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Efficient Two-Dimensional Direction of Arrival
Estimation for a Mixture of Circular and

Noncircular Sources
Hua Chen, Chunping Hou, Wei Liu,Senior Member, IEEE, Wei-Ping Zhu,Senior

Member, IEEEand M.N.S. Swamy,Fellow, IEEE

Abstract—In this paper, the two-dimensional (2-D) direction-
of-arrival (DOA) estimation problem for a mixture of circul ar
and non-circular sources is considered. In particular, we focus on
a 2-D array structure consisting of two parallel uniform lin ear
arrays (ULAs) and build a general array model with mixed
circular and non-circular sources. The received array dataand
its conjugate counterparts are combined together to form a new
data vector, based on which a series of 2-D DOA estimators
are derived. Compared to existing methods, the proposed one
has three main advantages. Firstly, it can give a more accurate
estimation in situations where the number of sources is within
the traditional limit of high resolution methods; secondly, it can
still work effectively when the number of mixed signals is larger
than that of the array elements; thirdly, the paired 2-D DOAs
of the proposed method can be obtained automatically without
the complicated 2-D spectrum peak search and therefore has a
much lower computational complexity.

Index Terms—Two-dimensional (2-D), Direction of arrival
(DOA), non-circular signal, rank-reduction, planar array s

I. I NTRODUCTION

T HE estimation of two-dimensional (2-D) direction of ar-
rival (DOA) is an important area of array signal process-

ing and has received much attention in past years [1, 2]. Many
effective methods and algorithms have been proposed based on
different array structures, such as two-parallel uniform linear
arrays (ULAs) [3–7], L-shaped ULAs [8–13], and uniform
rectangular arrays (URAs) [14–16].

In most traditional DOA estimation algorithms, only the
traditional covariance matrix is considered which characterizes
the circular Gaussian distribution and in recent years, theDOA
estimation problem for non-circular signals has attractedmore
and more attention, first for one-dimensional (1-D) or linear
arrays [17–25], and then extended to the 2-D case [26–28].
By exploiting this additional noncircularity information, an
improved performance can be achieved for both 1-D and 2-D
DOA estimation. In particular, in [26], Liu. et al proposed
an ERARE method for noncircular sources based on two-
parallel ULAs, with improved estimation accuracy compared
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to [4]; based on [13], the estimation accuracy was also
improved with the conjugate information of the observed data
for L-shaped ULAs in [27]. By employing non-circular signal
constellations, Roemer and Haardt proposed a DOA estimation
algorithm for a regular-hexagonal shaped ESPAR array, with
a detailed analysis of the Cramer-Rao bound (CRB) [28].

A more general problem is that the impinging signals to
the array are a mixture of circular and non-circular ones, such
as a mixture of quadrature phase shift keying (QPSK) signals
(circular) and binary phase shift keying (BPSK) signals (non-
circular). This problem has been studied for DOA estimation
of 1-D arrays and several approaches have been proposed [29–
31]. In [29], a new data vector was formed by combining
the original data and its conjugate version to construct two
estimators for direction finding of circular and non-circular
signals, respectively. However, it can not deal with the problem
when the DOAs of the circular and non-circular signals are
coincident, and a small angle separation between them will
lead to severe performance degradation. An improved algo-
rithm was then proposed in [30], which estimates the DOAs of
circular and non-circular signals separately by exploiting the
difference between the circularity properties of the signals.
Nevertheless, when the number of data samples is small,
its DOA estimation performance will degrade. In [31], the
problem was solved using a sparse representation algorithm,
which employs overcomplete dictionaries subject to sparsity
constraints to jointly represent the covariance and elliptic
covariance matrices of the array output. However, to our
best knowledge, the 2-D DOA estimation problem for mixed
circular and non-circular impinging signals has not yet been
addressed in literature.

In this paper, we fill this gap and study the problem based
on the 2-D structure consisting of two parallel ULAs. Starting
from the non-circular signal only formulations in [26], we first
build a general array model to accommodate the case with
mixed circular and non-circular signals and then propose a
novel method for 2-D DOA estimation. One advantage of the
proposed method is that it can give a more accurate estimation
in situations where the number of sources is within the
traditional limit of high resolution methods in [3]; secondly, it
can still work effectively when the number of mixed signals is
larger than that of the array elements; thirdly, the paired 2-D
DOAs of the proposed method can be obtained automatically
without the complicated 2-D spectrum peak search. Extensive
simulation results will be provided to show the performance



IEEE SENSORS JOURNAL 2

21

Z

M

dx Y

the kth signal

dy

kθkβ

X

Fig. 1. Geometry of the array model.

of our proposed method.
Throughout the paper,(·)∗, (·)T , (·)−1 and (·)H represent

conjugation, transpose, inverse and conjugate transpose,re-
spectively.E(·) is the expectation operation;diag(·) stands for
the diagonalization operation;Ip denotes thep×p dimensional
identity matrix; det[·] is the determinant of a matrix.

II. PROBLEM FORMULATION

As shown in Fig.1, suppose that there areK = Kn+Kc un-
correlated far-field sources impinging upon the array withKn

noncircular sourcessn,k(t) and Kc circular sourcessc,k(t),
from directions(θk, βk), k = 1, 2, . . . ,K. The array consists
of two parallel ULAs with each one havingM elements. The
distance between the two ULAs isλ/2, denoted asdy, and the
inter-element spacingdx for each ULA is alsoλ/2, whereλ is
the wavelength of the incident waves. The additive noises of
the two ULAs are circular Gaussian with zero mean and vari-
anceσ2, which are uncorrelated with the impinging signals.
The output data vectorsx(t) = [x1(t), x2(t), . . . , xM(t)] and
y(t) = [y1(t), y2(t), . . . , yM(t)] of the two ULAs at samplet
can be modeled as

x(t) = As̃(t) + nx(t) (1)

y(t) = ABs̃(t) + ny(t) (2)

where A is the steering matrix with each column denoted
by a(θk), given by a(θk) = [a0(θk), . . . , aM−1(θk)]

T with
ai(θk) = e−j 2π

λ
dx(i) cos θk , B(β) is termed as the steering

element matrix given byB = diag[v(β1), v(β2), . . . , v(βK)],
with v(βk) = ej

2π
λ

dy cosβk , nx(t) = [nx,1(t), . . . , nx,M(t)]
T

and ny(t) = [ny,1(t), . . . , ny,M(t)]
T represent the circu-

lar Gaussian noise vectors of the two arrays, respectively,
and s̃(t) = [sn,1(t), ..., sn,Kn

(t), sc,1(t), ..., sc,Kc
(t)]T is the

mixed source signal vector which has the following form

s̃(t) = Ḃs(t) (3)

In (3), Ḃ is given by

Ḃ=diag




bn,1, ..., bn,Kn

, 1, · · · , 1
︸ ︷︷ ︸

Kc






=

[
Ḃ1 0
0 Ḃ2

]
(4)

where Ḃ1 = diag [bn,1, ..., bn,Kn
], Ḃ2 = IKc

, and s(t) is
defined as

s(t) = [s̄n,1(t), ..., s̄n,Kn
(t), sc,1(t), ..., sc,Kc

(t)]T . (5)

We assumesn,k(t) is a strictly noncircular (rectilinear) sig-
nal [32, 33]. Then it can be expressed assn,k(t) = bn,ks̄n,k(t),
wheres̄n,k(t) is a real signal, andbn,k = ejϕk(k = 1, ...,Kn)
is an arbitrary phase shift for the signal.

III. T HE PROPOSEDMETHOD

In this section, the 2-D DOA estimation algorithm for a
general mixture of circular and non-circular signals impinging
on the two parallel ULAs is derived in detail, based on the
observed data coupled with its conjugate counterparts.

A. General array model

By concatenating the observed data vectorsx(t) and y(t),
we define a new data vectorz(t) as follows

z(t)=
[

x(t)
y(t)

]

=

[
A(θ)

A(θ)B(β)

]

Ḃs(t) +
[

nx(t)
ny(t)

]

=C(θ, β)Ḃs(t) + n(t).
(6)

For simplified notation, the pair of angles(θ, β) together
with t are omitted in the following when not causing any
confusion.

In (6), C(θ, β) is named as the extended steering vector with
each column denoted asc(θ, β) , which can be expressed as

C =
[

C1(θn, βn) C2(θc, βc)
]

(7)

where

C1 =

[
a(θn,1)
a(θn,1)v(βn,1)

· · ·
a(θn,Kn

)
a(θn,Kn

)v(βn,Kn
)

]

=

[
an,1
an,1vn,1

· · ·
an,Kn

an,Kn
vn,Kn

]

(8)

C2 =

[
a(θc,1)
a(θc,1)v(βc,1)

· · ·
a(θc,Kc

)
a(θc,Kc

)v(βc,Kc
)

]

=

[
ac,1
ac,1vc,1

· · ·
ac,Kc

ac,Kc
vc,Kc

]

(9)
are2M ×Kn and2M ×Kc matrices, respectively.

Then, another new data vectorz̆ is defined by combining
the vectorz and its conjugate counterpartz∗ as follows

z̆ =

[
z
z∗

]

=

[
CḂs
C∗Ḃ

∗

s∗

]

+

[
n
n∗

]

= C̆s̆+ n̆ (10)

whereC̆ is a 4M × (Kn + 2Kc) matrix, i.e.,

C̆ = [c̆n,1, ..., c̆n,Kn
, C̆c,1, ..., C̆c,Kc

] (11)

with

c̆n,k =







bn,k

(
an,k
an,kvn,k

)

b∗n,k

(
a∗n,k
a∗n,kv

∗
n,k

)







(12)

being a4M × 1 vector (k = 1, 2, . . . ,Kn), and

C̆c,k =







ac,k
ac,kvc,k
0M×1

0M×1

0M×1

0M×1

a∗c,k
a∗c,kv

∗

c,k







(13)
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being a4M × 2 matrix (k = 1, 2, . . . ,Kc),

s̆= [sn,1, ..., sn,Kn
, sc,1, s

∗

c,1, ..., sc,Kc
, s∗c,Kc

]T (14)

is a (Kn + 2Kc)× 1 vector, and

n̆ =

[
n
n∗

]

(15)

is a 4M × 1 vector.
Based on the above general array model, the proposed

method is derived in the following section.

B. Main method

The covariance matrix of̆z is given by

R̆ = E[z̆̆zH ] = C̆R̆sC̆
H
+ σ2

I4M (16)

whereR̆s = E [̆s̆sH ] is the covariance matrix of̆s.
Remark 1: In practice, only a finite number of observed

data is available. Thus,̆R is estimated by

¯̆R ≈
1

L

L∑

l=1

z̆(l)z̆H(l), (17)

whereL denotes the number of snapshots. With less observed
data, there will be a larger error in the estimated covariance
matrix, which will lead to a degradation in performance.

Since the signals are not correlated with each other,R̆s is a
full rank matrix. Then the eigen-value decomposition (EVD)
of R̆ is

R̆ = EsΣsE
H
s +EnΣnE

H
n (18)

where the4M× (Kn+2Kc) matrixEs and the4M × (4M−

Kn − 2Kc) matrix En are the signal subspace and noise
subspace, respectively. The(Kn+2Kc)× (Kn+2Kc) matrix
Σs = diag(λ1,λ2 · · · ,λK) and the(4M−Kn−2Kc)×(4M−

Kn − 2Kc) matrix Σn = diag(λK+1,λK+2 · · · ,λ4M ) are the
corresponding diagonal matrices, whereλ1 ≥ λ2 ≥ · · · ≥

λK > λK+1 = · · · = λ4M = σ2 are the eigenvalues of̆R.
Considering that both̆C andEs span the signal subspace,

which are orthogonal to the noise subspace spanned by the
matrix En, we derive the following estimators to obtain the
2-D DOAs of noncircular and circular signals using the rank-
reduction method.

1) 2-D DOA estimation for noncircular sources:Based on
the orthogonality betweenEn andc̆n,k, the following equation
holds for any direction from(θn,k, βn,k)

EH
n c̆n,k = 0 (19)

In order to avoid the 2-D spectrum peak search related to
(θn,k, βn,k) in a grid area, together with (13), (19) can be

rewritten as

0
= EH

n c̆n,k

= EH
n







bn,k

(
an,k
an,kvn,k

)

b∗n,k

(
a∗n,k
a∗n,kv

∗

n,k

)







= EH
n







bn,k

(
an,k 0M×1

0M×1 an,k

)(
1
vn,k

)

b∗n,k

(
a∗n,k 0M×1

0M×1 a∗n,k

)(
1
v∗n,k

)







= EH
n







an,k
an,k

a∗n,k
a∗n,k













bn,k
bn,kvn,k
b∗n,k

b∗n,kv
∗

n,k







= EH
n







an,k
an,k

a∗n,k
a∗n,k













1 0
vn,k 0
0 1
0 v∗n,k







[
bn,k
b∗n,k

]

(20)
Defining a4M × 4 matrix Ω(θ) which is only related toθ

Ω(θ) =







a(θ)
a(θ)

a∗(θ)
a∗(θ)







(21)

and
pn(θ) = Ω

H(θ)EnEH
n Ω(θ) (22)

we obtain the following estimator overθ corresponding to
noncircular signals as

fn(θ) = [det(pn(θ))]
−1 = [det(ΩH(θ)EnEH

n Ω(θ))]−1 (23)

If searched over the confined region withθ ∈ [0, π], the
DOAs θn,k of noncircular sources can be obtained from peaks
in fn.

We then substitute the estimatedθ of noncircular sources
into (20) and have the following estimator overβ correspond-
ing to noncircular signals

f ′

n(β) = [det(p′

n(β)))]
−1 (24)

where

p′

n(β) = Θ
H(β)ΩH(θ)EnEH

n Ω(θ)Θ(β) (25)

and

Θ(β)=







1 0
v(β) 0
0 1
0 v∗(β)







(26)

2) 2-D DOA estimation for circular sources:The orthogo-
nality betweenEn and C̆c,k still holds, i.e.

EH
n C̆c,k = EH

n







ac,k
ac,kvc,k
0M×1

0M×1

0M×1

0M×1

a∗c,k
a∗c,kv

∗

c,k






= 0. (27)
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From (27), we have

EH
n







ac,k
ac,kvc,k
0M×1

0M×1






= 0 (28)

and

EH
n







0M×1

0M×1

a∗c,k
a∗c,kv

∗
c,k






= 0 (29)

Partitioning the matrixEn into En = [ET
n1,E

T
n2]

T , where
En1 and En2 are two submatrices of the same size2M ×

(4M −Kn − 2Kc), (28) and (29) can be changed to

0

=

[
ac,k

ac,kvc,k

]H

En1EH
n1

[
ac,k

ac,kvc,k

]

=

[
1

vc,k

]H [
ac,k

ac,k

]H

En1EH
n1

[
ac,k

ac,k

] [
1

vc,k

]

(30)
and

0 =

[(
ac,k

ac,kvc,k

)∗]H

(En2EH
n2)

[(
ac,k

ac,kvc,k

)∗]

⇒ 0 =

[
ac,k

ac,kvc,k

]H

E∗

n2(E
∗

n2)
H

[
ac,k

ac,kvc,k

]

⇒ 0

=

[
ac,k

ac,kvc,k

]H

(En2EH
n2)

∗

[
ac,k

ac,kvc,k

]

=

[
1

vc,k

]H [
ac,k

ac,k

]H

(En2EH
n2)

∗

×

[
ac,k

ac,k

] [
1

vc,k

]

(31)
As shown in Appendix, (30) and (31) are equivalent to each

other.
Here, based on (30), the estimator overθ corresponding to

circular signals is as follows.
Since [

1
vc,k

]

6= 0 (32)

we have
fc(θ) = [det(pc(θ))]

−1 (33)

where
pc(θ) = Λ

H(θ)En1EH
n1Λ(θ) (34)

and

Λ(θ) =

[
ac,k

ac,k

]

(35)

Similarly, the DOAsθc,k of circular sources can be obtained
from peaks infc by searching over the confined region only
related toθ.

With the estimatedθ of circular sources, we substitute
them into (30) and have the following estimator overβ

corresponding to circular signals

f ′

c(β) = (p′c(β))
−1 (36)

where

p′c(β)=

[
a(θ)

a(θ)v(β)

]H

En1EH
n1

[
a(θ)

a(θ)v(β)

]

(37)

Note that the estimator in (33) is quite similar to the one
in (23) except thatEn1, half of the noise subspace matrixEn,
is used in (33). However, the way to achieveβ of noncircular
and circular signals is different. The estimator in (24) uses the
rank-reduction MUSIC method, while the estimator (36) uses
the conventional MUSIC method.

C. Circular and Noncircular Signals Identification

In order to discriminate the 2-D DOAs of circular signals
from that of noncircular signals, we consider equation (27)
again,

0 = EH
n C̆c,k

= EH
n







ac,k
ac,kvc,k
0M×1

0M×1

0M×1

0M×1

a∗c,k
a∗c,kv

∗

c,k







= EH
n







ac,k
ac,k

a∗c,k
a∗c,k













1
vc,k

1
v∗c,k







(38)

Due to







1
vc,k

1
v∗c,k







6= 0, the following equations hold

for circular signals too

[det(ΩH(θc,k)EnEH
n Ω(θc,k)]

−1 = 0 (39)

and

[det(ΘH(βc,k)Ω
H(θc,k)EnEH

n Ω(θc,k)Θ(βc,k))]
−1 = 0.

(40)
It is concluded that the 2-D DOAs of both noncircular and

circular signals can be obtained from (23) and (24), while
the estimators (33) and (36) only identify the 2-D DOAs
of circular signals. Therefore, the identification of circular
and noncircular incident signals from their mixtures can be
achieved.

D. Summary of the proposed algorithm

The proposed algorithm is summarized as follows:

1) Calculate the covariance matrix¯̆R from the collected
data.

2) Obtain the noise subspacēEn by performing EVD to
¯̆R.

3) Use (23) and (24) to estimate theK 2-D DOAs of the
mixed signals.

4) ObtainĒn1 by partitioning the matrix̄En.
5) Use (33) and (36) to estimate theKc 2-D DOAs of the

circular signals.
6) Compare the spatial spectrum achieved by 3) and 5) to

identify theKn 2-D DOAs of the noncircular signals.
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Remark 2: Now we give a complexity analysis in
terms of the number of complex-valued multiplications
of the proposed method including the construction of¯̆R,
performing EVD of ¯̆R and spectral searching. To calculate
¯̆R, a computational complexity ofO

(

(4M)
2
L
)

is needed.

Define the scanning interval ofθ ∈ [0, π] with a stepsize
△θ, and β ∈ [0, π] with a stepsize△β, respectively. The
proposed method employs several 1-D spatial spectrum
search procedures to obtain the 2-D DOAs of noncircualr and
circular signals, which has a computational complexity of
O
(

π
△θ

(4M)
2
+K π

△β
(4M)

2
+ π

△θ
(2M)

2
+Kc

π
△β

(2M)
2
)

,
while two direct 2-D spatial spectrum search
procedures entail a computational complexity of
O
(

π
△θ

π
△β

(4M)
2
+ π

△θ
π
△β

(2M)
2
)

.
Remark 3: When the incident signals are all noncircular

ones, the proposed method will be equivalent to the method
in [26] except that the way to construct the new data vectorz̆
is different.

Remark 4: It should be mentioned that the number of
columns ofEn should be no less than 4. Therefore,4M −

Kn − 2Kc ≥ 4 must be satisfied to use (23) and (24). For
M elements in each ULA, Xia’s method in [3] can detectKn

noncircular andKc circular signals up toKn+Kc = 2(M−1),
while our proposed method can estimate2Kn noncircular
signals for the sameKc of circular signals and therefore, the
total number of incident signals isKn + 2Kc = 4(M − 1);
Liu’s method in [26] can only distinguish4(M−1) noncircular
signals.

Remark 5: In contrast to existing methods, the proposed
one has three main advantages. Firstly, it can perform a more
accurate estimation in situations where the number of sources
is within the traditional limit of high resolution methods;sec-
ondly, it can still work effectively when the number of mixed
signals is larger than that of the sensor elements; thirdly,the
proposed method has a much lower computational complexity
to achieve the automatically paired 2-D DOAs without the
complicated 2-D spectrum peak search. As with other DOA
estimation algorithms, when angle separation of the impinging
signals is small, it will suffer from a high RMSE value and
its performance will improve with a larger separation angle,
as demonstrated in Subsection IV.D. Moreover, although 2-D
spectrum search can be avoided with the proposed algorithm,
its computational complexity is still high and further reduction
is needed in the future.

Remark 6: It should be pointed out that the conclusion
about the additional number of source signals which can
be resolved by the proposed algorithm is only valid in the
presence of strictly noncircular signals. However, the proposed
algorithm is also applicable to arbitrary non-circular signals
with at least one strictly noncircular signal. In this case the
algorithm will treat the arbitrary noncircular signals (excluding
the strictly non-circular one) in the same way as the circular
signals. When there is no strictly non-circular signals, i.e.
Kn = 0, we can directly use (27) or (39) and (40) to estimate
the directions of arbitrary non-circular signals or a mixture of
both circular and arbitrary non-circular signals. One noteis,
in theory, although we will be able to achieve an improved
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Fig. 2. The I/Q diagram of a UQPSK signal with a noncircularity coefficient
0.6 .

20 40 60 80 100 120 140
−140

−120

−100

−80

−60

−40

−20

0

 

 

θ (degree) 

 S
pa

tia
l S

pe
ct

ru
m

 (
dB

)

BPSK estimator
QPSK estimator

(a) θ

30 40 50 60 70 80 90 100 110 120 130
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 

 

β (degree) 

 S
pa

tia
l S

pe
ct

ru
m

 (
dB

)

BPSK estimator
QPSK estimator

(b) β

Fig. 3. Spatial spectrum of the estimators for BPSK and QPSK signals with
SNR fixed at 20dB and the number of snapshots being 1500.

performance compared to the traditional ones due to the
additional second order statistics information being exploited
in the formulation, the improvement will not be observable
for relatively high signal-to-noise ratio (SNR) scenarios(no
strictly noncircular signals present), as already pointedout in
[18]. One example for such arbitrary non-circular signals is the
unbalanced quadrature phase shifting keying (UQPSK) signal
whose complex components in the I/Q diagram have different
powers, as shown in Fig.2 with a noncircularity coefficient of
0.6. In the next section, we will provide a simulation with a
mixture of BPSK, UQPSK and QPSK signals.

IV. SIMULATION RESULTS

In this section, simulations are performed to illustrate the
performance of the proposed algorithm. For all simulations,
each of the two parallel ULAs has four elements except for
the simulationsA.2, D andE, which have five elements. Both
dx anddy are half wavelength.

The mixed circular and non-circular incoming signals have
equal power. The power of additive white Gaussian noise
is σ2

n. The SNR is defined asSNR = 10log10(σ
2
s

/
σ2
n).

We use root mean square error (RMSE) to evaluate the
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Fig. 4. Spatial spectrum of the estimators for BPSK, UQPSK and QPSK
signals with SNR fixed at 20dB and the number of snapshots being 1500.

estimation performance, which is defined as RMSE=√
K∑

k = 1

Mc∑

q=1
[(ζ̂qk - ζk)2] whereMc = 100 is the number of

Monte Carlo simulations,K is the number of signals,̂ζq,k
is the estimated result (θ̂k or β̂k) in the qth Monte Carlo
simulation, andζk is the real value for eitherθk or βk of
thekth signal. Besides, Xia’s method in [3] and Liu’s method
in [26] are included for comparison.

A. Spatial spectrum of the estimators

1) A mixture of BPSK and QPSK signals:To demon-
strate the resolution performance of the proposed method,
we use five BPSK signals and three QPSK signals and in
total there are eight signals. The BPSK signals are from
directions (65◦, 50◦), (90◦, 105◦), (50◦, 60◦), (125◦, 85◦)
and (30◦, 115◦), while the QPSK signals from(105◦, 95◦),
(75◦, 40◦) and (115◦, 70◦). The SNR is 20dB. The number
of snapshots is 1500. Fig. 3 (a) and (b) shows the spatial
spectrum of the strictly noncircular and circular estimators
related toθ and β by the proposed algorithm, respectively,
where the “BPSK estimator” uses equations (23) and (24), and
the “QPSK estimator” uses equations (33) and (34). It can be
seen that the eight signals are all distinguished successfully by
the proposed algorithm where the conditionKn+2Kc = 11 <

4(M − 1) = 12 is met. For this case, both Xia’s and Liu’s
methods have failed, becauseKn +Kc = 8 > 2(M − 1) = 6
with Xia’s method, and for Liu’s method, only BPSK signals
can be estimated.

2) A mixture of BPSK, UQPSK and QPSK signals:In
this set of simulations, we replace the BPSK signal from
direction(30◦, 115◦) by a UQPSK one and increase the sensor

number to 5 with the other parameters the same as in the first
simulation. The results in Fig. 4 (a) and (b) clearly show that
the proposed method can still work with a mixture of BPSK,
UQPSK and QPSK signals as discussed inRemark 6, where
the “UQPSK+QPSK estimator” used equations (39) and (40).

B. Performance versus SNR

In this set of simulations, we study the performance with a
varying SNR from 0dB to 30dB. There are four uncorrelated
signals from directions(60◦, 50◦), (80◦, 70◦), (100◦, 85◦)
and (125◦, 105◦). We consider four cases where one, two,
three and four BPSK signals are considered, respectively. The
number of snapshots is 1200. As shown in Fig. 5 (a) and (b),
the proposed method outperforms Xia’s method in all cases
because the noise subspace dimension increases by exploiting
the conjugate information of the received data. Moreover, the
2-D DOA estimation performance of the proposed method
improves from case 1 to case 4, and the reason for this
is that the noise subspace has been extended by increasing
the number of BPSK signals. Especially, for case 4 where
the incoming signals are all BPSK, the proposed method is
reduced to Liu’s method except that the way to construct the
new data vector̆z is different. Therefore, in this case both
methods have the same performance.

C. Performance versus number of snapshots

The performance of the proposed method is studied in this
part with the number of snapshots varying from 50 to 750.
The SNR is fixed at 15 dB and the other parameters are the
same as in sectionB. The RMSE results for the three methods
are shown in Fig. 6 (a) and (b), and we can draw similar
conclusions as in sectionB.

D. Performance versus angle separation

Now the performance of the proposed method is investigated
with the angle separation∆ of 2-D DOAs varying from5◦ to
23◦. The SNR is fixed at 20dB and the snapshot number is 800.
Four uncorrelated signals arrive from directions(65◦, 40◦),
((65 + ∆)◦, (40 + ∆)◦), (100◦, 75◦) and ((100 + ∆)◦, (75 +
∆)◦). We consider three cases where one, two and three BPSK
signals are present. Naturally, when angle separation is small,
all methods will suffer with a high RMSE value and their
performance will improve with a larger separation angle, as
shown in Fig. 7 (a) and (b). Moreover, our proposed method
again has outperformed Xia’s method for all three cases.

E. Deterministic CRB [28] for strictly noncircular signals
versus SNR

Here, we only study the deterministic CRB with case 4
mentioned in sectionB where all the incoming signals are
BPSK. Keeping other parameters unchanged as in simulation
B, we set the sensor number to five, and vary the SNR from -
5dB to 20dB. As shown in Fig. 8 (a) and (b), the deterministic
CRB for strictly noncircular signals denoted asCRBnc has a
lower RMSE value than the deterministic CRB for circular
signals which is denoted asCRBc at low SNRs which is in
accordance to the analysis in [28].
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Fig. 5. RMSE of versus SNR with the snapshots being 1200.

V. CONCLUSION

A generalized 2-D DOA estimation algorithm for mixed
circular and non-circular signals has been proposed based on
a 2-D array structure consisting of two parallel ULAs. As
also demonstrated by extensive simulation results, compared to
existing methods, the proposed one has three main advantages.
Firstly, it can give a more accurate estimation in situations
where the number of sources is within the traditional limit of
high resolution methods; secondly, it can still work effectively
when the number of mixed signals is larger than that of the
array elements; thirdly, the paired 2-D DOAs of the proposed
method can be obtained automatically without the complicated
2-D spectrum peak search and therefore has a much lower
computational complexity.

APPENDIX

Here, we prove that (30) and (31) are equivalent.
Proof: The orthogonality betweenEn and C̆ can be ex-

panded as

[
EH
n1 EH

n2

]
[

C1 C2 02M×Kc

C∗

1 02M×Kc
C∗

2

]

= 0 (41)
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Fig. 6. RMSE of versus snapshots with the SNR fixed at 15dB.

Due to EH
n1, EH

n2, C1, C∗

1, C2 and C∗

2 are block matrices,
(41) can be rewritten in the following form

[
EH
n2 EH

n1

]
[

C∗

1 C∗

2 02M×Kc

C1 02M×Kc
C2

]

= 0 (42)

Applying the conjugate operation on both sides of (42), we
obtain

[

ET
n2 ET

n1

]
[

C1 C2 02M×Kc

C∗

1 02M×Kc
C∗

2

]

= 0 (43)

Define Ẽn =
[

ET
n2 ET

n1

]H
which is an orthonormal

matrix. Then (43) can be rewritten as

Ẽ
H

n C̆ = 0 (44)

SinceC̆ is a full-column-rank matrix,̃En will also span the
noise subspace. From the uniqueness of the projection matrix
onto a subspace, one can readily conclude that

P = EnEH
n = ẼnẼ

H

n (45)
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Fig. 7. RMSE versus angle separation with with SNR fixed at 20dB and the
number of snapshots being 800.

where

EnEH
n =

[
En1

En2

]
[

EH
n1 EH

n2

]

=

[
En1EH

n1 En1EH
n2

En2EH
n1 En2EH

n2

] (46)

ẼnẼ
H

n =

[

Ẽ
∗

n2

Ẽ
∗

n1

]
[

Ẽ
T

n2 Ẽ
T

n1

]

=

[

Ẽ
∗

n2Ẽ
T

n2 Ẽ
∗

n2Ẽ
T

n1

Ẽ
∗

n1Ẽ
T

n2 Ẽ
∗

n1Ẽ
T

n1

]

=

[

(Ẽn2Ẽ
H

n2)
∗ (Ẽn2Ẽ

H

n1)
∗

(Ẽn1Ẽ
H

n2)
∗ (Ẽn1Ẽ

H

n1)
∗

]

(47)

Therefore, we have the following equation

En1EH
n1 = (En2EH

n2)
∗ , (48)

which completes the proof.
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