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NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS OF

HYPERBOLIC TYPE DRIVEN BY LÉVY-TYPE NOISES

JIAHUI ZHU AND ZDZIS LAW BRZEŹNIAK

Abstract. We study a class of abstract nonlinear stochastic equations of hyperbolic type
driven by jump noises, which covers both beam equations with nonlocal, nonlinear terms and
nonlinear wave equations. We derive an Itô formula for the local mild solution which plays an
important role in the proof of our main results. Under appropriate conditions, we prove the
non-explosion and the asymptotic stability of the mild solution.

1. Introduction

In this paper we will study two nonlinear hyperbolic second order in time stochastic partial
differential equations (SPDEs) driven by Lévy-type noises: the beam and the wave equations
(with emphasis on the former). We propose a framework that covers both types of equations.
Let us briefly describe the motivation for these equations.

Due to its widespread applications in structural and mechanical engineering, the subject of
nonlinear vibrations of Euler-Bernoulli beam has been intensively studied by many authors (see
[38] for the free oscillations of a damped beam with immovable ends under an axial force, [5]
for the effect of a compressive axial load, [19] for the effect of an axial periodic load on the
motion of a hinged beam and [29] for a model with a nonlinear friction force, to name just
a few). A type of nonlinear stochastic beam equation describing nonlinear vibrations of an
elastic panel subjected to random fluctuations (state dependent white noises) was investigated
by Chow and Menaldi in [15]. By means of a stochastic energy equation, they proved the
existence, uniqueness and regularity of solutions. Recently the second named author, Maslowski
and Seidler in [10] studied a wide class of abstract stochastic nonlinear beam equations perturbed
by a white noise in a Hilbert space which is applicable to the equation treated in [15]. With
the help of Lyapunov functions, they proved non-explosion of the mild solution and established
the asymptotic stability of the solution. Most of the previous studies on hyperbolic SPDEs
considered Gaussianity perturbations. However a huge amount of experimental evidences have
demonstrated that Lévy-type models possess properties which describe the physical, biological
and financial phenomena more accurately than the pure diffusion-based models, see cf. [4, 1,
17, 33, 13]. For instance, the real asset prices move essentially by jumps and large, sudden
movements may occur over the time scales. Also the growth and recruitment of planktonic
fish larvae and the magnetization in ferromagnetic materials are modelled by means of jump
processes. The problem of vibration of a road bridge under running vehicles is usually modeled as
a simply supported beam structure subjected to moving loads. Because vehicle loads are random
in nature and traffic flows may suddenly increase or decrease, this leads to discontinuous gaps
between vehicle flows. Those features are unattainable by diffusion-based models but appear
as prevailing in models with jumps. Lévy-type models are more sophisticated and not easily
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2 JIAHUI ZHU AND Z. BRZEŹNIAK

amenable to mathematical analysis. Many results achieved in diffusion models are thus deserve to
be re-investigated when jumps are included and our paper could be seen as a modest contribution
to theoretical underpinning of such applied research.

In our paper, we investigate the existence and uniqueness of global mild solutions to a stochas-
tic model arising in the nonlinear theory of structural dynamics and aeroelasticity by focusing
on the following abstract second order stochastic differential equation perturbed by jump noises

utt +A2u+∇uΦ(u) + f(t, u, ut) =

∫

Z
g(t, u, ut, z) Ñ(t, dz),(1.1)

where u is an H-valued stochastic process with H being a Hilbert space, A is a self-adjoint
operator on H such that A ≥ µI for some µ > 0, Φ : D(A) → [0,∞) is an “energy” function

(with the gradient ∇Φ understood with respect to the Hilbert space structure on H) and Ñ is
a compensated Poisson random measure.

The two motivating examples of the function Φ are those corresponding to the beam and
nonlinear wave equations. In the former case Φ is of the form

(1.2) Φ(u) =
1

2
m(|B

1

2u|2), u ∈ D(A),

where m : [0,∞) → ∞) is a C1 class increasing function such that m(0) = 0 and its derivative
is a locally Lipschitz continuous function, B is a self-adjoint operator such that BA−1 ∈ L(H).
In the latter, more concrete, case, H = L2(D) for some domain D ⊂ R

d, d ∈ N, A2 being the −
Laplacian with the Dirichlet boundary conditions, and, for suitable p ≥ 2.

(1.3) Φ(u) =
1

p+ 1

∫

D
|u(x)|p+1 dx, u ∈ H2(D) ∩H1

0 (D).

Note that in the former case

∇uΦ(u) = m′(|B
1

2u|2)Bu, u ∈ D(A)

while in the latter

∇uΦ(u) = |u|p−1u, u ∈ D(A).

We will first prove, see also [39] where the case of globally Lipschitz coefficients is carefully
investigated, that under some natural local Lipschitz continuity conditions on the coefficients
f and g, Equation (1.1) has a unique maximal local mild solution given by (2.16). More im-
portantly, we will prove, see Theorem 2.10, that the maximal local solution is a global one and
establish in Theorem 2.12 the ultimate boundedness and stability of such solutions. Let us stress
that this is not a simple issue due to the presence of a nonlinear term involving the function m.
The main ingredient of the proofs of these two theorems is a general version of the Itô Lemma
for mild solutions. Note that the results about maximal local mild solution (Proposition 2.7)
and the Itô Lemma (Lemma 5.2) are proved in a more general form for equation (2.13) than
what is needed to establish the non-explosion of the mild solutions, i.e. for functions F and G
not being of the special forms (2.10) or (2.12). On comparing with the method used in the case
of stochastic beam equation driven by Wiener process, the factorization method used in showing
the uniform Lp-convergence of the Yosida approximation for stochastic convolutions w.r.t. the
Wiener noise, is not applicable in our case. Instead of considering the Yosida approximation An,
we follow the approximation procedure introduced in [34] and [35]. We first apply the ordinary
Itô formula to D(A)-valued solution processes, then investigate its limit and obtain an Itô-type
formula for the mild solution when the D(A)-valued solution processes converges to the mild
solution, here D(A) is the domain of the generator A. As a result, the Itô formula we established
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for mild solutions is sufficient to cover the two different cases: the existence of a global solu-
tion and its asymptotic boundedness. Compared with [10], where the two results were proved
separately, we give a more efficient direct proof of the main results. As our major motivation,
we also show that under some standard assumptions the results we have proved for problem
(1.1) can be applied to a wider class of models including stochastic nonlinear wave equations
and stochastic nonlinear beam equations subject to either the periodic boundary condition or
mixed hinged/clamped boundary conditions.

Stochastic PDE driven by discontinuous noise is a very new subject. So far mainly problems
with Lipschitz coefficients have been investigated, see the recent monograph [30] by Peszat
and Zabczyk and/or papers [23] by Hauseblas and [32] by Riedle. A type of stochastic PDEs
with monotone and coercive coefficients, which is weaker than the usual Lipschitz and linear
growth assumptions, driven by some discontinuous perturbations were studied by Gyöngy and
Krylov in [21] for the finite-dimensional case and extended by Gyöngy to infinite-dimensional
spaces in [22]. Recently, the authors and Liu in [3] established the existence and uniqueness
of strong solutions for a large class of SPDEs with coercive and locally monotone coefficients
driven by Lévy processes. Stochastic reaction diffusion equations driven by Lévy noises have
been a subject of a recent paper [11], where also some comments on the existing literature can
be found. The approach of the current paper is different as it does not use any compactness
methods but instead follow a more natural route of constructing a maximal local solution and
then proving that its lifespan is equal to infinity, see [10] and [8] for the gaussian noise case.
To our best knowledge the present paper is the first one in which this approach is applied to
SPDEs with non-Lipschitz coefficients and non-gaussian noise. Note however, that this method
has been used and further developed in a joint paper by the current authours and Liu in [3]. It
is a natural and interesting question to combine the results obtained in this paper together with
those from [9] and prove the existence of an invariant measure for (2.16). However, contrary
to the finite dimensional case, see e.g. [2], this is still an open problem and its resolution is
postponed till the next publication.

The rest of the paper is organized as follows. Section 2 gives a detailed description of the
problem, the main results and its hypotheses. Section 3 is devoted to proving a basic auxiliary
result about stopped stochastic convolutions. Section 4 proves the existence and uniqueness of
maximal local mild solution, while Section 5 proves the crucial Lemma, Itô Lemma. The proofs
of the main theorems 2.10 and 2.12, are given in Section 6 and Section 7.

For the convenience of a reader let us describe the structure of the proof of Theorem 2.10
about the existence and uniqueness of a global solution to Problem (2.13). The existence and
uniqueness of a local maximal solution is formulated in Proposition 2.7, which in turn is proved
in section 4. In section 5 we formulate an infinite dimensional Itô Lemma for processes which
are not semimartingales but are defined certain stochastic convolutions. This result is general
enough to be applicable in the proof of both main theorems. In section 3 we formulate Lemma
3.1 about equality of two possible definitions of stopped stochastic convolution processes. To
conclude the proof of Theorem 2.10 it is enough to show that the lifetime of the local maximal
solution is equal to infinity. The proof of that fact is contained in section 2.10. For this we

define auxiliary stopping times τn, by (6.1), and auxiliary processes f̃n, g̃n, F̃n and G̃n defined
by (6.2,6.3, 6.4,6.5) and consider processes vn which are global solutions of the auxiliary linear
SPDE (6.6). We apply to vn the Itô formula from our fundamental section 5 and, since by
Lemma 3.1, vn and u are equal up to τn we conclude the proof. The proof of the first part of
Theorem 2.12 relies on the use of Itô formula from section 5 applied a modified energy function
(7.4).
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2. Framework and main results

Throughout the whole paper we assume that (Ω,F ,P) is a probability space, equipped with
a filtration F = (Ft)t≥0 satisfying the usual hypotheses1, and that (Z,Z, ν) is a σ-finite measure

space. We denote by Ñ the compensated Poisson random measure on [0, T ] × Ω × Z with the
intensity measure ν, so that

Ñ((0, t]×B) = N((0, t]×B)− tν(B), for t ≥ 0, B ∈ Z.

We use P to denote the predictable σ-field on R+ × Ω, that is the σ-field generated by all
left continuous and F-adapted real-valued processes. We write BF for the σ-field of all F-
progressively measurable sets on R+ × Ω, i.e.

BF = {A ⊂ R+ × Ω : ∀ t ∈ R+, A ∩ ([0, t]× Ω) ∈ B([0, t])⊗Ft}.

The two motivating stochastic evolution equations are the wave equation in R
d,

utt + (γ2 −∆)u+ |u|p−1u = βut +

∫

Z
g(t, u(t−), ut(t−), z) Ñ(t, dz), .(2.1)

for p > 1 and the beam equation in O ⊂ R
d,

utt +∆2u−m′(|∇u|2)∆u = βut +

∫

Z
g(t, u(t−), ut(t−), z) Ñ(t, dz),(2.2)

where m ∈ C1(R+,R+).
Of course the above equations have to be supplemented by initial and boundary conditions.

A common feature of these two problems is that they can be written as

(2.3) utt +∇uE(u) = βut +

∫

Z
g(t, u(t−), ut(t−), z) Ñ(t, dz),

where E is the energy defined by

(2.4) E(u) =
1

2

∫

R3

[
|∇u(x)|2 + γ2|u(x)|2

]
dx+

1

p+ 1

∫

R3

|u(x)|p+1 dx

for the wave equation, and in the case of the beam equation,

(2.5) E(u) =
1

2

∫

D

[
|∆u(x)|2 +m

(
|∇u|2

)]
dx,

and ∇uE is the gradient of E with respect to the Hilbert space L2(Rd) or L2(D). In fact, one
consider the following generalised energy for the nonlinear beam equation

(2.6) E(u) =
1

2

∫

O

[
|∆u(x)|2 +m

(
|∇u|2

)]
dx+

1

p+ 1

∫

O
|u(x)|p+1 dx.

In such a case, the generalised energy for the nonlinear beam equation will take the following
form

utt +∆2u−m′(|∇u|2)∆u+ |u|p−1u = βut +

∫

Z
g(t, u(t−), ut(t−), z) Ñ(t, dz),(2.7)

1i.e. F0 contains all sets of P-measure zero and Ft = Ft+.



STOCHASTIC HYPERBOLIC SPDES COMPENSATED POISSON RANDOM MEASURES 5

With an appropriate choice of the linear operators A and B, these problems can be written
in a unified way

utt = −A2u− f(t, u, ut)−m′(|B
1

2u|2)Bu+

∫

Z
g(t, u(t−), ut(t−), z) Ñ(t, dz),

u(0) = u0, ut(0) = u1.

(2.8)

As a byproduct of this approach we will see that Equation (2.3) with the energy function (2.5)
has at least two non-equivalent formulations depending on the choice of the operator A (and
hence the boundary conditions) while B is the Laplace operator with fixed boundary conditions.

Suppose that H is a real separable Hilbert space with an inner product 〈·, ·〉 and a correspond-
ing norm |·|H . By B(H) we denote the Borel σ-field on H. Let A and B be self-adjoint operators
in H. Suppose that B ≥ 0 and A ≥ µI for some µ > 0. We also assume that BA−1 ∈ L(H)
and functions

f : R+ ×D(A)×H ∋ (t, ξ, η) 7→ f(t, ξ, η) ∈ H

and

g : R+ ×D(A)×H × Z ∋ (t, ξ, η) 7→ g(t, ξ, η) ∈ L2(Z, ν;H)

are, respectively, B(R+) ⊗ B(D(A)) ⊗ B(H)/B(H) and B(R+) ⊗ B(D(A)) ⊗ B(H) ⊗ Z/B(H)
measurable.

We follow a classical approach from the deterministic theory of second order (in time) equa-
tions based on introducing a new Hilbert space H := D(A)×H with product norm |(x, y)|2H :=
|Ax|2H + |y|2H , an operator A defined by

A =

(
0 I

−A2 0

)
, D(A) = D(A2)×D(A),(2.9)

which is a generator of a C0-unitary group
(
etA

)
, t ∈ R, on H, see [25], and functions

F : R+ ×D(A)×H ∋ (t, ξ, η) 7→ −
(
0, f(t, ξ, η)

)
∈ H,(2.10)

M : D(A)×H ∋ (ξ, η) 7→ −
(
0,m′(|B

1

2 ξ|2)Bξ
)
= −

(
0,∇ξΦ(ξ)

)
∈ H,(2.11)

G : R+ ×D(A)×H × Z ∋ (t, ξ, η, z) 7→
(
0, g(t, ξ, η, z)

)
∈ H.(2.12)

Then Equation (2.8) can be rewritten as a system of first order equations for the unknown
function u(t) = (u(t), ut(t)) with respect to the time variable in the following form, with u0 =
(u0, u1) ∈ H,

du(t) = Au(t) dt+ F (t, u(t)) dt+M(u(t)) dt+

∫

Z
G(t, u(t−), z) Ñ(dt, dz), t ≥ 0,

u(0) = u0.

(2.13)

It is useful to notice that the above equation is more general than the problem (2.8). Indeed,
the functions F and G do not need to be of the special form (2.10) and (2.12). We will formulate
our local existence result, see Proposition 2.7, and the Itô Lemma, see Lemma 5.2, in this more
general way, i.e. for general functions F and G. From that we will deduce a corresponding result
for special functions F and G as in (2.10) and (2.12), however, with general functions f , m and
g (of course satisfying some natural assumptions).

In the sequel, M2
loc(BF ⊗Z,H) will denote the space of all BF ⊗Z-progressively measurable

processes φ : R+ × Ω → H such that for all T ≥ 0, E
∫ T
0 |φ(t)|2H dt < ∞, and M2

loc(P ⊗ Z,H)
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stands for the space of all P ⊗ Z-measurable functions ϕ : R+ × Ω × Z → H such that for all

T ≥ 0, E
∫ T
0

∫
Z |ϕ(t, z)|2H ν(dz) dt <∞.

Definition 2.1. A strong solution to Equation (2.13) is a D(A)-valued càdlàg F-adapted sto-
chastic process u = (u(t))t≥0 defined on (Ω,F ,F,P) such that

(1) u(0) = u0 a.s.;
(2) the process φ defined by

φ(t, ω) = F (t, u(t, ω)) +M(u(t, ω)) ∈ R+ × Ω

belongs to the space M2
loc(BF ⊗ Z,H) and the process ϕ defined by

ϕ(t, ω, z) = G(t, u(t−, ω), z) (t, ω, z) ∈ R+ × Ω× Z

belongs to M2
loc(P ⊗ Z,H);

(3) for any t ≥ 0, the following equality holds P-a.s.

u(t) = u0 +

∫ t

0
Au(s) ds+

∫ t

0

[
F (s, u(s)) +M(u(s)

]
ds+

∫ t

0

∫

Z
G(s, u(s−), z)Ñ(ds, dz).

(2.14)

Definition 2.2. A mild solution to Equation (2.13) is an H-valued F-adapted stochastic process
u = (u(t))t≥0 with2 càdlàg paths defined on (Ω,F ,F,P) such that conditions (1) and (2) of
Definition 2.1 are satisfied and

(3′) for any t ≥ 0, the following equality holds P-a.s.

u(t) = etAu0 +

∫ t

0
e(t−s)A

[
F (s, u(s)) +M(u(s))

]
ds+

∫ t

0

∫

Z
e(t−s)AG(s, u(s−), z)Ñ(ds, dz).

(2.15)

Let us recall, see for instance [8], that a stopping time τ is called to be accessible if there exists
an increasing sequence {τn}n∈N of stopping times such that τn < τ and limn→∞ τn = τ a.s. and
this sequence {τn}n∈N will be called an approximating sequence for τ .

Using the above introduced notion we can state the main definition in this paper. One can
fully understand it only after becoming familiar with the results presented in section 3.

Definition 2.3. A local mild solution to Equation (2.13) is an H-valued, F-adapted, càdlàg
local process u = (u(t))0≤t<τ , where τ is an accessible stopping time with an approximating
sequence {τn}n∈N, such that for any n ∈ N, the stopped process uτn(t) := u(t ∧ τn), t ≥ 0,
satisfies,

u(t ∧ τn) = e(t∧τn)Au0 +

∫ t∧τn

0
e(t∧τn−s)A[F (s, u(s)) +M(u(s))] ds+ Iτn(G(u))(t ∧ τn), P-a.s. t ≥ 0,

(2.16)

where Iτn(G(u)) is a process defined by

Iτn(G(u))(t) =

∫ t

0

∫

Z
1[0,τn](s)e

(t−s)AG(s, u(s−), z) Ñ(ds, dz), t ≥ 0.(2.17)

For the future reference we specifically state the following important observation.

2As before, one could add, to avoid a slight chance of ambiguity, “H-valued”-càdlàg.
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Remark 2.4. Suppose that X and Y are two càdlàg processes and τ is an F-stopping time. If
X and Y coincide on the open interval [0, τ), i.e. X(s, ω)1[0,τ)(s) = Y (s, ω)1[0,τ)(s), for (s, ω) ∈
R+ × Ω, we can infer

G(s,X(s−), z)1[0,τ ](s) = G(s, Y (s−), z)1[0,τ ](s), for (s, ω) ∈ R+ × Ω,

since the function [0, τ ] ∋ s 7→ G(s,X(s−), z) depends only on the values of X on [0, τ).

Definition 2.5. A local mild solution u = (u(t))0≤t<τ to Equation (2.13) is unique if for any
other local mild solution ũ = {ũ0≤t<τ̃} to Equation (2.13), the processes u and ũ are equivalent
on [0, τ ∧ τ̃).

A local mild solution u = (u(t))0≤t<τ is called a maximal local mild solution if for any other
local mild solution ũ = (ũ(t))0≤t<τ̃ satisfying τ̃ ≥ τ a.s. and ũ|[0,τ) is equivalent to u, one has
τ̃ = τ a.s.. If P(τ = +∞) = 1, the local mild solution u is called a global mild solution to
Equation (2.13).

Remark 2.6. If the local mild solution of Equation (2.13) is unique, then the uniqueness of
the maximal local mild solution holds as well. In particular, a maximal local mild solution
u = (u(t))0≤t<τ is unique if and only if for any other local mild solution ũ = (ũ(t))0≤t<τ̃ , we
have τ̃ ≤ τ a.s. and ũ = u a.s. on [0, τ ∧ τ̃).

In order to show the existence and uniqueness of a global mild solution to Equation (2.13),
it is sufficient to impose local Lipschitz continuity and some natural growth conditions on the
functions F and G.

Condition (C.1).

The function F : [0,∞) ×H → H is Lipschitz on balls in H, locally uniformly w.r.t. t,
i.e. for every R > 0 and T > 0, there exists a constant LF,R,T > 0 such that for all
t ∈ [0, T ] and x, y ∈ BH(0, R),

|F (t, x)− F (t, y)|H ≤ LF,R,T |x− y|H.(2.18)

There exists a constant LF > 0 such that for all t ∈ [0, T ],

|F (t, 0)| ≤ LF .(2.19)

Condition (C.2).

The function G : [0,∞)×H → L2(Z, ν;H) is Lipschitz on balls in H, locally uniformly
w.r.t. t, i.e. for T > 0, there exists a constant LG,R,T > 0 such that for all t ∈ [0, T ] and
x, y ∈ BH(0, R),

∫

Z
|G(t, x, z)−G(t, y, z)|2H ν(dz) ≤ LG,R,T |x− y|2H.(2.20)

There exists a constant LG > 0 such that for all t ∈ [0, T ],
∫

Z
|G(t, 0, z)|2H ν(dz) ≤ LG.(2.21)

Let us now formulate a basic result about the existence of a local maximal solution, see
Definition 2.3.

Proposition 2.7. Suppose that conditions (C.1) and (C.2) are satisfied. Suppose also that the
function M : H → H is Lipschitz on balls. Then for every F0-measurable initial data u0, there
exists a unique maximal local mild solution to Equation (2.13).
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For the existence of global solutions we will additionally need the following classical assump-
tions on F and G.

Condition (C.3).

Function G is of linear growth on H locally uniformly w.r.t. t ∈ R+, i.e. for every T > 0,
there exists constants KG,T , RG,T ≥ 0 such that for all t ∈ [0, T ],

(2.22)

∫

Z
|G(t, x, z)|2H ν(dz) ≤ KG,T +RG,T |x|

2
H, x ∈ H.

Condition (C.4).

For every T > 0, there exists constants Kf,T , Rf,T ≥ 0 such that for all t ∈ [0, T ],

−〈x2, f(t, x1, x2)〉H ≤ Kf,T +Rf,T |x|
2
H, x = (x1, x2) ∈ H = D(A)×H.(2.23)

Condition (C.5).

The “energy” functional Φ is of the form (1.2), i.e.

Φ(u) =
1

2
m(|B

1

2u|2), u ∈ D(A),

where, m : [0,∞) → ∞) is a C1 class increasing function such that m(0) = 0 and the
derivative m′ is locally Lipschitz continuous.

Remark 2.8. Note that sincem′ is locally Lipschitz continuous and B ∈ L(D(A), H), the function

D(A) ∋ u 7→ m′(|B
1

2u|2)Bu ∈ H is also locally Lipschitz continuous w.r.t. u ∈ D(A). Hence we
are confident that the next claim holds.

Lemma 2.9. Assume thatm : [0,∞) → ∞) is a C1 class increasing function such thatm(0) = 0
and the derivative m′ is locally Lipschitz continuous and that function M is defined by formula
(2.11), i.e.

M : H ∋ (ξ, η) = −
(
0,∇ξΦ(ξ)

)
= −

(
0,m′(|B

1

2 ξ|2)Bξ
)
∈ H.

Then the mapping M is Lipschitz on balls.

Let us now formulate two main results of our paper. The first one is about the existence of
global solutions while the second is concerned with stability of solutions.

Theorem 2.10. Suppose that conditions (C.1)-(C.5) are satisfied. Then for every F0-measurable
H-valued intial data u0, there exists a unique global mild solution to Equation (2.13).

Our last result is about asymptotic behaviour of solutions. This result is proved under more
stringent conditions than the previous results. Let us formulate the relevant conditions.

Condition (C.6).

The function F is related to a function f : R+ ×D(A)×H → H via formula (2.10) and
the latter is of the following form. There exists δ > 0 such that

(2.24) f(t, x) = δx2, t ≥ 0 and x = (x1, x2) ∈ H = D(A)×H.

Condition (C.7).

There exists α > 0 such that the function m′ from (C.5) satisfies

m(z) ≤
1

α
zm′(z) , z ≥ 0.(2.25)
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Remark 2.11. An example of a functionm′ satisfying both conditions (C.5) and (C.7) is function
m(z) = zα, z ≥ 0 with α ≥ 2. Note that in this case, the functionM defined by (2.11) is Lipschitz
on balls.

For the stability of the global solutions we will need the following stronger version of condition
(C.3).

Condition (C.8).

Function G is of linear growth on H uniformly w.r.t. t ∈ R+, i.e. there exists constants
KG, RG ≥ 0 such that for all t ≥ 0,

(2.26)

∫

Z
|G(t, x, z)|2H ν(dz) ≤ KG +RG|x|

2
H, x ∈ H.

Theorem 2.12. Assume (C.2), (C.8) and (C.5)-(C.7). Assume furthermore that

(2.27) R2
G < β.

Then, the unique global mild solution u =
(
u, v

)
to Equation (2.13) with the initial data

u0 =
(
u0, v0

)
satisfying E

[
|u0|

2
H +m(|B

1

2u0|
2
H)

]
<∞, satisfies the following estimate

sup
t≥0

E
[
|u(t)|2H +m(|B

1

2u(t)|2H)
]
<∞.(2.28)

Moreover, if G satisfies (2.22) with KG,T = 0, i.e. there exists RG,T > 0 such that for every
T > 0,

(2.29)

∫

Z
|g(t, x, z)|2H ν(dz) ≤ RG,T |x|

2
H, t ∈ [0, T ], x ∈ H,

then there exist constants C > 0 and λ > 0 such that

E |u(t)|2H ≤ E

[
|u(t)|2H +m(|B

1

2u(t)|2H)
]
≤ Ce−λt

E

[
|u0|

2
H +m(|B

1

2u0|
2
H)

]
, t ≥ 0.(2.30)

Note that Proposition 2.7 holds true for problem (2.13) in the general form, i.e. for the func-
tions F and G satisfying conditions (C.1) and (C.2), and the M satisfying the locally Lipschitz
condition. Theorem 2.10 holds true for problem (2.13) in the special form since the functions
M, F and G are of special form (2.11), (2.10) and (2.12) respectively, and the corresponding
functions m, f and g satisfy condition (C.5), (C.4) and (C.3). Finally, Theorem 2.12 holds for
problem (2.13) in the above case when also functions M, F and G are special form (2.11), (2.10)
and (2.12) respectively, for functions m, f and g satisfying also Conditions (C.5), (C.7), (C.6)
and (C.8).

Since the stochastic nonlinear beam equation with either the hinged or the clamped boundary
conditions can be treated in almost the same way as in [10], as only the the stochastic term
will be different, we will discuss applications to the stochastic nonlinear beam equation with
periodic boundary conditions. However, in order that a reader can easily spot the differences
and similarities between our Example and section 4 from [10] we have decided to keep as much
as possible the notation from that paper.

Definition 2.13. Suppose that Λ is a topological space and X1, X2 and Y are normed vector
spaces. A Borel function

R : Λ×X1 ×X2 → Y
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is called locally Lipschitz w.r.t. X1, globally Lipschitz w.r.t. X2, uniformly w.r.t. Λ iff for every
N ∈ N, there exist constants LN and L such that for all λ ∈ Λ, x′1, x

′′
1 ∈ BX1

(0, N), x′2, x
′′
2 ∈ X2,

the following inequality holds

(2.31) |R(λ, x′′1, x
′′
2)−R(λ, x′1, x

′
2)|Y ≤ LN |x′′1 − x′1|X1

+ L|x′′2 − x′2|X2
.

This definition can be given of various natural generalizations which we simply do not state.

Example 2.14 (Stochastic nonlinear beam equation with the periodic boundary condition). As-
sume that L > 0 and let Tn be a n-dimensional torus of length L, i.e.

T
n = R

n/ ∼L,

where ∼L an equivalence relation in R
n defined by x ∼L y iff y−x

L ∈ Z
n. It is well known that Tn

is a riemannian manifold (without boundary) and that functions defined on T
n can be identified

with functions defined on R
n which are L-periodic in each coordinate (i.e. Ln-periodic). Partial

differential equations on a torus are often used as the simplest model of PDES on manifolds
where there is no need to introduce deep theory from Differential Geometry. A boundary or
initial value problem with periodic boundary conditions is often identified as a corresponding
problem on the torus. Somehow incorrectly, one can identify T

n with the product on n intervals
[0, L) each equipped with a metric d(s, t) = min{|t − s|, |t − L − s|}. One can also identify
(correctly) that T

n with a cartesian product of copies of a circle of length L. In this way, one
can see that T

n is endowed with the Lebesgue measure m on the σ-fields of its Borel sets or
of Lebesgue measurable sets. This gives rise to the family of Lebesgue spaces Lp(Tn) for each
p ∈ [1,∞]. With a bit of extra work one can define the scales of the Sobolev spaces Hk,p(Tn)
for k ∈ N and p ∈ [1,∞]. Every function u ∈ Hk,p(Tn) can be uniquely lifted to an Ln-periodic

function U ∈ Hk,p
loc (R

n) so that u satisfies naturally periodicity conditions. These spaces satisfy

the classical Gagliardo-Nirenberg inequalities, for instance if k − n
p > 0, then u ∈ Hk,p(Tn) has

a unique representative ũ which belongs to C(Tn). Note also that the lift Ũ of ũ belongs to
C(Rn).

Define a linear operator B in H = L2(Tn) by

(2.32)
D(B) = H2,2(Tn),
Bu = −∆u, u ∈ D(B).

It is well known that B is a self-adjoint operator in H.
Next let us now define an operator P by

(2.33)
D(P ) = H4,2(Tn),
Pu = ∆2u+ u, u ∈ D(P ).

It is well know that P is a strictly position self-adjoint operator on the Hilbert space H = L2(Tn)
and

(2.34) 〈Pu, u〉 =

∫

Tn

[
|∆u|2 + |u|2

]
dm, u ∈ D(P ).

Let A1 be the unique positive square root of P . It satisfies

(2.35) D(A1) = H2,2(Tn),

Obviously, since D(P 1/2) is equal to the complex interpolation space of order 1
2 between D(P )

and L2(Tn), D(A1) = H2,2(Tn) = D(B) and the A1-graph norm is equivalent to the H2,2-norm.
In particular, B ∈ L(D(A1),H).

Note that in view of the Gagliardo inequalities (or the Sobolev embeddings) if u ∈ D(P ) then
Dαu ∈ L2(Γ) for α ≤ 3, where Γ = ∂([0, L]n) is the boundary of the square of length L in R

n.
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Consider the following problem in (0, L)n

∂2u

∂t2
−m

(∫

O
|∇u|2dx

)
∆u+ γ∆2u+Υ

(
t, x, u,∇u,

∂u

∂t

)
=

∫

Z
Π(t, x, u,∇u,

∂u

∂t
, z)Ñ(t, dz)

(2.36)

with the periodic boundary conditions (written for simplicity in the case n = 2)

u(0, ·) = u(L, ·), u(·, 0) = u(·, L)(2.37)

∂u(0, ·)

∂x1
=
∂u(L, ·)

∂x1
,
∂u(·, 0)

∂x2
=
∂u(·, L)

∂x2
(2.38)

where γ > 0, m ∈ Cα(R+, [0,∞)), a Borel function

Υ : [0, T ]×D × R× R
n × R → R

is locally Lipschitz w.r.t. R × R
n, globally Lipschitz w.r.t. R, uniformly w.r.t. [0, T ] × D, a

Borel function

Π : [0, T ]×D × R× R
n × R× Z → R

is such that the corresponding function

Π̃ : [0, T ]×D × R× R
n × R → L2(Z, ν)

is locally Lipschitz w.r.t. R×R
n ×R uniformly w.r.t. [0, T ]×D. Moreover we assume that the

following growth conditions are satisfied.

(1) There exists a constant KΥ such that for all t ∈ [0, T ], x ∈ D, a ∈ R, b ∈ R
n and c ∈ R,

cΥ(t, x, a, b, c) ≥ −KΥ(1 + |c|2).(2.39)

(2) There exists a constant LΠ such that for all t ∈ [0, T ], x ∈ D, a ∈ R, b ∈ R
n and c ∈ R,

∫

Z
|Π(t, x, a, b, c, z)|2ν(dz) ≤ LΠ(1 + |c|2).(2.40)

If n = 1 or n ≤ 3 and the functions Υ and ψ depend only on the first and the second variables
(i.e. on x and u), then there exists a unique maximal global mild solution to Equation (2.36).

Example 2.15 (Stochastic nonlinear beam equation with mixed hinged/clamped boundary con-
ditions). Let O ⊂ R

n be a bounded domain with a C∞- boundary ∂O consisting of two parts
(possibly disjoint) Γ1 and Γ2. We assume that the common part Γ1 ∩Γ2 6= ∅, then it is a subset
of a submanifold of ∂(O) of dimension3 ≤ n − 2. Let us denote by ν the unit exterior normal
field to Γ1.

Let us introduce an operators B and P by

D(B) =W 2,2(O) ∩W 1,2
0 (O), Bψ = −∆ψ, ψ ∈ D(B).(2.41)

(2.42)
D(P ) = {ϕ ∈ H4,2(O) : ϕ = 0 on ∂(O), ∂ϕ∂n = 0 on Γ1 and ∆ϕ = 0 on Γ2},

Pϕ = ∆2ϕ, for ϕ ∈ D(P ).

3For instance, if n = 1 and O = (a, b) then we can have Γ1 = {a} and Γ2 = {b}.
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It is well known that both B and P are self-adjoint, B is positive and P is non-negative. As in
[10] we can check that it is also positive. Indeed, if ϕ ∈ D(P ) then by the Stokes Theorem and

by [20, Lemma 9.17], since D(P ) ⊂W 2,2(O) ∩W 1,2
0 (O),

〈Pϕ, ϕ〉H =

∫

O
∆2ϕ · ϕ dx =

∫

O
(∆ϕ,∆ϕ)dx = |∆ϕ|2H ≥ 0 ≥ K|u|2H .

where the constant K > 0 is independent of ϕ. Set A = P
1

2 . Then by [44], D(A) =

[H, D(P )]1/2 = {ϕ ∈ W 2,2(O) : ϕ = 0 on ∂O and ∂φ
∂n = 0 on ∂Γ1}. Thus we infer that

D(A) ⊂ D(B).
As in the previous Example 2.14, by adapting (2.39)-(2.40) on functions Υ and Π, we can

verify that all the requirements on the functions f and g are fulfilled.
Therefore, Theorem 2.10 and 2.12 are applicable to Equation (2.36) with the mixed clamped/hinged

boundary conditions

u = 0 on ∂O,
∂u

∂n
= 0 on ∂Γ1, ∆u = 0 on ∂Γ2.(2.43)

Thus, as in the previous Example, we have the following Assertion: if n = 1 or n ≤ 3 and the
functions Υ and ψ depend only on the first and the second variables (i.e. on x and u), then there
exists a unique maximal global mild solution to Equation (2.36) with the mixed clamped/hinged
boundary conditions (2.43).

Example 2.16 (Nonlinear stochastic wave equations). We consider the following stochastic equa-
tion on R

d

∂2u

∂t2
= δ2∆u− γ2u+ Γ(t, x, u,∇u,

∂u

∂t
) +

∫

Z
Λ(t, x, u,∇u,

∂u

∂t
, z)Ñ(t, dz),(2.44)

u(0) = u0, ut(0) = v0(2.45)

where γ > 0 and Γ and Λ are nonlinear terms. Let H = L2(Rd). We consider two cases d = 1
and d ≥ 2. We suppose that:

(1) If d = 1, the function Γ : [0,∞)×R
d ×R×R

d ×R → R is locally Lipschitz with respect
to the 3rd variable, locally uniformly with respect to the 1st and uniformly with respect
to the 2nd, 4th and 5th.

(2) If d ≥ 2, the function Γ : [0,∞)×R
d ×R×R

d ×R → R is Lipschitz with respect to the
3rd, 4th and 5th variables, locally uniformly with respect to the 1st and uniformly with
respect to the 2nd.

(3) If d = 1, the function Λ̃ : [0,∞) × R
d × R

d × R
d → L2(Z, ν) (associated with function

Λ(t, x, u,∇u, ut)) is locally Lipschitz is with respect to the 3rd variable and globally
Lipschitz with respect to 4th and 5th, locally uniformly with respect to the 1st and
uniformly with respect to the 2nd.

(4) If d ≥ 2, the function Λ̃ : [0,∞) × R
d × R

d × R
d → L2(Z, ν) (associated with function

Λ(t, x, u,∇u, ut)) is globally Lipschitz is with respect to the 3rd, 4th and 5th variables,
locally uniformly with respect to the 1st and uniformly with respect to the 2nd.

Then Equation (2.44) has a unique local mild solution.
Moreover, if there exists L > 0 and L′ and nonnegative functions κ, κ′ ∈ L1(Rd) such that for
all t ∈ [0,∞), almost all x ∈ R

d and all a, c ∈ R and b ∈ R
d

〈Γ(t, x, a, b, c), c〉 ≥ −L(κ(x) + |c|2),
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∫

Z
|Λ(t, x, a, b, c, z)|2 ν(dz) ≤ L′(κ′(x) + |a|2 + |b|2 + |c|2).

then Equation (2.44) has a unique global mild solution.

Remark 2.17. As we will see below, the wave equation is a special case of the general problem
with m = 0.

Proof of the Claim made in Example 2.16. Let A be positive square root of the strictly positive
self-adjoint operator −δ2∆+ γ2I on H. Then A ≥ γI, D(A) =W 1,2(Rd) and

|Au|2H = δ2|∇u|2L2 + γ2|Au|2H .

Although, we could consider a more general case, we put m = 0.
Define f and g to be the Nemytski maps corresponding to functions Γ and Λ respectively, i.e.

f : [0, T ]×D(A)× L2(Rd) ∋ (t, ψ, φ) 7→ Γ(t, ·, ψ(·),∇ψ(·), φ(·)) ∈ L2(Rd),(2.46)

g : [0, T ]×D(A)× L2(Rd)× Z ∋ (t, ψ, φ, z) 7→ Λ(t, ·, ψ(·), ψ(·), φ(·), z) ∈ L2(Rd).(2.47)

Put C = 1
min{δ2,γ2}

. Consider the case d = 1 as the other one is trivial. Let ψ1, ψ2 ∈ D(A)

with their norms being bounded by a fixed R > 0. Since by the Sobolev embedding Theorem,
W 1,2(R) ⊂ Cb(R) ⊂ L∞(R), we can find N > 0 such that |ψi|L∞ ≤ N . Denoting by LN the
Lipschitz constant of the function Γ on ball of radius N with respect to the 3rd variable and by
L the Lipschitz constant of the function Γ with respect to the 4th and 5th variables we get, for
all t ∈ [0,∞),

|f(t, ψ1, φ1)− f(t, ψ2, φ2)|
2
H =

∫

Rd

|Γ(t, x, ψ1(x),∇ψ1(x), φ1(x))− Γ(t, x, ψ2(x),∇ψ2(x), φ2(x))|
2dx

≤ LN |ψ1 − ψ2|
2
H + L

(
|∇ψ1 −∇ψ2|

2
H + |φ1 − φ2|

2
H

)

≤ C
(
LNγ

2|ψ1 − ψ2|
2
H + Lδ2|∇ψ1 −∇ψ2|

2
H

)
+ L|φ1 − φ2|

2
H

= Cmax{L,LN}|Aψ1 −Aψ2|
2
H + L|φ1 − φ2|

2
H ,

and analogously,
∫

Z
|g(t, ψ1, φ1)− g(t, ψ2, φ2)|

2
H ν(dz) ≤ Cmax{L,LN}|Aψ1 −Aψ2|

2
H + L|φ1 − φ2|

2
H .

Similarly, in the general case, it’s easy to verify that
∫

Z
|g(t, ψ, φ)|2H ν(dz) =

∫

Z

∫

Rd

|Λ(t, ψ(x),∇ψ(x), φ(x), z)| dx ν(dz)

=

∫

Rd

∫

Z
|Λ(t, ψ(x),∇ψ(x), φ(x), z)| ν(dz) dx

≤ CL′(γ2|ψ|2H + δ2|∇ψ|2H) + L′(|κ′|L1 + |φ|2H)

= CL′|Aψ|2H + L′|φ|2H + L′|κ′|L1 .

〈f(y, ψ, φ), φ〉 =

∫

Rd

〈Γ(t, x, ψ(x),∇ψ(x), φ(x)), φ(x)〉dx

≥ −L

∫

Rd

(κ(x) + |φ(x)|2 dx = −L|κ|L1 − L|φ|2H .

�



14 JIAHUI ZHU AND Z. BRZEŹNIAK

Remark 2.18. As in [10] it is worth pointing out that our results are valid for bounded and
unbounded domains.

3. An auxiliary Lemma on stopped stochastic convolution

Let (etA)t∈R be a C0-semigroup on a Hilbert space H. Assume that τ is an accessible stopping
time. Let ϕ =

(
ϕ(t)), t ≥ 0 be an H-valued process belonging to M2

loc(P ⊗ Z,H). Set

I(t) = I(ϕ; t) =

∫ t

0

∫

Z
e(t−s)Aϕ(s, z)Ñ(ds, dz), t ≥ 0,

Iτ (t) = Iτ (ϕ; t) =

∫ t

0

∫

Z
1[0,τ ](s)e

(t−s)Aϕ(s ∧ τ, z)Ñ(ds, dz), t ≥ 0.

Note that by the choice of process ϕ and the assumption about (etA)t∈R, the stochastic convo-
lution process I(t), t ≥ 0, is well defined. Also for any stopping time τ , the process 1[0,τ ](t, ω) is
predictable. In fact, the predictable σ-field is generated by the family of closed stochastic inter-
vals {[0, T ] : T is a stopping time}, see [36]. This together with the predictability of ϕ implies
that integrand of Iτ (t) is predictable. Thus the stochastic convolution Iτ (t) is well defined as
well. Moreover, one can always assume that the stochastic convolution process I(t) and Iτ (t),
t ≥ 0 are H-valued càdlàg, see [12]. The following lemma verifies the definition (2.16) of a local
mild solution. The proof below is mainly based on [10] (which in turn was provided by Martin
Ondreját, see [28]). Let us point out a minor but important difference with [10]. We consider
here closed random intervals [0, τ ], while in the case of a Wiener process [10] we considered open
random intervals [0, τ). Our formula 3.1 is also more general than formula [10, (A.4)] as we
allow an additional time parameter r.

Lemma 3.1. Under the assumptions listed above, for any stopping time τ and for all r ≥ t ≥ 0,

e(r−t∧τ)AI(t ∧ τ) = e(r−t)AIτ (t), P− a.s.(3.1)

In particular,

I(t ∧ τ) = Iτ (t ∧ τ).(3.2)

Remark 3.2. It is known, see [8] and [10] for the Wiener process case, that is if ξ is another
process satisfying the same conditions as ϕ such that for some Ω0 ∈ F ,

ϕ = ξ Leb⊗ P⊗ ν a.s. on [0,∞)× Ω0 × Z(3.3)

then P-a.s. on Ω0, ∫ t

0

∫

Z
ϕ(s, z)Ñ(ds, dz) =

∫ t

0

∫

Z
ξ(s, z)Ñ(ds, dz), t ≥ 0.(3.4)

In particular, if Ω0 ⊂ {ω ∈ Ω : ξ(·, ω, ·) = ϕ(·, ω, ·) on [0, τ(ω)]}, then the above equality implies
that P-a.s. on Ω0 ∫ t∧τ

0

∫

Z
ϕ(s, z)Ñ(ds, dz) =

∫ t∧τ

0

∫

Z
ξ(s, z)Ñ(ds, dz), t ≥ 0.(3.5)

One of the consequences of Lemma 3.1 is the following modification of the above assertions.

Corollary 3.3. Suppose that is ξ is another process satisfying the same conditions as ϕ and

ϕ = ξ Leb⊗ P⊗ ν a.s. on [0, τ ]× Ω× Z,(3.6)

where [0, τ ]× Ω× Z := {(t, ω, z) ∈ [0,∞)× Ω× Z : 0 ≤ t ≤ τ(ω)}, then t ≥ 0, P-a.s.,

I(ϕ; t ∧ τ) = I(ξ; t ∧ τ).(3.7)
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Proof. Indeed, note that obviously, for t ≥ 0, P-a.s.,

Iτ (ϕ; t) = Iτ (ξ; t),(3.8)

Thus, equality follows by applying (3.2). �

Remark 3.4. An alternative approach to Lemma 3.1 and Corollary 3.3 is via the method imple-
mented by [9] and [14], i.e. maximal inequalities for stopped stochastic convolution processes.
In our case, this would require to use Theorems 4.4, 4.5 and 5.1 from [12].

Proof of Lemma 3.1. It is enough to proof identity (3.1) as the equality (3.2) follows from the
former by replacing the deterministic times r = t by a stopping time t ∧ τ . It is also enough to
proof identity (3.1) when r = t.
We first verify it for deterministic time. Let τ = a. If t < a, then

e(t−t∧a)AI(t ∧ a) = I(t) =

∫ T

0

∫

Z
1[0,t]e

(t−s)Aϕ(s, z)Ñ(ds, dz)

=

∫ T

0

∫

Z
1[0,t]1[0,a]e

(t−s)Aϕ(s, z)Ñ(ds, dz)

=

∫ t

0

∫

Z
1[0,a]e

(t−s)Aϕ(s ∧ a, z)Ñ(ds, dz) = Ia(t),

where we used in the equality the fact that 1[0,a](s)ϕ(s, z) = 1[0,a](s)ϕ(s ∧ a, z).
If t ≥ a, then

e(t−t∧a)AI(t ∧ a) = e(t−a)AI(a) = e(t−a)A

∫ a

0

∫

Z
e(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ T

0

∫

Z
1[0,a](s)e

(a−s)Aϕ(s, z)Ñ(ds, dz)

+ e(t−a)A

∫ T

0

∫

Z
1(a,t](s)1[0,a](s)e

(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ a

0

∫

Z
1[0,a](s)e

(a−s)Aϕ(s, z)Ñ(ds, dz)

+ e(t−a)A

∫ t

a

∫

Z
1[0,a](s)e

(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ t

0

∫

Z
1[0,a](s)e

(a−s)Aϕ(s ∧ a, z)Ñ(ds, dz)

=

∫ t

0

∫

Z
1[0,a](s)e

(t−s)Aϕ(s, z)Ñ(ds, dz) = Ia(t).

Thus equality (3.1) holds for any deterministic time.
Now let τ be an arbitrary stopping time. Define τn := 2−n([2nτ ] + 1), for each n ∈ N. That

is τn = k+1
2n if k

2n ≤ τ < k+1
2n . Then τn ց τ as n → ∞ pointwise. Since equality (3.1) has been

proved for each deterministic time k2−n, in view of Remark 3.2 we infer that

e(t−t∧τn)AI(t ∧ τn) =
∞∑

k=0

1{k2−n≤τ<(k+1)2−n}e
(t−t∧(k+1)2−n)AI(t ∧ (k + 1)2−n)

=
∞∑

k=0

1{k2−n≤τ<(k+1)2−n}I(k+1)2−n(t) = Iτn(t).(3.9)
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Since τn ց τ , by the P-a.s. right-continuity of the process I, see [12], the random variable
I(t∧ τn) converges pointwise on Ω to I(t∧ τ) as n→ ∞ for every t ≥ 0 P-a.s. Also, observe that

∣∣∣e(t−t∧τn)AI(t ∧ τn)− e(t−t∧τ)AI(t ∧ τ)
∣∣∣

≤
∣∣∣e(t−t∧τn)A

(
I(t ∧ τn)− I(t ∧ τ)

)∣∣∣+
∣∣∣
(
e(t−t∧τn)A − e(t−t∧τ)A

)
I(t ∧ τ)

∣∣∣

≤ |I(t ∧ τn)− I(t ∧ τ)|+
∣∣∣
(
e(t−t∧τn)A − e(t−t∧τ)A

)
I(t ∧ τ)

∣∣∣ .

converges to 0 as n→ ∞. Thus we conclude that e(t−t∧τn)AI(t∧τn) converges to e
(t−t∧τ)AI(t∧τ),

for each t ≥ 0, P-a.s. For the term Iτn(t), by the Itô isometry we find out that

E|Iτn(t)− Iτ (t)|
2 = E

∣∣∣∣
∫ t

0

∫

Z

(
1[0,τn](s)− 1[0,τ ](s)

)
e(t−s)Aϕ(s, z)Ñ(ds, dz)

∣∣∣∣
2

= E

∫ t

0

∫

Z

∣∣∣
(
1[0,τn](s)− 1[0,τ ](s)

)
e(t−s)Aϕ(s, z)

∣∣∣
2
ν(dz) ds.

Recall that that τn ↓ τ as n → ∞. So 1[0,τn] converges to 1[0,τ ] as n → ∞. Obviously, the

integrand is bounded by |ϕ(s, z)|2 for all n. Thus by the Lebesgue dominated convergence
theorem it follows that

lim
n→∞

E|Iτn(t)− Iτ (t)|
2 → 0.

Hence we can always find a subsequence which is convergent a.s. Finally, Letting n → ∞ in
both sides of (3.9) yields (3.1). This completes the proof.

�

4. Proofs of Proposition 2.7

Proof of Proposition 2.7. Set F̃ (t, x) = F (t, x) + M(x), for t ≥ 0, x ∈ H. Since functions F ,
M and G are Lipschitz on closed balls in H, for every n ∈ N we may find globally Lipschitz

functions F̃n : H → H and Gn : H → H such that F̃n = F̃ and Gn = G on B̄H(0, n), the closed
ball in H of radius n and centered at the origin. By using a classical argument we infer that

there exists a unique mild solution (un(t))t≥0 to problem (2.13) with F̃ replaced by F̃n and G
replaced by Gn, see e.g. Theorem 4.1.10 in [39]. By the càdlàg property of the process un, a
random variable τn defined by

τn := inf{t ≥ 0 : |un(t)|H ≥ n}

is a stopping time. So,

F̃n(s, un(s)) = F̃ (s, un(s)) and Gn(s, un(s), z) = G(s, u(s), z) on [0, τn).

It follows that on [0, τn) we have

un(t) = etAu0 +

∫ t

0
e(t−s)AF̃ (s, un(s)) ds+

∫ t

0

∫

Z
e(t−s)AG(s, un(s−), z)Ñ(ds, dz).(4.1)

Let Φ(un) denote the right hand side of (4.1). Note that the value of Φ(un) at τn depends only
on the values of un on [0, τn), i.e.

△Φ(un)(τn) := Φ(un)(τn)− Φ(un)(τn−) =

∫

Z
G(τn, un(τn−), z)Ñ({τn}, dz).
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Hence we may extend the process un from the interval [0, τn) to the closed interval [0, τn] by
setting

un(τn) = Φ(un)(τn) = eτnAu0 +

∫ τn

0
e(τn−s)AF̃ (s, un(s)) ds+ Iτn(G(un))(τn),(4.2)

where Iτn(G(un)) is a process defined by (2.17) with u replaced by un, i.e.

Iτn(G(un))(t) =

∫ t

0

∫

Z
1[0,τn]e

(t−s)AG(s, un(s−), z)Ñ(ds, dz), t ≥ 0.

Therefore, combining equalities (4.1) and (4.2), we deduce that the stopped process un(· ∧ τn)
satisfies

un(t ∧ τn) = e(t∧τn)Au0 +

∫ t∧τn

0
e(t∧τn−s)AF̃ (s, un(s)) ds+ Iτn(G(un))(t ∧ τn), t ≥ 0.(4.3)

For n < m, set τn,m = τn ∧ τm. It follows that |un(t)| ≤ n < m and |um(t)| ≤ m for t ∈

[0, τn,m). So F̃n(s, un(s)) = F̃ (s, un(s)) and F̃m(s, um(s)) = F̃ (s, um(s)) for s ∈ [0, τn,m). Also
Gn(s, un(s)) = G(s, un(s)) and Gm(s, um(s)) = G(s, um(s)) for s ∈ [0, τn,m). Therefore, both un

and um, solve on [0, τn,m) the same equation (2.13). Hence by the uniqueness of mild solutions,
see [39, Theorem 4.1.10], we have un(t) = um(t), for t ∈ [0, τn,m), a.s. Since △ui(τn,m) =∫
Z G(τn,m, ui(τn,m−), z)Ñ({τn,m}, dz), for i = n,m and, by Remark 2.4, G(s, un(s−), z) and
G(s, um(s−), z) coincide on [0, τn,m], we infer that

un = um on [0, τn,m].(4.4)

Hence, arguing by contradiction, we can show that a.s.

τn ≤ τm if n < m.(4.5)

So the limit limn→∞ τn =: τ∞ exists a.s. Let us denote Ω0 = {ω : limn→∞ τn = τ∞} and note
that P(Ω0) = 1.

Now define a local process (ut)0≤t<τ∞ as follows. If ω /∈ Ω0, set u(t, ω) = 0, for 0 ≤ t < τ∞. If
ω ∈ Ω0, then for every t < τ∞(ω), there exists a number n ∈ N such that t ≤ τn(ω) and we set
u(t, ω) = un(t, ω). In view of (4.4) this process is well defined and it satisfies

u(t ∧ τn) = e(t∧τn)Au0 +

∫ t∧τn

0
e(t∧τn−s)AF̃ (s, u(s)) ds+ Iτn(G(u))(t ∧ τn), t ≥ 0,

where we used the fact because that of (4.4), for all t ≥ 0,

Iτn(G(un))(t) = Iτn(G(u))(t).

Furthermore, by the definition of the sequence {τn}
∞
n=1 we infer that a.s. on the set {τ∞ <∞},

lim
tրτ∞(ω)

|u(t, ω)|H = lim
nր∞

|u(τn(ω), ω)|H ≥ lim
n
n = ∞.(4.6)

Next we will show that the process u(t), 0 ≤ t < τ∞ is a maximal local mild solution to
Problem (2.13). Let us suppose that ũ = (ũ(t))0≤t<τ̃ is another local mild solution to Problem
(2.13) such that τ̃ ≥ τ∞ a.s. and ũ|[0,τ∞)×Ω is equivalent to u. It follows from (4.6) and the
P-equivalence of u and ũ on [0, τ∞) that

lim
tրτ∞(ω)

|ũ(t, ω)|H = lim
tրτ∞(ω)

|u(t, ω)|H = ∞.(4.7)

It remains to show that P(τ̃ > τ∞) = 0. To prove this, assume the contrary, namely P(τ̃ >
τ∞) > 0. Since ũ is a local mild solution, there exists a sequence {τ̃n} of increasing stopping
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times such that ũ is a mild solution on the interval [0, τ̃n], i.e. the equation (2.16) is satisfied.
Define a new family of stopping times by

σn,k := τ̃n ∧ inf{t : |ũ(t)| > k}; σk := supσn,k.

Since σn,k ≤ τ̃n ≤ τ̃ , σk ≤ τ̃ . Also, observe that limk σk = τ̃ . Since σk ր τ̃ and P(τ̃ >
τ∞) > 0, there exists a number k such that P(σk > τ∞) > 0. Hence, we have |ũ(t, ω)|H ≤ k for
t ∈ [τ∞(ω), σk(ω)) contradicting the earlier observation (4.7). Moreover the uniqueness of the
solution follows immediately from the above construction of the solution u. �

The proof that the maximal local solution is a global one is based on the use of the Khash-
minski test, see [26] and [10]. The essence of this method is to prove first the existence and
uniqueness of a local maximal solution, then to find an appropriate Lyapunov function, with
the help of which prove the life span of that local maximal solution is equal to ∞. This method
had been earlier used in the parabolic case in [14] and [6].

In order to prove the main result we need the following auxiliary standard result whose proof
can be found in [10]. The function V satisfying conditions below is called a Lyapunov function
for Equation (2.13).

Lemma 4.1. (Khashminski’s test for non-explosion) Let V be a continuous function for which

EV (u0) <∞ and V (x) → +∞ as |x|H → ∞.(4.8)

Let u(t), 0 ≤ t < τ∞ be a maximal local mild solution to Equation (2.13) with an approximating
sequence {τn}n∈N. Let T > 0. Suppose that there exists constants Ci > 0, i = 1, 2, such that
for every t ∈ [0, T ], and n ∈ N,

EV (u(t ∧ τn)) ≤ EV (u0) +

∫ t

0

(
C1 + C2E(V (u(s ∧ τn)))

)
ds.(4.9)

Then τ∞ ∧ T = T , P-a.s..

5. An Itô Lemma

In this section we will formulate a general form of an Itô Lemma which in the next two sections
will be used to prove the existence of a global solution and the asymptotic boundedness of the
solutions. The novelty of our approach is that we prove one result general enough to cover the
two different cases. In the case of stochastic beam equation driven by a Wiener process, see
[10], the authors formulated and proved two separate results. Our proof would yield, had we
considered that case here, those results as corollaries.

We begin with formulation of the general assumptions and the Itô Lemma. This will be
proceeded by two examples when these general assumptions are satisfied. The section will be
finished with the proof of the Itô Lemma.

Assumption 5.1. Assume that Q is linear self-adjoint, strictly positive and bounded operator
on H such that the quadratic form

D(A) ∋ x 7→ 〈Ax,Qx〉H ∈ R(5.1)

has a unique extension from D(A) to a bounded and symmetric quadratic form

Γ : H×H → R

on the whole H.
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Put, for x = (x1, x2) ∈ H,

V0(x) =
1

2
〈x,Qx〉H, V1(x) = m(|B

1

2x1|
2
H),(5.2)

and define a function V : H → R+ by

V (x) = V0(x) + V1(x) =
1

2
〈x,Qx〉H +m(|B

1

2x1|
2), , x ∈ H.(5.3)

An obvious consequence of the above definition is that V (x) = V0(x) whenever π1x = 0 i.e.

V (x) =
1

2
〈x,Qx〉H, if x = (0, x2) ∈ H.

However, we also have two important equalities, for x ∈ H and y = (0, y2) ∈ H:

V (x+ y)− V (x) =
1

2
〈y,Qy〉H + 〈Qx, y〉H(5.4)

V ′(x)(y) = 〈Qx, y〉H(5.5)

Note that since we assume that m is a C1-class function with locally Lipschitz derivative, the
function V is also of C1-class on H, with the Fréchet derivative of V being Lipschitz on balls of
H. See also Lemma 5.5 for further important consequences of this regularity assumption. But
it seems that in order to be able to apply our Itô Lemma, it would be sufficient to assume that
the derivative functions m′ is only locally Hölder continuous.

Let us also note the following inequalities comparing the behaviour of V (x) and |x|H.

(5.6) µ0|x|
2
H ≤ V (x) ≤ µ1|x|

2
H +m

(
C|x|2H

)

for some C > 0, where µ0 > 0 and µ1 > 0 are such that

µ0|x|
2
H ≤ 〈Qx, x〉H ≤ µ1|x|

2
H, x ∈ H.(5.7)

In order to prove (5.6) let us note that in view of (5.7) it is sufficient to prove the second
inequality in (5.6) for V1. Since by assumptions: the function m is increasing and, for some

C > 0, |By| ≤ C
1

2 |y|, for y ∈ D(A) (what makes sense since we also assume that D(A) ⊂ D(B)),
we have for x = (x1, x2) ∈ H = D(A)×H,

V1(x) = m(|B
1

2x1|
2
H) = m(〈Bx1, x1〉) ≤ m

(1
2

[
|Bx1|

2 + |x1|
2
])

≤ m
(max{C, 1}

2

[
|Ax1|

2 + |x1|
2
])

= m
(max{C, 1}

2
|x|2H

)

Let us note that it follows from (5.6) that V is a bounded function on bounded subsets of H
and that it satisfies condition (4.8) of the Khasminski Lemma 4.1.

Now we are ready to formulate the announced Itô Lemma, the main result in this section.

Lemma 5.2. Assume that the operator Q satisfies Assumption 5.1 and the function m satisfies
Assumption (C.5). Let the function V be defined by formula (5.3). Assume that u = (u, v) be
a global mild solution of the problem (2.13) and let σ be a bounded stopping time such that
the processes u(r), F (r, u(r)) and G(r, u(r)) are uniformly bounded on [0, σ)×Ω. Then we have
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P-a.s.,

V (u(σ))eλσ − V (u(s))eλs =

∫ σ

s
eλr

[
λV (u(r)) + Γ(u(r), u(r)) + 2m′(|B

1

2u(r)|2)〈Bu(r), v(r)〉H

+ V ′(u(r))
(
F (r, u(r)) +M(u(r))

)]
dr(5.8)

+

∫ σ

s

∫

Z
eλr

[
V (u(r) +G(r, u(r), z))− V (u(r))− V ′(u(r))

(
G(r, u(r), z)

)]
ν(dz) dr

+

∫ σ

s

∫

Z
eλr

[
V (u(r−) +G(r, u(r), z))− V (u(r−))

]
Ñ(dr, dz)

The main difficulty in proving the above version of the Itô Lemma stems from facts: (i) the
operator A unbounded, and (ii) the C0-semigroup generated by the operator A is not analytic.
Indeed, all three nonlinear maps F , M and G are smooth maps defined on the state space H.

Example 5.3. Let β ≥ 0. Define a linear self-adjoint bounded operator Q = Qβ on H by

Qβ :=

(
β2A−2 + 2I βA−2

βI 2I

)
.(5.9)

Note that Q0 = 2I.
The following properties of Qβ have been established in the last cited paper.

The operator Qβ is an isomorphism of H and

|Qβ |
−1
L(H)〈Qβu, u〉H ≤ |u|2H ≤ 〈Qβu, u〉H, u ∈ H;(5.10)

〈(0,−δu2), Qβu〉H = −βδ〈u1, u2〉 − 2δ|u2|
2

u = (u1, u2) ∈ H, δ ∈ R;(5.11)

〈Au, Qβu〉H = −β|Au1|
2
H + β2〈u1, u2〉+ β|u2|

2, u = (u1, u2) ∈ D(A).(5.12)

and hence the quadratic form

〈Au, Qβu〉H, u ∈ D(A)(5.13)

has a unique extension from D(A) to a bounded quadratic form on the whole H and thus the
quadratic form Γβ satisfies

(5.14) Γβ(u, u) = β
[
β〈u1, u2〉+ |u2|

2 − |Au1|
2
H

]
, u = (u1, u2) ∈ H.

In particular, Qβ satisfies Assumption 5.1. In sections 6 and resp. 7 we will use Lemma 5.2 with
Q = Qβ for β = 0, resp. β > 0.

To our best of our knowledge, the operator Q appeared for the first time in the paper [31] in
connection with a stability analysis of linear deterministic hyperbolic equations and was applied
to stochastic hyperbolic problems in [27]. The above result was also used in [10] for similar
purposes as in the current paper.

Remark 5.4. As noted in Example 5.3 above, if β = 0 then Q = 2I, i.e. Q0 = 2I. Then, by
(5.14), Γ0 = 0 and 〈Q0x, y〉H = 2〈x2, y2〉 for all x = (x1, x2) ∈ H and y = (0, y2) ∈ H. Thus,
invoking the definitions (2.10), (2.11) and (2.12) of maps F , M and G in terms of maps f , m
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and g respectively, we infer that the following is thus a special case of our equality (5.8), where
we also put λ = 0,

V (u(σ))− V (u0) =

∫ σ

0

[
− 2〈π2u(r), f(r, z)〉H +

∫

Z
|g(r, z)|2Hν(dz)

]
dr(5.15)

+

∫ σ

s

∫

Z

[
2〈π2u(r−), g(r, z)〉H + |g(r, z)|2H

]
Ñ(ds, dz)

Indeed, when Q = Qβ , by (5.4) and (5.5), we have for x = (x1, x2) ∈ H and y = (0, y2) ∈ H

V (x+ y)− V (x) = |y2|
2
H + 〈βx1 + 2x2, y2〉H(5.16)

V ′(x)(y) = 〈βx1 + 2x2, y2〉H .(5.17)

Note however, that in our proof, contrary to the corresponding proof in [10], we will not prove
the above special formula (5.15) but the general one (5.8)

Since function V is of C2 class and it’s first Frechét derivative is Lipschitz on balls, the
following result is a special case of [39, Lemma 3.5.2], see also Lemma 4.3 in [7] and/or [37,
Lemma 2.1 and Lemma 2.2].

Lemma 5.5. For every r > 0, there exists C = C(r) > 0 such that

|V (y)− V (x)− V ′(x)(y − x)|H ≤ C|y − x|2H, for all x, y ∈ Br(0,H),(5.18)

Proof of Lemma 5.2. We start the proof with constructing a sequence of global strong solutions
which converges to the global mild solution uniformly. To do this, let us set, see [35], for l ∈ N,
t ∈ R+, ω ∈ Ω and z ∈ Z,

ul(0) = l(lI −A)−1
u(0),

Fl(t, ω) = l(lI −A)−1
[
F (t, u(t, ω)) +M(u(t, ω))

]
and(5.19)

Gl(t, ω, z) = l(lI −A)−1G(t, u(t, ω), z).

We will apply the standard version of Itô formula for each fixed l and then a limit when l → ∞
will be taken.

Let us introduce the following two canonical linear projections:

π1 : H ∋ (x, y) 7→ x ∈ D(A) and π2 : H ∋ (x, y) 7→ y ∈ H.(5.20)

Let us also observe that

(5.21) π1A = π2 on D(A) and π1M = 0 on R+ × Ω.

Our approach here differs from the one used in [10], where instead the Yosida approximation
of the operator A was used.

The following result can be applied to the above approximations with Y equal to H and S
equal to either (0, T )× Ω or (0, T )× Ω× Z.

Lemma 5.6. Suppose that Y is a separable Banach space, (S,S, σ) a measure space, p ∈ [1,∞)
and ξ : S → Y a Borel function such that

∫

S
|ξ(s)|pY dσ(s) <∞.

Let A be the infinitesimal generator of a contraction C0-semigroup on Y . Then

(5.22) lim
l→∞

∫

S
|ξ(s)− (lI −A)−1ξ(s)|pY dσ(s) = 0.
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Proof. The proof is straightforward, since by the Hille-Yosida Theorem, we know |(lI−A)−1| ≤ 1
l

and for every s ∈ S, (lI −A)−1ξ(s) → ξ(s) pointwisely. �

Since by definition, the processes Fl and Gl take values in D(A), we infer Fl ∈ M2
loc(BF ⊗

Z;D(A)) and Gl ∈ M2
loc(P ⊗ Z;D(A)), for l ∈ N. Therefore, the equation

dul(t) = Aul(t)dt+ Fl(t)dt+

∫

Z
Gl(t, z)Ñ(dt, dz), t ≥ 0

ul(0) = ul(0).

(5.23)

has a unique global strong solution ul given by

ul(t) = ul(0) +

∫ t

0

[
Aul(r) + Fl(r, u(r))

]
dr +

∫ t

0

∫

Z
Gl(r, u(r−), z)Ñ(dr, dz), t ≥ 0.(5.24)

Now we can apply Itô formula to the process ul and the function eλtV (x) to get

V (ul(σ))e
λσ − V (ul(s))e

λs =

∫ σ

s
eλr

[
λV (ul(r)) + V ′(ul(r)

(
Aul(r) + Fl(r, u(r))

)]
dr

+

∫ σ

s

∫

Z
eλr

[
V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))

(
Gl(r, z)

)]
ν(dz) dr

+

∫ σ

s

∫

Z
eλr

[
V
(
ul(r−) +Gl(r, , z)

)
− V (ul(r−))

]
Ñ(dr, dz).(5.25)

We next prove the following auxiliary result.

Lemma 5.7. For every T > 0 and every n ∈ N,

lim
l→∞

E sup
t∈[0,T ]

|ul(t)− u(t)|2H = 0.(5.26)

Proof. Let us fix T > 0. Then we have

ul(t)− u(t) =

∫ t

0
e(t−s)A

([
F (s, u(s)) +M(u(t, ω))

]
− Fl(s)

)
ds

+

∫ t

0

∫

Z
e(t−s)A (G(s, u(s), z)−Gl(s, z)) Ñ(ds, dz), t ∈ [0, T ].

The result follows by applying the Cauchy-Schwarz inequality, Lemma 5.6 to processes F and
G and the Davis inequality for stochastic convolution processes, see [12]. �

Therefore, by taking a subsequence we can deduce that P-a.s., for every T > 0,

lim
l→∞

sup
t∈[0,T ]

|ul(t)− u(t)|2H = 0.(5.27)

Since H is a Hilbert space, the Frechét derivative V ′ of function V can be identified with the
gradient DV of V which satisfy (we continue to use notation x = (x1, x2) and y = (y1, y2))

V ′(x)(y) =〈Qx, y〉H + 2m′(|B
1

2x1|
2
H) 〈Bx1, y1〉H , x, y ∈ H,(5.28)

V ′(x)
(
Ax

)
=〈Qx,Ax〉H + 2m′(|B

1

2x1|
2
H)〈Bx1, x2〉H , x ∈ D(A),(5.29)

see [10]. By taking into account (5.21) and Assumption 5.1 we infer that

V ′(ul(r)
(
Aul(r) + Fl(r)

)
= Γ

(
ul(r), ul(r)

)
+ 2m′(|B

1

2π1ul(r)|
2
H)〈Bπ1ul(r), π2ul(r)〉H

+ 〈Qul(r), Fl(r)〉H + 2m′(|B
1

2π1ul(r)|
2
H)〈Bπ1ul(r), π1Fl(r)〉H .

(5.30)
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Sincem ∈ C1 andB ∈ L(D(A), H), we infer that P-a.s. uniformly in [0, σ(ω)],m′(|B
1

2π1ul(s)|
2
H) →

m′(|B
1

2π1u(s)|
2
H), π2ul(s) → π2u(s) and Bπ1ul(s) → Bπ1u(s), as l → ∞. Moreover, as the maps

Γ;H×H → R and Q : H → H are continuous, we infer that Γ(ul(r), ul(r)) → Γ(u(r), u(r)) and
〈Qul(r), Fl(r)〉H → 〈Qu(r), F (r, u(r)) + M(u(r))〉H. Since the process ul is càdlàg, we infer
that for every l ∈ N, the set {ul(t, ω) : t ∈ [0, T ]} is relatively compact subset of R for al-
most all ω and the sequence {ul}l∈N converges uniformly to v, P-a.s., we infer that the set
{ul(s), s ∈ [0, T ], l ∈ N} is bounded in H, P-a.s. Therefore, P-a.s.,

〈Qul(r), Fl(r)〉H ≤ C|Fl(r)|H sup
0≤r≤T

|ul(r)|H ≤ C|F (r, u(r)) +M(u(r))|H, s ∈ [0, T ].

Hence, by the Lebesgue DCT, we conclude that
∫ σ

s
〈Qul(r), Fl(r)〉Hdr →

∫ σ

s
〈Qu(r), F (r, u(r)) +M(u(r))〉Hdr P-a.s.(5.31)

Analogously, because of (5.27) and (5.21) we can argue as in [10] and deduce that P-a.s.

∫ σ

s
2m′(|B

1

2π1ul(r)|
2
H)〈Bπ1ul(r), π2ul(r)〉H dr →

∫ σ

s
2m′(|B

1

2π1u(r)|
2
H)〈Bπ1u(r), π2u(r)〉H dr

∫ σ

s
2m′(|B

1

2π1ul(r)|
2
H)〈Bπ1ul(r), π1Fl(r)〉H dr →

∫ σ

s
2m′(|B

1

2π1u(r)|
2
H)〈Bπ1u(r), π1

(
F (r, u(r))

+M(u(r))
)
〉H dr.

(5.32)

Taking (5.30), (5.31), (5.32) and also (5.28) into account, the first term on the right side of
inequality (5.25) converges P-a.s. as l → ∞ to

∫ σ

s
eλr

[
λV (u(r)) + Γ

(
u(r), u(r)

)
+ 2m′(|B

1

2π1u(r)|
2
H)〈Bπ1u(r), π2u(r)〉H

+ V ′(u(r))
(
F (r, u(r)) +M(u(r))

)]
dr.

Now Set X(ω) = {ul(s, ω) : s ∈ [0, T ], l ∈ N}, for ω ∈ Ω. As we have noticed before, X(ω) is
a bounded subset of H for almost all ω ∈ Ω. Since V is of C2 class on H, by Lemma 5.5, we
have

|V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))
(
Gl(r, z)

)
| ≤ C|Gl(r, z)|

2

By using above results, (5.27), along with the Lebesgue DCT, we infer that P-a.s.

lim
l→∞

∫ σ

s

∫

Z
eλr

[
V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))

(
Gl(r, z)

)]
ν(dz) dr

=

∫ σ

s

∫

Z
eλr

[
V (u(r) +G(r, u(r), z))− V (u(r))− V ′(u(r))

(
G(r, u(r), z)

)]
ν(dz) dr

For the last term on the right side of inequality (5.25), we observe that

∣∣∣V
(
ul(s) +Gl(r, z)

)
− V (ul(r))−

(
V (u(s) +G(r, u(r), z))− V (u(r))

)∣∣∣
2

≤ 2 sup
x∈X(ω)

|V ′(x)|2|G(u(r), z)|2H.
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By applying the Itô isometry property of the stochastic integral, see [39] and then the the
Lebesgue Dominated Convergence Theorem we get

lim
l→∞

E

∣∣∣
∫ σ

s

∫

Z
eλr

[
V
(
ul(r−) +Gl(r, z)

)
− V (ul(r−))

]
Ñ(dr, dz)

−

∫ σ

s

∫

Z
eλr

[
V (u(r−) +G(r, u(r), z))− V (u(r−))

]
Ñ(dr, dz)

∣∣∣
2

H
= 0.

Therefore, by passing a subsequence in (5.25), it is evident to see that the Itô formula (5.8)
holds.

�

6. Proof of Theorem 2.10

We will now prove Theorem 2.10 with the help of the two lemmas from the preceding sections.
In particular, as announced earlier, we will use Lemma 5.2 with the operator Q = Q0 = 2I and
the parameter β = 0, see Example 5.3 and Remark 5.4.

Proof of Theorem 2.10. Let u(t), 0 ≤ t < τ∞, be a maximal local mild solution to problem
(2.13). Our aim is to prove that τ∞ = ∞. Before we continue with the proof let us observe
that it is sufficient to prove that for any T > 0, τ∞ ≥ T . This is of particular importance
because our time dependent coefficients satisfy Conditions (C.3) and (C.4). For this purpose,
we fix a positive time T > 0 and we replace the stopping time τ∞ by τ∞∧T . We will prove that
τ∞ ∧ T ≥ T . Whenever we will speak in this section about the infimum of an empty set we will
define it to be equal to T .

Define a sequence of stopping times by

(6.1) τn = inf {t ∈ [0, T ] : |u(t)|H ≥ n}, n ∈ N.

As in the proof of Proposition 2.7, we can show that {τn}n∈N is an approximating sequence of
the accessible stopping time τ∞ ∧ T .

Let us set β = 0. We have Q = 2I. Then V (x) = |x|2H +m(|B
1

2x1|
2
H). It is clear that for

every x ∈ H, V (x) ≥ 0. Let us define qR = inf{V (x) : |x|H ≥ R}. Since 2qR ≥ inf{|x|2H : |x|H ≥
R} = R2 we infer that that qR → +∞. Moreover, we have

E(V (u0)) = E|u0|
2
H + Em(|B

1

2u0|
2
H) <∞.

Now it remains to verify condition (4.9) from Lemma 4.1. Notice that the solution u to Equation
(2.13) is a process with possibly finite lifespan. We therefore introduce a sequence of globally

defined processes F̃n and G̃n, n ∈ N, such that, roughly speaking, up to the stopping time τn,
the solution u agrees with a solution vn of a certain linear stochastic evolution equation. The
Itô formula is applied to the process vn and then a limit when n→ ∞ is taken.

Let us now show details of this program. We begin with fixing n ∈ N. Then we introduce the
following processes, for t ∈ [0, T ],

f̃n(t) = 1[0,τn)(t)f(t, u(t ∧ τn)),(6.2)

g̃n(t, z) = 1[0,τn](t)g(t, u(t ∧ τn−), z), for z ∈ Z,(6.3)

F̃n(t) =
(
0,−f̃n(t)−m′(|B

1

2u(t ∧ τn)|
2
H)Bu(t ∧ τn)1[0,τn)(t)

)
,(6.4)

G̃n(t, z) =
(
0, g̃n(t, z)

)
, for z ∈ Z.(6.5)
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One can see that both processes F̃n and G̃n are bounded. Consider the following linear equation

dvn(t) = Avn(t)dt+ F̃n(t)dt+

∫

Z
G̃n(t, z)Ñ(dt, dz), t ∈ [0, T ], vn(0) = u(0).(6.6)

There exists a unique global mild solution of this equation, which is given by

vn(t) = etAu(0) +

∫ t

0
e(t−s)AF̃n(s) ds+

∫ t

0

∫

Z
e(t−s)AG̃n(s, z)Ñ(ds, dz), t ∈ [0, T ].(6.7)

Furthermore, the stopped process vn(· ∧ τn) satisfies

vn(t ∧ τn) = e(t∧τn)Au(0) +

∫ t∧τn

0
e(t∧τn−s)AF̃n(s) ds+ Iτn(G̃n)(t ∧ τn), t ∈ [0, T ],

where as before Iτn(G̃n)(t) =
∫ t
0

∫
Z 1[0,τn](s)e

(t−s)AG̃n(s, z)Ñ(ds, dz), t ∈ [0, T ]. By (6.4-6.5), we
have

Iτn(G̃n)(t) =

∫ t

0

∫

Z
1[0,τn](s)e

(t−s)AG̃n(s, z)Ñ(ds, dz)

=

∫ t

0

∫

Z
1[0,τn](s)e

(t−s)AG(s, u(s ∧ τn−), z)Ñ(ds, dz)

=

∫ t

0

∫

Z
1[0,τn](s)e

(t−s)AG(s, u(s−), z)Ñ(ds, dz) = Iτn(G(u))(t), t ∈ [0, T ].

On the basis of Lemma 3.1, we see that for each n ∈ N and every t ∈ [0, T ]

vn(t ∧ τn) = e(t∧τn)Au(0) +

∫ t∧τn

0
e(t∧τn−s)AF̃n(s) ds+ Iτn(G̃n)(t ∧ τn)(6.8)

= e(t∧τn)Au(0) +

∫ t∧τn

0
e(t∧τn−s)A1[0,τn](s)F (s, u(s ∧ τn)) ds+ Iτn(G(u))(t ∧ τn)

= u(t ∧ τn) P-a.s..

Applying Itô’s Lemma 5.2 to vn and Remark 5.4, it follows that

V (vn(t ∧ τn))− V (u(0)) =

∫ t∧τn

0
−2〈π2v(r), f(r, z)〉Hdr +

∫ t∧τn

0

∫

Z
|g(r, z)|2Hν(dz)dr

+

∫ t∧τn

0

∫

Z

[
2〈π2v(r−), g(r, z)〉H + |g(r, z)|2H

]
Ñ(ds, dz)(6.9)

Finally, according to the fact that u coincides with v P-a.s. up to time t ∧ τn, by applying
conditions (2.22) and (2.23), we get, for t ∈ [0, T ],

EV (u(t ∧ τn)) = EV (u0)− 2E

∫ t

0
〈ut(s), f(u(s))〉H1[0,τn]ds+ E

∫ t

0

∫

Z
|g(s, u(s), z)|2H1[0,τn]ν(dz) ds

≤ EV (u0) + 2E

∫ t

0

[
Kf +Rf |u(s)|

2
H

]
1[0,τn]ds+ E

∫ t

0

∫

Z

[
Kg +Rg|u(s)|

2
H

]
1[0,τn]ν(dz) ds

≤ EV (u0) +

∫ t

0

(
(2Kf,T +KG,T ) + (2Rf,T +RG,T )EV (u(s ∧ τn))

)
ds.

This implies inequality (4.9) with C1 = 2Kf,T +KG,T and C2 = 2Rf,T +RG,T .
In conclusion, we proved that V is a Lyapunov function and hence we can apply Lemma 4.1

to deduce that τ∞ ∧ T = T . �
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7. Proof of Theorem 2.12

Let us fix β > 0 and Q = Qβ defined in (5.9). Let us remind that in this section we consider
functions F , M and G defined recollectively by equalities (2.10), (2.11) and (2.12). The following
proof follows the lines of [10]. We will try to keep it self consistent but also to pay attention to
new elements (due to the different type of noise). In the Itô formula we encounter expressions
of the form 〈Qβu, v〉H, where v1π1v = 0. These will play an exceptionally important rôle below
and hence let us write down explicitly that for u = (u1, u2), v = (0, v2), z = (0, z2) ∈ H

〈Qβu, v〉H =
〈
βu1 + 2u2, v2

〉
,(7.1)

〈Qβz, v〉H = 2〈z2, v2〉(7.2)

In particular, in view of (2.10), (2.11) and (2.12) we get, for u = (u1, u2),
〈
Qβu, F (t, u) +M(u)

〉
H

= −
〈
βu1 + 2u2, f(t, u1, u2) +m′(|B

1

2u1|
2)Bu1

〉
,

〈
Qβu, G(t, u, ·)

〉
H

=
〈
βu1 + 2u2, g(u1, u2, ·)

〉
,

〈QβG(t, u, ·), G(t, u, ·)〉H = 2|g(t, u1, u2, ·)|
2.

Thus, from (5.14) and (5.16) we infer that for u = (u1, u2) ∈ H,

Γβ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 + 2m′(|B
1

2u1|
2)〈Bu1, u2〉

− β〈u1, f(t, u1, u2)〉 − βm′(|B
1

2u1|
2)〈u1, Bu1〉

− 2〈u2, f(t, u1, u2)〉 − 2m′(|B
1

2u1|
2)〈u2, Bu1〉

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 − β〈u1, f(t, u1, u2)〉

− βm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2〈u2, f(t, u1, u2)〉.

Now, if we recall that by Assumption (C.6), for some δ > 0,

f(t, u) = δu2, for t ≥ 0, u = (u1, u2) ∈ H,

then we infer

Γβ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 − βδ〈u1, u2〉

− βm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2δ〈u2, u2〉

We see that if we put β = δ, then β2〈u1, u2〉 − βδ〈u1, u2〉 = 0 we get some cancelation in the
equality above, i.e.

Γδ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= δ|u2|
2 − δ|Au1|

2 − δm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2δ〈u2, u2〉

= −δ|u2|
2 − δ|Au1|

2 − δm′(|B
1

2u1|
2)|B

1

2u1|
2

= −δ
[
|u|2H +m′(|B

1

2u1|
2)|B

1

2u1|
2
]

(7.3)

Proof of Theorem 2.12. Let us fix s ≥ 0 and let u be the solution to Equation (2.13) with the
approximating sequence {τn}n∈N. Fix t ≥ 0 and n ∈ N. By applying Lemma 5.2 with function
V defined by (5.3)

V (u) =
1

2
〈Qδu, u〉H +m(|B

1

2u1|
2), , u = (u1, u2) ∈ H,(7.4)
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and then using (7.3), (5.16) and (5.17), we infer that P-a.s.

V (u(t ∧ τn))e
λ(t∧τn) = V (u(s))eλs +

∫ t∧τn

s
eλr

[
λV (u(r))− δ|u(r)|2H − δm′(|B

1

2u(r)|2)|B
1

2u(r)|2

+

∫

Z
|g(r, u(r), z)|2ν(dz)

]
dr

+

∫ t∧τn

s

∫

Z
eλr

[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2

]
Ñ(dr, dz).

Now applying (C.8) yields

V (u(t ∧ τn))e
λ(t∧τn)

≤ V (u(s))eλs +

∫ t∧τn

s
eλr

[λ
2
〈Qδu(r), u(r)〉H + λm(|B

1

2u(r)|2) + (RG − δ)|u(r)|2H

− δm′(|B
1

2u(r)|2)|B
1

2u(r)|2 +KG

]
dr

+

∫ t∧τn

s

∫

Z
eλr

[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2

]
Ñ(dr, dz).

We continue by applying inequalities (5.10) and (2.25), the latter from (C.7), to infer that there
exists α > 0 such that

V (u(t ∧ τn))e
λ(t∧τn)

≤ V (u(s))eλs +

∫ t∧τn

s
eλr

[(λ
2
‖Qδ‖L(H) +RG − δ

)
|u(r)|2H

+
(λ
α
− δ

)
m′(|B

1

2u(r)|2)|B
1

2u(r)|2 +KG

]
dr

+

∫ t∧τn

s

∫

Z
eλr

[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2

]
Ñ(dr, dz).

Now let us take the limits when n→ ∞. Since by Theorem 2.10, τ∞ = ∞, we infer

V (u(t))eλt ≤ V (u(s))eλs +

∫ t

s
eλr

[(λ
2
‖Qδ‖L(H) +RG − δ

)
|u(r)|2H

+
(λ
α
− δ

)
m′(|B

1

2u(r)|2H)|B
1

2u(r)|2H +KG

]
dr(7.5)

+

∫ t

s

∫

Z
eλr

[
〈δu(r−) + 2ut(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2H

]
Ñ(dr, dz), 0 ≤ s ≤ t <∞.

Because of our assumptions it is possible to find λ > 0 such that

λ

α
− δ < 0 and

λ

2
‖Qδ‖L(H) +RG − δ < 0 .

Therefore,

V (u(t))eλt ≤

∫ t

s

∫

Z
eλr

[
〈δu(r−) + 2ut(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2H

]
Ñ(dr, dz)(7.6)

+ V (u(s))eλs +

∫ t

s
eλrKG dr, 0 ≤ s ≤ t <∞.
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Next, we first consider the case when KG = 0. Then by taking the conditional expectation
with respect to Fs to both sides of (7.6) we get for 0 ≤ s ≤ t <∞,

E
(
V (u(t))eλt

∣∣Fs

)
≤ E

(
V (u(s))eλs

∣∣Fs

)

+ E

(∫ t

s

∫

Z
eλr

[
〈βu(r−) + 2v(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2H

]
Ñ(dr, dz)

∣∣∣Fs

)
= V (u(s))eλs.

This proves that the process Φ(u(t))eλt, t ≥ 0, is a supermartingale. Therefore,

E|u(t)|2H ≤ E〈Qδu(t), u(t)〉H ≤ 2EV (u(t)) ≤ 2e−λt
EV (u(0)),

where the first inequality follows from (5.10), the last inequality follows from the supermartingale
property of Φ(u(t))eλt, t ≥ 0. Also, note that
(7.7)

EV (u(0)) = E

[1
2
〈Qδu(0), u(0)〉H+m(|B

1

2u(0)|2)
]
≤

(1
2
‖Qδ‖L(H)+1

)
E

[
|u(0)|2H+m(|B

1

2u(0)|2
]
.

We conclude that with C = |Q|L(H) + 2,

E|u(t)|2H ≤ Ce−λt
E

[
|u(0)|2H +m(|B

1

2u(0)|2
]
, t ≥ 0,

which shows the exponentially mean-square stability of the mild solution.
In the case KG 6= 0, taking first the expectation to both sides of (7.6) and then setting s = 0
gives

EV (u(t)) ≤ e−λt
EV (u(0)) +

KG

λ

(
1− e−λt

)
, t ≥ 0.

Thus, applying the inequality |x|2H ≤ 〈x,Qx〉H deduces

E|u(t)|2H ≤ E〈u(t), Qδu(t)〉H ≤ EV (u(t)) ≤ 2e−λt
EV (u(0)) +

2KG

λ
, t ≥ 0.

Therefore, combining with (7.7) we obtain

sup
t≥0

E|u(t)|2H ≤
(
‖Q‖L(H) + 2

)
E

[
|u(0)|2H +m(|B

1

2u(0)|2
]
+

2KG

λ
<∞,

which completes the proof of of Theorem 2.12. �
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[3] Z. Brzeźniak Z, W. Liu W, J. Zhu; Strong solutions for SPDE with locally monotone coefficients driven by
Lvy noise, Nonlinear Analysis: Real World Applications, 2014, 17: 283-310.

[4] W.E. Baylis and J. Huschilt, Energy balance with the Landau-Lifshitz equation, Phys. Lett. A 301 (2002), no.
1-2, 712

[5] D. Burgreen, Free vibrations of a pin ended column with constant distance between ends. J. Appl. Mech. 18,
135 (1951)
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[27] B. Maslowski, J. Seidler and I. Vrkoč, Integral continuity and stability for stochastic hyperbolic equations.

Differential Integral Equations 6, 355–382 (1993)
[28] M. Ondreját, a private communication to [10]
[29] S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible

beam equation. J. Differential Equations 135 no. 2, 299–314. (1997)
[30] S. Peszat, J. Zabczyk, Stochastic partial differential equations with Lévy noise An evolution
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