.2 3.8 T+NSF 

CLE-1-03 50.5 54.9 36.7 3.7 T+NSF 

CLE,AV 50.4 54.9 38.1 3.8 - 

CLE,DEV.ST 0.2 0.2 1.4 0.1 - 

CLE,COV 0.00 0.00 0.04 0.04 - 

th 46.2 46.2 - - NSF 

CLE,AV / th 1.09 1.19 - - - 

CLD 
CLD-1 

CLD-1-01 43.5 48.0 65.0 4.3 T+NSF 

CLD-1-02 43.7 48.0 59.8 4.0 T+NSF 

CLD-1-03 44.3 47.7 51.2 3.4 T+NSF 

exp,AV 43.8 47.9 58.7 3.9 - 

th 43.0 43.0 - - B 

exp,AV / th 1.02 1.11 - - - 

CLD-2 CLD-2-01 44.0 - 64.9 4.3 T+NSF 
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CLD-2-02 44.4 - 53.3 3.6 T+NSF 

exp,AV 44.2 - 59.1 3.9 - 

CLD-3 

CLD-3-01 44.4 - 46.3 3.1 T+NSF 

CLD-3-02 44.4 - 66.7 4.4 T+NSF 

exp,AV 44.4 - 56.5 3.8 - 

CLD-4 

CLD-4-01 43.7 - 53.6 3.6 T+NSF 

CLD-4-02 43.9 - 73.6 4.9 T+NSF 

exp.AV 43.8 - 63.6 4.2 - 

CLD,AV 44.0 47.9 59.4 4.0 - 

CLD,DEV.ST 0.4 0.2 8.8 0.6 - 

CLD,COV 0.01 0.00 0.15 0.15 - 

CHD 

CHD-1 

CHD-1-01 91.0 95.1 155.6 6.2 T+NSF 

CHD-1-02 90.5 - 161.7 6.5 T+NSF 

CHD-1-03 89.4 - 181.8 7.3 T+NSF 

exp,AV 90.3 95.1 166.4 6.7 - 

th 87.0 87.0 - - NSF 

exp,AV / th 1.04 1.09 - - - 

CHD-2 

CHD-2-01 85.3 - 94.9 3.8 T+NSF 

CHD-2-02 83.6 - 143.3 5.7 T+NSF 

exp,AV 84.5 - 119.1 4.8 - 

CHD-3 

CHD-3-01 83.1 - 129.8 5.2 T+NSF 

CHD-3-02 86.6 - 97.6 3.9 T+NSF 

exp,AV 84.9 - 113.7 4.5  

CHD-4 

CHD-4-01 84.0 - 211.5 8.5 T+NSF 

CHD-4-02 84.8 - 170.0 6.8 T+NSF 

exp,AV 84.4 - 190.8 7.6 - 

CHD,AV 86.5 95.1 149.6 6.0 - 

CHD,DEV.ST 3.1 - 38.1 1.5 - 

CHD,COV 0.04 - 0.25 0.25% - 
AV : average experimental values; 
DEV.ST: standard deviation of the experimental values; 
COV: coefficient of variation of the experimental values; 
th: theoretical values; 
n: number of screws; 
T: tilting of screw; 
NSF: net section failure of strap-bracing; 
B: bearing failure; 
H: high rate (50 mm/s); 
S: standard rate (0.05 mm/s) 
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a)  b) 

c) 
 

CLE-1 
 

CLD-1 
 d)  

CHD-1 

Figure 20. Test on frame-to-strap connections: a) CHD specimens; b) F vs. d curves for type 1 
configurations; c) F vs. d curves for CLD specimens; d) failure modes for CLE-1, CLD-1 and CHD-1 

specimens. 
 

4 EXPERIMENTAL VALIDATION OF THE DESIGN CRITERIA 

In order to validate the design criteria for the investigated seismic resistant system, the prescriptions 

and requirements provided by EN 1998-1 [9] and AISI S213 [19] have been also evaluated on the 

basis of the results obtained in the experimental campaign, in which full-scale and component tests 

have been carried out. 

For each selected wall configuration, a preliminary evaluation of the behaviour factor based on the 

results of monotonic and cyclic wall tests has been carried out (Fig. 21). The behaviour factor has 

been defined by the ductility-related (Rd) and overstrength-related (Ro) modification factors, as given 

in Uang 21: 

od RRq   (4) 

Considering that the fundamental periods for this structural typology is generally ranging between 

0.1 and 0.5 s, the ductility-related force modification factor Rd can be evaluated as follows: 

12  dR  with 
yd

dmax  (5) 
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where  is the ductility; dmax e dy are the maximum and the conventional elastic limit of the top wall 

displacement, respectively. The displacement dmax has been defined as the displacement 

corresponding to the following limits of interstorey-drift (d/h, with h=2700 mm as wall height): 1.5%, 

2% and 7%. For the cases in which the wall collapse occurred for displacement lower than the given 

limits, dmax has been assumed as the displacement at the peak load. The limits of 1.5% and 2% are 

those provided by FEMA 356 13 for traditional concentrically braced structures at the Life Safety 

and Collapse Prevention limit states, respectively. On the other hand, the limit of 7% is the maximum 

displacement capacity obtained by shaking table tests 22 on wooden shear walls, which represent a 

system similar to the investigated one. 

The overstrength-related force modification factor Ro can be evaluated through the formulation 

provided by Mitchell et al. [23]: 

shyieldsdo RRRRR     (6) 

where Rsd= Hc/Hd, with Hc and Hd design wall resistance and seismic demand, respectively; R׋= 

Hyn/Hc, with Hyn nominal yielding resistance; Ryield= Hy/Hyn, with Hy experimental yielding resistance 

(average); Rsh= H%/Hy, with H% wall resistance at relevant inter-story drift. 

 

 
Figure 21. Tests-based behaviour factor evaluation 

 

Tables 13 and 14 show the values of the behaviour factor obtained by the experimental results. In 

particular, for WLE walls dmax/h result always less than 1.5%, so the evaluation of q is limited to the 

case d=dmax. In the case of WLE walls (Table 13), it can be noted that the behaviour factor values 

proposed by AISI S213 for Conventional construction category (q=1.6) is always smaller than those 

experimentally obtained (q=2.02.2). In particular, the obtained values of overstrength factor are very 

uniform (Ro=1.2) and slightly lower than the one provided by code (Ro=1.3). On the contrary, the 

measured ductility factors (Rd=1.71.8) are always greater than the provided value (Rd=1.2). 

As far as WLD and WHD walls are concerned, the value provided by AISI S213 in case of Limited 

ductility braced walls (q=2.5) represents a lower limit of the obtained behaviour factors (q=2.53.0 
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for 1.5%, q=3.04.3 for 2%, q=6.48.2 for 7%) (Table 14). In this case, it can be noticed that the 

obtained values of both overstrength (Ro=1.41.6) and ductility factor (Rd=1.95.3) are greater than 

AISI S213 values (Ro=1.3 and Rd=1.9), with the only exception of WHD-M2 case (Rd=1.8) for 1.5% 

drift limit. 

As it is well known, the methodology used to evaluate the behaviour factor does not explicitly take 

into account of the load-deformation hysteresis "shape", which for the examined structural typology 

is characterized by a relevant pinching. Therefore, the obtained results in terms of q-values should be 

validated using more advanced methods, such as non-linear time history dynamic analysis. 

 

Table 13. Behaviour factor for WLE. 

Test  Rd Ro q 
WLE-M1 1.74 1.15 2.00 
WLE-M2 1.74 1.17 2.04 
WLE-C1 1.80 1.21 2.19 
WLE-C2 1.73 1.20 2.08 

Table 14. Behaviour factor for WLD and WHD. 

 1.5% interstorey drift 2% interstorey drift 7% interstorey drift 

Test  Rd Ro q Rd Ro q Rd Ro q 

WLD-M1 2.18 1.42 3.09 2.58 1.43 3.68 5.08 1.53 7.76 

WLD-M2 2.28 1.40 3.20 2.70 1.43 3.87 5.29 1.56 8.24 

WLD-C1 2.18 1.51 3.29 2.58 1.50 3.88 5.08 1.53 7.75 

WLD-C2 2.39 1.53 3.65 2.82 1.51 4.26 4.77 1.64 7.83 

WHD-M1 1.89 1.38 2.60 2.26 1.38 3.11 (*) 

WHD-M2 1.83 1.37 2.51 2.19 1.41 3.08 4.40 1.46 6.40 

WHD-C1 1.96 1.45 2.84 2.33 1.46 3.41 4.64 1.51 7.02 

WHD-C2 (Pull) 2.12 1.41 2.99 2.52 1.44 3.63 (** ) 

WHD-C2 (Push) 1.98 1.41 2.80 2.36 1.44 3.39 4.69 1.41 6.64 
(*) The test was interrupted because of the occurrence of local buckling of the tracks; 
(**) The diagonal net area collapse before reaching the limit of 7%. 

 

It has to be noticed that the experimental evidence showed that the design formulation (Eq. 1 in Tab. 

1), aimed at preventing the failure of the diagonal net area at fastener holes, is not always effective. 

In fact, even if the diagonal connections of dissipative configurations (WLD and WHD) were 

designed according to Eq. 1, the failure mechanism observed in all connection tests and cyclic wall 

tests always corresponds to the net area fracture, as illustrated in Sections 2.2 and 3.3. In fact, for the 

dissipative walls, only in the case of monotonic tests the yielding of the tension diagonals was reached 

without ruptures in the field of the investigated displacements (drift higher than 5.1%), while for the 

cyclic tests the response was always affected by net area failure (drift higher than 2.5%). However, 

the obtained drift levels are always larger than ones which typically be occurred in an actual structures 
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during a design level earthquake and they are greater than the drift limits of 1.5% and 2% provided 

in FEMA 356 13 for traditional concentrically braced structures. 

The different failure mechanisms observed for connections and monotonic wall tests can be explained 

by comparing the strain levels reached in the two cases. In Figure 22, the experimental curves in 

terms of axial force vs. strain in the flat strap for connection and monotonic wall tests are depicted 

together with the experimental stress-strain curves of steel material. In particular, the strain in 

connection and wall tests were measured on a base length of 250 and 2750 mm, respectively. It can 

be observed that the strain levels at ultimate condition in the case of connections (c) are significantly 

higher than those obtained in wall tests (w), The corresponding stress level (c) for connections is 

close to the ultimate strength of the material while, in the wall tests, the stress (w) is on yield plateau. 

Therefore, the connection behaviour at failure is conditioned by high strain levels and the hardening 

implies the failure of the net section. On the contrary, in the case of walls, due to the lower strain 

levels the maximum force in the diagonal gross section is not enough to entail the failure of the net 

area. As a conclusion, it seems that the Eq. 1 is reliable only for low strain levels. For the sake of 

clarity, it is relevant to notice that in this comparisons the effect of corner restraint provided by the 

gusset plates in the wall has been neglected. Therefore, the actual stress distribution in the strap could 

be affected by this effect. As a result, the stress distribution in the connection tests could be a more 

ideal (uniform) tension loading condition compared with that in the strap. 

 

 
Figure 22. Comparison of deformation related to testing of diagonal strap-braced walls and connection 
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As far as the ultimate behaviour in the hysteretic field is concerned, the occurrence of net sections 

failures observed in the cyclic wall tests, can be caused by low cycle fatigue phenomena amplified 

by the stress concentrations at the fastener holes. 

As far as the capacity design criteria are concerned, the experimental results showed that the adopted 

formulation (Eq. 2 in Tab. 1) is able to preserve the seismic-resistant system from undesirable brittle 

failures of connections, tracks, studs and anchorages. Similar considerations can be also made for the 

formulation used to provide an adequate deformation capacity to the connections (Eq. 3 in Tab. 1). 

In fact, no shear failure of the screws occurred in both connections and wall tests. The experimental 

results do not allow to make any consideration about the global mechanism because the tests 

performed on walls are representative of only one storey. 

CONCLUSIONS  

This paper presents and discusses an experimental investigation carried out for the evaluation of the 

seismic behaviour of CFS strap-braced constructions. The experimental campaign aimed to study the 

global inelastic response of a wide range of X-braced walls, designed according to both an elastic and 

dissipative approach. Moreover, the local behaviour was investigated by tests on material and the 

main connection systems. The results showed a satisfactory response between predicted and 

experimental behaviour of walls and connection systems in terms of strength, deformation capacity 

and stiffness. In particular, a good correspondence between wall experimental and theoretical 

predicted values was highlighted in terms of strength (maximum gap of 14%). The experimental study 

also highlighted that the wall corners should be carefully designed and executed, since their behaviour 

may significantly affect the overall wall response. Furthermore, the experimental results allowed the 

validation of assumed design hypotheses. The behaviour factor values provided by AISI S213 are 

widely confirmed by the experimental tests and, the code values represents lower limits of the one 

obtained experimentally. In addition, the requirements concerning the capacity design given in the 

Eurocodes, for traditional systems, are also reliable for the CFS structures.  

These experimental results have been considered as reference for theoretical studies aimed at defining 

seismic design criteria for the investigated systems. As a further development, an extended numerical 

study including non-linear dynamic analysis should be performed for a more accurate estimation of 

the behaviour factor. These analysis should be carried out on case studies representative of single and 

multi-storey buildings. In addition, shaking table tests on 3D structures and tests on prototypes 

representative of multi-storey buildings should be carried out, in order to obtain a complete overview 

of the seismic performance of the investigated structural typology. 
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