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Abstract 

Subject-specific finite element (FE) models could improve decision making in canine 

long bone fracture repair. However, it preliminary requires that FE models predicting 

the mechanical response of canine long bone are proposed and validated. We present 

here a combined experimental-numerical approach to test the ability of subject-

specific FE models to predict the bending response of seven pairs of canine humeri 

directly from medical images. Our results show that bending stiffness and yield load 

are predicted with a mean absolute error of 10.1% (±5.2%) for the fourteen samples. 

This study constitutes a basis for the forthcoming optimization of canine long bone 

fracture repair.  

Keywords 

Finite element modelling 

Subject-specific 

Canine bone material properties 

Bending test 

Canine humerus 

  



 3 

Introduction 1 

Long bone fracture constitutes a common reason for medical consultation within 2 

veterinary orthopaedic services
1,2

, as emphasized by the substantial recent literature 3 

concerning the choice of adapted implants
3ʹ6

 . Associated surgical interventions are 4 

often complex given that each fracture has its own particularities. Canine bone 5 

fracture repair differs from the human case in the sense that (1) the physiological 6 

characteristics and morphology of the injured bones in animals vary considerably 
7
, (2) 7 

the animal is not able to limit its activity during the post-operative period, which may 8 

lead to premature overloading, and (3) the surgeon is often confronted to cost 9 

limitations concerning orthopaedic material. As a result, the treatment of such 10 

fractures (implant type, dimension, ůŽĐĂƚŝŽŶ ͙Ϳ depends to some extent on the 11 

ƐƵƌŐĞŽŶ͛Ɛ ĞǆƉĞƌŝĞŶĐĞ͕ ǁŚŽ ƚƌŝĞƐ ƚŽ ĨŝŶĚ Ă ƚƌĂĚĞ-off between a minimum stiffness 12 

required for fracture stabilization and a sufficient flexibility essential for bone 13 

remodelling. Although available handbooks guide the surgeon in the choice of a suited 14 

treatment for each particular fracture, they are still based on empirical knowledge, and 15 

there is a lack of studies assessing the effect of different treatment types on the 16 

biomechanical properties of the reconstructed bone. This insufficient knowledge may 17 

partly explain the complications that are still frequent in the field of canine fracture 18 

repair 
8,9

. 19 
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In order to improve the surgical procedure, ex-vivo experiments
10,11

 as well as 20 

numerical biomechanical studies
12ʹ14

 have been reported. Indeed, numerical 21 

approaches, such as Finite Element (FE) modelling may enable to evaluate non-22 

invasively the effect of various implants or their combination on the same bone 23 

sample. However, these FE studies are often based on simplistic bone models (i.e. 24 

ĞůĂƐƚŝĐ͕ ůŝŶĞĂƌ͕ ŚŽŵŽŐĞŶĞŽƵƐ ĐŽƌƚŝĐĂů ĂŶĚ ƚƌĂďĞĐƵůĂƌ ƚŝƐƐƵĞƐ͕ ĞƚĐ͙Ϳ. A milestone in 25 

delivering relevant data in a subject-specific approach consists of including the bone 26 

external geometry and heterogeneous material properties from the information 27 

available in CT images. Such subject-specific FE approaches have been developed in 28 

human long bone analysis and satisfyingly predicted the failure risk in proximal 29 

femur
15ʹ18

. However, available studies in human have often led to moderately accurate 30 

results as far as the prediction of the global biomechanical response of long bones are 31 

concerned, probably due to accumulating inherent approximations throughout the 32 

model generation. Particularly, it is not clear if the consideration of density-dependent 33 

material properties leads to better results than the modelling of long bone with two 34 

materials (trabecular and cortical tissues) separated from a density criterion. The 35 

interest of considering anisotropic material properties is also not clear. Moreover, if 36 

one wants to extend these subject-specific FE models to canine bone, a supplementary 37 

difficulty will come from the variability of bone material properties from one breed to 38 
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another
19

, and from the absence of data concerning relationships between CT 39 

information and bone material properties for dogs.  40 

Such FE models are usually validated using ex vivo mechanical tests such as 41 

bending
20,21

, torsion
22

 or compression
17,23

. These combined experimental-numerical 42 

approaches require that a particular attention is paid to the application of similar 43 

Boundary Conditions (BC), such as load application and displacement restriction, in the 44 

experimental and computational setups
24

. 45 

In the present contribution, the hypothesis was that subject-specific FE models are 46 

able to predict the global mechanical response of canine long bones to three-point 47 

bending tests. The aims of the present work were therefore (1) to provide a direct 48 

subject-specific validation of canine long bone FE models including a novel density-49 

elasticity law; and (2) to assess the requirements for the bone material model to 50 

replicate measured ex vivo behaviour. 51 

Material and Methods 52 

A combined experimental and computational approach was developed to validate the 53 

FE models with ex vivo three-point bending data, i.e. overall load/deflection behaviour 54 

and local fracture patterns. All dynamic FE analyses were performed using the in house 55 

non-linear implicit FE code MetaFor (metafor.ltas.ulg.ac.be). 56 
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Specimen preparation, imaging, and mechanical testing 57 

Eight pairs of canine humeri were initially harvested from adult dogs euthanized for 58 

reasons unrelated to this study. After harvesting, one dog (i.e. one pair of humeri) was 59 

excluded from this study due to the observation of severe knee arthrosis. Dog weights 60 

finally ranged from 19 to 39kg. Soft tissues were carefully removed and samples were 61 

wrapped in saline soaked sponges and stored at -20°C.  Samples were prepared for 62 

three-point bending mechanical tests at room temperature. In order to accurately 63 

control the location of the bones within the custom bending stand and to restrict 64 

rotations around the bone diaphysis axis during the bending tests, the epiphyses were 65 

embedded into 60ྶ60ྶ60mm
3
 moulds made of two-component polymeric resin 66 

(Motip®, Germany) (Figure 1). A particular attention was paid to define resin moulds 67 

orientation with respect to the bone sample position in a reproducible way. Firstly, we 68 

used the origin of the medial and lateral collateral ligaments as anatomical landmarks 69 

to define a reference axis. Then, the distal resin mould was created in such a way that 70 

this anatomical reference axis was parallel to two surfaces of the resin block (namely 71 

its cranio-caudal and proximal-distal surfaces). The second mould was perfectly aligned 72 

with the first one, using custom-made jig (Figure 1.a). 73 

The samples were imaged using a CT-scanner (Siemens SOMATOM at 120 kVp) with a 74 

slice thickness of 0.75mm and a spatial resolution of 0.1445mm. A phantom (Siemens 75 
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BMD calibration phantom
25

) was used to calibrate the bone densities with respect to 76 

the Hounsfield Units (HU) issued from the CT acquisition
18,26

. Particular attention was 77 

paid to keep the samples packed in saline-soaked wraps throughout the procedure in 78 

order to avoid tissue dehydration. The following relation was obtained: 79 

44.9332 10 0.9839HU    (1) 80 

Samples were placed on a custom adjustable bending stand (Figure 1.b) made of two 81 

steel half-cylinders. The cylinders positions were adjusted so that they were in contact 82 

with the middle of each resin mould in the axial direction of the bone. The bending 83 

tool consisted in a cylindrical punch located longitudinally at half the distance between 84 

the two resin moulds. The stand was mounted in a 100 kN servo-hydraulic testing 85 

machine (Zwick/Roell, Ulm, Germany, load cell : XForce HP 5 kN). A medial-lateral 86 

displacement was applied to the bending tool at a speed of 0.2 mm.s
-1

 after a preload 87 

of 50 N. The samples were tested until complete fracture. Tool displacement 88 

(hereafter called deflection) and vertical force (i.e. shear force) were recorded. Two 89 

high speed cameras (Vision Research v7.3) recording 1000 frames/s were used in order 90 

to visualize the fracture onset.  91 
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Finite Element modelling 92 

Each tested sample was modelled with a subject-specific approach. The geometry of 93 

the bone were built from the 3D CT data using 3D-Slicer
27

 (www.slicer.org) for 94 

segmentation and a dedicated in-house algorithm
28

 for the generation of smooth 95 

multi-region surface meshes. The bone volume mesh was obtained using Tetgen 96 

(WIAS, Berlin, Germany), generating linear tetrahedra. Final mesh size was issued from 97 

a mesh dependency analysis reported hereafter. 98 

The resin moulds were not meshed in the FE model but considered as single 99 

deformable hexahedrons whose coordinates were automatically computed from the 100 

boundaries of resin moulds in the surface mesh (Figure 1.b). Resin was considered 101 

linear elastic, with an elastic modulus of 900 MPa characterized from preliminary 102 

experiments. Elements were assigned a density issued from the calibration phantom, 103 

and equal to 1g.cm
-3

 for resin. The interaction between the bone and the resin moulds 104 

was modelled using springs (arbitrary stiffness of 100 N mm
-1

) linking the hexahedron 105 

nodes with each of the bone surface nodes located within the resin moulds (Figure 1.b) 106 

in order to constrain the relative displacement between bone and resin. This numerical 107 

representation of the resin blocks is totally equivalent to a penalty formulation in 108 

contact algorithms with bilateral restrictions to enforce the continuity of the 109 

http://www.slicer.org/


 9 

displacement field at the interface between bone and resin. The proximal resin mould 110 

was restrained in the cranio-caudal direction. 111 

The bending stand was modelled as two rigid half-cylinders located longitudinally at 112 

the middle of each resin moulds. The frictional contact condition between the resin 113 

moulds and the bending stand was modelled with a Coulomb's law, with static and 114 

dynamic friction coefficients set at 0.7, corresponding to a dry static contact between 115 

steel and steel
29

. This value was chosen due to the lack of published value for resin-116 

steel contact. Each half-cylinders of the bending stand were restrained in their 6 117 

degrees of freedom.  118 

The bending tool was modelled as a rigid half-cylinder located, as marked 119 

experimentally, at half the distance between the two resin moulds. Displacement was 120 

applied to the tool in the medial-lateral direction. Contact between the bending tool 121 

and the bone surface was modelled as sticking contact. 122 

A sensitivity analysis was performed analysing the effect of the resin properties, the 123 

stiffness of the springs used to attach bone to resin blocks and the friction coefficient 124 

between resin and stand on the predicted bone stiffness and yield load.Load-125 

deflection curves were obtained as the sum of the medial-lateral component of the 126 
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contact force and the tool displacement at each time step. The experimental preload 127 

was mimicked by excluding the initial forces below 50N from the simulation results. 128 

For each sample, user interaction was only needed for the image segmentation step. 129 

To avoid user variation, all other steps of the model creation and analysis were 130 

automated, based on the size of the samples extracted from the segmented data. All 131 

FE analyses were performed using local HPC facilities (parallel computation on 144 132 

cores). 133 

Bone material models 134 

Three different materials models were considered for the bone: a density-dependent 135 

transversely isotropic model, a density-dependent isotropic model, and a two-material 136 

isotropic model (one material model for cortical bone and one for trabecular bone). 137 

For the density dependent models, material parameters were mapped against the HU 138 

values from the CT scans starting from equation (1). The following mapping procedure 139 

was applied: (1) for each mesh element, the smallest rectangular box that embraced 140 

the tetrahedron was defined, (2) for each voxel included within this box, material 141 

properties (see next section) were computed from the density computed from the HU 142 

field, and (3) material properties were averaged on this box and assigned to the mesh 143 

element. A particular attention was paid to reduce the partial volume artefacts: to this 144 
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end, we firstly separated the mesh elements that had at least one point belonging to 145 

the bone surface (outer cells) from the other mesh elements (inner cells). Each outer 146 

cell was then associated to its closest inner cell, and was assigned the HU value of its 147 

associated inner cell when it was higher than its own HU value. This procedure 148 

significantly reduced the partial volume artefact, provided that the bone cortical wall 149 

was described by a sufficient number of mesh elements, i.e. that the mesh was 150 

sufficiently dense. 151 

It is known that the properties of canine bone depends on dog mass
19

. Therefore a 152 

density-elasticity relationship had to be derived for canine bone. It would indeed not 153 

be justified to use a unique density-elasticity relationship determined from human 154 

bone. Published experimental data
19

 reported the elastic moduli of canine cortical 155 

bone as a function of dog breed: 13.3GPa (dog mass=5kg), 14.9GPa (dog mass=12kg), 156 

16GPa (dog mass=25kg), 16.3GPa (dog mass=50kg).  Comparing that data to an 157 

average reported elastic modulus of 17.9GPa for human cortical bone
30

, the following 158 

relation between human data and canine data was extrapolated (using a common 159 

mean-square method): 160 

      canine humanE 0.3 exp 5 / 0.64E m    
 (2) 161 
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by denoting m the dog mass. This relation is illustrated on Figure 2, and assumes that 162 

bone properties depend only on dog mass and not on the breed. 163 

This canine-to-human relation was used to weight existing density-elasticity 164 

relationships validated for human data: 165 

For the density-dependent transversely isotropic model, bone was considered as an 166 

elastoplastic material without distinction between cortical and trabecular tissues 167 

(except for density). The elastic part of the model was built from relation (2) and using 168 

an orthotropic elasticity-density relationship for human bone in tension
31

: 169 

3.09

1.57

2065 0.29

2314 0.2





 

 
l lt l

t tt l

E G E

E G E
 (3) 170 

by denoting El and Et the elastic moduli (MPa) in the longitudinal and transverse 171 

directions, Glt and Gtt the shear moduli (MPa), and  (g cm
-3

) the apparent density 172 

issued from CT calibration. These relations valid for human bone were weighted using 173 

relation (2) in order to model canine bone. Asymmetric elastic material properties 174 

were assumed by considering that the elastic modulus was 6% higher in compression 175 

than in tension
32

. 176 

The global longitudinal direction was automatically computed for each sample, based 177 

only on the central third of the bone (representing the diaphysis, see Figure 3). The 178 
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mesh nodes belonging to the bone surface and included in this part were selected, and 179 

used to compute a least-square line defined as the longitudinal direction. The 180 

transverse direction was defined perpendicularly to this direction, in a plane 181 

containing the tool displacement vector.   182 

The yield surface was defined through a Von Mises criterion with linear isotropic 183 

hardening. The initial yield stress was obtained from the yield strain of 0.73% reported 184 

for human cortical bone
33

 and the mean elastic modulus (defined as the average of 185 

longitudinal and transverse moduli) following the relation: 186 

0.0073( ) / 2  y l tE E
 (4) 187 

The role of the longitudinal stress was therefore considered predominant in the bone 188 

yield. Post-yield hardening was set as 5% of the initial, density-dependent, mean 189 

elastic moduli
34

. 190 

The same procedure was applied for the density-dependent isotropic model. The 191 

unique Young modulus was defined as the mean of the computed longitudinal and 192 

transverse modulus for a given bone density (relation (3)) weighted by the correction 193 

coefficients given in relation (2). Yield was modelled identically to the previous model. 194 
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For the two-material isotropic model, trabecular and cortical canine tissues were 195 

ƌĞƐƉĞĐƚŝǀĞůǇ ŵŽĚĞůůĞĚ ǁŝƚŚ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ŽĨ ϳϱϬMPĂ ĂŶĚ ϭϱGPĂ ĂŶĚ Ă PŽŝƐƐŽŶ͛Ɛ 196 

ratio of 0.3 
35

. Cortical and trabecular tissues were separated using a threshold in 197 

terms of HU values. Cortical tissue was assumed for HU values superior to either 198 

600HU or 400HU in order to assess the sensitivity to this parameter. Yield was 199 

modelled identically to the previous models. 200 

Statistical analysis 201 

For each tested bone, bending stiffness (least-square linear regression of the linear 202 

part of force-deflection curve passing through the origin) and yield load (intersection 203 

between a parallel to this linear regression with a 0.1 mm offset and the force-204 

deflection curve) were extracted and compared between the experimental and 205 

computational data.  206 

In order to emphasize the statistical significance of our model, we performed various 207 

statistical analyses from our experimental results (14 samples from 7 dogs) and our 208 

numerical results (56 models: 14 density-dependant transversely isotropic models, 14 209 

density-dependant isotropic models, and 14 two-materials isotropic models with a 210 

segmentation threshold of 400 HU or 600 HU). Analysis of variance (ANOVA) was used 211 
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as the common test to quantify the difference between two sets of data, with a default 212 

p-value of 0.01 (when not detailed). 213 

Results 214 

Experimental results 215 

Experimental results for the seven pairs of humeri are represented in Figure 4. A large 216 

intra- and inter-variability was observed: as an example, a mean difference of 14.6% in 217 

stiffness between the left and right humerus of the same dog. Left and right humerus 218 

of the same dog were however not different (both in terms of stiffness and yield load) 219 

in the sense of an ANOVA analysis. The coefficient of variation (ratio between standard 220 

deviation and mean) of the stiffness is equal to 20.2%. The data showed a weak 221 

correlation between dog mass and mean humerus stiffness (correlation coefficient of 222 

0.65). While the failure was sudden for six samples, it was more progressive for the 223 

others and no clear fracture pattern was therefore visible. 224 

Computational results 225 

The meshes resulting from the reconstruction of the segmented CT images together 226 

with the mapping procedure are represented in Figure 5 for all bone samples. Bone 227 

mesh made of approximately 300 000 tetrahedral linear elements (60 000 nodes) led 228 

to a relative difference of 2.5% on strain energy density (SED) and 1.4% on stiffness 229 
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compared to the values obtained for 160 000 nodes. The results of the sensitivity study 230 

for one humerus are reported in Table 1. These data emphasize that the simulation 231 

results are not sensitive to resin properties, indicating that the resin does not deform 232 

substantially during the bending test. Moreover, the simulation results are very slightly 233 

sensitive to the stiffness of springs used to attach bone to resin (2% of deviation for a 234 

variation of five orders of magnitude). A stiffness of 100N/mm (i.e. of the same order 235 

of magnitude than the bone bending stiffness) has been consequently selected for 236 

every simulations. However, this sensitivity study emphasizes that the friction 237 

coefficient does have an effect on predicted stiffness and yield load. A friction 238 

coefficient of 0.7 has been chosen for the simulations due to the lack of existing data, 239 

as long as such data are difficult to measure experimentally.  240 

For the density-dependent transversely isotropic model on the fourteen samples, the 241 

bending stiffness was predicted with a maximum error of 21.7% (absolute value of the 242 

mean error = 10.1% ±5.2%). The yield load was predicted with an absolute value of the 243 

mean error 11% ±11.3%, but was unsatisfyingly predicted for one sample over the 244 

fourteen samples (maximum error = 43.5%, see Figure 6). Correlation coefficients 245 

between predicted and measured values were 0.86 for stiffness and 0.74 for yield load. 246 

A Bland-Altman representation of the simulation results obtained with this model has 247 

also been provided (Figure 7) : it clearly illustrates the good prediction ability of this 248 



 17 

model. However, this representation clearly emphasizes that the values of bending 249 

stiffness and yield load are badly predicted for one sample (#6 right).  250 

Results of the different models were confronted to experimental results in the sense of 251 

ANOVA statistical tests, and the p-values issued from these tests are gathered in Table 252 

2, under the null hypothesis that experimental and simulations results have the same 253 

mean (i.e. if the p-value is near to zero, experimental and simulation results are 254 

significantly different).  From this analysis, it is clear that the density-dependant 255 

transversely isotropic model is the most predictive model among the four different 256 

models tested, and especially compared to the density-dependant isotropic model, as 257 

illustrated on Figure 8. Surprisingly, the computational results are better in the case of 258 

the two-material isotropic models (no matter the segmentation threshold) than in the 259 

case of density-dependant isotropic models. 260 

Results of the FE simulations for the two-material isotropic model are represented in 261 

Figure 9, with trabecular and cortical tissues being separated either from HU values of 262 

400 or 600HU in order to quantify the sensitivity of the bending response to this 263 

threshold. There is no statistical difference between the two threshold values used to 264 

separate cortical from trabecular tissue in the case of two-material models. 265 
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Discussion 266 

Model accuracy 267 

A finite element mesh of 60 000 nodes showed to be a converged mesh for the bone 268 

stiffness and strain energy density (SED). A satisfying prediction of bone stiffness was 269 

obtained for every samples, whereas the yield load was satisfyingly predicted for 13 270 

over 14 samples. The reported computational results were insensitive to the 271 

properties assigned to the resin block holding the bone epiphysis; this indicates that 272 

resin blocks do not deform much during the simulations. The computational 273 

representation of those blocks is thus a good approximation of the blocks behaviour 274 

and interaction with the bone. 275 

Using the verified and validated non-linear FE software Metafor
36ʹ39

 to analyse long 276 

bone three-point bending tests permits high automation of the model pre- and post-277 

processing steps. This reduces user-variability to the image segmentation step only. All 278 

other parameters, especially as far as the definition of model boundary conditions 279 

representative of the experimental conditions is concerned, are subject only to the 280 

experimental variability. 281 

Density-elasticity relationships for canine long bone as a function of dog mass were 282 

determined by weighting human relationships from published canine bone properties. 283 
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Using material parameters from literature only, and not specifically calibrated on the 284 

experimental results, the produced models were able to satisfyingly predict bending 285 

stiffness and yield load. However, more detailed studies on microstructure or 286 

composition of canine bone as a function of mass (or breed) would be required in 287 

order to propose a more comprehensive relation.  288 

The predictive power of the models for stiffness values and yield loads is here reflected 289 

not only by a good correlation but also by a good concordance, which is less often the 290 

case in published models
40,41

. This therefore suggested that the approach used in this 291 

work produces valid models to predict bone stiffness and yield loads in three-point 292 

bending of canine long bones.  293 

Comparison between models 294 

The benefit of the non-linear density-dependent transversely isotropic model 295 

compared to the two other models is demonstrated in terms of its improved 296 

prediction capability. However, it is surprising that the two-material isotropic model 297 

leads to better predictions than the density-dependent isotropic model. This may be 298 

explained by the fact that, during a bending test, the bone is essentially subject to 299 

tension and compression, and therefore the longitudinal modulus of the bone plays a 300 

crucial role compared to transverse modulus. In the case of the density-dependant 301 
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isotropic model, the computed average Young modulus is therefore underestimated, 302 

for a loading involving mainly the longitudinal direction. Predicted stiffness is thus 303 

globally underestimated using the density-dependant isotropic model. On the 304 

contrary, the two-material model may widely overestimate the Young modulus by 305 

considering constant density for cortical bone, as it is clearly seen that it is not uniform 306 

over the cortical bone (Figure 5). Therefore, , it may lead to higher errors in more 307 

complex loading modes even without involving a huge overestimation of bone 308 

properties in the case of bending loads. For instance, a HU value of 1500HU for cortical 309 

bone corresponds to longitudinal and transverse moduli of 9.7GPa and 4.7GPa 310 

respectively using the density-dependant transversely isotropic model, whereas it 311 

corresponds to a Young modulus equal to 7.2GPa using the density-dependant 312 

isotropic model, and equal to 15GPa in the case of the two-material models.  One 313 

other limitation of the two-material model is the sensitivity of the results to the 314 

threshold value chosen to separate trabecular and cortical tissues, which may be user-315 

dependent. This limit obviously disappears when the density-dependent model is used.  316 

As far as the ease of implementation is concerned, computation times were equivalent 317 

for the three models. However, density-dependant models require to develop and 318 

algorithm in order to link HU values to elastic properties, and also require a calibration 319 

of the CT-scan. Moreover, using a transversely isotropic model requires the definition 320 
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of orthotropic axis, which has been approximated in our case for bending tests. More 321 

complex algorithms would be required to assign local orthotropic axis for more 322 

complex loadings. Except for these pre-processing steps, the calculation of the three 323 

types of models is then straightforward.  324 

Limitations and challenges 325 

One of the limitation of bending tests lies in the fact that results depend on the friction 326 

coefficient between sample and the bending tools, as illustrated by our sensitivity 327 

analysis and by other authors 
42

. Bending standʹresin interaction was modelled with 328 

friction coefficient of 0.7 due to the lack of existing values. Even if this friction 329 

coefficient is realistic for such a soft resin, experiments could be performed in order to 330 

confirm these results. However, such measurements are complex to perform, as long 331 

as apparent friction coefficients may be affected by local deformation of the resin due 332 

to the cylindrical shape of the bending stand and the high loads involved. These local 333 

effects are not taken into account in the simulations, as long as resin blocks have been 334 

modelled by a single element. This particular point may be subject to further analyses, 335 

for instance using an inverse approach from similar bending tests on well-known 336 

materials.  337 



 22 

A simple elastoplastic law with isotropic linear hardening was used as proposed in the 338 

literature
33

, and associated with a Von Mises yield criterion. Even though the use of 339 

such a criterion has been questioned
43

, no consensus has been clearly found and this 340 

criterion is still widely used 
34,38,40

. The simulated post-yield response did not 341 

reproduce the plateau observed experimentally for some samples: it may be therefore 342 

concluded that the linear hardening set as 5% of the initial mean modulus as proposed 343 

in the literature was excessive and should be age and breed dependent, or that a 344 

perfectly plastic behaviour might be more representative. Including progressive 345 

damage in the model may lead to better results as the physical phenomenon leading 346 

to bone non-linear behaviour is most probably related to damage rather than 347 

plasticity
21,34,38,44

.  348 

No distinction was made between cortical and trabecular tissues in the bone material 349 

properties characterising the non-linear behaviour, although the microstructures of 350 

these tissues are clearly different. It is likely that here the trabecular tissue do not 351 

participate substantially to the bone bending response. The material axes were 352 

defined from the mid-line of the diaphysis, as commonly reported in the literature
45,46

, 353 

leading to a global definition of the longitudinal direction. As the segment of interest 354 

involved in the bending test was restricted to the bone diaphysis in which the main 355 

orthotropic direction does not substantially vary, it is unlikely that this simplification 356 
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has an effect on the reported results. These two limitations suggest that the validity of 357 

the procedure proposed here is thus probably restricted to the bending mode of 358 

deformation. 359 
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Figure captions 490 

Figure 1.Experimental and simulated bending test on canine humerus. (a) Preparation 491 

of bone samples using a custom jig to align resin moulds (b) bone samples embedded 492 

in resin moulds were mounted in a custom bending stand (c) the bending tests were 493 

simulated by simplifying the resin moulds with single hexahedrons linked to the bone 494 

surface (red dots) via artificial springs. A sticking contact condition was considered 495 

between the bending tool and the bone surface (green dots), while contact-friction 496 

interaction was considered between the resin moulds and the bending stand (blue 497 

cylinders). 498 

Figure 2. Determined relation between canine bone properties as a function of mass 499 

based on existing data
19

 and human bone properties. 500 

Figure 3. Calculation of orthotropic axes (longitudinal and transverse for a transversely 501 

isotropic model) from the central third of the bone. Longitudinal direction is defined as 502 

the computed least-square line of the mesh nodes included in the bone diaphysis 503 

surface. 504 

Figure 4: Left: bending responses of the fourteen humeri. Right: bending stiffness of 505 

the seven pairs of humeri, emphasizing the large inter- and intra-variability of 506 

measured responses. 507 
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Figure 5. Bone meshes resulting from the reconstruction of segmented CT images 508 

together with the mapping procedure. The colour code corresponds to the computed 509 

densities (g/mm3) assigned to each mesh element from HU values.    510 

Figure 6. Left: experimental vs. simulated stiffness and yield load for the fourteen bone 511 

samples and for the density-dependent transversely isotropic model. The dash line 512 

represents a perfect prediction (simulation=experiments), whereas the continuous line 513 

represents the linear fitting of the data. Right: Prediction error on stiffness and yield 514 

load for the seven pairs of humeri. 515 

Figure 7: Bland-Altman representation of the results obtained for the density-516 

dependant transversely isotropic model in terms of bending stiffness (left) and yield 517 

load (right). Points are represented with the corresponding sample name (r=right, 518 

l=left). 519 

Figure 8. Left: experimental vs. simulated stiffness and yield load for the fourteen bone 520 

samples and for both a density-dependent transversely isotropic model and a density-521 

dependent isotropic model. Right: Prediction error on stiffness and yield load for these 522 

two models. 523 

Figure 9. Left: experimental vs. simulated stiffness and yield load for the fourteen bone 524 

samples and for a two-material isotropic model. In this model, trabecular and cortical 525 
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tissues are considered homogeneous and are separated from density thresholds of 526 

400HU or 600HU issued the CT-scan. Right: Prediction error on stiffness and yield load 527 

for these two models. 528 

529 
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Table captions 530 

Table 1. Sensitivity analysis of the computational results : effect of resin properties, 531 

spring stiffness and friction coefficient between bending stand and resin on predicted 532 

bone stiffness and yield load. The star indicates a significant difference between a set 533 

of parameters and the selected parameters in the presented simulations. 534 

Table 2. Confrontation of the computational and experimental results in terms of 535 

predicted yield load and bending stiffness. The p-value of ANOVA tests are given for 536 

density-dependent transversely isotropic models (trans. iso), density-dependant 537 

isotropic models (iso.) and two-materials isotropic models with segmentation 538 

threshold of 400HU (400HU) and 600HU (600 HU). Low p-values indicate a significant 539 

difference between experimental and simulation results.  540 

  541 
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Resin 

modulus 

(MPa) 

Predicted  

Stiffness 

(N/mm) 

Predicted 

yield load 

(N) 

Spring 

stiffness 

(N/mm) 

Predicted  

Stiffness 

(N/mm) 

Predicted 

yield load 

(N) 

Friction 

coefficient 

Predicted  

Stiffness 

(N/mm) 

Predicted 

yield 

load (N) 

100 548.3 1500.2 1 532.3 1497.9 0.5 507.3 1425.9 

500 548.3 1500.2 10 544.2 1500.1 0.6 527.2 1462.2 

900 548.3 1500.2 100 548.8 1500.2 0.7 548.8 1500.2 

1300 548.3 1500.2 1000 558.0 1489.4 0.8 572.2 1539.7 

1700 548.3 1500.2 10000 544.0 1508.8 0.9 595.1 1590.8 

Table 1 : Sensitivity analysis of the computational results : effect of resin properties, spring stiffness and 542 
friction coefficient on predicted bone stiffness and yield load.  543 

 544 

 545 

 546 

 

Stiffness (N/mm) Yield load (N) 

  Trans. Iso. Iso. 400HU 600HU Trans. Iso. Iso. 400HU 600HU 

p-value of the 

ANOVA test 
0,67 2.48 10

-4 
0,43 0,17 0,74 4.13 10

-5 
0,18 0,08 

 547 

Table 2: Confrontation of the computational and experimental results in terms of predicted yield load 548 
and bending stiffness. The p-value of ANOVA tests are given for density-dependent transversely 549 

isotropic models (trans. iso.), density-dependant isotropic models (iso.) and two-materials isotropic 550 
models with segmentation threshold of 400HU (400HU) and 600HU (600 HU). Low p-values indicate a 551 

significant difference between experimental and simulation results. 552 

 553 

  554 
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 555 

Figure 1: Experimental and simulated bending test on canine humerus. (a) Preparation of bone samples 556 

using a custom jig to align resin moulds (b) bone samples embedded in resin moulds were mounted in a 557 

custom bending stand (c) the bending tests were simulated by simplifying the resin moulds with single 558 

hexahedrons linked to the bone surface (red dots) via artificial springs. A sticking contact condition was 559 

considered between the bending tool and the bone surface (green dots), while contact-friction 560 

interaction was considered between the resin moulds and the bending stand (blue cylinders). 561 

 562 

 563 

Figure 2. Determined relation between canine bone properties as a function of mass based on existing 564 
data

19
 and human bone properties. 565 
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 567 

Figure 3. Calculation of orthotropic axes (longitudinal and transverse for a transversely isotropic model) 568 
from the central third of the bone. Longitudinal direction is defined as the computed least-square line of 569 

the mesh nodes included in the bone diaphysis surface. 570 

 571 

 572 

 573 

Figure 4: Left: bending responses of the fourteen humeri. Right: bending stiffness of the seven pairs of 574 

humeri, emphasizing the large inter- and intra-variability of measured responses. 575 
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 576 

Figure 5. Bone meshes resulting from the reconstruction of segmented CT images together with the 577 

mapping procedure. The colour code corresponds to the computed densities (g/mm3) assigned to each 578 

mesh element from HU values.    579 

 580 

 581 
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 582 

Figure 6. Left: experimental vs. simulated stiffness and yield load for the fourteen bone samples and for 583 

the density-dependent transversely isotropic model. The dash line represents a perfect prediction 584 

(simulation=experiments), whereas the continuous line represents the linear fitting of the data. Right: 585 

Prediction error on stiffness and yield load for the seven pairs of humeri. 586 

  587 
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 588 

Figure 7 : Bland-Altman representation of the results obtained for the density-dependant 589 
transversely isotropic model in terms of bending stiffness (left) and yield load (right). 590 

Points are represented with the corresponding sample name (r=right, l=left).  591 

 592 

Figure 8. Left: experimental vs. simulated stiffness and yield load for the fourteen bone samples and for 593 

both a density-dependent transversely isotropic model and a density-dependent isotropic model. The 594 

red dash line represents a perfect prediction (simulation=experiments). Right: Prediction error on 595 

stiffness and yield load for these two models. 596 
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 597 

 598 

 599 

Figure 9. Left: experimental vs. simulated stiffness and yield load for the fourteen bone samples and for 600 

a two-material isotropic model. In this model, trabecular and cortical tissues are considered 601 

homogeneous and are separated from density thresholds of 400HU or 600HU issued the CT-scan. The 602 

red dash line represents a perfect prediction (simulation=experiments). Right: Prediction error on 603 

stiffness and yield load for these two models. 604 

 605 


