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ABSTRACT 

A numerical model based on the Smoothed Particle Hydrodynamics (SPH) method is 

developed to simulate depth-limited turbulent open channel flows over hydraulically 

rough beds. The 2D Lagrangian form of the Navier-Stokes (N-S) equations are 

solved, in which a drag-based formulation is used based on an effective roughness 

zone near the bed to account for the roughness effect of bed spheres and an improved 

Sub-Particle-Scale (SPS) model is applied to account for the effects of turbulence. 

The SPS model is constructed based on the mixing-length assumption rather than the 

standard Smagorinsky approach to compute the eddy-viscosity. A more robust in/out-

flow boundary technique is also proposed to achieve stable uniform flow conditions at 

the inlet and outlet boundaries where the flow characteristics are unknown. The model 

is applied to simulate uniform open channel flow over a rough bed composed of 

regular spheres and validated by experimental velocity data. To investigate the 

influence of the bed roughness on different flow conditions, data from 12 

experimental tests with different bed slopes and uniform water depths are simulated 

and a good agreement has been observed between the model and experimental results 

of the streamwise velocity and turbulent shear stress. This shows that both the 

roughness effect and flow turbulence should be addressed in order to simulate the 

correct mechanisms of turbulent flow over a rough bed boundary and that the 

presented SPH model accomplishes this successfully.    

Keywords: SPH, turbulence, open channel flow, rough bed, mixing-length, drag force, 

inflow/outflow boundaries. 
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1 Introduction 

Since all natural river flows around the world are turbulent and the channel beds 

are often composed of large-scale, potentially mobile, rough elements such as sand 

and gravel particles, the study of turbulent open channel flows over rough beds is of 

significant engineering interest. This interest has motivated researchers to carry out 

various studies to explore the flow behaviour near the solid-fluid interface in 

laboratory experiments or to simulate the effect of bed roughness on the flow by 

numerical methods. The solution of fundamental hydrodynamic equations has become 

a popular numerical technique in modelling turbulent flows since it can provide time-

dependent details of the flow characteristics such as velocities, pressures and transport 

properties. In turbulence modelling of open channel flows, the Reynolds-averaged N-

S equations (RANS) or space-filtered Large Eddy Simulation (LES) equations have 

been widely used, where the large eddies are resolved and the small ones are 

modelled by an appropriate model, usually the eddy-viscosity model. The eddy-

viscosity model relates the turbulent shear stress to the local strain rate through an 

eddy-viscosity Ȟt based on the Boussinesq approximation. A simple, economical and 

practical approach to evaluate Ȟt is using a mixing-length model which is known as 

the zero-equation model. In this approach, the eddy-viscosity is related to the mean 

strain rate from Prandtl’s theory by using a turbulence characteristic length lm as 

follows: 

 







dz

dU
lmt

2  (1) 

where U is the mean streamwise velocity and lm is the mixing-length. Although the 

mixing-length model is easy to use, it lacks the universality and is not applicable to 

complicated flows (e.g. 3D non-uniform flows with disturbed free surface) where the 

distribution of turbulence length scale lm is not known. A well-known turbulence 

model which is commonly used for such complicated flows is the two-equation k–İ 
model where a wall function technique is usually used to estimate the flow in the 

shear boundary layer. Although this model has the advantage of including the effect 

of flow history and transport on the turbulence, it meets difficulties in treating rough 

wall boundaries since the near-bed logarithmic law does not hold anymore when large 

roughness elements exist. This has also been investigated by Nikora et al. (2004), who 

showed that in the interfacial sub-layer, which is the flow region between the 

roughness crest and trough that the velocity profile can be either constant, exponential 

or linear based on the flow conditions, relative submergence and roughness geometry. 

Another deficiency of the wall function approach has been addressed by Nicholas 

(2001), in that the shear stress could not be accurately reproduced by a wall function 

approach due to the mesh resolution problems in the region near the rough bed. On 

the other hand, the LES modelling approach is based on the spatially-averaged 
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equations where usually a Sub-Grid-Scale (SGS) model is used to relate the turbulent 

eddy-viscosity with the local flow strain rate by using the Smagorinsky model (1963).  

Different approaches have been adopted to account for the roughness effect in 

numerical modelling of turbulent flow over rough walls. Some have been developed 

based on modifying the turbulence model near the rough boundary; while in some 

others separate models have been used, for example, the roughness effect being 

formulated on the basis of a drag force equation. Van Driest (1956) proposed a 

modification to his mixing-length formula originally derived for hydraulically smooth 

walls. Based on this modification, the shear stress was increased near the wall due to 

the existence of the roughness elements. Rotta (1962) proposed a different 

modification to the van Driest formula by introducing a shift in the wall coordinate in 

order to increase the shear stress near the wall to take the roughness effect into 

account. Despite their simplicity, these models have provided a physical description 

of flow pattern near the wall and have been applied in several studies for calculation 

of boundary layers on rough walls, e.g. in Cebeci and Chang (1978). However, their 

modified model is not suitable in cases where the wall is composed of large-scale 

discrete rough elements such as in gravel bed rivers. Hence other researchers have 

explicitly modelled the roughness effect by using a drag-based model in which a sink 

term of the form drag is added to the momentum equations to address the form drag 

effect on the near-wall flow. Christoph and Pletcher (1983) and Taylor et al. (1985) 

used such models to simulate the roughness effect together with a mixing-length 

model to account for the turbulence. Wiberg and Smith (1991) divided the total shear 

stress into a fluid shear component and a form-induced component and used a mixing-

length model for the former and a drag force equation for the latter to calculate the 

velocity distributions in a steep stream over coarse gravel beds. Besides these, Cui et 

al. (2003), Carney et al. (2006) and Zeng and Li (2012) are some other examples of 

studies in which the drag concept has been applied to model the effect of wall 

roughness on the flow. Among them, Zeng and Li (2012) used a wall function 

approach to treat the shear boundary for small-scale rough bed elements and a drag 

force model for large-scale rough beds when the wall function approach was unable to 

reproduce the correct velocity distributions. 

Recently mesh-free particle methods, e.g. SPH, have been used in fluid flows due 

to their advantages in dealing with the large deformation of free surfaces and solid-

fluid interfaces. SPH can model flows by tracking each individual particle without 

numerical diffusion and has been used in various applications such as wave breaking, 

fluid impact and flow-structure interactions. As examples of hydraulic engineering 

related SPH studies, Gotoh et al. (2004), Shao and Gotoh (2004), and Shao and Gotoh 

(2005) should be mentioned. Recently, several other studies have been carried out 

focussing on the enhancement of the accuracy of particle methods in fluid flows, e.g. 
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Khayyer and Gotoh (2011), Lind et al. (2012), and Gotoh et al. (2014). Besides, 

further studies have also been done to improve the modelling of the effect of wall and 

free surface boundary conditions, for example, Ferrand et al. (2013), Leroy et al. 

(2014), and Tsuruta et al. (2015).  

However, very few cases have involved open channel flows, although some 

pioneering works in this field have been reported such as by Federico et al. (2012) and 

Fu and Jin (2013). Because of this, turbulence and rough bed issues have not been 

effectively solved for the type of flows found in shallow rivers with a rough 

boundary. For turbulence models in SPH, the earliest and most comprehensive work 

could be attributed to Gotoh et al. (2001) and Violeau and Issa (2007). The former 

proposed a novel eddy-viscosity based SPS turbulence model for a turbulent jet based 

on the Moving Particle Semi-implicit (MPS) method, in which the turbulent quantities 

were validated but the model applications were mainly based on the smooth wall, 

while the latter developed two RANS turbulence models and also applied a LES 

approach to simulate more complex turbulent free-surface flows.  

As for the shear boundary treatment, Violeau and Issa (2007) used a wall function 

approach to impose the logarithmic velocity distributions near the wall. Besides, 

Lopez et al. (2010) developed an SPH model with variable artificial viscosity to 

simulate hydraulic jumps and they applied a Lennard-Jones repulsive force on the bed 

particles to produce a “numerical” resistance on the near-wall flow. Sahebari et al. 

(2011) and Fu and Jin (2013) used the SPS model with Smagorinsky constant Cs = 

0.15 in their MPS simulations of open channel flows, where Sahebari et al. (2011) did 

not treat the bed roughness effect. Fu and Jin (2013) adjusted the velocity of dummy 

particles near the bed boundary to take the roughness effect into account. In this way, 

different types of bed conditions, including smooth, intermediately-rough and fully-

rough beds have been studied. Chern and Syamsuri (2013) also used the SPS 

turbulence modelling approach but with Cs = 0.12 and simulated hydraulic jumps over 

corrugated beds by using SPH. They treated the wall boundaries of smooth, 

triangular, trapezoidal and sinusoidal shapes by using lines of the particles, and 

applied a repulsive force similar to that of Lopez et al. (2010). De Padova et al. (2013) 

employed an eddy-viscosity model based on the mixing-length concept for flow 

turbulence to simulate hydraulic jumps in a large channel by SPH. Nevertheless, no 

bed boundary treatment was included in their model. Arai et al. (2013) applied a wall 

function to estimate the near-wall velocity in their MPS model with a Smagorinsky-

based eddy-viscosity model for turbulence in a LES of turbulent channel flows. A 

more physically sound rough bed modelling approach was initiated by Gotoh and 

Sakai (1999) for a breaking wave inside a porous medium. They pointed out that a 

drag force equation could be the most appropriate way to address the bed roughness. 

Khayyer and Gotoh (2009; 2010) developed a more mature drag force model to 
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address the wall friction effect for a dam break flow over a wet bed. Besides, it is also 

worth mentioning that recently quite a few influential works have been carried out in 

open channel flows by using the concept of shallow water SPH (Chang et al., 2011; 

Chang and Chang, 2013; Chang et al., 2014).   

In two recent studies, Mayrhofer et al. (2013, 2015) effectively investigated the 

turbulence modelling of wall-bounded flows using SPH. Mayrhofer et al. (2013) 

introduced an additional volume diffusion term into the continuity equation in order to 

treat the noises which arise as a result of the SPH discretisation. They used an eddy-

viscosity model with a mixing-length approach to estimate the additional diffusion 

term. More recently, Mayrhofer et al. (2015) applied the SPH method in a Direct 

Numerical Simulation (DNS) as well as LES of 3D wall-bounded turbulent channel 

flows, and revealed interesting findings. They firstly performed a quasi-DNS of a 3D 

channel flow based on SPH and achieved good agreement with the reference data 

except for some near-wall oscillations. Then they carried out a LES of a channel flow 

with friction Re number (ReĲ) of 1000 using SPH with the unified semi-analytical wall 

boundary condition and an eddy-viscosity model with the Smagorinsky constant Cs = 

0.065 for the unresolved part of the turbulence. In contrast to the DNS, the result of 

the LES was very poor. In order to investigate the insufficiency of their LES, they 

considered a Taylor-Green vortex case and stated that the failure was traced back to 

the SPH collocated discretisation effect on the pressure-velocity interactions. Finally 

they concluded the LES of a channel flow is still not possible with the present SPH 

formulation because of the problems inherent in the standard SPH discretisations.  

In grid-based LES, a variable resolution is usually adopted so as to use a much 

finer mesh near the wall boundary in order to resolve the near-wall flow scales, while 

in SPH, a non-variable homogenous discretisation has to be used. Hence a wall 

function is usually applied, such as in the studies of Violeau and Issa (2007), Arai et 

al. (2013), and Mayrhofer et al. (2015), to account for the wall effect. 

In a most recent study in this area, Kazemi et al. (2016) completed a 

comprehensive review on the numerical modelling of turbulent open channel flows 

over rough bed boundaries. They focused on the procedures of turbulence modelling 

and rough bed boundary treatments and reviewed mesh-free particle models which 

have been developed for these purposes. They remarked the deficiency of the eddy-

viscosity models with the Smagorinsky constant in treating the turbulence effect in 

SPH simulation of highly turbulent channel flows over rough boundaries; and also the 

insufficiency of the wall functions in treating the rough wall boundaries, which occurs 

because the near-wall velocity profile is not always logarithmic when the boundary 

consists of large roughness elements. Accordingly, the SPH method was 

recommended to be coupled with a mixing-length model for turbulence and a drag 

force equation model to treat the shear boundary near beds with large-scale 
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roughness. In the present study, the proposed model is further developed and used to 

investigate the effects of bed roughness in different regimes of turbulent flow over 

rough bed boundaries. In summary, we will use the fundamental eddy-viscosity based 

SPS model proposed by Gotoh et al. (2001) but adopt a mixing-length approach to 

realistically calculate the eddy-viscosity to improve the turbulence model 

performance in open channel flows. As for the drag force model, we will improve it 

by including a shape function in the drag force equation to account for the shape of 

bed roughness elements so as to more realistically evaluate the bed surface 

geometrical conditions. Also, an efficient inflow/outflow boundary treatment is used 

to generate an accurate and stable uniform flow along the channel. In model 

applications, the depth-limited flows with different regimes but with the same bed 

roughness are simulated and the velocity and shear stress profiles are validated by 

experimental data for 2D rough bed turbulent flow. Following Cheng et al. (2012), we 

consider the depth-limited condition as when the ratio of the bed roughness size to the 

water depth is significant. As far as we know, no documented SPH works have 

reported the quantification of such flow information for turbulent open channel flows 

over rough beds for conditions similar to those found in gravel bed rivers. 

2 Numerical Modelling Scheme of SPH 

2.1 Governing equations 

The governing equations are the two-dimensional continuity and momentum 

equations in the Lagrangian framework. An additional term to represent the form drag 

of the bed particles is included. This term as well as the turbulent shear term is not 

needed in a DNS. The final equation reads  

 u 
Dt

D  (2) 

 dtP
Dt

D ĲĲug
u





111 2

0   (3) 

where t is the time, ȡ is the fluid density, u is the velocity, P is the pressure, g is the 

gravitational acceleration, Ȟ0 is the kinematic viscosity coefficient, Ĳt is the turbulence 

stress tensor and Ĳd is the form drag-induced shear stress from the rough bed.  

To model the turbulence stress, a SPS model based on the eddy-viscosity 

assumption (Gotoh et al., 2001) is used as  

 ijijt
ij kS 



3

2
2   (4) 

where i and j denote the 2D coordinate components, Ĳij is the component of shear 



7 
 

stress tensor Ĳt, Sij is the component of strain tensor S calculated by Eq. (5), Ȟt is the 

turbulence eddy-viscosity, k is the turbulence kinetic energy calculated by Eq. (6) and 

įij is the Kronecker delta function. 

 



















i

j

j

i
ij x

u

x

u
S

2

1
 (5) 

 



















j

j

i

i
t x

u

x

u
k   (6) 

where x and u are the position and velocity components, respectively. In SPH, the 

turbulence eddy-viscosity Ȟt is usually estimated by the Smagorinsky model (1963), 

following the initiatives of Gotoh et al. (2001), as follows: 

   S2 st C  (7) 

where Cs is the Smagorinsky constant, usually taken to be between 0.1 and 0.15, ǻ is 

the characteristic length scale of eddies (filter width), which is taken as the particle 

spacing, and TSSS :  is the local strain rate. It should be noted that the turbulence 

has a three-dimensional nature, and in particular for the spatially-averaged LES-based 

modelling and consideration of SPS turbulence closure, the three-dimensional 

characteristics of turbulence should play an important role. However, in the present 

simulations of open channel uniform flow, the flow is dominated by the streamwise 

shear stress and vertical 2D momentum exchange, while the lateral influence is quite 

small so as to be reasonably neglected in this study. 

Equation (7) has been used with SPH in several coastal hydrodynamic 

applications and the accuracy has proved to be satisfactory. However, its applicability 

in open channel flows with SPH has been under-reported. In our previous 

computational experience (Kazemi et al., 2016), the Smagorinsky-based SPS model 

with Cs = 0.15 was not able to reproduce the correct shear mechanism in a uniform 

open channel flow over a rough wall. Also, in the study of Mayrhofer et al. (2015), 

using an eddy-viscosity model with a Smagorinsky constant Cs = 0.065 in the SPH-

LES showed very poor results with an overestimation in the streamwise velocity. 

They pointed out that the failure was related to the pressure-velocity interactions of 

vortices and concluded that this problem is inherent in the standard SPH 

discretization.   

We also carried out some simulations with the Smagorinsky constant Cs = 0.15 to 

investigate this issue. The results are presented in Section 3.4, which shows the failure 

of the SPH using the standard Smagorinsky eddy-viscosity model for turbulence. The 

failure is attributed to the deficiency of the standard Smagorinsky model in dealing 

with the cases in which sharp changes take place in the flow velocity, like the one 
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studied in present work. Further discussions on this issue will be provided in Section 

3.4. An alternative approach adopted here is then to explore the concept of a standard 

mixing-length model to estimate the turbulent eddy-viscosity in present SPH scheme 

in order to recover the part of the turbulence which cannot be captured by the standard 

Smagorinsky model with a Cs being around 0.15. Accordingly, the eddy-viscosity is 

formulated as follows 

 S2
mt l  (8) 

where the mixing-length lm is calculated by the Nezu and Rodi (1986) empirical 

formula as follows, which has been derived on the basis of physical measurements.  

  







 


 sin

1
1

H

lm  (9) 

where H is the water depth, ț is the von-Karman constant, and ȟ = z / H  is defined in 

which z is the vertical coordinate, and Ȇ is the Coles parameter. Ȇ has been 

introduced to describe the deviation from the log law in the outer region. This 

parameter comes from an empirical wake function added to the velocity log law by 

Coles (1956). Coleman (1981) has also expressed that the deviation in the outer layer 

from the log law should not be accounted for by adjusting the von-Karman constant ț 

and/or the integration constant (Br in Eq. 21) but rather by adding a wake function to 

the log law equation (Eq. 21). However, in the present study a value of 0.41 is 

adopted for ț and Ȇ is assumed to be zero so that the following Eq. (10) is used to 

estimate the mixing-length which is a simplified form of Eq. (9). This formula has 

also been used in the studies of Violeau and Issa (2007) in modelling the turbulent 

open channel flows by the SPH method.  

 Hzzlm  1  (10) 

Considering x and z as the streamwise and vertical coordinates in a strongly 2D 

uniform open channel flow, and u and w as the streamwise and vertical velocity 

components, respectively, Eq. (8) would be equivalent to Prandtl’s theory (Eq. 1), as 

the local strain rate |S| is approximately equivalent to ∂u/∂z due to the other velocity 

gradients such as ∂u/∂x, ∂w/∂x, and ∂w/∂z being significantly smaller. 

To account for the effect of bottom roughness, the form drag-induced shear stress 

term Ĳd/ȡ should be added to the momentum equation (3), since the macroscopic N-S 

equations are considered rather than a high spatial resolution (DNS) is solved for the 

refined flow details within the roughness region, which could use considerable CPU 

resources. Ĳd will be calculated by following Eq. (11), where Fd is the drag force 

exerted on the fluid particle from the rough bed, which is assumed to be equal to and 

in the opposite direction of the force from the fluid particle acting on the bed. AĲ is the 

bed-parallel, planar area affected by the fluid particle. Furthermore, the drag force Fd 
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will be calculated by Eq. (12), where Cd is the drag coefficient, Ad is the planar cross-

sectional area and Wd is a non-dimensional shape function accounting for the 

geometry of the bed roughness. The quantifications of relevant drag parameters will 

be detailed in Section 2.3, Boundary Conditions.  

 
A
d

d

FĲ   (11) 

 uuF dddd AWC 
2

1
  (12) 

2.2 Discretization of equations by SPH 

The numerical scheme based on the Weakly Compressible SPH (WCSPH) 

method is used to discretize the governing equations. SPH is a Lagrangian particle 

method that was developed by Gingold and Monaghan (1977) initially for 

astrophysical problems. Since then it has been widely used for simulating fluid flows. 

In the SPH approximation, any variable, for example A(r), can be estimated by the 

following integral interpolant equation as 

      


 ','' rrrrr dhWAA  (13) 

where ȍ is the volume of the integral, r is the particle position, rƍ denotes the particle 

coordinate, h is the smoothing length, and W(r-rƍ,h) is the weighting or kernel 

function. The above equation can be expressed in the following discretized form to 

calculate A(r) at the position of particle a 

       
b

ba
b

b
ba hW

A
mA ,rr

r
r


 (14) 

where a and b are the reference particle and its neighbour, and mb and ȡb are the mass 

and density of neighbouring particle b, respectively. The derivative of A(r) in the xj 

direction can be approximated by 

       






b j

ba

b

b
b

j

a

x

,hWA
m

x

A rrrr


. (15) 

By using the above SPH formulations, the governing equations (Eqs. 2 and 3) are 

discretized as below for the computations of density and velocity of the particles as  

  
b

abaab
b

b
a

a W
m

Dt

D
u





 (16) 
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
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













 (17) 

where uab = ua - ub and rab = ra - rb are defined, ׏aWab is the gradient of the kernel 

function between particles a and b with respect to the position of particle a, and Ș is a 

small number used to prevent singularity. In the present WCSPH model, the following 

Eq. (18) is used to link the continuity equation with the momentum equation to 

compute the fluid pressure from the change in particle density in an explicit way as 

  0
2

0   cP  (18) 

where ȡ0 is the reference density and c0 is the speed of sound. In a WCSPH numerical 

scheme it is assumed that the flow is slightly compressible so the speed of sound 

should be chosen to be around 10 times of the bulk flow velocity to ensure the fluid 

compressibility being less than 1%. Finally, ȡ0 and c0 are respectively taken as 1000 

kg/m3 (water density) and 16 m/s as a common practice in the computations. 

Although the weakly compressible SPH is known to result in considerable numerical 

noises in the pressure field, a special treatment (density filtering, delta-SPH terms, 

etc.) could be taken to improve the performance. Therefore, the present WCSPH 

simulations have been done using a Shepard density filter to minimize the pressure 

noises at every 30 computational time steps. The solution method using a predictor-

corrector scheme (Monaghan, 1989) is implemented to solve the governing equations 

and update the density, velocity and position of the particles. The selection of the 

computational time step follows the Courant–Friedrichs–Lewy (CFL) condition.  

2.3 Boundary conditions 

The computational domain boundaries including the free surface, rough boundary 

and inflow/outflow boundaries are shown in Fig. 1. There is no special treatment for 

the free surface boundary in the SPH method because the particles are automatically 

tracked.  

2.3.1 Treatment of inflow/outflow boundary  

Recently some pioneering works have been done on the treatment of 

inflow/outflow boundary conditions in SPH, e.g. Federico et al. (2012), Aristodemo et 

al. (2015), and Tan et al. (2015). In present study, a similar technique has been 

adopted but with the difference in that the inflow particle velocities are linked with 

those of the inner fluid particles, so that the flows are evolved naturally without any 

prescriptions of the inflow velocity. For the inflow and outflow boundaries, several 

layers of particles are located beyond the boundary line but within the threshold line 
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to cover the truncated kernel area of the inner-fluid particles near the boundary (Fig. 

1). The governing equations are not solved for these particles but they move 

according to the flow conditions inside the inner-fluid domain. In this way, the 

velocity and pressure of inflow/outflow particles are evolved through calculations 

rather than being allocated the prescribed values. The proposed technique is suitable 

for cases where the inflow and/or outflow conditions are not known and need to be 

determined through the simulations. One example is the gravity driven flow over a 

sloping channel bed that is considered in the present study. To generate an open 

channel uniform flow, the appropriate flow conditions need to be achieved at the 

inflow boundary, i.e. the gradients of the velocity and pressure in the streamwise 

direction x should be zero at the boundary line, represented by 
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To satisfy these conditions in an SPH computation, the properties of the inflow 

particles (e.g. velocity and density) are set equal to those of the inner-fluid particles 

near the inflow boundary line. To do so, an averaging point is first defined for each 

inflow particle at the same elevation but inside the inner-fluid region, with a distance 

of dp/2 from the boundary line as shown in Fig. 2(a), where dp is the SPH particle size. 

Then the velocity and density of the inner-fluid particles are averaged over a kernel 

area onto these points and set as the velocity and density of the corresponding inflow 

particles (see Fig. 2(b)). Therefore, the gradient of velocity as well as the density is 

zero at the boundary. Since the pressure is calculated by using Eq. (18), the zero 

pressure gradient is also satisfied and thus the flow uniformity is achieved. When an 

inflow particle crosses the boundary line and enters the inner-fluid region, it becomes 

an inner-fluid particle and the governing equations are solved for it in the next time 

step. Meanwhile, an additional inflow particle is generated with the same properties at 

the inlet threshold line for the same elevation (Fig. 2(a)). In this way, the inflow 

region bounded by the inlet threshold line and the inner-fluid area acts like a particle 

generator to reach a uniform flow condition at the boundary. For consistency, the 

same kernel function and smoothing length of the inner-fluid SPH calculations are 

used for the averaging process in Fig. 2(b). The novelty of the proposed inflow 

boundary treatment over that of existing approaches is that the flow is naturally 

evolved through the numerical simulations without being given a prescribed inflow 

velocity, so the model can be applied to a much wider range of hydraulic applications 

in which the inflow information is unknown.  

At the outflow boundary, the uniform flow condition should also be satisfied to 

keep the uniformity of the flow through the simulation domain. The same technique 
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used at the inflow boundary can be used for the outflow one. However, a slightly 

different treatment is adopted at the outlet to reduce the computational time. When an 

inner-fluid particle goes across the outflow boundary line it becomes an outflow 

particle and the governing equations are not solved on the particle anymore, but its 

properties are kept unchanged when it moves through the outflow region. This 

treatment is similar to that used by Federico et al. (2012), in which the properties of 

outflow particles are frozen. Finally the particles are removed from the computational 

domain when they pass through the outlet threshold line (See Fig. 1). 

To check whether the inflow/outflow boundary condition satisfies the volume 

conservation or not, we simply calculated the volume flows inside the computational 

domain at the inlet as well as the outlet boundary at every second of the simulation for 

several test cases, and we found out the maximum difference between the inlet and 

outlet volumes is less than 0.5%. This shows the validity of volume conservation on 

the inflow/outflow boundary condition in the present simulations. However, for a 

detailed modelling of inflow/outflow boundary conditions, we need to refer to 

Hosseini and Feng (2011) where a rotational pressure-correction scheme with 

consistent pressure boundary condition is proposed to overcome the numerical 

difficulties and consistently implement the inflow/outflow boundary conditions. 

2.3.2 Treatment of rough bed boundary 

Since a rough bed with relatively large roughness elements is studied in the 

present work, an important question arises regarding where exactly the location of the 

zero-velocity plane (also called numerical bed level in Fig. 1) would be. In the present 

model, the vertical level of the zero-velocity plane is located at some distance below 

the roughness crest, and fluid particles are placed from this level to the water surface. 

The drag force model is introduced over the distance between the bed level and the 

roughness crest, i.e. the drag-induced stress term Ĳd/ȡ is calculated only for the fluid 

particles which are located between the numerical bed level and the crest of roughness 

zone (see Fig. 1). This distance is named the effective roughness height or the 

thickness of the roughness zone (Rd) and is assumed to be variable for different flow 

conditions as according to experimental observations, the effect of bed roughness on 

the flow differs for different flow conditions. The numerical bed elevation that defines 

the base of the roughness zone can be considered as the zero-velocity plane on which 

the spatial and temporally averaged flow velocity drops to zero. For this bed 

boundary, several layers of dummy particles (red particles in Fig. 1) are placed below 

the boundary line to address the truncated kernel area in the vicinity of the boundary. 

The velocity of these dummy particles are not evolved in the calculations, i.e. they are 

fixed in space with zero velocity, but they have pressure to prevent the fluid particles 

from penetrating this boundary. In this sense, the zero-velocity bed level also 

corresponds to the location of the upper line of dummy particles. In the present 
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WCSPH simulations, the pressures of dummy particles are determined through the 

equation of state (Eq. 18) after their density variations have been computed by using 

the SPH continuity equation (16). This algorithm can ensure that adequate pressure is 

obtained on the dummy particles to prevent the inner fluid particles penetrating the 

wall boundary. 

A schematic view of the bed drag force model including the roughness spheres is 

shown in Fig. 3, in which the roughness zone is from the numerical bed level (zero-

velocity plane) to the crest of the sphere with a thickness of Rd. Considering a section 

normal to the flow direction as depicted in Fig. 3, it is assumed that when a fluid 

particle a is located within the roughness zone, the roughness element (the sphere) 

produces a drag-induced shear stress on this particle. This actually exerts a force on 

the fluid fragment of width ds and height dp (ABCD in Fig. 3), where ds is the diameter 

of the roughness sphere and dp is the computational particle size. Therefore, the cross-

sectional area Ad in Eq. (12) is assumed to be equal to the particle size dp and the bed-

parallel planar area AĲ in Eq. (11) is equal to dsdp. Meanwhile, for each fluid particle 

located in the roughness zone, as depicted in Fig. 3, a shape function Wd is defined as 

the area of part of the water fragment located within the sphere (A’B’C’D’ in Fig. 3) 

over the total area of the fragment (ABCD = dsdp) by the following equation 

 
ABCD

DCBA
d A

A
W   (20) 

This function accounts for the shape of the roughness elements which are defined 

as spheres in the present study to match the roughness elements used in the laboratory 

study.  

Another parameter of Eq. (12) which needs to be considered is the drag 

coefficient Cd. According to the original work on particle modelling of porous flows 

using the MPS method by Gotoh and Sakai (1999), Cd usually lies between 1.0 and 

1.5 and thus a value of 1.0 is simply adopted in the present study. Different values of 

Cd have also been described in the literature for spherical particles. In the experiments 

of Schmeeckle et al. (2007) on turbulent open channel flow over fixed spheres, the 

drag coefficient was found to be 0.76. They also measured the drag force in turbulent 

flows over cubes and natural particles and found that the drag coefficient was 

significantly higher than that used to model the bed load motion. In the proposed drag 

force model (Eq. 12), the product of CdWd acts as the total drag coefficient. By 

assuming half of the bed grain to be the effective roughness height and Cd = 1.0, the 

average value of CdWd for the particles inside the roughness zone would be equal to 

0.785, which is close to the value found by Schmeeckle et al. (2007) for spherical 

particles. Here it should be noted that the roughness spheres as shown in Fig. 3 do not 

physically exist in the numerical model so particles can penetrate inside the roughness 

zone but feel its influence. 
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3 Model Applications and Results Analysis 

3.1 Model setup and computational parameters 

In this section a SPH model is developed for uniform turbulent open channel 

flows over a sloping rough bed and validated by the depth and velocity data obtained 

from PIV measurement in a laboratory channel with uniform sized spheres packed in 

a hexagonal pattern on the bed (Nichols, 2013). In these tests, the bed sphere diameter 

ds is 24 mm and the channel slope S0 ranges from 0.002 to 0.004. For this application 

a rectangular computational domain is chosen with a length of L = 4H, where H is the 

water depth. Three layers of fixed dummy particles are used for the bottom wall and 

three layers of moving particles are used for the inflow as well as outflow regions to 

satisfy the complete kernel area of the inner-fluid particles near the boundary lines 

(Fig. 1). Since the effect of bottom roughness on the flow depends not only on the 

absolute roughness size but also on the flow conditions, 12 test cases with different 

bed slopes and water depths are simulated to assess the accuracy of the drag force 

model in addressing the roughness effect. Relevant parameters used in the test cases 

are summarised in Table 1. According to this table, the Fr number for all 12 cases is 

below one, which means all tests are in the sub-critical flow condition, while Chang 

and Chang (2013) and Chang et al. (2014) covered more flow regimes. Meanwhile, 

the domain is discretized by SPH particles with size dp = 2 mm to have at least 20 

particles over the depth for the shallowest case (H = 40 mm). The smoothing length is 

taken to be 1.2dp in the present study. This value has been recommended as the most 

appropriate SPH smoothing length in many studies as common practice. Since the 

interfacial boundary layer in the physical model between the bed roughness and the 

free flow is expected to be quite thin, a kernel function with a narrower influence 

domain but steeper slope near the central point is expected to be more adequate. 

Therefore, the cubic spline function of Monaghan and Lattanzio (1985) is chosen for 

the present simulations. However, an in-depth investigation is required for the choice 

of spatial resolution, smoothing length, and kernel function in cases where the flow 

velocity changes sharply over an interfacial boundary layer as in the present study.   

As illustrated in Table 1, the model has been applied to different flow conditions 

with bed slopes 0.002, 0.003 and 0.004; and water depths from 40 mm to 100 mm. As 

mentioned in the previous section, the thickness of the roughness zone (Rd) is 

assumed to vary depending on the flow conditions. Therefore, six of the test cases 

(Nos. 1, 5, 6, 8, 10 and 12) are used to calibrate the model in terms of Rd by numerical 

trials when the computed mean velocity profiles achieved the best fit with the 

experimental data and then a semi-empirical fitting function is obtained to establish 

the relationship between the flow depth and relative roughness height Rd/H. Based on 

this, the additional test cases (Nos. 2, 3, 4, 7, 9 and 11) are used to validate the model. 
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The calibration tests are selected to cover most of the depth range from 40 to 100 mm 

and at least 2 cases of each bed slope. Calibration and validation tests are indicated by 

letters (C) and (V) respectively, in Table 1. 

The calibration process is as follows. Each test case is simulated by using several 

Rd values and the Mean Absolute Error (MAE) between the numerical and 

experimental velocity profiles are calculated for each one, then the Rd value 

corresponding to the minimum MAE is selected as the thickness of the roughness 

zone for that test case. After running the model for calibrating tests and finding the 

best Rd with the smallest MAE, the relative roughness height Rd/H is plotted against 

depth H (Fig. 4) and a curve is fitted to the points using a power function as shown in 

the figure. For each validating case, different values of Rd are examined in the 

simulations and the one with the minimum MAE is used for the test case and plotted 

on the same graph to see if it follows the fitted curve. As can be seen, the Rd/H values 

of the validation tests have nearly the same relation with the water depth. Further 

evidence of the model validations will be demonstrated by the good agreement 

between the numerical and experimental velocity and shear stress distributions along 

the flow depth, as detailed in the next section. 

3.2 Analysis of velocity profiles 

Figure 5(a) and (b) present the instantaneous streamwise velocity and pressure (t = 

70 s); and Fig. 5(c) and (d) show their time-averaged contours respectively, for the 

case S004H50. The averaging has been done over 20 seconds from t = 70 s to 90 s. It 

shows that the uniform flow condition has been successfully imposed by the proposed 

inflow/outflow boundary technique. This is also shown in Fig. 6(a) where the time-

averaged velocity of three different sections of the channel (x = 0.25L, 0.50L, and 

0.75L) are plotted. It is found that the depth-averaged velocity at these three sections 

has a maximum difference of 0.5%. Figure 6(b) shows the space-averaged velocity at 

three different times (t = 35, 50 and 65 s). The maximum difference of the depth-

averaged velocity between these times is 1.96%. This small change in the velocity 

profile over time also shows the steadiness of the flow. In the present computations, 

the time to reach the steady state is not exactly the same for all test cases. However, to 

determine a threshold, it is confirmed that it takes around 20-30 seconds to achieve 

the steady flow condition for all 12 cases. The criterion used to define if the flow 

reaches the steady state is that if the differences of the depth-averaged value of the 

space-averaged (but not instantaneous) velocities at the mid-section of the channel at 

different times become less than 2.0%, then the flow is regarded as being steady. The 

bed drag-induced shear stress term removes a part of the flow momentum and this 

effect is transferred to the upper layers of the flow by the turbulence model. As a 

result, the unbalanced momentum transfer occurs during the first 20-30 seconds and 
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then the flow gradually reaches the steady state and all time-averaged flow parameters 

e.g. velocity and shear stress remain unchanged. In the inflow and outflow 

boundaries, the flow characteristics are assumed to be unknown rather than being 

given prescribed values of the pressure and velocity. Therefore, the proposed SPH 

inflow boundary model is more general in that it does not need experimentally 

measured or analytically prescribed flow data at the inflow boundary and can thus be 

applied to more complex flow situations. In Federico et al. (2012), the model 

verification was based on the fact that the initial inner velocity field, which was 

initialized with the analytical solutions and updated by the upstream inflow boundary 

conditions (which were also initialized by the analytical solutions), could be stably 

maintained or not during the computations. In comparison, in the present SPH inflow 

model, the open channel flows are generated naturally by following the channel 

conditions.   

 The numerical results of time-averaged streamwise velocity profiles obtained by 

using the best-fit values of Rd are presented in Fig. 7, in comparison with the 

experimental data as well as the analytical profiles which are obtained from the log 

law. These include all the test cases as indicated in Table 1. The analytical velocity 

profile is presented in Eq. (21) where z is vertical coordinate, ks is the Nikuradse 

roughness size and Br is the logarithmic integration constant which is equal to 8.5 for 

rough bed uniform flow. We know that as the depth is very shallow and the bed is 

fully rough, the log law may not be valid. Here the analytical profiles are used to 

compare with the numerical results and investigate if the model is able to predict the 

logarithmic velocity distribution above the roughness zone. The values of Rd as well 

as MAE of velocity profiles of all test cases are presented in Table 2. Both Fig. 7 and 

Table 2 demonstrate the satisfactory performance of the SPH modelling technique in 

these proposed flow conditions. 
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To determine the error distribution over depth, the MAE is calculated separately 

in three parts of the depth for each test case, i.e. lower 20 %, middle 60 % and upper 

20 % of the depth. The purpose of this is to investigate the hypothesis (Nichols, 2013) 

that the bottom 20 % of the water depth would be the logarithmic layer and then the 

upper layers of the flow could be split up differently. This is shown in Fig. 8. As the 

slope of the velocity profile (∂u/∂z) is also of interest, its distribution is presented in 

Fig. 9 for all test cases and the values of MAE of these profiles are also calculated. 

The MAE values of ∂u/∂z are presented in Table 2 and their distributions in the lower 

20 %, middle 60 % and upper 20 % of the depth for all cases are illustrated in Fig. 10.  
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According to Fig. 8, with increasing depth the velocity MAE of the upper 20% of 

the depth mostly increases, and as the slope decreases the MAE of the near-bed 

velocity generally increases. In most test cases, the lowest MAE of the velocity 

profiles takes place in the middle part of the depth. This is also valid for the MAE of 

the velocity gradient profiles as can be seen in Fig. 10. Compared with the velocity, 

the errors of the velocity gradient are usually larger in the lower 20 % of the depth. 

However, in some cases (e.g. S004H70 and S003H60) there seems to be a large error 

in the upper part of the depth due to the fact that the predicted and measured gradients 

have different signs near the water surface. Just below the surface, the experimental 

velocity gradient declines sharply to zero or even to negative values in some cases, 

while a non-zero, but small positive velocity gradient is predicted by the numerical 

model (Fig. 9). The negative gradient in the top of the flow could be due to the fact 

that the data is derived from a 3D experimental model in which secondary flow 

circulations occur while such circulations are not accounted for in the present 2D 

numerical model. However, the log law (Eq. 21) presents a positive small, but non-

zero velocity gradient at the top (Fig. 9), which is much more similar to the numerical 

profiles than the experimental ones. This is because the mixing-length model (Eq. 9) 

adopted by the SPH approach has been based on the log law theory. In the mixing-

length formula of Nezu and Rodi (1986), it is assumed that above a certain elevation, 

the mixing-length decreases to zero at the water surface as the size of turbulent eddies 

are significantly restricted by the surface. Assuming such a decline in the mixing-

length could lead to a non-zero velocity gradient near the water surface. On the other 

hand, the differences in the near-bed velocity gradient between the numerical and 

experimental profiles are much less than those between the analytical and 

experimental ones. This is attributed to the adoption of the robust drag force model by 

which the near-bed velocity is related to the shear from the roughness elements rather 

than assuming a logarithmic distribution in the shear boundary.  

3.3 Analysis of roughness height 

During the calibration/validation process (Section 3.1), the Rd values 

corresponding to the minimum errors, if divided by the water depth, showed a 

relationship with the depth based on the power function as presented in Fig. 4. 

According to this figure, as the depth increases, the relative roughness height (Rd/H) 

decreases. It is notable that the bed roughness sphere size is fixed in the present study 

(ds = 24 mm). Therefore, Rd/H decreases with a decrease in the ratio of roughness size 

to water depth (ds/H) and vice versa. In this work, the bed roughness configuration is 

kept constant to study its effect under different flow conditions. As the depth is not 

the only parameter affecting the flow condition and the bed slope is also involved, we 

also explored the relationship between the relative roughness height (Rd/H) and the 

shear velocity u*. The result is shown in Fig. 11(a) with different power fitting 
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functions for different bed slope values. It is shown that the fitting curves are nearly 

equally-spaced with a vertical shift upwards as the bed slope increases and the SPH 

computational points fall close to the appropriate curves.  

It can also be seen that an increase in the shear velocity causes the numerical 

relative roughness height to become milder for all bed slopes. To provide a single 

relationship between the relative roughness height and the flow condition, Rd/S0H of 

all cases are plotted against u* in Fig. 11(b) with the same type of power fitting curve. 

This also shows that as the flow becomes more sheared (larger u*), smaller relative 

roughness height is required to simulate the experimental condition. In other words, as 

the ratio of bed roughness to water depth (ds/H) becomes smaller, i.e. when the flow 

depth becomes deeper, a weaker bed effect is generated by the proposed drag force 

model. However, the magnitude of the form-drag shear stress could be larger for the 

cases with higher u* since the near-bed flow velocity is faster. 

3.4 Analysis of form-drag and turbulent shear stress  

The distribution of the streamwise form-drag shear term (Ĳd/ȡ) in the effective 

roughness zone is presented in Fig. 12 for all the tests. As expected, the average Ĳd/ȡ 

is larger for cases with higher u* or Re number. In other words, where the flow depth 

is deeper and/or the bed slope is steeper, the form-drag shear term is larger due to the 

higher velocity. In most tests, the streamwise Ĳd/ȡ increases with depth to some 

distance above the wall (zero-velocity plane) and then decreases to the crest of the 

roughness zone although the velocity increases in this zone. This decrease can be the 

result of the shape function in Eq. (20) which declines sharply below the roughness 

crest. The shape function leads to a non-constant drag coefficient in the roughness 

zone that is related to the shape of the elements. In the present simulations, the 

dominant velocity is the streamwise one and the contribution of the vertical velocity 

to the form drag is very small so that it is reasonable to be neglected. It has been 

found that in the roughness zone the scale of the time-averaged vertical velocity is 

less than 0.5% of the time-averaged streamwise velocity in our test cases, while it is 

about 1.0% to 2.0% in the presented 3D experimental data. The underestimation of 

the vertical velocity in the roughness zone could be due to that the physical dispersion 

in the vertical direction which is from the obstruction of the flow by the bed elements 

has not been numerically defined, since the governing equations and the 

computational domain are discretised at a macroscopic scale. In Fig. 13, the numerical 

results of the streamwise velocity profiles of tests of bed slope 0.004, 0.003 and 0.002 

are plotted in separate graphs in order to illustrate the effect of rough bed boundary on 

the streamwise flow velocity. As can be seen for each bed slope, the velocity is higher 

for larger depths and this effect is simulated by variable roughness height in the 

model. 
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Using a variable Rd in the model affects not only the drag shear stress, but also the 

turbulent shear stress near the bed. In the present model, the zero reference datum for 

the mixing-length is defined by the zero-velocity plane of the flow. This is illustrated 

in Fig. 14 where lm is plotted for two cases with effective roughness heights of Rd,1 

and Rd,2 (Rd,2 > Rd,1). Here the eddy-viscosity is higher when the thickness of the 

roughness zone (Rd) is larger, thus the shear stress calculated by Eq. (4) is also larger. 

This leads to a higher impact of the bottom drag effect on the upper flow. In general, 

any changes of Rd could affect both the drag force and the turbulence models and thus 

the simulated flows will change. It is also notable that a small change in the mixing-

length, on the crest of the roughness zone could have a considerable effect on the 

eddy-viscosity (Eq. 8) since the velocity gradient (or the local strain rate |S|) is at a 

maximum on this interface.  

For six of the twelve test cases shown in Table 1, the profiles of the time-averaged 

shear stress estimated by the SPS with the mixing-length model are presented in Fig. 

15 in comparison with the experimental data and with the analytical profile obtained 

from Eq. (22). In this equation Ĳ0 is the shear stress at the bed which is estimated by 

ȡgHS0.  
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To better illustrate the data, the horizontal axis is normalized by Ĳ0 and the vertical 

one is normalized by the flow depth H. As can be seen, the numerical computations 

underestimate the experimental shear stresses, although they are in a fairly good 

agreement with the analytical solution. It is notable that the experimental data are 

taken from a 3D flow over a rough bed surface, which could lead to the fact that they 

exceed the analytical shear stresses by about 20-30%. Besides, the underestimation of 

the experimental shear stress by the numerical model is also related to the 

dimensional differences, as in the present 2D model the shear stress in the lateral 

direction is neglected. The width-wise shear stress is the result of steady streaming in 

the form of flow circulations in the lateral direction. In spite of this, the 2D SPS 

model is still able to give satisfactory results in the uniform flow since the effect of 

the lateral shear stress is very much smaller compared with the streamwise one. 

Moreover, the close collapses of six SPH data along almost a single line indicate the 

consistency and convergence of the numerical simulations. 

As mentioned before, the eddy-viscosity model with a Smagorinsky constant in 

the range of 0.1-0.15 is not able to estimate the correct amount of turbulent shear 

stress in a uniform open channel flow over a rough bed boundary. To investigate this 

issue, here we repeat the simulations of three test cases S004H50, S003H70 and 

S002H60 by using the Smagorinsky model with Cs = 0.15. The result is presented in 

Figs. 16 and 17, where respectively the streamwise velocity and shear stress profiles 
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are compared with the ones obtained from the present mixing-length eddy-viscosity 

model. Meanwhile, the experimental velocity profiles and the analytical shear stress 

profiles are also presented for a comparison. As can be seen, the shear stress is 

consistently largely underestimated, leading to the overestimation of the velocity.  

In contrast to their DNS results with good agreement with the reference data, 

Mayrhofer et al. (2015) also observed the overestimation of the velocity in their SPH-

LES computations of a wall-bounded channel flow with friction Re of 1000, where an 

eddy-viscosity model was used with a Smagorinsky constant Cs = 0.065. They pointed 

out that the correct representation of energy redistribution between Reynolds stress 

components in a SPH-LES framework would require 16 times finer resolution than 

needed in a classic Eulerian LES one. They stated that the most obvious solution is an 

increase in the resolution, but it also highly increases the computational cost. Finally 

they concluded that the underperformance of their LES was due to the problems 

inherent in the standard SPH discretizations related to the pressure-velocity 

interactions.  

In the present study, the friction Re is even higher than that in the study of 

Mayrhofer et al. (2015) and on the other hand, the resolution is also quite coarse. 

Therefore, the insufficiency of the LES with the standard Smagorinsky model 

becomes more obvious in the present simulations. In addition, the rough bed boundary 

is another important influence factor too. When filtering the discretised equations 

using a SPH kernel function to represent the turbulence effect, a part of the turbulent 

stress which is mainly due to the spatial filtering has been lost by the standard eddy-

viscosity model (with Smagorinsky constant). This issue becomes even more 

important when the discretised flow velocity changes sharply over the filtering 

volume/area; e.g. at the interfacial boundary between the roughness zone and the free 

flow in the present study. Besides, the rough bed boundary has a dominant effect on 

the whole water depth, so non-accurate parameterisation of the turbulence effect at 

this boundary makes significant errors in the whole flow domain. However, if the 

eddy-viscosity model is adequately parameterized, reasonable results can still be 

obtained. As a result, we have applied the mixing-length model of Nezu and Rodi 

(1985), which is on the basis of physical measurements, in order to recover that part 

of the turbulent stress which cannot be captured by the standard Smagorinsky model 

with small Cs.  

Nonetheless, one shortcoming of the proposed turbulence model is that the eddy-

viscosity coefficient is physically defined, so it is not dependent on the computational 

resolutions. In other words, if one uses a smaller particle size (higher resolution), the 

resolved part of the turbulence stress would become higher, but the mixing-length 

product which is the representative of the unresolved part would not decrease with the 

discretisation and/or filtering size. Thus the total turbulent stresses could be 
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overestimated in the test cases with higher resolution. Accordingly the flow velocities 

would be expected to be underestimated in such a situation. It is promising to note 

that the present mixing-length approach works quite effectively with the SPH when a 

slightly coarser particle resolution is used, thus this makes the model more potential in 

practical engineering applications. 

4 Conclusion 

In this study, a SPH model has been developed to simulate the turbulent open 

channel flows over rough bed boundaries based on the solution of 2D N-S equations 

including two additional stress terms to account for the flow turbulence and bed 

roughness effect. As shown, the standard Smagorinsky-based SPS model with a fixed 

Cs = 0.15 was unable to reproduce the correct shear mechanisms in uniform open 

channel flows. Therefore, a mixing-length model has been applied to calculate the 

turbulent eddy-viscosity. A drag force model has been developed to account for the 

bed roughness effect, in which a shape function is introduced to consider the 

geometry of the bed surface roughness elements. Meanwhile, an efficient 

inflow/outflow boundary treatment has been proposed and demonstrated to generate a 

stable flow simulation without the need to use prescribed velocities at the flow inlet, 

thus enabling the model to be used without having to prescribe input velocity profiles.  

Twelve test cases of different bed slopes and water depths have been simulated to 

investigate the effect of bed roughness under various flow conditions. A roughness 

zone is defined near the rough bed boundary where a form-induced drag shear stress 

is applied on the SPH particles. The thickness of this zone (Rd) is assumed to be flow-

dependent, such as being related to the flow depth H and the shear velocity on bed u*. 
The model results showed good agreement with the experimental data as well as the 

analytical solutions in view of the velocity and shear stress profiles. This confirms 

that the bed roughness effect has been successfully addressed by the drag force model, 

and the transport of this effect to the upper layers of the flow has been correctly 

reproduced by the proposed turbulent mixing-length approach. Since the governing 

equations, as well as the computational domain, are discretised at a macroscopic scale 

in the roughness zone, the physical dispersion in the vertical direction is disregarded. 

Thus the flow shear is dominantly driven in the streamwise direction; but transported 

vertically by the turbulence closure. The computed streamwise velocity and shear 

stress profiles suggested that this assumption has not caused substantial errors for the 

12 flow test cases and the macro flow behaviours have been well reproduced. This is 

due to the turbulence model correctly modelling the shear transfer from the roughness 

layer to the free flow. 
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Whether the non-accuracy of the SPH-LES approach in wall-bounded channel 

flows is related to the pressure-velocity interactions (as addressed by Mayrhofer et al., 

2015) or to the deficiency of the standard Smagorinsky model, the proposed mixing-

length approach is able to recover this difficulty as the eddy-viscosity being 

realistically parameterised. However, as the mixing-length is independent of the 

computational resolution, it may overestimate the shear stress in cases with higher 

particle resolution which may cause an underestimation of the flow velocity. 

Therefore, this model is proposed to be coupled with the SPH when coarse 

discretisation of the equations is considered, unless an effective method is found to 

link the mixing-length to the spatial discretisation so as to enhance the capacity of the 

model. In addition to this, the method of filtering the governing equations with 

different kernel functions needs to be investigated in more details due to the existence 

of the rough bed boundary over which the flow velocity has a sharp change. These 

issues along with the effect of various configurations of bed roughness on the flow 

resistance are considered as future studies.         
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Table 1  Computational parameters used in test cases (The first four letters in 
the test ID show the bed slope and the rest show the water depth) 

 

Test 
No. 

Test ID S0 
H 

(mm) 
u* 

(m/s) 
Re Fr 

Calibration 
/  

Validation 

1 S004H40 0.004 40 0.0396 10843 0.433 (C) 

2 S004H50 0.004 50 0.0443 15067 0.430 (V) 

3 S004H70 0.004 70 0.0524 32703 0.564 (V) 

4 S004H90 0.004 90 0.0594 47301 0.559 (V) 

5 S004H100 0.004 100 0.0626 59698 0.603 (C) 

6 S003H50 0.003 50 0.0384 11615 0.332 (C) 

7 S003H60 0.003 60 0.0420 19516 0.424 (V) 

8 S003H70 0.003 70 0.0454 27926 0.481 (C) 

9 S003H80 0.003 80 0.0485 32089 0.453 (V) 

10 S002H60 0.002 60 0.0343 12022 0.261 (C) 

11 S002H70 0.002 70 0.0371 19671 0.339 (V) 

12 S002H80 0.002 80 0.0396 30794 0.435 (C) 
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Table 2  Relative roughness heights and numerical errors of all tests 
 

Test 

No. 
Test ID Rd / H 

MAE of 

u (m/s) 

MAE of 

∂u/∂z (1/s) 

1 S004H40 0.285 0.0052 0.77 

2 S004H50 0.206 0.0060 1.17 

3 S004H70 0.144 0.0100 1.27 

4 S004H90 0.104 0.0100 0.77 

5 S004H100 0.094 0.0179 1.25 

6 S003H50 0.202 0.0047 1.40 

7 S003H60 0.156 0.0063 1.39 

8 S003H70 0.135 0.0078 0.67 

9 S003H80 0.116 0.0080 1.11 

10 S002H60 0.172 0.0052 1.05 

11 S002H70 0.137 0.0061 0.81 

12 S002H80 0.113 0.0061 0.82 
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Figure 1  A schematic view of the computational domain and boundary 
conditions 

 

 

  



29 
 

 

 

 

 

 

Figure 2  Inflow boundary treatment 
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Figure 3  A schematic view of the bed drag force model 
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Figure 4  Calibration and validation of the model in terms of the effective 
roughness height vs. the water depth 
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Figure 5  Uniform flow condition (test case S004H50): (a) instantaneous 
streamwise velocity; (b) instantaneous pressure; (c) time-averaged streamwise 

velocity; and (d) time-averaged pressure  
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Figure 6  Uniformity and steadiness of the flow (test case S004H50): (a) time-
averaged velocity in three sections through the channel; (b) space-averaged 

velocity in three times with 15 s intervals 
 

 

  



34 
 

 

 

Figure 7  Distribution of the time-averaged streamwise velocity over depth. 
Dash-dotted and dashed lines show the level of the numerical bed (zero-velocity 

plane) and the crest of the roughness zone respectively    
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Figure 8  MAE of the streamwise velocity in the lower 20%, middle 60% and 
upper 20% of the depth 
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Figure 9  Distribution of the gradient of the time-averaged streamwise velocity 
over depth. Dash-dotted and dashed lines show the level of the numerical bed 

(zero-velocity plane) and the crest of the roughness zone respectively 
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Figure 10  MAE of the streamwise velocity gradient in the lower 20%, middle 
60% and upper 20% of the depth 
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Figure 11  Relative roughness height against shear velocity: (a) relationship 
between Rd/H and u* for different bed slopes, (b) relationship between Rd/S0H 

and u* for all tests  
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Figure 12  Distribution of the drag-induced shear term in the effective roughness 
zone (solid line). Dash-dotted and dotted lines show the level of the numerical 

bed (zero-velocity plane) and the crest of the roughness zone respectively 
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Figure 13  Velocity profiles of tests with bed slopes (a) 0.004, (b) 0.003, and (c) 
0.002. The dashed lines show the level of the roughness crest and the solid half-

circles schematically depict the roughness element  
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Figure 14  Distribution of the mixing-length in 2 cases with the same depth (H = 
50 mm) and different effective roughness heights (Rd,2 > Rd,1). The zero reference 
of the mixing-length is on the numerical bed level (zero-velocity plane) and the 

dotted line shows the crest of the roughness zone 
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Figure 15  Distributions of the normalized turbulent shear stress with depth 
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Figure 16  Time-averaged streamwise velocity obtained from the present mixing-
length model compared with the one obtained from the Smagorinsky model with 

Cs = 0.15 and the experimental data for test cases S004H50, S003H70 and 
S002H60 (vertical axis z is in logarithmic scale) 
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Figure 17  The x-z component of the turbulent shear stress obtained from the 
present mixing-length model compared with the one obtained from the 

Smagorinsky model with Cs = 0.15 and the analytical profiles for test cases 
S004H50, S003H70 and S002H60  


