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Abstract: A synthetic image analysis strategyproposed foiin-situ crystal size measurement

and shape identification for monitoring crystallization processes, based on usingtimeeal-
imaging system. The proposed method consists of image processing, feature analysis, particle
sieving, crystal size measurement, and crystal shape identification. Fundamental image features
of crystals are selected for efficient classification. In particular, a novel shape feafemnedto

as inner distance descriptois introduced to quantitatively describe different crystal shapes,
which is relatively independent of the crystal size and its geometric direatican image
captured for analysis. Moreover, a pixel equivalent calibration method based on seldgeel
detection and circle fitting is proposéd measure crystal sizes from the captured images. In
addition, a kernel function based methedgivento deal with nonlinear correlations between
multiple features of crystals, facilitating computation efficiency for tieadshape identification.

Case study and experimental results from the cooling crystallization of L-gtutaon
demonstrate that the proposed image analysis methobe effectively used foin-situ crystal

size measurement and shape identification with good accuracy.

Keywords: Crystal morphology; Shape identification; Imaging analysis; Feature analysis; Inner

distance descriptor; Crystal size measurement




1. Introduction

With the rapid development of process analytical technology (PAT) for chemical and
pharmaceutical crystallization, image- based monitoring methods have been increasingly
explored for in- situ analysis of crystal morphology, polymorph and growth quality (Yu et al.,
2007; Chen et al., 2011; Qiao et al., 2011; Nagy et al., 2013; Simon et al., 2015). Ex-situ imaging
methods were developed in the early literature (e.g. Monnier et al., 1997) for analyzing the
crystal shape characteristics. The pioneering works on in-situ image analysis of particle
properties during crystallization can be seen in Blandin et al. (2000) and Willehabr{2000).
Recently, in-situ measurement and rigale imaging analysis have attracted increasing attentions
from industrial and academic communities (Calderon DeAndaetal.,2005a; Wangetal.,2007; Jia et
al., 2008; Dang et al., 2009; Borchert and Sundmacher, 2011; Zhou et al., 2011; Zhhng et
2015), for the sake of monitoring the crystallization process and quality control. Generally, the
developed in-situ imaging systems for monitoring crystallization processes could bkedassi
into two groups: invasive and non-invasive imaging systémsnvasive imaging system has a
probe type camera whiaotan be inserted into a crystallizém order to obtain high resolution
images of crystals, e.g. the process vision and measurement (PVM) instrumertynvéetter
Toledo company had been successfully apgieechonitor the cooling crystallization (Jia et al.,
2008; Dang et al., 2009; Zhou et al., 2009). In contrast, a non-invasive imaging system uses one
or more cameras placed outside a crystallizer to monitor crystal size, shape and growth rate, such
as the Malvern Sysmex FPIA 3000 (Borchert and Sundmacher, 2011) and the online microscopy
systems (Larsen et al., 2007; Wang et al., 2008; Zhang et al., 2015). The use of a non-invasive
imaging system can avoid the camera lens or probe surface from being blurred bystiéle cr
slurry to guarantee measurement validity (Borissova et al., 2009; Simone et al., 2015). A possible
disadvantage lies with the inconvenience of building up a suitable holder around the crystallizer
for a non-invasive imaging system, while the imaging effect may be somewhat itdethat of
an invasive imaging system.

Using the captured images from th@ssitu imaging systems, image analysis methods have
been exploredn the past years to study the crystal properties including crystal size distribution
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(CSD), particle shape features, and growth rates etc. (Zhang et al., 2014; Camacho et al.,2015).
To effectively extract the crystals from the images, a few image processigds for eattime
analysis were developed in Calderon De Artlal. (2005b), Larsen et al. (2006), Sarkaal.

(2009) and Zhangt al. (2011). Note than-situ imaging may be subjet the influence from
reflected light, particle movement, and motion of the crystal slurry. This problem was not
seriously considereih the existing references including the above for image processing. For the
classfication of crystal polymorphic forms, Calderon De Anda et al. (2005c) developed an
artificial neural network approacdh distinguisha andp forms of L-glutamic acid (LGA) based

on establishing the Fourier descriptors for the captured crystal images. SubsequoectgrtR:t

al. (2014) adopted the Fourier descriptarsombination with the historical crystal image data of
shape informatiorto classify the crystal shapes. Ferregtal. (2011) proposed the usd
discriminant factorial analysis (DFA obtainan automatic clas8ication method of the particle
shapes, which was demonstrated to be effective for the fodasisin of the monocrystal
complexity level. Derdour and Chan (2015) developed a model for predicting the crystal growth
rate and aspect ratio, based on analyzing the seed features. tOwhiegcrystallization process
complexityin a stirred crystallizer, there was no commonly recognized imaging methodology for
analyzing the crystal shapasyet (Wangetal., 2008; Nagy et al., 2013). Reate identfication

of crystal shape remains as open issue for exploration. Concerning image-based calibration of
the crystal sizes fan-situ measurement, few references reported feasible calibration methods for
the application of either invasive or nonvasive imaging systems.

In this paper, a synthetic image analysis meti®dgroposed for in-situ crystal size
measurement and shape idBoétion, for the purpose of reime monitoring crystallization
processedt canbe effectively implemented under a variety of practical constraints (e.g. random
crystal movement or rotatian the crystallizer, solution turbulence, and uneven illumination for
imaging etc.). The proposed method includes image processing, feature analysis, particle sieving
crystal size measurement, and crystal shape fdatton. Figure 1 summarizes all the sequential
stepsin the proposed method for re@he crystal morphology analysis. Fundamental image

features of crystals are considered for particle sieving. To cope with the problem of crystal
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agglomeration or fraction/breakage that misleads imaging statistics, a clustering sérgteewy

to sieve out valid particles for effective analysis of crystal morphology. Morearesfficient
shape identication method is developeay defining an inner distance descriptor (IDD) to
guantitatively describe different crystal shagasaddition, a pixel equivalent calibration method
based on subpixel edge detection and ciitlimg is proposed foin-situ measurement of crystal
sizes. To address multiple features of crystals, a kernel function based featurdicdtissi
methodis developed for shape ideftation of valid particles sieved from the captured images.
Experimental results on image processing and shapefidation are giverio demonstrate the
effectiveness of the improved strategy fiorsitu monitoring of the crystal morphology for the
LGA crystallization process.

The rest of the papes organizedas follows. Feasible image processing methods are
presented in Section 2 for practical application suligeaneven illumination, crystal motion and
solution turbulence from the crystallization operation. In Section 3, the proposed feature exaction
methodis elucidatedby defining the fundamental features of crystals iimaging analysis,
followed by particle sieving, size measurement and shape foEiton methods given in Section
4, Section5 and Section6, respectively. Section 7 shows experimental t@sldtaonstrate the
effectiveness of the improved method. Finally, some conclusions are drawn in Section 8.

2. Image processing

For usinganin-situ imaging systento monitor a crystallization process, the goal of image
processings to obtain clear particle micrographs with sharp edges fronmtlséu images taken
in real time. Only a few image processing methods were developed for particle detetstroms
of in-situ imagesn the literatures (Calderon De Andgal., 2005b; Zhang et al., 2011; Zhou et
al., 2011). In this work, image processing consists of image compression,fittexgey, image
enhancement and segmentation, as shown in Figure 2, which aflg lpriesentedin the
following subsections, respectively.

2.1 Image compression
The size of a captured image depends on resolution of the imaging system and the size of the

region of interest (ROI) etc. When the size of the captured insagensiderably larget also
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causes time delay for online analysis. Therefaregefficient compression method should be
establishedto reduce the size of the image while maintaining fundamental informéion
facilitate real-time analysidt is well recognized thaanimage compression algorithm based on
the wavelet transform (Gonzalez et al., 2009) has the advaotdggh compression ratio and
compression speed, whightherefore adopted for reatne image analysis as below.

Given an original image f(x, y), with the size M x N, the two- dimensional discrete method
(Mallat, 1989) is used for the wavelet transform. Firstly, a two-dimensional scaling function
»(X,y), and a translated basis functigfx, y), are déned by

Pjmn(x,y) = 2/2¢(2ix —m, 2y —m)
{ wf,m,n(x, y) = 2//2yi(2'x —m,2/y —m), i = {H,V, D} (1)
where ll)f,m,n(x' y),i ={H,V,D} identify three directional edges including horizontal, vertical,
and diagonal directions, respectively. Denoterithre row, by n the column, and pthe scale.

The above two-dimensional functions are computed from the fpnedeone-dimensional
functionsby

Secondly, the discrete wavelet transform for f (x, y), is obtained as

{ ApGim,m) = =S BN £ )P mn (5 Y)
AL Gm,m) = —— M SN £ YW (0 Y), § = {H,V, D} (3)
Then the original image f(x, y) is decomposed into the low frequency compdpéntm,n)
which is used to approximate f (x, y) at sgalg= 1 is preferred herein), and the high frequency
componentsAfp(i, m,n),i = {H,V,D} to be discarded.

Finally, the compressed image quantized from the low frequency componemtthe
intensity rangdé0 — 255).

Note that for the application of such a compression algorithm, it is required to choose a
suitable wavelet function which determines the quality of the compression. The biorthogonal
wavelet function (Gonzalez et al., 2009) is herein preferred which can guarantee good linear
phase, regularity and entire reconstruction.

2.2 Image filtering

Owing to digital image acquisition and data transmissioa real time imaging system, the
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captured images suffer from measurement noise. Since the majority of image inforimation
locatedin the low frequency range, existing denoising methods were mainly based on using a
low-passfilter. However, the image detail locateda higher frequency range mhg excluded

by such a denoising methodt. is therefore expectetb remove the noisenfluence while
maintaining the image texture. Note that the previous image compression will also leave out
some detail information especially for a higher frequency range. Hence, the combinadwan of
filtering methodss suggested to deal with this problem.

Firstly, the guidediltering method (He et al., 2013) is adopted which uses a guided image
for filtering. The guided image may be taken as a preprocessed image or a samplevineage
sample image is used, the guiddtering actsasan edge-preservingjlter similar to a bilateral
filter, which guarantees good preservation around the image edges. Moreover, thé lggrided
is based on using a lineame algorithm whichis capable of fast computation regardless of the
range of image intensity.

For using the guidefiltering, it is a key assumption that a local regionwy centered at the
pixel k in the input image, there is a linear relationship between the pixeltipe input image
and the pixel gin the output image of the same sizex\M (V i € wk, and k< W x H), which is
expressed by

qi = agp; + by (4)
wherewy is a square window which is taken%kx 51 in this work, (& b are the constants in
wk Which can be estimated by minimizing the squared difference betwaed g i.e.

(ay, by) = argming, p, Yicw, ((axp; + b — p)? + 8ag) (5)
whered is a penalty parameter which is taken as 0.01 in this work.

Then the solutioms obtainedoy using thdfiltering method (He et al., 2013),

@ = (== Ticaw, P — by, ) / (0F + 8) (6)

|w]

and
by = 5,( — QrHg (7)
whereuy and of are the local mean and variance of the input image,ifw| is the total number

of pixels inwy, and



Py = o Liean Pi ®
The result of guidedllteringis therefore obtaineds
q; = ﬁZiewk agp; + by %)
Secondly, the shocliltering (Osher and Rudin, 1990) is preferred for image texture
sharpening. The shodkter yields distinct discontinuities at image edges while improving the
image clarity. Denote by q(X, y) the input image, the output image denoted byis(@pgputed
as
s(x,y) = —sgn (4 (6,9)) 9q(x, )| (10)
where g, (X, y) is the second order directional derivative of the gradient diregfigqg (x, y) is
the input image gradient, and sgn denotes the mathematical sign function.
As a result, the combination of imafj.ering methodsanbe quickly executetb avoid the
notorious block effect, while preserving the image edges and fundamental texture details.

2.3 Image enhancement

To cope with the uneven brightness of captured images andftbetire effect of crystal
surfaces, image enhancement should be conducted to strengthen ROI, namely, crystal particle
and facilitate the subsequent segmentation. The multi-scale Retinex (MSR) algorithm (Sha et a
2012) is therefore adopted deal with images having poor visibility or low contrast. Moreover,
the histogram equalization (Gonzalez et al., 2009) is chosen for gray level adjustment and
contrast stretching after enhancement. For each poim @nhanced image denotbgr (X, Y),

the MSR is explained by

() = Y. Wlog (% ) -oglF,(x 9* € x 9 1)
where * denotes the convolution operatia®(,X Y) is the input imagek is the number of retained
scales, Wis the weighting factors taken a4, =W, =W,=1/3 for = k1, 2, 3. i(X, y) are the

surround functions dimed by
Fe(x ) = 4,80 (12)
where ¢, are the standard deviations of Gaussian distribution that determine the scale with values
of 10, 80 and 150 fork 1, 2, 3, andy are taken to satisfy
[[ Fe(x yydxdy=1 (13)
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In order to enhance image contrast, it is suggested to increase the dynamid raregge 0

intensity using the histogram equalization by letting

Se = (Xj_om;)/N x 255 (14)
wheren; is the number of pixel gray level N is the number of total pixels, adds the maximum
gray level.

2.4 Image segmentation

Before image feature analysis, the desired ROl ndedbe determined via image
segmentationTo procure theefficiency of image segmentation, a thresholding segmentation
method is proposed based on the minimum cross-entropy thresholding algorithm (Li and Lee,
1993).

Suppose that a one-dimensional histogrdrthe original image is composed of h(i)=(1,
2, ..., L, ) the cross-entropy discriminant functisddined by

_izlin@Ini | ¥E in(@)Ini

D(t) = + (15)

n(1,t) n(t,L+1)

wherei is the gray levelt is the threshold, n(1, t) is the gray level of the target and n(}, is+1
the gray level of the background after the segmentation. Both n(1, t) and n(t, L+1) are taken as the
mean values of the referred regions.
The optimal threshold is determined by
t* = argmin {D(t)} (16)

Accordingly, the gray level b(x, y) in the binary image is determined by

(0, fx,y) <t~

After segmentation, a morphological regifoling strategy is adopted thll up the holes
inside the segmented image, such that the resulting ROI includes all the target crystal particles
while the image backgrouns removed.
3. Feature analysis

To analyze crystal morphology properties, multiple image features should be extracted for
the sake of quantitative assessment. In the previous work (&fahg 2008), a total number
88 shape descriptors were derived for each particle measured using a Malvern PVS830 system,
which had considerable computation burden and moreover, there was implicit correlation

between these descripsoilo establishefficient feature exaction for real-time monitoring while
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avoiding the correlation between multiple features for analysgsproposedo adopt three types
of crystal features for idefitcation, i.e. size feature, shape feature, and texture feature. These
features are interpreténl the following three subsections.
3.1 Crystal size feature

The crystal size feature describes the geometric size property of the particle with t@spect
thetime sequenceAt present, the equivalent diameter has been mostly te¢@e size index for
assessment of CSD (Presles et al., 2010), whidiact, is mainly effective for spherical particles.
For various shapes of particles,is proposed to measure the orthogonal axial lengths that
indicate the maximum length and width of a particle contouepresent basic two-dimensional
(2D) size information of crystals. The orthogonal axial lengths are suitable not only for
evaluating the sizes of particle shapes like plate, rod and needle etc., but also for spherical
silhouette owingo that the lengths a good approximation afs diameter. The axial length and
width canbe quantitatively estimatdanly means of the besit rectangle method (Wang, 2006). In
addition, the area and perimetdra particle are adopted to facilitate the computation of crystal
shape feature as presented in the next section. Table 1 lists these four parameters chosen as the
crystal size feature for image analysis.
3.2 Crystal shape feature

There are a number of particle features studied in Pourghahramani and Forssberg (2005) and
Bagheri et al. (2015). Most of them, however, demand high computation efforttiamesl
consuming. To facilitatein-situ identfication of crystal shape features with moderate
computation effort, typical 5 shape feature indices are chosen, including circularity degree,
rectangular degree, elongation ratio, conecawavex degree, and eccentricity, which have been
well recognizedto discriminate crystal shapes in terms of classical shape descriptions. For
instance, the circularity degree, C, which evaluates the similarity between a particlestiape
circle,is ddiined by

c=2 (18)

where S is the area of the particle, &id the perimeter of the particle.

Since the above 5 shape features are ndicgrit for quantitatively describing different
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crystal shapes, a novel shape feature index, IBBerein proposetb improve the clasBication
accuracy. The distances between the image centroid and the boundary points aredclmmpute

determine the IDD value. Generally, the closed particle contour @idemotedy
X = X(6)

{y: (o)

The coordinates of boundary points are denotedXyY.,), where n=1,2.... ,N, and the

T<0<rx (29)

centroid coordinate denoted bik., ¥.) is ddined as

1
X = Nz X,
n=0
1N (20)
Y. = N Yn

The inner distances from the centroid to the boundary points are defined by

d, =% = %)+ (Y~ ¥,)° (21)

With the computed polar coordinates of boundary pdiéts¢,),—7 <0 <z, the deviation

distancas ddined as

p,=d,~d (22)

n

where ¢ is the mean value ofl,,, i.e.

- 1
d=52.4, (23)

n=1

For illustration, Figure 3 shows the plot of deviation distances for a few tymoatagrical
shapesilt is seen that although the deviation distantasbe referencedo distinguish different
shapes to some extent (Zhou et al., 2009), iarlinconvenient for real-time clagisiation of

different shapesio circumvent the problem, the IDD indexproposedy

Bd = sd/ d (24)
wheresdis the standard deviation of .

For comparison, Figure 3 also shows the IDD indices for these shapssseén that
different shapes correspotadifferent IDD values, owingp the fact that IDD has the properties
of size invariance and geometric direction independence. Therefore, the IDD indebe ca
effectively used forin-situ shape iderfiication regardless of the locations or orientations of
crystals.

In addition, the Fourier descriptors (Calderon De Anda et al. 2005c) and geometric moments
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(Flusser and Suk, 1993) are adoptedssess the irregulariof particles. The Fourier descriptors
describe the shape of a particle contour, while geometric momdkdst rheaffine invariant
feature inside characteristic.

For clarity, all the above shape feature indices used for in-situ image analysiteatenli
Table 2.

3.3 Crystal texture feature

Texture feature describes the surface property of crystals. It is determined by the
characteristics of pixels in a region rather than one pixel, and theiHaree referencedo
eliminate the noisanfluence. Recently, a texture analysis method based fnirdgg fractal
dimension and energy signature was developed for particle characterization €Zaang014).
However, the texture feature had been rarely appiedrystal shape clagsiation in the
literature. Herein the crystal texture featiseadoptedto discriminate spatial variation of pixel
intensity for different particle types, e.g. the texture feabfiienpuritiesis different from that of
a valid particle even though they may have similar shapes. A texture computation method based
on the gray leveto-occurrence matrix (GLCM) has been well recognized for image surface
analysis (Gadelmawla, 2004), and a few important image analysis parameterri&ast,
energy, and entropy) can be derived from GLCM. Besides, the fractal dimension index
(Boubouliset al., 2006) has the properties of self-similarity and irregularity, which can beaised
evaluate the geometrical texture feature (Zhetrad., 2014).

To quantitatively assess the texture feature of individual crystal images, the above four
typical indices of texture feature are taken into account as listed in Table 3, including contrast,
energy, entropy, and fractal dimension.

4. Particle sieving

Crystal particles are subjedb breakage and agglomeration inevitably during the
crystallization process. Moreover, there are an amount of particles far away froamthiea dens
focus of an in-situ imaging system, which should be separately considered for efiactye
analysis. Generally, tiny pieces and agglomerated particles should be sieved ahamnefdir
was suggested to specify an area threstwotdmove tiny pieces (Calderon De Anda et al., 2005b;
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Zhou et al., 2009). However, for images including small crystals, such sieving may lgelete
mistake valid crystals of small sizé.should be noted that the concasenvex degree of a valid
particleis apparently larger than that of twwo more agglomerated particlesa captured image.
The concaveconvex degree fiects the area ratio of a particle area over the minimum convex
hull area (Berg et al., 2008) of the particle shadésted in Table 2. An adaptive particle sieving
methodin terms of a real-time area threshold and congamevex degreés therefore proposed

to effectively remove meaningless particles, based on real-time size estimatiordafrysials

by using the k-means clustering method (Jain et al., 1999).

Firstly, the areas of all the particles are extraateahimage in terms of the pixel levels
defined in Table 1. Then these areas are diassintok clusters (i.e. k 4), large, medium, small
and extra-small, as follows.

Denote by X={x ()] ¥ 1, 2,---, m} the area set, wherais the number of particles, and by
u(j), ] =1,---, kthe cluster centroids computed from X, whaeethe cluster index. The k-means
clustering algorithm is performed by iterating the following two steps ujilconverge to the
optimal values, with an initially random choice.df) within X:

(1) Assign x(i) into the nearest cluster indexed by wfiich is déined as

c(®) = arg min; ||x(@) — p()HI|? (25)
(2) Update the cluster centroidg§) of X by
u(j) = ZEa Le@=1x(@) 6

I, He@=j}
After clustering, the cluster corresponding to the minimum(jpfis indexed by j*, i.e.

j* =argmin;ju(j), j=1,-,k (27)

Then all the particles within the extra-small cluster of j* are regarded as tiny padicles
meaningless pieces to be deleted.

Similarly, the concaveconvex degrees (f@ed in Table 2) of all the particlés the same
image are computed and cldis=dl intok clusters (e.g. k 2) using the above k-means clustering
algorithm. Consequently, particles belonging to the cluster corresponding to the minim@mn of
i.e. the lowest concaveonvex degree, are deleted.

Following the above procedure, valid particles in an image captured in real time can be
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effectively sieved out.
5. Particle size measurement

Although imaging systems have been developed for monitoring crystallization processes in
the past years, in-situ measurement of particleisiggll under investigation (Nagy et al., 2013).
A feasible pixel equivalent calibration methisdoroposedo measure real crystal sizes from the
captured images. Note that the depth of the imafyeld for a crystallizers relatively short and
fixed, such that the calibrated sigealmost not affectety the imaging depth. A micro-scale
circle with a known diametas herein taken for calibratioim consideration of that a circie not
affected by the geometric direction while assessment on a black circle area in contrast to a
transparent backgrouni$ not affectedby the line width of the edge circle. The proposed
calibration method consists of subpixel edge detection and fitabg), which are detailed in the
following subsections.
5.1 Subpixel edge detection

In orderto guarantee the measurement precision, the subpixel edge should be detected. The
gray moment edge detection method (Tabatabai and Mitchell, 1984) has been walkzesctay
subpixel edge detectian terms of one- and two-dimensional data. The rationale behind a gray
moment edge localization algorithm is that the edge distributicanafageis in coincidence
with its gray momenin contrasto a transparent backgrountb ensure computationfeiency,it
is proposedo use 45 pixelso span the micro-scale unit circle for calibration and positioning,
which is shown in Figure 4(a) in terroé the sequencef these pixels named as edge operators.
Each edge operator corresporidsan ideal edge element fieed over a unit circle with four
parameters:hhy, 6, p, as shown in Figure 4(b).

Using the gray moment edge detection method, firet three sample moments are
determinedy

m = YB wIf, k=10,1,2,3 (28)

where | is the intensity of the ith grid shown in Figure 4(a), and the corresponding weights.

Denote by pand p the area ratios of;tand h in the unit circle, respectively. The values of
P1, P2, by, hp are determined by
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(29)
P,
h=m-o %
B
h=m+o |2
P,
+2m>-3
where ¢ =m,-m?, s= m, nl;a mn
The parametes is obtained by
P =Cosx (30)
The edge linear equation is formulated by
XCos#+ysSid=p p > p, 31
Xcosf+ysi=-p p <p, (31)
45 45
= ANE
% ;XJ j ]zzl j Sind =y, /X + VY,

wher n .
o yoziyjlj /flj e CosO =X, X' + Yy
= =1

where | is the intensity of the ith grid, and,(%) are co-ordinates of the center of ith grid shown
in Figure 4(a).
5.2 Circle fitting

By using the above edge detection, the edge pointsYjjXi = 1, 2, ..., N are obtained.
Denote by (A, B) the circle center, Bthe circle radius, and by the distance between the ith
edge point and the circle center, as shown in Figure 5.

There stands

df = (X; — A)* + (Y; — B)? (32)

Let §; = d7 — R?, there is

;=X —A)?+(Y;—B)?>—R*=X?+Y?+aX;+bY;+c (33)

where
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a=-2A
b=-2B (34)
c=A+B’-R?

Define an error function of circlitting by

Qah 9= 6= [( X+ Y+ aX+ bY+ 9] (35)

For Q(a, b =0, there exists the global minimum & according to the least-squares
fitting circle methodology (Watson, 1999). The minimocambe determinedy taking the partial
derivatives of Q with respect to the variables (a, ) and letting them zero. Using the
corresponding (a, b, dR can be determined from Eq. (34).

Hence, the calibrated pixel equivalent (unit: mm/pixebomputedy

P, =D,/2R (36)
where [ is the diameter of the adopted circle scale for calibration

Based on the above subpixel edge detection, the pixel numbers of the length and width of a
particle shape are measutiaderms of the bedtt rectangle method (Wang, 2006), respectively.
Denote by L the measured pixel number for the particle length and,liheSmeasured pixel
number for the particle widtasddined in Table 1. The real 2D sizes of the crystal, i.e. the real

physical length denoted by Bnd the real physical width denoted by, We computed by
{LP = L,P,

WP = Sape (37)

6. Shape identification

The proposed shape iddntation methods composed of feature dimension reduction and
shape clasBication. Both are conducted off-line for model building, and then are implemented
for realtime shape identication. The identication procedure is illustrated in Figure 6.
6. 1 Feature dimension reduction

To avoid nonlinear correlations involved with multiple feature variables established herein, a
feature dimension reduction method is propoded facilitate shape iderication and
classfication.

Initially, the number of Fourier descriptors (listed in Table 2) should befsgtiased on

the captured images of crystals.the number of Fourier descriptdssno greater than 64t is
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suggested to take the minimum perimetsthe number of Fourier descriptors. Otherwise, the
number of Fourier descriptorsfixedas64 (Calderon De Andet al., 2005a, 2005b).

Considering that the number of Fourier descriptors is relatively large and the geometric
moment feature has 7 parameters, it is suggested to use a principal component analysis (PCA)
method for a preliminary dimension reduction of these feature variables.

To deal with the nonlinearity of feature variables, the kernel discriminant analysis (KDA)
method (Lu et al., 2005) may be used. However, the computation of the projection function in
KDA includes eigen-decomposition of the kernel matrix, which demands high computation effort.
Inspired by the spectral regression kernel discriminant analysis (SRKDA) (Cai et al., 2011)
having moderate computation effort, the SRKDA algorithm in combination with the optimal
parameter selection is given as below.

All the feature variables denoted ¥y=[X,X,,---,X,]" are mapped into the kernel space,
(X) =[A(X), #(X,), -+, #(X )], by using a nonlinear mapping functign,

Denote byc the number of classes, and let
y, =[0,0...,0,1,1,.. ,1,0,0,. ,O
—_— ) ——

e o (38)
\=1m i Zi=k+lm
wherek=1,2,.. candy, =[1,1...,1] . There are
W=21y (39)
Ka=y (40)
where k is the kernel matri%k(xi,yj) = qb(xi)Tqb(xi)) and V is defined by
1/1,, x,and x < class }
= . (41)
0, otherwise
To accommodate for computation loss, the following linear approximation is used,
(K+a=y (42)
whered is an adjustable parameter drid the identity matrix. It follows that
a =(K+dsl)ty (43)

Consequently, the regression objeciivéerms of the k-norm is:

o= argnlin(ZN:(K(XMi Y a-y, )2+5ZN:|04 U (44)

i=1

To solve the above regression problem, the least angel regression (LARS) (Efron and

Tibshirani, 2004) is adopted, and the radial basis function (RBF) (Cai et al., 2011) is taken as the
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kernel function for the convenience of computation.

Note that the parameter of RBF function usadthe above SRKDA may affect the
classfication accuracy. The linear minimum distance cfecstion (LMDS) (Baudat and Anouar,
2000) is used to determine the optimal parameters based on the linear separability pritieeple
high dimensional space. Bfig the training set is equally divided into two parts, add N,
where t=1, 2,..., /2 andl is the training sample number. The class center vegite 411, 2,...,

c) denotes the sample mean of each class; inerec is the number of classes. The distance
between Y and N can be computed and the class fqrisNdetermined by the criterioof
minimum distance. The clafigiation accuracy rates are computed with resjgedifferent RBF
parameters. The optimal parameterdeterminedin terms of the highest linear clasation
accuracy rate.

At first the training set is divided into two partM(and N,), (k=12,...,K /2)the
sample number isK ; Secondly, class center vectb, (c=1,2,..,C) are generated foM,
with the arithmetic average, the number of class€s iEhirdly, calculate the distance between
U.andN,, and the class fd¥,is determined with the minimum distance criterion; Fourthly
classification accuracy rates with different parameters are obtained; Consequently, thé optima
parameter range is selected with the most high classification accuracy rate.

6.2 Shape classification

For image-based monitoring of a crystallization process, the number of training images
usually far smaller than the number of testing images capituredl time.To guarantee effective
classfication of feature variables after dimension reduction, the support vector machine (SVM)
methodis adopted whiclis generally effective even for a small number of training samples.

The one-against-one approach of SVM (Hsu and Lin, 2002) is used for multi-class
classfication with a voting strategy (Chang and Lin, 2011). It constructs- d(J¢2 clasdiers
wherec is the number of classes. For the training vectgrs x 1, 2,---, | from the ith and jth

classes, the following optimizatios established for binary clagsation,

1 . . .
iz 0 w0+ 62, (69

Wl R 13 ) 15 t
((Wij)T¢(xt)) +bY >1-¢&/, if x; is the ith class,
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((Wij)Tq,')(xt)) +bhY <1-— ;j, if x; is the jth class,
=0 (45)
where W is the weight vector, 'bis the bias term, and,Gs the penalty parameter. Here the
training vectors pare mapped into a higher dimensional space by the funttion
By training the SVM parameters are deriviedestablish the shape cldssation model,
where the kernel functiois taken as the RBF function with the kernel parameter g. To determine
g and penalty parameter, @r computation, a cross-validation method is used which computes
the accuracy rate for differen, @nd g so as to determine the best accuracy with the smallest C
7. Case study
A cooling crystallization process of LGA was tested based on using a non-invasive imaging
systemto verify the effectiveness of the proposed imaging analysis method fdimeadrystal

morphology identication.
7.1 Experimental setup

The experimental set-up for capturing the crystal images is shown in Figure 7. The
crystallizer consists of a 4-I (Liter) jacketed glass vessel, a thermostatic circulator (Rroduct
Julabo-CF41), a Pt100 temperature probe, and a PTFE 4-paddle agitator. The LGA material
(chemical formula: C5HI9NO4, molecular weight: 147.13g/mol, purity: 99%, product of Sigma)
and distilled water were used for experiment. LGA has two recognized polymorphic forms:
prismatic a-form and needle-likef-form. A non-invasive imaging system including two
high-resolution cameras madey Hainan Six Sigma Intelligent Systems Ltd. (product no.
StereoVisionCrystal-G) was uséaltake colorful crystal images during the cooling process. The
cameras (Ul-2280SE-8Q) with CCD sensors and USB Video Class standard were rbgde
IDS Imaging Development Systems GmbH, whihbleto take 6 images per second.

To perform a cooling crystallization test, the initial solution (35g/L) was prepared using the
above LGA material an@L distilled waterin the 4L crystallizer, stirredoy a PTFE 4-Paddle
agitatorat a speeaf 150rpm. The solution wdsrst heated up to 75°C and the temperature was
maintained for 90mimo guarantee complete dissolution of the LGA solute. Then the solution was

cooled downto 15°C at a fast cooling rat& 0.8°C/min. The images were sampled per second
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with respecto thetime during the cooling process until the end of crystallization.
7.2 Image analysis and measurement results

In orderto measure the real crystal sizes, a circle micro-scale with the diameter of 350 mm
was usedo calibrate pixel equivalent before in-situ image analysis. The micro-scale wiad
placed in the camera lens focusis seen from Figure 8(a) that the captured image was not
distorted obviouslysothe distortion correction was not considered. Figure 8(b) shows the image
of circle scale after image compression and grayygcomparison, Figure 8(c) shows that the
proposed subpixel edge detection method gives accurate positioning, though the gragfimage
the circle scale in Figure 8(b) suffers from obvious nolgeverify the accuracy of the pixel
equivalent calibration, three additional circle scales were computed for compasiksied in
Table 4. Itis seen that the measurement ersonegligible, well demonstrating effectiveness of
the proposed pixel equivalent calibration method.

After pixel equivalent calibrationin-situ image analysis was conducted for the captured
crystal images during the crystallization proceas,shown in Figure 9(aff). Figure 9(a)
represents one of the original colorful images. Figure 9(b) shows the pre-processed image by
using the compression method based on wavelet decomposition. Note that the subtiimage
top-left corner in Figure 9(b) is the compressed image which mainly includes the low frgquenc
components, while the remaining area in Figure 9(b) mainly includes high frequency components
that are viewed as noise to be removed. Figure 9(c) shows the compressed image deyblurred
using the guidediltering and shoclkiltering. Based on the preliminarily established gray levels
of LGA particles for image texture feature exaction, Figure-9{dshows the results of gray
level processing, image enhancement and segmentation. The particle intensity and the
background were takers1 and O for image segmentation, respectively.

To demonstrate the superiority of the proposed image processing method, the multi-scale
method (Calderon De Anda et al.,, 2005b) and the IA method (Zhou et al.,, 2011) are also
performed for the original image shown in Figure 9(a). The results are shown in Figitres 10.
seen that all the particles are effectively detected by the proposed method for crystal morphology

analysis. In particular, the particle shape outlined by a yellow circle is entirely detgctied b
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proposed method, while the other two methods leave out certain part of the partiele shap
Subsequently, using the proposed particle sieving method, thefiielértiystals are shown
in Figure 11 along with the marks of measured siBgscomparing Figure 9(f) with Figure 11, it
is seen that there are 34 particleshe sampled image, including 6 valid particles, 26 tiny pieces
and 2 agglomerated particless properly sieved ouby the proposed method. Moreover, Figure
11 shows the 2D sizes (Lp alM®) of valid crystals computed using the formula in (37), which
can be used for analyzing CSD.
To further demonstrate the effectiveness of the proposed image analysis method under worse
imaging conditions, another gray image taken from the crystallization process with higher
turbidity is analyzed as shown in Figure 12. It is seen that valid particles are properly sieved out

from the obscure image, together with good measurement of the crystal sizes.
7.3 ldentification results of crystal shape

It is well known that LGA has two basic crystalline forms of prismatiform and
needle-likep-form. Figure 13 shows a captured image of these crystalline forms from the LGA
aqueous solutiorit is seen that these forms are different from each athie image shape and
texture. The fundamental features listed in Tables 2 and 3 are adoptistinguish these two
forms. Considering that there usually exist agglomerated particles together with imputiies
LGA solutionin practice, another shape denoteddthers is adopted to indicate these abnormal
particles.

For using the proposed shape ideosition method, 50 particles of visually domed
a-form andp-form were chosen randomly from the captured images, which wereasshd
training set. The testing set was talkex100 valid particles chosen from the captured images.

By using the SRKDA method to perform feature dimension reduction, the feature dimension
is reduced to two and the parameter of RBF function is taken as 2.3 in terms of the LMDS
method. Through cross-validation, Cp agdare takenas 2 and 128in the proposed SVM
classfication method. The shape iddérdation results are listed in Table 5.idtseen that the
established SVM model had very good recognition rate, which spends the complirtaion

about 1.82 s based on using a computer with a dual core CPU of 3.40GHz and a menabry size
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8GB. Note that the ideriitcation results are based on using a small number of training samples
identify more testing samples, well demonstrating the effectiveagédbe proposed shape
identifi cation method. Note that using the morphology classifying method (CalBerénda et
al., 2005c) will spend the computation time of about 3.57 s for the identically reduced feature set.
It should be mentioned that the analysise spent for each captured image was less than 8 s
by using the above computer, including all the steps-situ crystal morphology analysis shown
in Figure 1. This indicates that the proposed image analysis straggye efficiently
implemented for reaiime monitoring of a cooling crystallization process like LGA.
8. Conclusions
A synthetic image analysis strategy has been proposed-&itu crystal size measurement
and shape ideritcation, based on using a reihe imaging system for monitoring crystallization
processeslo facilitate analyzingn-situ images affectelddy uneven illumination, particle motion,
and solution turbulence, practical image processing algorithms including image compression,
filtering, enhancement and segmentation have been presented. Fundamental imageofeatures
crystals have been selected ffficient particle sievingln particular, a novel feature index
named IDD is introducedo quantitatively describe the crystal shape, which is relatively
independent of the crystal size and geometric direction in the captured image. Moreover, the
proposed particle sieving methodneffectively remove meaningless and agglomerated particles,
by using a reatime area threshold and concaveonvex degree establisha@d terms of the
k-means clusteringAs a result for monitoring the LGA crystallization process, the recognition
rateis over 96% for thex andp forms of LGA crystals, while a short processtmge (smaller
than 8s)is spent for analyzing each captured imbageising a computer with a dual core CPU of
3.40GHz and a memory size of 8GB.is therefore demonstrated that the proposed imaging
analysis methodcan be effectively used forin-situ measurement of crystal morphology,

facilitating realtime monitoring of crystallization processes.
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Table 1 Crystal size feature

Size feature

Description

Length
Width

Area
Perimeter

Length pixel numbeof the besfit rectangle for the particle shape
Width pixel numbeof the besfit rectangle for the particle shape

Number of all pixel points within the particle image
Number of the particle edge pixel points with the freeman chain code ¢Gaigttions

Table 2 Crystal shape feature

Shape feature

Description

Circularity degree

Rectangle degree
Elongation ratio

The degree of particle shape closing to circle
The ratio of a particle area over its best fitting rectangle area
The ratio between the length and width of a particle

Concave-convex degre The ratio of a particle area over its minimum convex hull area

Eccentricity
Fourier descriptors
Geometric moments

The ratio of the distance between ellipsoid foci over the semi-major agikpsbid
Fourier transform coefficients of the particle shape contour
Seven Hu moment invariants in the particle shape

Inner distance descriptc Defined by Eq. (24)

Table 3 Crystal texture feature

Texture feature

Description

Contrast

Energy

Entropy
Fractal dimension

The clarity and grooving depth of texture from GLCM
The quadratic sum of each element value from GLCM

The random measure of containing information from GLCM
Geometrical texture feature with Box-counting dimension

Table 4 Verification results for pixel equivalent calibration

No. Real size (um) Measured size (um) Error (%)

1 250 245.74 -1.70

2 170 172.91 1.71

3 120 122.45 2.04

Table 5 Recognition Rate for LGA crystallization
Particle type Real number Totz;lﬂqe;;ﬂed Correctly identified number  Recognition Rate

Alpha type 38 40 37 0.97
Beta type 52 52 51 0.98
others 10 8 8 0.80
total 100 100 96 0.96
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. Image segmentation
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Figure 1. Schematic diagram of crystal morphology analysis

Image compression
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Image enhancement
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Figure 2. Flow chart of image processing
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Figure 7. Experimental set-up of the crystallizer equipped with the non-invasive imaging system
(a) schematic diagram; and (b) external view

Figure 8. Subpixel edge detection: (a) original image; (b) gray-scale image; (c) edggeotetec

result
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Figure 9. LGA image processinda) original micrograph image; (b) compressed image; (c)
filteredimage; (d) gray-scale image; (e) enhanced image; (f) segmented image
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Figure 10.Comparison of image processing results: (a) the proposed method; (b) multi-scale
method; and (c) IA method
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Figure 11.Measurement results: (a) lengths of valid crystals and (b) widths of valid crystals
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Figure 12.Measurement results for a gray image: (a) original image; (b) lengths of valid crystals
and (¢ widths of valid crystals

Figure 13.Basic LGA crystal shape: (a}form; (b) p-form
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