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ABSTRACT

A numerical model based on the Smoothed Particle Hydrodynamics (SPH) method is
developed to simulate depth-limited turbulent open channel flows over hydrgulical
rough beds. The 2D Lagrangian form of the Navier-StolésS) equations are
solved, in which a drag-based formulation is used based on an effective roughness
zone near the bed to account for the roughness effect of bed spheres and an improved
Sub-Particle-Scale (SPS) model is applied to account for the effects of turbulence.
The SPS model is constructed based on the mixing-length assumption rather than the
standard Smagorinsky approach to compute the eddy-viscagitpre robust in/out-

flow boundary technique is also proposed to achieve stable uniform flow conditions at
the inlet and outlet boundaries where the flow characteristics are unknown. The model
is applied to simulate uniform open channel flow over a rough bed composed of
regular spheres and validated by experimental velocity data. To investigate the
influence of the bed roughness on different flow conditions, data from 12
experimental tests with different bed slopes and uniform water depths are simulated
and a good agreement has been observed between the model and experimental results
of the streamwise velocity and turbulent shear stress. This shows that both the
roughness effect and flow turbulence should be addressed in order to simulate the
correct mechanisms of turbulent flow over a rough bed boundary and that the
presented SPH model accompéskhis successfully.

Keywords:SPH turbulence, open channel flow, rough bed, mixing-length, drag force,
inflow/outflow boundaries.
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1 Introduction

Since all natural river flows around the world are turbulent and the channel beds
are often composed of large-scale, potentially mobile, rough elements such as sand
and gravel particles, the study of turbulent open channel flows over rough beds is of
significant engineering interest. This interest has motivated researchers to carry out
various studies to explore the flow behaviour near the solid-fluid interface in
laboratory experiments or to simulate the effect of bed roughness on the flow by
numerical methods. The solution of fundamental hydrodynamic equations has become
apopular numerical technique in modelling turbulent flows since it can provide time-
dependent details of the flow characteristics such as velocities, pressures and transport
properties. In turbulence modelling of open channel flows, the Reynolds-averaged N-
S equations (RANS) or space-filtered Large Eddy Simulation (LES) equations have
been widely used, where the large eddies are resolved and the small ones are
modelled by an appropriate model, usually the eddy-viscosity mo@ike eddy-
viscosity model relates the turbulent shear stress to the local strain rate through an
eddy-viscosityv; based on the Boussinesq approximation. A simple, economical and
practical approach to evaluateis using a mixing-length model which is known as
the zero-equation model. In this approach, the eddy-viscosity is related to the mean
strain rate fromPrandtl’s theory by using a turbulence characteristic length bs
follows:

vt %) ®
where U is the mean streamwise velocity apdslthe mixing-length. Although the
mixing-length model is easy to use, it lacks the universality and is not applicable to
complicated flows (e.g. 3D non-uniform flows with disturbed free surface) where the
distribution of turbulence length scalg is not known. A well-known turbulence
model which is commonly used for such complicated flows is the two-equation k
model where a wall function technique is usually used to estimate the flow in the
shear boundary layer. Although this model has the advantage of including the effect
of flow history and transport on the turbulence, it meets difficulties in treating rough
wall boundaries since the near-bed logarithmic law does not hold anymore when large
roughness elements exist. This has also been investigated by Nikora et al. (2004), who
showed that in the interfacial sub-layer, which is the flow region between the
roughness crest and trough that the velocity profile can be either constant, exponential
or linear based on the flow conditions, relative submergence and roughness geometry.
Another deficiency of the wall function approach has been addressed by Nicholas
(2001), in that the shear stress could not be accurately reproduced by a wall function
approach due to the mesh resolution problems in the region near the rough bed. On
the other hand, the LES modelling approach is based on the spatially-averaged
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equations wherasuallya Sub-Grid-Scale (SGS) model is used to relate the turbulent
eddy-viscosity with the local flow strain rate by using the Smagorinsky model (1963).

Different approaches have been adopted to account for the roughnessnreffect i
numerical modelling of turbulent flow over rough walls. Some have been developed
based on modifying the turbulence model near the rough boundary; while in some
others separate models have been used, for example, the roughness effect being
formulated on the basis @& drag force equation. Van Driest (1956) proposed a
modification to his mixing-length formula originally derived for hydraulically smooth
walls. Based on this modification, the shear stress was increased near the wall due to
the existence of the roughness elements. Rotta (1962) proposed a different
modification to the van Driest formula by introducing a shift in the wall coordinate in
order to increase the shear stress near the wall to take the roughness effect into
account. Despite their simplicity, these models have provided a physical description
of flow pattern near the wall and have been applied in several studies for calculation
of boundary layers on rough walls, e.g. in Cebeci and Chang (1978). Howewer, the
modified modelis not suitable in cases where the wall is conspas large-scale
discrete rough elements suchiasgravel bed rivers. Hence other researchers have
explicitly modelled the roughness effect by usindrag-based model in which a sink
term of the form drag is added to the momentum equations to address the form drag
effect on the near-wall flow. Christoph and Pletcher (1983) and Taylor et al. (1985)
used such models to simulate the roughness effect together with a mixing-length
model to account for the turbulence. Wiberg and Smith (1991) divided the total shear
stress into a fluid shear component and a form-induced component and used a mixing-
length model for the former and a drag force equation for the latter to calculate the
velocity distributions ira steep stream over coarse gravel b&#sides these, Cui et
al. (2003), Carney et al. (2006) and Zeng and Li (2012) are some other examples of
studies in which the drag concept has been applied to model the effect of wall
roughness on the flow. Among them, Zeng and Li (2012) used a wall function
approach to treat the shear boundary for small-scale rough bed elements and a drag
force model for large-scale rough beds when the wall function approach was unable to
reproduce the correct velocity distributions.

Recently mesh-free particle methods, elgHShave been used in fluid flows due
to their advantageim dealing with the large deformation of free surfaces and solid-
fluid interfaces. SPH can model flows by tracking each individual particle without
numerical diffusion and has been used in various applications such as wave breaking,
fluid impact and flow-structure interaction8s examples of hydraulic engineering
related SPH studies, Gotoh et al. (2004), Shao and Gotoh (2004), and Shao and Gotoh
(2005) should be mentioned. Recently, several other studies have been carried out
focussing on the enhancement of the accuracy of particle methods in fluid flows, e.g.



Khayyer and Gotoh (2011), Lind et al. (2012), and Gotoh et al. (2014). Besides,
further studies have also been done to improve the modelling of the effect of wall and
free surface boundary conditions, for example, Ferrand et al. (2013), Leroy et al.
(2014), and Tsuruta et al. (2015).

However, very few cases have involved open channel flows, although some
pioneering works in this field have been reported such as by Federico et al. (2012) and
Fu and Jin (2013). Because of this, turbulence and rough bed issues have not been
effectively solved for the type of flows found in shallow rivers with a rough
boundary. For turbulence models in SPH, the earliest and most comprehensive work
could be attributed to Gotoh et al. (2001) and Violeau and Issa (2007). The former
proposed a novel eddy-viscosity based SPS turbulence model for a turbulent jet based
on the Moving Particle Semi-implicit (MPS) method, in which the turbulent quantities
were validated but the model applications were mainly based on the smogth wall
while the latter developed two RANS turbulence models and also applied a LES
approach to simulate more complex turbulent free-surface flows.

As for the shear boundary treatment, Violeau and Issa (2007) used a wall function
approach to impose the logarithmic velocity distributions near the wall. Besides,
Lopez et al. (2010) developed an SPH model with variable artificial viscosity to
simulate hydraulic jumps and they applied a Lennard-Jones repulsive force on the bed
particlesto produce a “numerical” resistance on the near-wall flow. Sahebari et al.
(2011) and Fu and Jin (2013) used the SPS model with Smagorinsky constant C
0.15 in their MPS simulations of open channel flows, where Sahebari et al. (2011) did
not treat the bed roughness effect. Fu and Jin (2013) adjusted the velocity of dummy
particles near the bed boundary to take the roughness effect into account. In this way,
different types of bed conditions, including smooth, intermediately-rough and fully-
rough beds have been studied. Chern and Syamsuri (2013) also used the SPS
turbulence modelling approach but with£0.12 and simulated hydraulic jumps over
corrugated beds by using SPH. They treated the wall boundaries of smooth,
triangular, trapezoidal and sinusoidal shapes by using lines of the particles, and
applied a repulsive force similar to that of Lopez et al. (2010). De Padova et al. (2013)
employed an eddy-viscosity model based on the mixing-length concept for flow
turbulence to simulate hydraulic jumps in a large channel by SPH. Nevertheless, no
bed boundary treatment was included in their mo8leli et al. (2013) applied a wall
function to estimate the near-wall velocity in their MPS model with a Smagorinsky-
based eddy-viscosity model for turbulence in a LES of turbulent channel #fows.
more physically sound rough bed modelling approach was initiated by Gotoh and
Sakai (1999) for a breaking wave insid@orous medium. They pointed out that a
drag force equation could be the most appropriate way to address the bed roughness.
Khayyer and Gotoh (2009; 2010) developeenore mature drag force model to



address the wall friction effect for a dam break flow cveret bed. Besides, it is also
worth mentioning that recently quite a few influential works have been carried out in
open channel flows by using the concept of shallow water SPH (Chang et al., 2011,
Chang and Chang, 2013hang et al., 2034

In two recent studies, Mayrhofer et al. (2013, 2015) effectively investigated the
turbulence modelling of wall-bounded flows usi&PH Mayrhofer et al. (2013)
introduced an additional volume diffusion term into the continuity equation in order to
treat the noises which arise as a result of the SPH discretisation. They used an eddy-
viscosity model with a mixing-length approach to estimate the additional diffusion
term. More recently, Mayrhofer et al. (2015) applied the SPH meth@dOirect
Numerical Simulation (DNS) as well as LES of 3D wall-bounded turbulent channel
flows, and revealed interesting findings. They firstly performed a quasi-DNS of a 3D
channel flow based on SPH and achieved good agreement with the reference data
except for some near-wall oscillations. Then they carried out a LES of a channel flow
with friction Re numberRe) of 1000 using SPH with the unified semi-analytical wall
boundary condition and an eddy-viscosity model with the Smagorinsky congtant C
0.065 for the unresolved part of the turbulence. In contrast to the DNS, the result of
the LES was very pooin order to investigate the insufficiency of their LES, they
considered a Taylor-Green vortex case and stated that the failure was traced back to
the SPH collocated discretisation effect on the pressure-velocity interactions. Finally
they concluded the LES of a channel flow is still not possible with the present SPH
formulation because of the problems inherent in the standard SPH discretisations.

In grid-based LES, a variable resolution is usually adopted so as to use a much
finer mesh near the wall boundary in order to resolve the near-wall flow scales, while
in SPH, a non-variable homogenous discretisation has to be used. Hence a wall
function is usually applied, such as in the studies of Violeau and Issa (2007), Arai et
al. (2013), and Mayrhofer et al. (2015), to account for the wall effect.

In a most recent study in this area, Kazemi et al. (20dd@npleted a
comprehensive review on the numerical modelling of turbulent open channel flows
over rough bed boundaries. They focused on the procedures of turbulence modelling
and rough bed boundary treatments and reviewed mesh-free particle models which
have been developed for these purposesy remarked the deficiency of the eddy-
viscosity models with the Smagorinsky constant in treating the turbulence effect in
SPH simulation of highly turbulent channel flows over rough boundaries; and also the
insufficiency of the wall functions in treating the rough wall boundaries, which occurs
because the near-wall velocity profile is not always logarithmic when the boundary
consists of large roughness elemeniéccordingly, the SPH method was
recommended to be coupled with a mixing-length model for turbulence and a drag
force equation model to treat the shear boundary near beds with large-scale
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roughness. In the present study, the proposed model is further developed and used to
investigate the effects of bed roughness in different regimes of turbulent flow over
rough bed boundaries. In summanmg will use the fundamental eddy-viscosity based
SPS model proposed by Gotoh et al. (2001) but adopt a mixing-length approach to
realistically calculate the eddy-viscosity to improve the turbulence model
performance in open channel flows. As for the drag force model, we will improve it
by including a shape function in the drag force equation to account for the shape of
bed roughness elements so as to more realistically evaluate the bed surface
geometrical conditions. Also, an efficient inflow/outflow boundary treatment is used

to generate an accurate and stable uniform flow along the channel. In model
applications, thedepth-limitedflows with different regimes but with the same bed
roughness are simulated and the velocity and shear stress profiles are validated by
experimental datéor 2D rough bed turbulent flowollowing Cheng et al. (2012), we
consider the depth-limited condition as when the ratio of the bed roughness size to the
water depth is significantAs far as we know, no documented SPH works have
reported the quantification of such flow information for turbulent open channel flows
over rough beds for conditions similar to those found in gravel bed rivers.

2 Numerical Modelling Scheme of SPH

2.1 Governing equations

The governing equations are the two-dimensional continuity and momentum
equations in the Lagrangian framewof additional term to represent the form drag
of the bed particles is included. This tea® well as the turbulent shear teismot
needed in HNS. The final equation reads

Dp

—L =——»HV-u 2
Dt L @
EZ_EVP+9+VOV2U+1V‘Tt +£Td (3)
Dt P P P

where t is the timey is the fluid densityu is the velocity, P is the pressucgis the
gravitational accelerationy is the kinematic viscosity coefficient, is the turbulence
stress tensor amg is the form drag-induced shear stress from the rough bed.

To model the turbulence stress, SS model based on the eddy-viscosity
assumption (Gotoh et al., 2001) is used as

71 =2vS _Eké‘ij (4)
where i and j denote the 2D coordinate componefts the component of shear
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stress tensot;, § is the component of strain tens®rcalculated by Eq. (5); is the
turbulence eddy-viscositk is the turbulence kinetic energy calculated by Eq. (6) and
oj is the Kronecker delta function.
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e e BT 5
NN .
k:v{%+%J )
% OX

where x and u are the position and velocity components, respectively. In SPH, the
turbulence eddy-viscosity is usually estimated by the Smagorinsky model (1963),
following the initiatives of Gotoh et al. (2001), as follows:

Vi = (CSA)Z |S4 (7)

where G is the Smagorinsky constant, usually taken to be between 0.1 and 0s15,
the characteristic length scale of eddies (filter width), which is taken as the particle

spacing, ands=vS:S' is the local strain ratét should be noted that the turbulence

has a three-dimensional nature, and in particular for the $patisdraged LES-based
modelling and consideration of SPS turbulence closure, the three-dimensional
characteristics of turbulence should play an important role. However, in the present
simulations of open channel uniform flow, the flow is dominated by the streamwise
shear stress and vertical 2D momentum exchange, while the lateral influence is quite
small so as to be reasonably neglected in this study.

Equation (7) has been used with SPH in several coastal hydrodynamic
applications and the accuracy has proved to be satisfactory. However, its ajiylicabil
in open channel flows with SPH has been under-reported. In our previous
computational experience (Kazemi et al., 2016¢ Smagorinsky-based SPS model
with Cs = 0.15 was not able to reproduce the correct shear mechanigmniform
open channel flow over a rough walllso, in the study of Mayrhofer et al. (2015),
usingan eddy-viscosity model with a Smagorinsky constant=@®.065 in the SPH-

LES showed very poor results with an overestimation in the streamwise velocity

They pointed out that the failure was related to the pressure-velocity interactions of
vortices and concluded that this problem is inherent in the standard SPH
discretization.

We also carried out some simulations with the Smagorinsky cons{an®.C5 to
investigate this issue. The results are presented in Section 3.4, which shows the failure
of the SPH using the standard Smagorinsky eddy-viscosity model for turbulence. The
failure is attributed to the deficiency of the standard Smagorinsky model in dealing
with the cases in which sharp changes take place in the flow velocity, like the one



studied in present work. Further discussions on this issue will be provided in Section
3.4. An alternative approach adopted here is then to explore the concept of a standard
mixing-length model to estimate the turbulent eddy-viscosity in present SPH scheme
in order to recover the part of the turbulence which cannot be captured by the standard
Smagorinsky model with as®eing around 0.15. Accordingly, the eddy-viscosity is
formulated as follows

Vi= Im2|q (8)

where the mixing-lengthylis calculated by the Nezu and Rodi (1986) empirical
formula as followsyhich has been derived on the basis of physical measurements

I _ e 1_(5E+”Hsm(ﬁ¢)} ©)

where H is the water depth,is the von-Karman constant, afi¢ z/ H is defined in

which z is the vertical coordinate, ard is the Coles parametefl has been
introduced to describe the deviation from the log law in the outer region. This
parameter comes from an empirical wake function added to the velocity log law by
Coles (1956). Coleman (1981) has also expressed that the deviation in the outer layer
from the log law should not be accounted for by adjusting the von-Karman constant
and/or the integration constant, (B Eq. 21) but rather by adding a wake function to
the log law equation (Eg. 21). However, in the present stugglue of 0.41 is
adopted forc andII is assumed to be zero so that the following Eq. (10) is used to
estimate the mixing-length which is a simplified form of Eq. (9). This formula has
also been used in the studies of Violeau and Issa (2007) in modelling the turbulent
open channel flowby the SPHmethod.

I, =xz\/1-z/H (20)

Considering x and z as the streamwise and vertical coordinates in a strongly 2D
uniform open channel flow, and u and w as the streamwise and vertical velocity
components, respectively, Eq) (Bould beequivalent to Prandtl’s theory (Eq. 1), as
the local strain rate5] is approximately equivalent t@/oz due to the other velocity
gradients such a&:/0x, owlox, and owloz being significantly smaller.

To account for the effect of bottom roughnebg, form drag-induced shear stress
termty/p should be added to the momentum equations(Be the macroscopic N-S
equations are considered rather than a high spatial resolution (DNS)ead feolthe
refined flow details within the roughness region, which could use considerable CPU
resourceszy Will be calculated by following Eq.1(), whereF4 is the drag force
exerted on the fluid particle from the rough bed, which is assumed to be equal to and
in the opposite direction of the force from the fluid particle acting on the hesithe
bed-parallel, planar area affected by the fluid particle. Furthermore, the dragrforce
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will be calculated by Eq. (12), wherg (S the drag coefficient, /As the planar cross-
sectional area and jgMs a non-dimensional shape function accounting for the
geometry of the bed roughness. The quantifications efaet drag parameters will
be detailed in Section 2.3, Boundary Conditions.

F
Tg = Kd (11)
1
F, = -5 C W, pA Ul (12)

2.2 Discretization of equations by SPH

The numerical scheme based on the Weakly CompresSiBld (WCSPH)
method is used to discretize the governing equations. SPH is a Lagrangian particle
method that was developed by Gingold and Monaghan (1977) initially for
astrophysical problems. Since thiehas beenvidely used for simulating fluid flows.

In the SPH approximation, any variable, for example),Atan be estimated by the
following integral interpolant equaticas

Ar)= IA(r "W(r —r', hjdr (13)

whereQ is the volume of the integral,is the particle position;’ denotes the particle
coordinate, h is the smoothing length, andrW(h) is the weighting or kernel
function. The above equation can be expressed in the following discretized form to
calculate Af) at the position of particle a

)2 A(p—f:)vv«a—rb,h) (14)

where a and b are the reference particle amkighbour, and prandp, are the mass
and density of neighbouring particle b, respectively. The derivativerdfii\the x
direction can be approximateg

M:Zmo A(rb)GW(ra—rb,h)- (15)

oX; = Lo oX;

By using the above SPH formulations, the governing equations (Eqgs. 2 and 3) are
discretized as below for the computations of density and velocity of the particles as

Dp
Tta:pa;pﬂ;uab'vawab (16)
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whereuap = Us - Up andrap =14 - rp are definedVaWap, is the gradient of the kernel
function between particles a and b with respect to the position of particle g jsaad
small number used to prevent singularity. In the present WCSPH model, the following
Eq. (18) is used to link the continuity equation with the momentum equgtion
compute the fluid pressure from the change in particle density in an explicitsvay

P=c,*(p—po) (18)

wherepy is the reference density anglis the speed of sound. #WCSPH numerical
scheme it is assumed that the flow is slightly compressible so the speed of sound
should be chosen to be around 10 times of the bulk flow velocity to ensure the fluid
compressibility being less than 1%. Finaljly,and @ are respectively taken as 1000
kg/m® (water density) and 16n/s as a common practice in the computations.
Althoughthe weakly compressible SPH is known to result in considerable numerical
noises in the pressure field, a special treatment (density filtering, delta-SPH terms,
etc.) could be taken to improve the performance. Therefore, the present WCSPH
simulations have been done using a Shepard density filter to minimize the pressure
noises at every 30 computational time stépee solution method using a predictor-
corrector scheme (Monaghan, 1989) is implemented to solve the governing equations
and update the density, velocity and position of the particles. The selection of the
computational time step follows the Courdftedrichs-Lewy (CFL) condition.

2.3 Boundary conditions

The computational domain boundaries including the free surface, rough boundary
and inflow/outflow boundaries are shown in Fig. 1. There is no special treatment for
the free surface boundary in the SPH method because the particles are automatically
tracked.

2.3.1 Treatment of inflow/outflow boundary

Recently some pioneering works have been done on the treatment of
inflow/outflow boundary conditions in SPH, e.g. Federico et al. (2012), Aristodemo et
al. (2015), and Tan et al. (2015). In present study, a similar technique has been
adopted but with the difference in that the inflow particle velocities are linked with
those of the inner fluid particles, so that the flows are evolved naturally without any
prescriptions of the inflow velocityror the inflow and outflow boundaries, several
layers of particles are located beyond the boundary line but within the threshold line
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to cover the truncated kernel area of the inner-fluid particles near the boundary (Fig.
1). The governing equations are not solved for these particles but they move
according to the flow conditions inside the inner-fluid domain. In this way, the
velocity and pressure of inflow/outflow particles are evolved through calculations
rather than being allocated the prescribed values. The proposed technique is suitable
for cases where the inflow and/or outflow conditions are not known and need to be
determined through the simulations. One example is the gravity driven flow over a
sloping channel bed that is considered in the present study. To generate an open
channel uniform flow, the appropriate flow conditions need to be achieved at the
inflow boundary, i.e. the gradients of the velocity and pressure in the stremmwis
direction x should be zero at the boundary line, represémted

X (19)
P _o,
oX

To satisfy these conditions in an SPH computation, the properties of the inflow
particles (e.g. velocity and density) are set equal to those of the inner-fluid particles
near the inflow boundary line. To do so, an averaging point is first defined for each
inflow particle at the same elevation but inside the inner-fluid region, with a distance
of dy/2 from the boundary line as shown in Fig. 2@@)ere d is the SPH particle size
Then the velocity and density of the inner-fluid particles are averaged over a kernel
area onto these points and set as the velocity and density of the corresponding inflow
particles (see Fig. 2(b)). Therefore, the gradient of velocity as well as the density is
zero at the boundary. Since the pressure is calculated by using Eq. (18), the zero
pressure gradient is also satisfied and thus the flow uniformity is achieved. When an
inflow particle crosses the boundary line and enters the inner-fluid region, it becomes
an inner-fluid particle and the governing equations are solved for it in the next time
step. Meanwhile, an additional inflow particle is generated with the same properties at
the inlet threshold line for the same elevation (Fig. 2(a)). In this way, the inflow
region bounded by the inlet threshold line and the inner-fluid area acts like a particle
generator to reach a uniform flow condition at the boundary. For consistency, the
same kernel function and smoothing length of the inner-fluid SPH calculations are
used for the averaging process in Fig. 2(b). The novelty of the proposed inflow
boundary treatment over that of existing approaches is that the flow is naturally
evolved through the numerical simulations without being given a prescribed inflow
velocity, so the model can be applied to a much wider range of hydraulic applications
in which the inflow information is unknown.

At the outflow boundary, the uniform flow condition should also be satisfied to
keep the uniformity of the flow through the simulation domain. The same technique
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used at the inflow boundary can be used for the outflow one. However, a slightly
different treatment is adopted at the outlet to reduce the computational time. When an
inner-fluid particle goes across the outflow boundary line it becomes an outflow
particle and the governing equations are not solved on the particle anymore, but its
properties are kept unchanged whémmoves through the outflow regiohis
treatment is similar to that used by Federico et al. (2012), in which the properties of
outflow particles are frozen. Finally the particles are removed from the computational
domain when they pass through the outlet threshold line (See)Fig. 1

To check whether the inflow/outflow boundary condition satisfies the volume
conservation or not, we simply calculated the volume flows inside the computational
domain at the inlet as wedkthe outlet boundary at every second of the simulation for
several test cases, and we found out the maximum difference between the inlet and
outlet volumes is less than 0.5%. This shows the validity of volume conservation on
the inflow/outflow boundary condition in the present simulations. Howevera for
detailed modelling of inflow/outflow boundary conditions, we need to refer to
Hosseini and Feng (2011) where a rotational pressure-correction scheme with
consistent pressure boundary condition is proposed to overcome the numerical
difficulties and consistently implement the inflow/outflow boundary conditions.

2.3.2 Treatment of rough bed boundary

Since a rough bed with relatively large roughness elements is studied in the
present work, an important question arises regarding where exactly the location of the
zero-velocity plane (also called numerical bed level in Fig. 1) woealth the present
model, the vertical level of the zero-velocity plane is located at some distance below
the roughness crest, and fluid particles are placed from this level to the water surface.
The drag force model is introduced over the distance between the bed level and the
roughness crest, i.e. the drag-induced stress tgpnis calculated only for the fluid
particles which are located between the numerical bed level andegief roughness
zone (see Fig. 1). This distance is named the effective roughness height or the
thickness of the roughness zong)(&d is assumed to be variable for different flow
conditions as according experimental observations, the effect of bed roughness on
the flow differs for different flow conditions. The numerical bed elevation that defines
the base of the roughness zone can be considered as the zero-velocity plane on which
the spatial and temporally averaged flow velocity drops to zero. For this bed
boundary, several layers of dummy particles (red particles in Fig. 1) are placed below
the boundary line to address the truncated kernel area in the vicinity of the boundary.
The velocity of these dummy particles are not evolved in the calculations, i.e. they are
fixed in space with zero velocity, but they have pressure to prevefititthgparticles
from penetrating this boundary. In this sense, the zero-velocity bed level also
corresponds to the location of the upper lsfedummy particlesin the present

12



WCSPH simulations, the pressures of dummy particles are determined through the
equation of state (Eq. 18) after their density variations have been computed by using
the SPH continuity equation (16). This algorithm can ensure that adequate piessure
obtained on the dummy particles to prevent the inner fluid particles penetrating the
wall boundary.

A schematic view of the bed drag force model including the roughness spheres is
shown in Fig. 3, in which the roughness zone is from the numerical bed level (zero-
velocity plane) to therestof the sphere with a thickness of Ronsidering a section
normal to the flow direction as depicted in Fig. 3, it is assumed that when a fluid
particle a is located within the roughness zone, the roughness element (the sphere)
produces a drag-induced shear stress on this particle. This actually exerts a force on
the fluid fragment of width gand height g(ABCD in Fig. 3), where gis the diameter
of the roughness sphere angdsithe computational particle size. Therefore, the cross-
sectional areaAn Eq. (13 is assumed to be equal to the particle sizaend the bed-
parallel planar area.An Eq. (1) is equal to g,. Meanwhile, for each fluid particle
located in the roughness zone, as depicted in Fig. 3, a shape fungi®odaihed as
the area of part of the water fragment located within the spheBeC[@ in Fig. 3
over the total area of the fragment (ABCD &by the following equation

Wd — AA’B’C'D' (20)
AABCD
This function accounts for the shape of the roughness elements which are defined
as spheres in the present study to match the roughness elements used in the laboratory
study.

Another parameter of Eq. (12) which needs to be considered is the drag
coefficient G. According to the original work on particle modelling of porous flows
using the MPS method by Gotoh and Sakai (1999y<Dally lies between 1.0 and
1.5 and thus a value of 1.0 is simply adopted in the present study. Different values of
Cq4 have also been described in the literature for spherical partitl® experiments
of Schmeeckle et al. (2007) on turbulent open channel flow over fixed spheres, the
drag coefficient was found to be 0.76. They also measured the drag force in turbulent
flows over cubes and natural particles and found that the drag coefficient was
significantly higher than that used to model the bed load motion. In the proposed drag
force model (Eg. 12), the product of\fy acts as the total drag coefficient. By
assuming half of the bed grain to be the effective roughness heightyand.Qthe
average value of 8\ for the particles inside the roughness zone would be equal to
0.785,which is close to the value found IBthmeeckle et al. (2007) for spherical
particles. Here it should be noted that the roughness sphesisaasin Fig. 3 do not
physically exist in the numerical model so particles can penetrate inside the roughness
zone but feel its influence.
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3 Mode Applicationsand Results Analysis

3.1 Model setup and computational parameters

In this sectiona SPH model is developed for uniform turbulent open channel
flows over a sloping rough bed and validated by the depth and velocity data obtained
from PIV measurement in a laboratory channel with uniform sized spheres packed in
a hexagonal pattern on the bed (Nichols, 2013). In these tests, the bed sphere diameter
ds is 24 mm and the channel slopgr&ges from 0.002 to 0.004. For this application
a rectangular computational domain is chosen with a length of L = 4H, where H is the
water depth. Three layers of fixed dummy particles are used for the bottom wall and
three layers of moving particles are used for the inflow as well as outflow regions to
satisfy the complete kernel area of the inner-fluid particles near the boundary lines
(Fig. 1). Since the effect of bottom roughness on the flow depends not only on the
absolute roughness size but also on the flow conditions, 12 test cases with different
bed slopes and water depths are simulated to assess the accuracy of the drag force
model in addressing the roughness effect. Relevant parameters used in the test cases
are summarised in Table According to this table, thEr number for all 12 cases is
below one, which means all tests are in the sub-critical flow condition, while Chang
and Chang (2013) and Chang et al. (2014) covered more flow regimes. Meanwhile,
the domain is discretized by SPH particles with sigee @ mm to have at least 20
particles over the depth for the shallowest case (H = 40 mm). The smoothing length is
taken to be 1.2din the present study. This value has been recommended as the most
appropriate SPH smoothing length in many studies as common practice. Since the
interfacial boundary layer in the physical model between the bed roughness and the
free flow is expected to be quite thin, a kernel function with a narrower influence
domain but steeper slope near the central point is expected to be more adequate.
Therefore, the cubic spline function of Monaghan and Lattanzio (1985) is chosen for
the present simulations. However, an in-depth investigation is required for the choice
of spatial resolution, smoothing length, and kernel function in cases where the flow
velocity changes sharply over an interfacial boundary layer as in the present study.

As illustrated in Table 1, the model has been applied to different flow conditions
with bed slopes 0.002, 0.003 and 0.004; and water depths from 40 mm to 100 mm. As
mentioned in the previous section, the thickness of the roughness zgnes (R
assumed to vary depending on the flow conditions. Therefore, six of the test cases
(Nos. 1, 5, 6, 8, 10 and 12) are used to calibrate the model in term&wyhBmerical
trials when the computed mean velocity profiles achieved the best fit with the
experimental data and then a semi-empirical fitting function is obtained to establish
the relationship between the flow depth and relative roughness heglghtBRsed on
this, the additional test cases (Nos. 2, 3, 4, 7, 9 and 11) are used to validate the model.
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The calibration tests are selected to cover most of the depth range from 40 to 100 mm
and at least 2 cases of each bed slope. Calibration and validation tests are indicated by
letters (C) and (V) respectively, in Table 1.

The calibration process is as follows. Each test case is simulated by using several
Ry values and the Mean Absolute Error (MAE) between the numerical and
experimental velocity profiles are calculated for each one, then theaRe
corresponding to the minimum MAE is selected as the thickness of the roughness
zone for that test case. After running the model for calibrating tests and finding the
best R with the smallest MAE, the relative roughness heighiti s plotted against
depth H (Fig. 4) and a curve is fitted to the points using a power function as shown in
the figure. For each validating case, different values pfafl® examined in the
simulations and the one with the minimum MAE is used for the test case and plotted
on the same graph to see if it follows the fitted curve. As can be seen/HheaRies
of the validation tests have nearly the same relation with the water depth. Further
evidence of the model validations will be demonstrated by the good agreement
between the numerical and experimental velocity and shear stress distributions along
the flow depth, as detailed in the next section.

3.2 Analysis of velocity profiles

Figure 5(a) and (b) present the instantaneous streamwise velocity and pressure (t
70 s); and Fig. 5(c) and (d) show théme-averaged contours respectively, for the
case S004H50. The averaging has been done over 20 seconds from t = 70.dtto 90 s
shows that the uniform flow condition has been successfully imposed by the proposed
inflow/outflow boundary technique. This is also shown in Fig. 6(a) wherértiee
averaged velocity of three different sections of the channel (x = 0.25L, 0.50L, and
0.75L1) are plottedlt is found that the depth-averaged velocity at these three sections
hasa maximum difference of 0.5%-igure 6(b) shows the space-averaged velatity
three different times (t = 35, 50 and 65 Bhe maximum difference of the depth-
averaged velocity between these times is 1.96his small change in the velocity
profile over time also shows the steadiness of the flovihe present computations,
the time to reach the steady state is not exactly the same for all test cases. However, to
determine a threshold, it is confirmed that it takes around 20-30 seconds to achieve
the steady flow condition for all 12 cases. The criterion used to define if the flow
reaches the steady state is that if the differences of the depth-averaged value of the
space-averaged (but not instantaneous) velocities at the mid-section of the channel at
different times become less than 2.0%, then the flow is regarded as being steady. The
bed drag-induced shear stress term removes a part of the flow momentum and this
effect is transferred to the upper layers of the flow by the turbulence model. As a
result, the unbalanced momentum transfer occurs during the first 20-30 seconds and
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then the flow gradually reaches the steady state and all time-averaged flow parameters
e.g. velocity and shear stress remain unchandedthe inflow and outflow
boundaries, the flow characteristics are assumed to be unknown rather than being
given prescribed values of the pressure and velocity. Therefore, the proposed SPH
inflow boundary model is more general in that it does not need experimentally
measured or analytically prescribed flow datséhe inflow boundary and can thus be
applied to more complex flow situations. In Federico et al. (2012), the model
verification was based on the fact that the initial inner velocity field, which was
initialized with the analytical solutions and updated by the upstream inflow boundary
conditions (which were also initialized by the analytical solutions), could be stably
maintained or not during the computations. In comparison, in the present SPH inflow
model, the open channel flows are generated naturally by following the channel
conditions.

The numerical results dime-averaged streamwise velocity profilebtained by
using the best-fit values ofyRare presented in Fig. 7, in comparison with the
experimental data as well as the analytical profiles which are obtained from the log
law. These include all the test cases as indicated in Table 1. The analytical velocity
profile is presented in Eqg. (21) where z is vertical coordinatés khe Nikuradse
roughness size and B the logarithmic integration constant which is equal to 8.5 for
rough bed uniform flow. We know that as the depth is very shallow and the bed is
fully rough, the log law may not be valid. Here the analytical profiles are used to
compare with the numerical results and investigate if the model is able to predict the
logarithmic velocity distribution above the roughness zone. The valuegad ®ell
as MAE of velocity profiles of all test cases are presented in Table 2. Both Fig. 7 and
Table 2 demonstrate the satisfactory performance of the SPH modelling technique in
these proposed flow conditions.

u 1 z
" _;In(g} B, (21)

To determine the error distribution over depth, the MAE is calculated separately
in three parts of the depth for each test case, i.e. lower 20 %, middle 60 % and upper
20 % of the depth. The purpose of this is to investigate the hypothesis (Nichols, 2013)
that the bottom 20 % of the water depth would be the logarithmic layer and then the
upper layers of the flow could be split up differently. This is shown in Fig. 8. As the
slope of the velocity profiledy/cz) is also of interest, its distribution is presented in
Fig. 9 for all test cases and the values of MAE of these profiles are also calculated.
The MAE values obu/oz are presented in Table 2 and their distributions in the lower
20 %, middle 60 % and upper 20 % of the depth for all cases are illustrated in Fig. 10.
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According to Fig. 8with increasing depth the velocity MAE of the upper 20% of
the depth mostly increases, and as the slope decreases the MAE of the near-bed
velocity generally increases. In most test cases, the lowest MAE of the velocity
profiles takes placa the middle part of the depth. This is also valid for the MAE of
the velocity gradient profiles as can be seen in Fig. 10. Compared with the velocity,
the errorsof the velocity gradient are usually larger in the lower 20 % of the depth.
However, in some cases (e.g. S004H70 and SO03H60) there seenssldogeeerror
in the upper part of the depth due to the fact that the predicted and measured gradients
have different signs near the water surfakest belowthe surface, the experimental
velocity gradient declines sharply to zero or even to negative values in some cases
while a non-zero, but small positive velocity gradient is predicted by the numerical
model (Fig. 9). The negative gradient in the top of the flow could be due to the fact
that the data is derived from a 3D experimental model in which secondary flow
circulations occur while such circulations are not accounted for in the present 2D
numerical model. However, the log law (Eq. 21) presents a positive small, but non-
zero velocity gradient at the top (Fig. 9), which is much more similar to the numerical
profiles than the experimental ones. This is because the mixing-length mode) (Eq. 9
adopted by the SPH approach has been based on the log law theory. In the mixing-
length formula of Nezu and Rodi (1986), it is assumed that above a certain elevation,
the mixing-length decreases to zero at the water surface as the size of turbulent eddies
are significantly restricted by the surfadegssuming such a decline in the mixing-
lengh could lead ta non-zero velocity gradient near the water surface. On the other
hand, the differences in the near-bed velocity gradient between the numerical and
experimental profiles are much less than those between the analytical and
experimental ones. This is attributed to the adoption of the robust drag force model by
which the near-bed velocity is related to the shear from the roughness elements rather
than assuming a logarithmic distribution in the shear boundary.

3.3 Analysis of roughness height

During the calibration/validation process (Section 3.1), thg \Rlues
corresponding to the minimum errors, if divided by the water depth, eshaw
relationship with the depth based on the power function as presentdd. id. F
According to this figure, as the depth increases, the relative roughness hgfght (R
decreases. It is notable that the bed roughness sphere size is fixed in the present study
(ds = 24 mm). Therefore, JH decreases with a decrease in the ratio of roughness size
to water depth (@H) and vice versa. In this work, the bed roughness configuration is
kept constant to study its effect under different flow conditidtssthe depth is not
the only parameter affecting the flow condition and the bed slope is also involved, we
also explored the relationship between the relative roughness heigh} @Rd the
shear velocity 4 The result is shown in Fig. &) with different power fitting
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functions for different bed slope values. It is shown that the fitting curves are nearly
equally-spaced with a vertical shift upwards as the bed slope increases and the SPH
computational points fall close to the appropriate curves.

It can also be seen that an increase in the shear velocity causes the numerical
relative roughness height to become milder for all bed slopes. To provide a single
relationship between the relative roughness height and the flow condigi&stl Rf
all cases are plotted againstim Fig. 11(b) with the same type of power fitting curve.
This also shows that as the flow becomes more sheared (lajgemaller relative
roughness height is required to simulate the experimental condition. In other words, as
the ratio of bed roughness to water deptfHdbecomes smaller, i.e. when the flow
depth becomes deeper, a weaked éffect is generated by the proposed drag force
model. However, the magnitude of the form-drag shear stress could be larger for the
cases with higher-since the near-bed flow velocity is faster.

3.4 Analysis of form-drag and turbulent shear stress

The distribution of the streamwise form-drag shear temsip)(in the effective
roughness zone is presented in Fig. 12 for all the tests. As expected, the ayerage
is larger for cases with higher ar Re number. In other words, where the flow depth
is deeper and/or the bed slope is steeper, the form-drag shear term is larger due to the
higher velocity. In most tests, the streamwigé increases with depth to some
distance above the walkero-velocity planeand then decreases to thestof the
roughness zone although the velocity increases in this zone. This decrease can be the
result of the shape function in Eg. (20) which declines sharply below the roughness
crest. The shape function leads to a non-constant drag coefficient in the roughness
zone that is related to the shape of the eleméntshe present simulations, the
dominant velocity is the streamwise one and the contribution of the vertical velocity
to the form drag is very small so that it is reasonable to be neglected. It has been
found that in the roughness zone the scale of the time-averaged vertical velocity is
less than 0.5% of the time-averaged streamwise velocity in our test cases, while it is
about 1.0% to 2.0% in the presented 3D experimental data. The underestimation of
the vertical velocity in the roughness zone could be due to that the physical dispersion
in the vertical direction which is from the obstruction of the flow by the bed elements
has not been numerically defined, since the governing equations and the
computational domain are discretised at a macroscopic st&ig. 13 the numerical
results of the streamwise velocity profiles of tests of bed slope 0.004, 0.003 and 0.002
are plotted in separate graphs in order to illustrate the effect of rough bed boundary on
the streamwise flow velocity. As can be seen for each bed slope, the velocity is higher
for larger depths and this effect is simulated by variable roughness height in the
model.
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Using a variable Rin the model affects not only the drag shear stress, but also the
turbulent shear stress near the bed. In the present model, the zero reference datum for
the mixing-length is definedy the zero-velocity plane of the flow. This is illustrated
in Fig. 14 where{ is plotted for two cases with effective roughness heights;ef R
and R2 (Ry2 > Ry1). Here the eddy-viscositis higher when the thickness of the
roughness zone {Ris larger, thus the shear stress calculated by4}ds also larger.

This leads to a higher impact of the bottom drag effect on the upper flow. In general,
any changes of Feould affect both the drag force and the turbulence models and thus
the simulated flows will change. It is also notable that a small change in the mixing-
length, on thecrestof the roughness zone could haweonsiderable effect on the
eddy-viscosity (Eq. 8) since the velocity gradient (or the local strain rate |S]) is at a
maximum on this interface.

For six of the twelve test cases shown in Table 1, the profiles of the time-averaged
shear stress estimated by the SR® the mixing-lengthmodel are presented in Fig.
15 in comparison with the experimental data and with the analytical profile obtained
from Eq. (22). In this equation is the shear stress at the bed which is estimated by
pgHS.

r:%@mﬁj (22)

To better illustrate the data, the horizontal axis is normalized dnyd the vertical
one is normalized by the flow depth H. As can be seen, the numerical computations
underestimate the experimental shear stresses, although they are in a fairly good
agreement with the analytical solution. It is notable that the experimental data are
taken from a 3D flow over a rough bed surface, which could lead to the fact that they
exceed the analytical shear stresses by about 20-30%. Béisadasderestimation of
the experimental shear stress by the numerical model is also relatece to th
dimensional differences, as in the present 2D model the shear stress in the lateral
direction is neglected. The width-wise shear stress is the result of steady streaming in
the form of flow circulations in the lateral direction. In spite of this, the 2D SPS
model is still able to give satisfactory results in the uniform flow since the effect of
the lateral shear stress is very much smaller compared with the streamwise one.
Moreover, the close collapses of six SPH data along almost a single line indicate the
consistency and convergence of the numerical simulations.

As mentioned before, the eddy-viscosity model with a Smagorinsky constant in
the range of 0.1-0.15 is not able to estimate the correct amount of turbulent shear
stress in a uniform open channel flow over a rough bed boundary. To investigate this
issue, here we repeat the simulations of three test cases S004H50, SO03H70 and
S002H60 by using the Smagorinsky model with=@®.15. The result is presented in
Figs. 16 and 17, where respectively the streamwise velocity and shear stress profiles
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are compared with the ones obtained from the present mixing-length eddy-viscosity
model. Meanwhile, the experimental velocity profiles and the analytical shear stress
profiles are also presented farcomparison. As can be seen, the shear steess i
consistently largely underestimated, leading to the overestimation of the velocity.

In contrast to their DNS results with good agreement with the reference data
Mayrhofer et al. (2015) also observed the overestimation of the velocity in their SPH-
LES computations of a wall-bounded channel flow with fricfReof 1000, where an
eddy-viscosity model was used with a Smagorinsky constant0®65. They pointed
out that the correct representation of energy redistribution between Reynolds stress
components in a SPHES framework would require 16 times finer resolution than
neededn aclassic Eulerian LES one. They stated that the most obvious solution is an
increase in the resolution, but it also highly increases the computational cost. Finally
they concluded that the underperformance of their LES was due to the problems
inherent in the standard SPH discretizations related to the pressure-velocity
interactions.

In the present study, the frictioRe is even higher than that in the study of
Mayrhofer et al. (2015) and on the other hand, the resolution is also quite coarse.
Therefore, the insufficiency of the LES with the standard Smagorinsky model
becomes more obvious in the present simulations. In addition, the rough bed boundary
is another important influence factor too. When filtering the discretised equations
using a SPH kernel function to represent the turbulence effect, a part of the turbulent
stress which is mainly due to the spatial filtering has been lost by the standard eddy-
viscosity model (with Smagorinsky constant). This issue becomes even more
important when the discretised flow velocity changes sharply over the filtering
volume/area; e.g. at the interfacial boundary between the roughness zone and the free
flow in the present study. Besides, the rough bed boundary has a dominant effect on
the whole water depth, so non-accurate parameterisation of the turbulence effect at
this boundary makes significant errors in the whole flow domain. However, if the
eddy-viscosity model is adequately parameterized, reasonable results can still be
obtained. As a result, we have applied the mixing-length model of Nezu and Rodi
(1985), which is on the basis of physical measurements, in order to recover that part
of the turbulent stress which cannot be captured by the standard Smagorinsky model
with small G.

Nonetheless, one shortcoming of the proposed turbulence model is that the eddy-
viscosity coefficient is physically defined, so it is nhot dependent on the computational
resolutions. In other words, if one uses a smaller particle size (higher resolution), the
resolved part of the turbulence stress would become higher, but the mixing-length
product which is the representative of the unresolved part would not decrease with the
discretisation and/or filtering size. Thus the total turbulent stsessuld be
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overestimatedh the test cases with higher resolution. Accordingly the flow velocities
would be expected to be underestimated in such a situdttienpromising to note

that the present mixing-length approach works quite effdgtivéh the SPH whema
slightly coarser particle resolution is used, thus this makes the model more potential in
practical engineering applications.

4 Conclusion

In this study, a SPH model has been developed to simulate the turbulent open
channel flows over rough bed boundaries based on the solution of 2D N-S equations
including two additional stress terms to account for the flow turbulence and bed
roughness effecAs shown the standard Smagorinsky-based SPS model with a fixed
Cs = 0.15 was unable to reproduce the correct shear mechanisms in uniform open
channel flows. Thereforeg mixing-length model has been applied to calculate the
turbulent eddy-viscosity. A drag force model has been developed to account for the
bed roughness effect, in which a shape function is introduced to consider the
geometry of the bed surface roughness elemehltsanwhile, an efficient
inflow/outflow boundary treatment has been proposed and demonstrated to generate
stable flow simulation without the need to use prescribed velocities at the flow inlet,
thus enabling the model to be used without having to prescribe input velocity profiles.

Twelve test cases of different bed slopes and water depths have been simulated to
investigate the effect of bed roughness under various flow conditions. A roughness
zone is defined near the rough bed boundary where a form-induced drag shear stress
is applied on the SPH particles. The thickness of this zaypes(Rssumed to be flow-
dependent, such as being related to the flow depth H and the shear velocity en bed u
The model results showed good agreement with the experimental data as well as the
analytical solutions in view of the velocity and shear stress profiles. This confirms
that the bed roughness effect has been successfully addressed by the drag force model,
and the transport of this effect to the upper layers of the flow has been correctly
reproduced by the proposed turbulent mixing-length apprdgiclse the governing
equations, as well as the computational domain, are discretised at a macroscopic scale
in the roughness zone, the physical dispersion in the vertical direction is disregarded.
Thus the flow shear is dominantly driven in the streamwise direction; but transported
vertically by the turbulence closure. The computed streamwise velocity and shear
stress profiles suggested that this assumption has not caused substantial errors for the
12 flow test cases and the macro flow behaviours have been well reproduced. This is
due to the turbulence model correctly modelling the shear transfer from the roughness
layer to the free flow.
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Whether the non-accuracy of the SPH-LES approach in wall-bounded channel
flows is related to the pressure-velocity interactions (as addressed by Mayrhofer et al.,
2015) or to the deficiency of the standard Smagorinsky model, the proposed mixing-
length approach is able to recover this difficulty as the eddy-viscosity being
realistically parameterised. However, as the mixing-length is independent of the
computational resolution, it may overestimate the shear stress in cases with higher
particle resolution which may cause an underestimation of the flow velocity.
Therefore, this model is proposed to be coupled with the SPH when coarse
discretisation of the equations is considered, unless an effective method is found to
link the mixing-length to the spatial discretisation so as to enhance the capacity of the
model. In addition to this, the method of filtering the governing equations with
different kernel functions needs to be investigated in more details due to the existence
of the rough bed boundary over which the flow velocity has a sharp change. These
issues along with the effect of various configurations of bed roughness on the flow
resistance are considered as future studies.
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Tablel Computational parametersused in test cases (Thefirst four lettersin
thetest ID show the bed slope and therest show the water depth)

Test H J Calibration
Test ID S (mm)  (m/s) Re Fr ./ ‘

Validation
1  S004H40 0.004 40 0.0396 10843 0.433 (©
2 S004H50 0.004 50 0.0443 15067 0.430 V)
3 S004H70 0.004 70 0.0524 32703 0.564 V)
4  S004H90 0.004 90 0.0594 47301 0.559 V)
5 S004H100 0.004 100 0.0626 59698 0.603 ©
6 SO003H50 0.003 50 0.0384 11615 0.332 (©
7 SO003H60 0.003 60 0.0420 19516 0.424 V)
8 SO003H70 0.003 70 0.0454 27926 0.481 ©
9 SO003H80 0.003 80 0.0485 32089 0.453 V)

=
o

S002H60 0.002 60 0.0343 12022 0.261 ©
S002H70 0.002 70 0.0371 19671 0.339 V)
S002H80 0.002 80 0.0396 30794 0.435 ©

el
N
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Table2 Relative roughness heightsand numerical errorsof all tests

Test TestlD Ry/H MAE of MAE of

No. u(m/s) ou/oz (1/s)
1 S004H40 0.285 0.0052 0.77
2 S004H50 0.206 0.0060 1.17
3 S004H70 0.144 0.0100 1.27
4 S004H90 0.104 0.0100 0.77
5 S004H100 0.094 0.0179 1.25
6 S003H50 0.202 0.0047 1.40
7 S003H60 0.156 0.0063 1.39
8 S003H70 0.135 0.0078 0.67
9 S003H80 0.116 0.0080 1.11

10 S002H60 0.172 0.0052 1.05
11 S002H70 0.137 0.0061 0.81
12 S002H80 0.113 0.0061 0.82
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32



(a) (b)

50 _._XiL/4 . 50_—<—1i355 z
x=1L/2 j"“ ——1=50s ;
| ——x=3L/4 f,‘ | ——1(=65s }“‘

E s ] |
g2 Fy 25
N rd

0- 0+

0.00 ' 0.1’25 1 0.150 0.00 ' O.r25 r 0.]50

u (m/s) u (m/s)
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— Analytical solution = Experiments —— SPH model
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Figure7 Distribution of thetime-averaged streamwise velocity over depth.
Dash-dotted and dashed lines show thelevel of the numerical bed (zer o-velocity
plane) and the crest of the roughness zone respectively
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Experiments —— SPH model
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Figure 9 Distribution of the gradient of the time-aver aged streamwise velocity
over depth. Dash-dotted and dashed lines show the level of the numerical bed
(zero-velocity plane) and the crest of the roughness zone respectively
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Figure 10 MAE of the streamwise velocity gradient in the lower 20%, middle
60% and upper 20% of the depth
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Figure 11 Relative roughness height against shear velocity: (a) relationship
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and u- for all tests
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Figure 12 Distribution of the drag-induced shear term in the effective roughness
zone (solid line). Dash-dotted and dotted lines show the level of the numerical
bed (zer o-velocity plane) and the crest of the roughness zone respectively
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Figure 13 Velocity profiles of tests with bed dopes (a) 0.004, (b) 0.003, and (c)
0.002. The dashed lines show the level of the roughness crest and the solid half-
circles schematically depict the roughness element
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Figure 14 Distribution of the mixing-length in 2 cases with the same depth (H =
50 mm) and different effective roughness heights (Ry2 > Ry1). The zero reference
of the mixing-length ison the numerical bed level (zero-velocity plane) and the
dotted line showsthe crest of the roughness zone
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Figure 15 Distributions of the normalized turbulent shear stress with depth
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Experimental data —<— Mixing-length model —— Smagorinsky model (C, = 0.15)
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Figure 16 Time-averaged streamwise velocity obtained from the present mixing-
length model compared with the one obtained from the Smagorinsky model with
Cs=0.15 and the experimental data for test cases S0O04H50, SO03H70 and

S002H60 (vertical axiszisin logarithmic scale)
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Figure 17 The x-z component of the turbulent shear stressobtained from the

present mixing-length model compared with the one obtained from the
Smagorinsky model with Cs= 0.15 and the analytical profilesfor test cases

S004H 50, SO03H 70 and S002H60
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