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Abstract:  A synthetic image analysis strategy is proposed for in-situ crystal size measurement 

and shape identification for monitoring crystallization processes, based on using a real-time 

imaging system. The proposed method consists of image processing, feature analysis, particle 

sieving, crystal size measurement, and crystal shape identification. Fundamental image features 

of crystals are selected for efficient classification. In particular, a novel shape feature, referred to 

as inner distance descriptor, is introduced to quantitatively describe different crystal shapes, 

which is relatively independent of the crystal size and its geometric direction in an image 

captured for analysis. Moreover, a pixel equivalent calibration method based on subpixel edge 

detection and circle fitting is proposed to measure crystal sizes from the captured images. In 

addition, a kernel function based method is given to deal with nonlinear correlations between 

multiple features of crystals, facilitating computation efficiency for real-time shape identification. 

Case study and experimental results from the cooling crystallization of L-glutamic acid 

demonstrate that the proposed image analysis method can be effectively used for in-situ crystal 

size measurement and shape identification with good accuracy. 

Keywords: Crystal morphology; Shape identification; Imaging analysis; Feature analysis; Inner 

distance descriptor; Crystal size measurement 
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1. Introduction 

With the rapid development of process analytical technology (PAT) for chemical and 

pharmaceutical crystallization, image- based monitoring methods have been increasingly 

explored for in- situ analysis of crystal morphology, polymorph and growth quality (Yu et al., 

2007; Chen et al., 2011; Qiao et al., 2011; Nagy et al., 2013; Simon et al., 2015). Ex-situ imaging 

methods were developed in the early literature (e.g. Monnier et al., 1997) for analyzing the 

crystal shape characteristics. The pioneering works on in-situ image analysis of particle 

properties during crystallization can be seen in Blandin et al. (2000) and Wilkinson et al. (2000). 

Recently, in-situ measurement and real-time imaging analysis have attracted increasing attentions 

from industrial and academic communities (Calderon DeAndaetal.,2005a; Wangetal.,2007; Jia et 

al., 2008; Dang et al., 2009; Borchert and Sundmacher, 2011; Zhou et al., 2011; Zhang et al., 

2015), for the sake of monitoring the crystallization process and quality control. Generally, the 

developed in-situ imaging systems for monitoring crystallization processes could be classified 

into two groups: invasive and non-invasive imaging systems. An invasive imaging system has a 

probe type camera which can be inserted into a crystallizer in order to obtain high resolution 

images of crystals, e.g. the process vision and measurement (PVM) instrument made by Mettler 

Toledo company had been successfully applied to monitor the cooling crystallization (Jia et al., 

2008; Dang et al., 2009; Zhou et al., 2009). In contrast, a non-invasive imaging system uses one 

or more cameras placed outside a crystallizer to monitor crystal size, shape and growth rate, such 

as the Malvern Sysmex FPIA 3000 (Borchert and Sundmacher, 2011) and the online microscopy 

systems (Larsen et al., 2007; Wang et al., 2008; Zhang et al., 2015). The use of a non-invasive 

imaging system can avoid the camera lens or probe surface from being blurred by the crystal 

slurry to guarantee measurement validity (Borissova et al., 2009; Simone et al., 2015). A possible 

disadvantage lies with the inconvenience of building up a suitable holder around the crystallizer 

for a non-invasive imaging system, while the imaging effect may be somewhat inferior to that of 

an invasive imaging system. 

Using the captured images from these in-situ imaging systems, image analysis methods have 

been explored in the past years to study the crystal properties including crystal size distribution 
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(CSD), particle shape features, and growth rates etc. (Zhang et al., 2014; Camacho et al.,2015). 

To effectively extract the crystals from the images, a few image processing methods for real-time 

analysis were developed in Calderon De Anda et al. (2005b), Larsen et al. (2006), Sarkar et al. 

(2009) and Zhang et al. (2011). Note that in-situ imaging may be subject to the influence from 

reflected light, particle movement, and motion of the crystal slurry. This problem was not 

seriously considered in the existing references including the above for image processing. For the 

classification of crystal polymorphic forms, Calderon De Anda et al. (2005c) developed an 

artifi cial neural network approach to distinguish Į and ȕ forms of L-glutamic acid (LGA) based 

on establishing the Fourier descriptors for the captured crystal images. Subsequently, Borchert et 

al. (2014) adopted the Fourier descriptors in combination with the historical crystal image data of 

shape information to classify the crystal shapes. Ferreira et al. (2011) proposed the use of 

discriminant factorial analysis (DFA) to obtain an automatic classification method of the particle 

shapes, which was demonstrated to be effective for the classification of the monocrystal 

complexity level. Derdour and Chan (2015) developed a model for predicting the crystal growth 

rate and aspect ratio, based on analyzing the seed features. Owing to the crystallization process 

complexity in a stirred crystallizer, there was no commonly recognized imaging methodology for 

analyzing the crystal shapes as yet (Wang et al., 2008; Nagy et al., 2013). Real-time identification 

of crystal shape remains as an open issue for exploration. Concerning image-based calibration of 

the crystal sizes for in-situ measurement, few references reported feasible calibration methods for 

the application of either invasive or non-invasive imaging systems. 

In this paper, a synthetic image analysis method is proposed for in-situ crystal size 

measurement and shape identification, for the purpose of real time monitoring crystallization 

processes. It can be effectively implemented under a variety of practical constraints (e.g. random 

crystal movement or rotation in the crystallizer, solution turbulence, and uneven illumination for 

imaging etc.). The proposed method includes image processing, feature analysis, particle sieving, 

crystal size measurement, and crystal shape identification. Figure 1 summarizes all the sequential 

steps in the proposed method for real-time crystal morphology analysis. Fundamental image 

features of crystals are considered for particle sieving. To cope with the problem of crystal 
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agglomeration or fraction/breakage that misleads imaging statistics, a clustering strategy is given 

to sieve out valid particles for effective analysis of crystal morphology. Moreover, an efficient 

shape identification method is developed by defining an inner distance descriptor (IDD) to 

quantitatively describe different crystal shapes. In addition, a pixel equivalent calibration method 

based on subpixel edge detection and circle fi tting is proposed for in-situ measurement of crystal 

sizes. To address multiple features of crystals, a kernel function based feature classification 

method is developed for shape identification of valid particles sieved from the captured images. 

Experimental results on image processing and shape identification are given to demonstrate the 

effectiveness of the improved strategy for in-situ monitoring of the crystal morphology for the 

LGA crystallization process. 

The rest of the paper is organized as follows. Feasible image processing methods are 

presented in Section 2 for practical application subject to uneven illumination, crystal motion and 

solution turbulence from the crystallization operation. In Section 3, the proposed feature exaction 

method is elucidated by defining the fundamental features of crystals for imaging analysis, 

followed by particle sieving, size measurement and shape identification methods given in Section 

4, Section5 and Section6, respectively. Section 7 shows experimental results to demonstrate the 

effectiveness of the improved method. Finally, some conclusions are drawn in Section 8. 

2. Image processing 

For using an in-situ imaging system to monitor a crystallization process, the goal of image 

processing is to obtain clear particle micrographs with sharp edges from the in-situ images taken 

in real time. Only a few image processing methods were developed for particle detection in terms 

of in-situ images in the literatures (Calderon De Anda et al., 2005b; Zhang et al., 2011; Zhou et 

al., 2011). In this work, image processing consists of image compression, image fi ltering, image 

enhancement and segmentation, as shown in Figure 2, which are briefl y presented in the 

following subsections, respectively. 

2.1 Image compression 

The size of a captured image depends on resolution of the imaging system and the size of the 

region of interest (ROI) etc. When the size of the captured image is considerably large, it also 
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causes time delay for online analysis. Therefore, an efficient compression method should be 

established to reduce the size of the image while maintaining fundamental information to 

facilitate real-time analysis. It is well recognized that an image compression algorithm based on 

the wavelet transform (Gonzalez et al., 2009) has the advantage of high compression ratio and 

compression speed, which is therefore adopted for real-time image analysis as below.  

Given an original image f(x, y), with the size M × N, the two- dimensional discrete method 

(Mallat, 1989) is used for the wavelet transform. Firstly, a two-dimensional scaling function 

ĳ(x,y), and a translated basis function ȥ(x, y), are defined by 

   ߮ǡǡሺݔǡ ሻݕ ൌ ʹȀଶ߮൫ʹݔ െ ݉ǡ ʹݕ െ ݉൯ 

   ߰ǡǡ ሺݔǡ ሻݕ ൌ ʹȀଶ߰൫ʹݔ െ ݉ǡ ʹݕ െ ݉൯ǡ ݅ ൌ ሼܪǡ ܸǡ  ሽ    (1)ܦ

where ߰ ǡǡ ሺݔǡ ሻǡݕ ݅ ൌ ሼܪǡ ܸǡ  ,ሽ identify three directional edges including horizontal, verticalܦ

and diagonal directions, respectively. Denote by m the row, by n the column, and by j the scale. 

The above two-dimensional functions are computed from the predefined one-dimensional 

functions by 

Secondly, the discrete wavelet transform for f (x, y), is obtained as 

ఝܣ    ሺ݆ǡ ݉ǡ ݊ሻ ൌ ଵெே σ σ ݂ሺݔǡ ǡݔሻ߮ǡǡሺݕ ሻே௬ୀଵெ௫ୀଵݕ  

టܣ    ሺ݆ǡ ݉ǡ ݊ሻ ൌ ଵெே σ σ ݂ሺݔǡ ሻ߰ǡǡݕ ሺݔǡ ሻǡݕ ݅ ൌ ሼܪǡ ܸǡ ሽே௬ୀଵெ௫ୀଵܦ    (3) 

Then the original image f(x, y) is decomposed into the low frequency component ܣఝሺ݆ǡ ݉ǡ ݊ሻ 

which is used to approximate f (x, y) at scale j (j = 1 is preferred herein), and the high frequency 

components ܣట ሺ݆ǡ ݉ǡ ݊ሻǡ ݅ ൌ ሼܪǡ ܸǡ  .ሽ to be discardedܦ

Finally, the compressed image is quantized from the low frequency component in the 

intensity range (0 – 255). 

Note that for the application of such a compression algorithm, it is required to choose a 

suitable wavelet function which determines the quality of the compression. The biorthogonal 

wavelet function (Gonzalez et al., 2009) is herein preferred which can guarantee good linear 

phase, regularity and entire reconstruction. 

2.2 Image filtering 

Owing to digital image acquisition and data transmission in a real time imaging system, the 
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captured images suffer from measurement noise. Since the majority of image information is 

located in the low frequency range, existing denoising methods were mainly based on using a 

low-pass fi lter. However, the image detail located in a higher frequency range may be excluded 

by such a denoising method. It is therefore expected to remove the noise influence while 

maintaining the image texture. Note that the previous image compression will also leave out 

some detail information especially for a higher frequency range. Hence, the combination of two 

fi ltering methods is suggested to deal with this problem. 

Firstly, the guided fi ltering method (He et al., 2013) is adopted which uses a guided image 

for fi ltering. The guided image may be taken as a preprocessed image or a sample image. When a 

sample image is used, the guided fi ltering acts as an edge-preserving fi lter similar to a bilateral 

fi lter, which guarantees good preservation around the image edges. Moreover, the guided fi ltering 

is based on using a linear time algorithm which is capable of fast computation regardless of the 

range of image intensity. 

For using the guided fi ltering, it is a key assumption that in a local region Ȧk centered at the 

pixel k in the input image, there is a linear relationship between the pixel pi in the input image 

and the pixel qi in the output image of the same size W × H ( i א Ȧk, and k < W × H), which is 

expressed by ݍ ൌ ܽ  ܾ            (4) 

where Ȧk is a square window which is taken as 51 × 51 in this work, (ak, bk) are the constants in 

Ȧk which can be estimated by minimizing the squared difference between qi and pi, i.e. ሺܽǡ ܾሻ ൌ ݃ݎܽ minೖ   ೖ σ ሺሺܽ  ܾ െ ሻଶ  ఠೖאଶሻܽߜ     (5) 

where į is a penalty parameter which is taken as 0.01 in this work. 

Then the solution is obtained by using the fi ltering method (He et al., 2013), ܽ ൌ ቀ ଵȁனȁ σ ଶ െ ఠೖאߤ ቁ Ȁሺߪଶ   ሻ        (6)ߜ

and ܾ ൌ  െ ܽߤ            (7) 

where ȝk and ߪଶ are the local mean and variance of the input image in Ȧk, |Ȧ| is the total number 

of pixels in Ȧk, and 
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 ൌ ଵȁனȁ σ ఠೖא             (8) 

The result of guided fi ltering is therefore obtained as 

ݍ  ൌ ଵȁఠȁ σ ܽ  ܾאఠೖ           (9) 

 Secondly, the shock fi ltering (Osher and Rudin, 1990) is preferred for image texture 

sharpening. The shock fi lter yields distinct discontinuities at image edges while improving the 

image clarity. Denote by q(x, y) the input image, the output image denoted by s(x, y) is computed 

as sሺݔǡ ሻݕ ൌ െsgn ቀݍఎఎሺݔǡ ሻቁݕ ȁݍሺݔǡ  ሻȁ        (10)ݕ

where qȘȘ (x, y) is the second order directional derivative of the gradient direction Ș, q (x, y) is 

the input image gradient, and sgn denotes the mathematical sign function. 

As a result, the combination of image fi ltering methods can be quickly executed to avoid the 

notorious block effect, while preserving the image edges and fundamental texture details. 

2.3 Image enhancement 

To cope with the uneven brightness of captured images and the reflective effect of crystal 

surfaces, image enhancement should be conducted to strengthen ROI, namely, crystal particles, 

and facilitate the subsequent segmentation. The multi-scale Retinex (MSR) algorithm (Sha et al., 

2012) is therefore adopted to deal with images having poor visibility or low contrast. Moreover, 

the histogram equalization (Gonzalez et al., 2009) is chosen for gray level adjustment and 

contrast stretching after enhancement. For each point in an enhanced image denoted by ( , )r x y , 

the MSR is explained by 

 ( , ) {log ( , ) log[ ( , )* ( , )]}
K

k k
k

r x y W s x y F x y s x y   (11) 

where * denotes the convolution operation, ( , )s x y is the input image, k is the number of retained 

scales, Wk is the weighting factors taken as 1 2 3 1/ 3W W W    for = k 1, 2, 3. Fk(x, y) are the 

surround functions defined by 

 
2 2 2( )/( , ) kx y c

k kF x y e    (12)  

where kc  are the standard deviations of Gaussian distribution that determine the scale with values 

of 10, 80 and 150 for k = 1, 2, 3, and Ȝk are taken to satisfy 

 ( , ) 1kF x y dxdy  (13) 
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In order to enhance image contrast, it is suggested to increase the dynamic range of image 

intensity using the histogram equalization by letting  

 ܵ ൌ ൫σ ݊ୀ ൯Ȁܰ ൈ ʹͷͷ (14)  

where jn is the number of pixel gray levelj , N is the number of total pixels, and J is the maximum 
gray level. 

2.4 Image segmentation 

Before image feature analysis, the desired ROI needs to be determined via image 

segmentation. To procure the efficiency of image segmentation, a thresholding segmentation 

method is proposed based on the minimum cross-entropy thresholding algorithm (Li and Lee, 

1993).  

Suppose that a one-dimensional histogram of the original image is composed of h(i) (i = 1, 

2, ..., L, ) the cross-entropy discriminant function is defined by  Dሺݐሻ ൌ σ ሺሻషభసభ ୪୬ ሺଵǡ௧ሻ  σ ሺሻಽసభ ୪୬ ሺ௧ǡାଵሻ          (15) 

where i is the gray level, t is the threshold, n(1, t) is the gray level of the target and n(t, L+1) is 

the gray level of the background after the segmentation. Both n(1, t) and n(t, L+1) are taken as the 

mean values of the referred regions.  

The optimal threshold is determined by כݐ ൌ arg min௧ሼܦሺݐሻሽ           (16) 

Accordingly, the gray level b(x, y) in the binary image is determined by bሺݔǡ ሻݕ ൌ ൜Ͳǡ ݂ሺݔǡ ሻݕ ൏ ͳǡכݐ ݂ሺݔǡ ሻݕ   (17)          כݐ

After segmentation, a morphological region-fi lling strategy is adopted to fi ll up the holes 

inside the segmented image, such that the resulting ROI includes all the target crystal particles 

while the image background is removed. 

3. Feature analysis 

To analyze crystal morphology properties, multiple image features should be extracted for 

the sake of quantitative assessment. In the previous work (Wang et al., 2008), a total number of 

88 shape descriptors were derived for each particle measured using a Malvern PVS830 system, 

which had considerable computation burden and moreover, there was implicit correlation 

between these descriptors. To establish efficient feature exaction for real-time monitoring while 
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avoiding the correlation between multiple features for analysis, it is proposed to adopt three types 

of crystal features for identification, i.e. size feature, shape feature, and texture feature. These 

features are interpreted in the following three subsections.  

3.1 Crystal size feature 

The crystal size feature describes the geometric size property of the particle with respect to 

the time sequence. At present, the equivalent diameter has been mostly taken as the size index for 

assessment of CSD (Presles et al., 2010), which, in fact, is mainly effective for spherical particles. 

For various shapes of particles, it is proposed to measure the orthogonal axial lengths that 

indicate the maximum length and width of a particle contour to represent basic two-dimensional 

(2D) size information of crystals. The orthogonal axial lengths are suitable not only for 

evaluating the sizes of particle shapes like plate, rod and needle etc., but also for spherical 

silhouette owing to that the length is a good approximation of its diameter. The axial length and 

width can be quantitatively estimated by means of the best-fi t rectangle method (Wang, 2006). In 

addition, the area and perimeter of a particle are adopted to facilitate the computation of crystal 

shape feature as presented in the next section. Table 1 lists these four parameters chosen as the 

crystal size feature for image analysis. 

3.2 Crystal shape feature 

There are a number of particle features studied in Pourghahramani and Forssberg (2005) and 

Bagheri et al. (2015). Most of them, however, demand high computation effort and time- 

consuming. To facilitate in-situ identification of crystal shape features with moderate 

computation effort, typical 5 shape feature indices are chosen, including circularity degree, 

rectangular degree, elongation ratio, concave–convex degree, and eccentricity, which have been 

well recognized to discriminate crystal shapes in terms of classical shape descriptions. For 

instance, the circularity degree, C, which evaluates the similarity between a particle shape and a 

circle, is defined by ܥ ൌ ସగௌమ              (18) 

where S is the area of the particle, and P is the perimeter of the particle. 

Since the above 5 shape features are not sufficient for quantitatively describing different 
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crystal shapes, a novel shape feature index, IDD, is herein proposed to improve the classification 

accuracy. The distances between the image centroid and the boundary points are computed to 

determine the IDD value. Generally, the closed particle contour curve is denoted by 

 
( )

( )

x x

y y





 

      (19) 

The coordinates of boundary points are denoted by ( , )n nx y , where 1,2, ,n N , and the 

centroid coordinate denoted by ( , )c cx y is defined as  
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 (20) 

The inner distances from the centroid to the boundary points are defined by 

 2 2( ) ( )n c n c nd x x y y     (21) 

With the computed polar coordinates of boundary points,( , ),n nd       , the deviation 

distance is defined as 

 n nd d    (22) 

where d  is the mean value of nd , i.e. 

 
1

1 N

n
n

d d
N 

   (23) 

For illustration, Figure 3 shows the plot of deviation distances for a few typical geometrical 

shapes. It is seen that although the deviation distances can be referenced to distinguish different 

shapes to some extent (Zhou et al., 2009), and it is inconvenient for real-time classification of 

different shapes. To circumvent the problem, the IDD index is proposed by 

 /Bd sd d  (24) 

wheresd is the standard deviation ofn .  

For comparison, Figure 3 also shows the IDD indices for these shapes. It is seen that 

different shapes correspond to different IDD values, owing to the fact that IDD has the properties 

of size invariance and geometric direction independence. Therefore, the IDD index can be 

effectively used for in-situ shape identification regardless of the locations or orientations of 

crystals.  

In addition, the Fourier descriptors (Calderon De Anda et al. 2005c) and geometric moments 
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(Flusser and Suk, 1993) are adopted to assess the irregularity of particles. The Fourier descriptors 

describe the shape of a particle contour, while geometric moments reflect the affine invariant 

feature inside characteristic.  

For clarity, all the above shape feature indices used for in-situ image analysis are listed in 

Table 2. 

3.3 Crystal texture feature 

Texture feature describes the surface property of crystals. It is determined by the 

characteristics of pixels in a region rather than one pixel, and therefore can be referenced to 

eliminate the noise influence. Recently, a texture analysis method based on defining fractal 

dimension and energy signature was developed for particle characterization (Zhang et al., 2014). 

However, the texture feature had been rarely applied to crystal shape classification in the 

literature. Herein the crystal texture feature is adopted to discriminate spatial variation of pixel 

intensity for different particle types, e.g. the texture feature of impurities is different from that of 

a valid particle even though they may have similar shapes. A texture computation method based 

on the gray level co-occurrence matrix (GLCM) has been well recognized for image surface 

analysis (Gadelmawla, 2004), and a few important image analysis parameters (e.g. contrast, 

energy, and entropy) can be derived from GLCM. Besides, the fractal dimension index 

(Bouboulis et al., 2006) has the properties of self-similarity and irregularity, which can be used to 

evaluate the geometrical texture feature (Zhang et al., 2014). 

To quantitatively assess the texture feature of individual crystal images, the above four 

typical indices of texture feature are taken into account as listed in Table 3, including contrast, 

energy, entropy, and fractal dimension. 

4. Particle sieving 

Crystal particles are subject to breakage and agglomeration inevitably during the 

crystallization process. Moreover, there are an amount of particles far away from the camera lens 

focus of an in-situ imaging system, which should be separately considered for effective image 

analysis. Generally, tiny pieces and agglomerated particles should be sieved out beforehand. It 

was suggested to specify an area threshold to remove tiny pieces (Calderon De Anda et al., 2005b; 



12 

 

Zhou et al., 2009). However, for images including small crystals, such sieving may delete by 

mistake valid crystals of small size. It should be noted that the concave–convex degree of a valid 

particle is apparently larger than that of two or more agglomerated particles in a captured image. 

The concave–convex degree reflects the area ratio of a particle area over the minimum convex 

hull area (Berg et al., 2008) of the particle shape, as listed in Table 2. An adaptive particle sieving 

method in terms of a real-time area threshold and concave–convex degree is therefore proposed 

to effectively remove meaningless particles, based on real-time size estimation of valid crystals 

by using the k-means clustering method (Jain et al., 1999). 

Firstly, the areas of all the particles are extracted in an image in terms of the pixel level, as 

defined in Table 1. Then these areas are classified into k clusters (i.e. k = 4), large, medium, small 

and extra-small, as follows. 

Denote by X = {x (i)| i= 1, 2, ڮ, m} the area set, where m is the number of particles, and by 

ȝ(j), j = 1, ڮ , k the cluster centroids computed from X, where j is the cluster index. The k-means 

clustering algorithm is performed by iterating the following two steps until ȝ(j) converge to the 

optimal values, with an initially random choice of ȝ(j) within X: 

(1) Assign x(i) into the nearest cluster indexed by c(i) which is defined as ܿሺ݅ሻ ൌ ݃ݎܽ min ȁȁݔሺ݅ሻ െ  ሺ݆ሻȁȁଶ        (25)ߤ

(2) Update the cluster centroids ȝ(j) of X by Ɋሺ݆ሻ ൌ σ ଵሼሺሻୀሽసభ ௫ሺሻσ ଵሼሺሻୀሽసభ            (26) 

After clustering, the cluster corresponding to the minimum of ȝ(j) is indexed by j*, i.e. ݆כ ൌ arg min ሺ݆ሻߤ ǡ ݆ ൌ ͳǡ ڮ ǡ ݇        (27) 

Then all the particles within the extra-small cluster of j* are regarded as tiny particles or 

meaningless pieces to be deleted. 

Similarly, the concave–convex degrees (defined in Table 2) of all the particles in the same 

image are computed and classified into k clusters (e.g. k = 2) using the above k-means clustering 

algorithm. Consequently, particles belonging to the cluster corresponding to the minimum of ȝ(j), 

i.e. the lowest concave–convex degree, are deleted. 

Following the above procedure, valid particles in an image captured in real time can be 
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effectively sieved out. 

5. Particle size measurement 

Although imaging systems have been developed for monitoring crystallization processes in 

the past years, in-situ measurement of particle size is still under investigation (Nagy et al., 2013). 

A feasible pixel equivalent calibration method is proposed to measure real crystal sizes from the 

captured images. Note that the depth of the imaging field for a crystallizer is relatively short and 

fixed, such that the calibrated size is almost not affected by the imaging depth. A micro-scale 

circle with a known diameter is herein taken for calibration, in consideration of that a circle is not 

affected by the geometric direction while assessment on a black circle area in contrast to a 

transparent background is not affected by the line width of the edge circle. The proposed 

calibration method consists of subpixel edge detection and circle fi tting, which are detailed in the 

following subsections. 

5.1 Subpixel edge detection 

In order to guarantee the measurement precision, the subpixel edge should be detected. The 

gray moment edge detection method (Tabatabai and Mitchell, 1984) has been well recognized for 

subpixel edge detection in terms of one- and two-dimensional data. The rationale behind a gray 

moment edge localization algorithm is that the edge distribution of an image is in coincidence 

with its gray moment in contrast to a transparent background. To ensure computation efficiency, it 

is proposed to use 45 pixels to span the micro-scale unit circle for calibration and positioning, 

which is shown in Figure 4(a) in terms of the sequence of these pixels named as edge operators. 

Each edge operator corresponds to an ideal edge element defined over a unit circle with four 

parameters: h1, h2, ș, ȡ, as shown in Figure 4(b). 

Using the gray moment edge detection method, the fi rst three sample moments are 

determined by ݉ ൌ σ ߱ܫǡ ݇ ൌ Ͳǡ ͳǡ ʹǡ ͵ସହଵ           (28) 

where Ii is the intensity of the ith grid shown in Figure 4(a), and Ȧi is the corresponding weights. 

 Denote by p1 and p2 the area ratios of h1 and h2 in the unit circle, respectively. The values of 

p1, p2, h1, h2 are determined by 
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The parameter ȡ is obtained by  
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where Ii is the intensity of the ith grid, and (xi, yi) are co-ordinates of the center of ith grid shown 

in Figure 4(a). 

5.2 Circle fitting 

By using the above edge detection, the edge points (Xi, Yi), i = 1, 2, …, N are obtained. 

Denote by (A, B) the circle center, by R the circle radius, and by di the distance between the ith 

edge point and the circle center, as shown in Figure 5. 

There stands ݀ଶ ൌ ሺ ܺ െ ሻଶܣ  ሺ ܻ െ  ሻଶ          (32)ܤ

 Let ߜ ൌ ݀ଶ െ ܴଶ, there is 
ߜ  ൌ ሺܺ െ ሻଶܣ  ሺ ܻ െ ሻଶܤ െ ܴଶ ൌ ܺଶ  ܻଶ  ܽܺ  ܾ ܻ  ܿ (33) 
 
where 
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Define an error function of circle fi tting by  

 
22 2 2( , , ) [( )]i i i i iQ a b c X Y aX bY c        (35) 

For ( , , ) 0Q a b c  , there exists the global minimum of Q according to the least-squares 

fi tting circle methodology (Watson, 1999). The minimum can be determined by taking the partial 

derivatives of Q with respect to the variables (a, b, c) and letting them zero. Using the 

corresponding (a, b, c), R can be determined from Eq. (34). 

Hence, the calibrated pixel equivalent (unit: mm/pixel) is computed by 

ܲ ൌ  Ȁʹܴ           (36)ܦ

where Da is the diameter of the adopted circle scale for calibration 

 Based on the above subpixel edge detection, the pixel numbers of the length and width of a 

particle shape are measured in terms of the best-fi t rectangle method (Wang, 2006), respectively. 

Denote by La the measured pixel number for the particle length and by Sa the measured pixel 

number for the particle width as defined in Table 1. The real 2D sizes of the crystal, i.e. the real 

physical length denoted by Lp and the real physical width denoted by Wp, are computed by ൜ ܮ ൌ ܮ ܹܲ ൌ ܵ ܲ           (37) 

6. Shape identification 

The proposed shape identification method is composed of feature dimension reduction and 

shape classification. Both are conducted off-line for model building, and then are implemented 

for real-time shape identifi cation. The identification procedure is illustrated in Figure 6. 

6. 1 Feature dimension reduction 

To avoid nonlinear correlations involved with multiple feature variables established herein, a 

feature dimension reduction method is proposed to facilitate shape identification and 

classification. 

Initially, the number of Fourier descriptors (listed in Table 2) should be specified based on 

the captured images of crystals. If  the number of Fourier descriptors is no greater than 64, it is 
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suggested to take the minimum perimeter as the number of Fourier descriptors. Otherwise, the 

number of Fourier descriptors is fixed as 64 (Calderon De Anda et al., 2005a, 2005b). 

Considering that the number of Fourier descriptors is relatively large and the geometric 

moment feature has 7 parameters, it is suggested to use a principal component analysis (PCA) 

method for a preliminary dimension reduction of these feature variables. 

To deal with the nonlinearity of feature variables, the kernel discriminant analysis (KDA) 

method (Lu et al., 2005) may be used. However, the computation of the projection function in 

KDA includes eigen-decomposition of the kernel matrix, which demands high computation effort. 

Inspired by the spectral regression kernel discriminant analysis (SRKDA) (Cai et al., 2011) 

having moderate computation effort, the SRKDA algorithm in combination with the optimal 

parameter selection is given as below. 

All the feature variables denoted by 1 2[ , , , ]TNX x x x are mapped into the kernel space, 

1 2( ) [ ( ), ( ), , ( )]TNx x x x    , by using a nonlinear mapping function, . 

Denote by c the number of classes, and let  
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where 1,2, ,k c and 0 [1,1, ,1]Ty  . There are 

 V y y  (39) 
 K  y  (40) 

where k is the kernel matrix ቀ݇൫ݔǡ ൯ݕ ൌ ߶ሺݔሻ்߶ሺݔሻቁ and V  is defined by 
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To accommodate for computation loss, the following linear approximation is used,  

 ( )K I  y  (42) 

where is an adjustable parameter and I is the identity matrix. It follows that 

 * 1( )K I   y  (43) 

Consequently, the regression objective in terms of the L1-norm is: 

  = arg 2

1 1

min ( ( , ) ) | |
N N

T
i i i

i i

K x x y


 
 

 
  

 
   (44) 

To solve the above regression problem, the least angel regression (LARS) (Efron and 

Tibshirani, 2004) is adopted, and the radial basis function (RBF) (Cai et al., 2011) is taken as the 
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kernel function for the convenience of computation.  

Note that the parameter of RBF function used in the above SRKDA may affect the 

classification accuracy. The linear minimum distance classification (LMDS) (Baudat and Anouar, 

2000) is used to determine the optimal parameters based on the linear separability principle in the 

high dimensional space. Briefl y, the training set is equally divided into two parts, Mt and Nt, 

where t = 1, 2, …, l/2 and l is the training sample number. The class center vector Uk (k = 1, 2, …, 

c) denotes the sample mean of each class in Mt , where c is the number of classes. The distance 

between Uk and Nt can be computed and the class for Nt is determined by the criterion of 

minimum distance. The classification accuracy rates are computed with respect to different RBF 

parameters. The optimal parameter is determined in terms of the highest linear classifi cation 

accuracy rate. 

At first the training set is divided into two parts (kM and kN ), ( 1,2, , / 2)k K ,the 

sample number is K ; Secondly, class center vector cU ( 1,2, , )c C  are generated for kM  

with the arithmetic average, the number of classes isC ; Thirdly, calculate the distance between 

cU and kN , and the class for kN is determined with the minimum distance criterion; Fourthly, 

classification accuracy rates with different parameters are obtained; Consequently, the optimal 

parameter range is selected with the most high classification accuracy rate. 

6.2 Shape classification 

For image-based monitoring of a crystallization process, the number of training images is 

usually far smaller than the number of testing images captured in real time. To guarantee effective 

classification of feature variables after dimension reduction, the support vector machine (SVM) 

method is adopted which is generally effective even for a small number of training samples. 

The one-against-one approach of SVM (Hsu and Lin, 2002) is used for multi-class 

classification with a voting strategy (Chang and Lin, 2011). It constructs c(c − 1)/2 classifiers 

where c is the number of classes. For the training vectors xt, t = 1, 2, ڮ, l from the ith and jth 

classes, the following optimization is established for binary classification, min௪ೕǡకೕǡೕ ͳʹ ൫ݓ൯்ݓ  ܥ ൬ ൫ߦ൯௧௧ ൰ ൬൫ݓ൯்߶ሺݔ௧ሻ൰  ܾ  ͳ െ ௧ߦ ǡ   ݂݅ ݔ௧  ǡݏݏ݈ܽܿ ݄ݐ݅ ݄݁ݐ ݏ݅ 
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൬൫ݓ൯்߶ሺݔ௧ሻ൰  ܾ  ͳ െ ௧ߦ ǡ   ݂݅ ݔ௧ ௧ߦ ǡݏݏ݈ܽܿ ݄ݐ݆ ݄݁ݐ ݏ݅   Ͳ                (45) 

where wij is the weight vector, bij is the bias term, and Cp is the penalty parameter. Here the 

training vectors xt are mapped into a higher dimensional space by the function . 

 By training the SVM parameters are derived to establish the shape classification model, 

where the kernel function is taken as the RBF function with the kernel parameter g. To determine 

g and penalty parameter Cp for computation, a cross-validation method is used which computes 

the accuracy rate for different Cp and g so as to determine the best accuracy with the smallest Cp. 

7. Case study 

A cooling crystallization process of LGA was tested based on using a non-invasive imaging 

system to verify the effectiveness of the proposed imaging analysis method for real-time crystal 

morphology identification. 

7.1 Experimental setup 

The experimental set-up for capturing the crystal images is shown in Figure 7. The 

crystallizer consists of a 4-l (Liter) jacketed glass vessel, a thermostatic circulator (Product no. 

Julabo-CF41), a Pt100 temperature probe, and a PTFE 4-paddle agitator. The LGA material 

(chemical formula: C5H9NO4, molecular weight: 147.13g/mol, purity: 99%, product of Sigma) 

and distilled water were used for experiment. LGA has two recognized polymorphic forms: 

prismatic Į-form and needle-like ȕ-form. A non-invasive imaging system including two 

high-resolution cameras made by Hainan Six Sigma Intelligent Systems Ltd. (product no. 

StereoVisionCrystal-G) was used to take colorful crystal images during the cooling process. The 

cameras (UI-2280SE-C-HQ) with CCD sensors and USB Video Class standard were made by 

IDS Imaging Development Systems GmbH, which is able to take 6 images per second. 

To perform a cooling crystallization test, the initial solution (35g/L) was prepared using the 

above LGA material and 2L distilled water in the 4L crystallizer, stirred by a PTFE 4-Paddle 

agitator at a speed of 150rpm. The solution was fi rst heated up to 75°C and the temperature was 

maintained for 90min to guarantee complete dissolution of the LGA solute. Then the solution was 

cooled down to 15°C at a fast cooling rate of 0.8°C/min. The images were sampled per second 
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with respect to the time during the cooling process until the end of crystallization. 

7.2 Image analysis and measurement results 

In order to measure the real crystal sizes, a circle micro-scale with the diameter of 350 mm 

was used to calibrate pixel equivalent before in-situ image analysis. The micro-scale circle was 

placed in the camera lens focus. It is seen from Figure 8(a) that the captured image was not 

distorted obviously, so the distortion correction was not considered. Figure 8(b) shows the image 

of circle scale after image compression and graying. By comparison, Figure 8(c) shows that the 

proposed subpixel edge detection method gives accurate positioning, though the gray image of 

the circle scale in Figure 8(b) suffers from obvious noise. To verify the accuracy of the pixel 

equivalent calibration, three additional circle scales were computed for comparison as listed in 

Table 4. It is seen that the measurement error is negligible, well demonstrating effectiveness of 

the proposed pixel equivalent calibration method. 

After pixel equivalent calibration, in-situ image analysis was conducted for the captured 

crystal images during the crystallization process, as shown in Figure 9(a)–(f). Figure 9(a) 

represents one of the original colorful images. Figure 9(b) shows the pre-processed image by 

using the compression method based on wavelet decomposition. Note that the sub-image at the 

top-left corner in Figure 9(b) is the compressed image which mainly includes the low frequency 

components, while the remaining area in Figure 9(b) mainly includes high frequency components 

that are viewed as noise to be removed. Figure 9(c) shows the compressed image de-blurred by 

using the guided fi ltering and shock fi ltering. Based on the preliminarily established gray levels 

of LGA particles for image texture feature exaction, Figure 9(d)–(f) shows the results of gray 

level processing, image enhancement and segmentation. The particle intensity and the 

background were taken as 1 and 0 for image segmentation, respectively. 

To demonstrate the superiority of the proposed image processing method, the multi-scale 

method (Calderon De Anda et al., 2005b) and the IA method (Zhou et al., 2011) are also 

performed for the original image shown in Figure 9(a). The results are shown in Figure 10. It is 

seen that all the particles are effectively detected by the proposed method for crystal morphology 

analysis. In particular, the particle shape outlined by a yellow circle is entirely detected by the 
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proposed method, while the other two methods leave out certain part of the particle shape. 

Subsequently, using the proposed particle sieving method, the identified crystals are shown 

in Figure 11 along with the marks of measured sizes. By comparing Figure 9(f) with Figure 11, it 

is seen that there are 34 particles in the sampled image, including 6 valid particles, 26 tiny pieces 

and 2 agglomerated particles, as properly sieved out by the proposed method. Moreover, Figure 

11 shows the 2D sizes (Lp and Wp) of valid crystals computed using the formula in (37), which 

can be used for analyzing CSD. 

To further demonstrate the effectiveness of the proposed image analysis method under worse 

imaging conditions, another gray image taken from the crystallization process with higher 

turbidity is analyzed as shown in Figure 12. It is seen that valid particles are properly sieved out 

from the obscure image, together with good measurement of the crystal sizes. 

7.3 Identification results of crystal shape 

It is well known that LGA has two basic crystalline forms of prismatic Į-form and 

needle-like ȕ-form. Figure 13 shows a captured image of these crystalline forms from the LGA 

aqueous solution. It is seen that these forms are different from each other in the image shape and 

texture. The fundamental features listed in Tables 2 and 3 are adopted to distinguish these two 

forms. Considering that there usually exist agglomerated particles together with impurities in the 

LGA solution in practice, another shape denoted by ‘others’ is adopted to indicate these abnormal 

particles. 

For using the proposed shape identification method, 50 particles of visually confi rmed 

Į-form and ȕ-form were chosen randomly from the captured images, which were used as the 

training set. The testing set was taken as 100 valid particles chosen from the captured images. 

By using the SRKDA method to perform feature dimension reduction, the feature dimension 

is reduced to two and the parameter of RBF function is taken as 2.3 in terms of the LMDS 

method. Through cross-validation, Cp and g are taken as 2 and 128 in the proposed SVM 

classification method. The shape identification results are listed in Table 5. It is seen that the 

established SVM model had very good recognition rate, which spends the computation time of 

about 1.82 s based on using a computer with a dual core CPU of 3.40GHz and a memory size of 
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8GB. Note that the identifi cation results are based on using a small number of training samples to 

identify more testing samples, well demonstrating the effectiveness of the proposed shape 

identification method. Note that using the morphology classifying method (Calderon De Anda et 

al., 2005c) will spend the computation time of about 3.57 s for the identically reduced feature set. 

It should be mentioned that the analysis time spent for each captured image was less than 8 s 

by using the above computer, including all the steps of in-situ crystal morphology analysis shown 

in Figure 1. This indicates that the proposed image analysis strategy can be effi ciently 

implemented for real-time monitoring of a cooling crystallization process like LGA. 

8. Conclusions 

A synthetic image analysis strategy has been proposed for in-situ crystal size measurement 

and shape identification, based on using a real-time imaging system for monitoring crystallization 

processes. To facilitate analyzing in-situ images affected by uneven illumination, particle motion, 

and solution turbulence, practical image processing algorithms including image compression, 

fi ltering, enhancement and segmentation have been presented. Fundamental image features of 

crystals have been selected for efficient particle sieving. In particular, a novel feature index 

named IDD is introduced to quantitatively describe the crystal shape, which is relatively 

independent of the crystal size and geometric direction in the captured image. Moreover, the 

proposed particle sieving method can effectively remove meaningless and agglomerated particles, 

by using a real-time area threshold and concave– convex degree established in terms of the 

k-means clustering. As a result for monitoring the LGA crystallization process, the recognition 

rate is over 96% for the Į and ȕ forms of LGA crystals, while a short processing time (smaller 

than 8 s) is spent for analyzing each captured image by using a computer with a dual core CPU of 

3.40GHz and a memory size of 8GB. It is therefore demonstrated that the proposed imaging 

analysis method can be effectively used for in-situ measurement of crystal morphology, 

facilitating real-time monitoring of crystallization processes. 
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Table 1 Crystal size feature 

Size feature Description 

Length Length pixel number of the best-fi t rectangle for the particle shape 

Width Width pixel number of the best-fi t rectangle for the particle shape 

Area Number of all pixel points within the particle image  

Perimeter Number of the particle edge pixel points with the freeman chain code of eight directions 

 
 

Table 2 Crystal shape feature 

Shape feature Description 

Circularity degree The degree of particle shape closing to circle 

Rectangle degree The ratio of a particle area over its best fitting rectangle area 

Elongation ratio The ratio between the length and width of a particle 

Concave-convex degree The ratio of a particle area over its minimum convex hull area 

Eccentricity The ratio of the distance between ellipsoid foci over the semi-major axis of ellipsoid 

Fourier descriptors Fourier transform coefficients of the particle shape contour 

Geometric moments Seven Hu moment invariants in the particle shape 

Inner distance descriptor Defined by Eq. (24) 

 
 

Table 3 Crystal texture feature 

Texture feature Description 

Contrast The clarity and grooving depth of texture from GLCM 

Energy The quadratic sum of each element value from GLCM 

Entropy The random measure of containing information from GLCM 
Fractal dimension Geometrical texture feature with Box-counting dimension 

 
 
 

Table 4 Verification results for pixel equivalent calibration 

No. Real size (µm) Measured size (µm) Error (%) 

1 250 245.74 -1.70 

2 170 172.91 1.71 

3 120 122.45 2.04 

 
 
 

Table 5 Recognition Rate for LGA crystallization 

Particle type Real number 
Total identified 

number Correctly identified number Recognition Rate 

Alpha type 38 40 37 0.97 

Beta type 52 52 51 0.98 

others 10 8 8 0.80 

total 100 100 96 0.96 
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Figure 1. Schematic diagram of crystal morphology analysis 
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Figure 2. Flow chart of image processing 
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Figure 3. Plot of deviation distances for four typical shapes including IDD indices 
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Figure 4. Two-dimensional edge model: (a) the approximate edge model of operator input; and (b) 
the ideal edge model 

 
 
 
 

 
 

Figure 5. Least squares fitting circle 
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Figure 6. Flow chart of shape identification experiment 
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           a 

 
           b 

 
 
Figure 7. Experimental set-up of the crystallizer equipped with the non-invasive imaging system: 

(a) schematic diagram; and (b) external view 
 

        a                      b                   c 

 
 
Figure 8. Subpixel edge detection: (a) original image; (b) gray-scale image; (c) edge detection 
result 
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   a                                    b 

 
   c                                    d 

 
   e                                    f 

 
 

Figure 9. LGA image processing: (a) original micrograph image; (b) compressed image; (c) 
filtered image; (d) gray-scale image; (e) enhanced image; (f) segmented image 
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      a                         b       c 

 
 

Figure 10. Comparison of image processing results: (a) the proposed method; (b) multi-scale 
method; and (c) IA method  

 
 
 
 
 
 
 
        a                                   b 

 
 

Figure 11. Measurement results: (a) lengths of valid crystals and (b) widths of valid crystals 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unit: µm   Number: 6    
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Figure 12. Measurement results for a gray image: (a) original image; (b) lengths of valid crystals 
and (c) widths of valid crystals 

 
 
 
 
 
 

  a          b 

 
 

Figure 13. Basic LGA crystal shape: (a) Į-form; (b) -form 
 


