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Hybrid societies are self-organizing, collective systems, which are composed of different 

components, for example, natural and artificial parts (bio-hybrid) or human beings inter-

acting with and through technical systems (socio-technical). Many different disciplines 

investigate methods and systems closely related to the design of hybrid societies.  

A stronger collaboration between these disciplines could allow for re-use of methods and 

create significant synergies. We identify three main areas of challenges in the design of 

self-organizing hybrid societies. First, we identify the formalization challenge. There is an 

urgent need for a generic model that allows a description and comparison of collective 

hybrid societies. Second, we identify the system design challenge. Starting from the 

formal specification of the system, we need to develop an integrated design process. 

Third, we identify the challenge of interdisciplinarity. Current research on self-organizing 

hybrid societies stretches over many different fields and hence requires the re-use and 

synthesis of methods at intersections between disciplines. We then conclude by pre-

senting our perspective for future approaches with high potential in this area.

Keywords: hybrid society, bio-hybrid, distributed, collective, self-organization, design, interdisciplinarity

1. iNtrODUctiON

This paper originates from a small international workshop on “Methods for Self-Organizing 
Distributed Systems” that was held in Laubusch, Germany, during October 2015. We name sev-
eral challenges and give our perspectives for the field of hybrid societies [cf. Eiben (2014) and 
Prokopenko (2014)]. In general, hybrid societies are made of different components instead of hav-
ing a homogeneous identity. We call them “societies” because the components possess individual 
agency and interact persistently. Such societies can be comprised both natural and artificial agents  



FiGUre 1 | Overview of design challenges in hybrid societies: primary 

challenge A – formalization, primary challenge B – system design, and 

primary challenge c – interdisciplinarity.
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(Baxter and Sommerville, 2010; Halloy et al., 2013; Schmickl et al., 
2013; Hamann et al., 2015) or different types of artificial agents 
only (Dorigo et al., 2013). We focus on self-organizing collective 
hybrid societies that are characterized by multiple interactions 
of agents, positive and negative feedback processes, and fluctua-
tions (Ashby, 1947; Bonabeau et al., 1999; Camazine et al., 2001; 
Omicini and Viroli, 2011; Heylighen, 2016). Often, these systems 
show collective behavior indicated by the emergence of global 
spatial and/or temporal patterns (Serugendo et al., 2006; Attanasi 
et  al., 2014; Popkin, 2016). Furthermore, hybrid societies are 
describable on a microscopic level, the level of an individual agent, 
and a macroscopic level, the level of the whole society (Schelling, 
1978; Alexander et al., 1987; Schillo et al., 2000; Hamann et al., 
2014). We want to design and determine the artificial part of these 
systems, although the artificial subpopulation is in contact with a 
natural subpopulation in hybrid societies.

Typical examples of hybrid societies are investigated in the pro-
ject ASSISI|bf (Schmickl et al., 2013) where robots closely interact 
either with groups of bees or fish. Such systems require different 
approaches than those developed for multi-agent systems because 
they are heterogeneous and while the robots are variably program-
mable the biological agents (bees and fish) have a determined 
behavior. The ASSISI|bf system heavily relies on social aspects 
because the robots need to learn the “social language” (Schmickl 
et al., 2013) of bees/fish to trigger desired behaviors. It is a hybrid 
system because the robot–animal interaction is not only in one 
way but also the animals determine the system’s further devel-
opment. Similarly, we have hybrid societies in socio-technical 
systems where human beings closely interact with technological 
artifacts (Baxter and Sommerville, 2010; Smirnov et  al., 2014; 
D’Orsogna and Perc, 2015; Helbing et al., 2015).

We identify three common, primary challenges in the design 
of hybrid societies (see Figure 1). Each is discussed in detail, sup-
plemented by additional secondary challenges, and we give our 
perspective on future approaches with high potential.

2. PriMArY cHALLeNGe A: 
FOrMALiZAtiON OF  
HYBriD sOcieties

The analysis of hybrid societies using tools of mathematics 
and computer science is essential to gain deep insights into the 
dynamics and prominent principles of hybrid systems. Besides 
allowing for predictions, the formal approach also guides one’s 
thoughts when designing hybrid societies. The formalization of 
hybrid societies is the precondition to move from formal specifi-
cations to an integrated design process.

2.1. Purpose of Formalization
From our experience in work with collective hybrid societies, we 
have the strong belief that our field of research requires a tremen-
dous effort to develop a generic model. Hence, a grand challenge 
of the design of collective behavior in hybrid societies is to develop 
an appropriate generic formalization. A truly generic formal model 
would overcome the diversity of methods and models in the field. 
If not completely generic, we would at least require a methodology 
that allows to model a large range of different collective hybrid 
societies. The purpose of a generic model is to understand the 
desired system and to gain deep insights. Formalization is neces-
sary to achieve a good understanding of a system’s inner dynamics 
and, if possible, to predict its outcome. With the optimal model, 
we could predict future behaviors and effects of hybrid societies. 
Such a model would permit to analyze a wide variety of collective 
systems, enable rigorous mathematical comparisons, and help to 
understand potential problems in system design before realiza-
tion in simulation, and hardware was achieved.

2.2. requirements and Actions for a 
Formalization
The formalization approach should be generic and applicable in 
many domains sharing essential system features. The develop-
ment of such modeling techniques requires, however, to unify 
methods, concepts, and definitions from many different fields. 
It requires a high degree of integration, knowledge about each of 
these domains, and a high convertibility of the model. First steps 
toward a unified methodology have been made, for example, in 
the fields of socio-technical systems (Baxter and Sommerville, 
2010; Jones et al., 2013; Schöttl and Lindemann, 2015) and swarm 
robotics (Lerman et  al., 2005; Brambilla et  al., 2013). Models 
originating from natural sciences are limited in representing 
typical abilities of agents and also modeling the emergence of 
self-organizing artifacts is challenging (see Sec. 2.6). A generic 
framework reflecting domain-specific characteristics while 
accurately capturing the evolution and dynamics of collective 
behavior, both on the micro- and macroscopic level, needs to be 
established.

2.3. secondary challenge: Diversity  
of Methods
Depending on the system modeled, as well as the type of questions 
asked, multiple approaches have been developed ranging from 
purely mathematical equations to spatial multi-agent systems. 



tABLe 1 | Diversity of methods for the formalization of hybrid societies.

Physics Biology/swarm intelligence engineering computer science Networks 

Spontaneous magnetization, 

laser theory (Yang, 1952; 

Haken, 1971)

Animal groups (Okubo, 1986; Buhl 

et al., 2006; Edelstein-Keshet, 2006)

Swarm robotics (Martinoli et al., 

2004; Winfield et al., 2005; Prorok 

et al., 2011; Brambilla et al., 2013)

Amorphous computing 

(Abelson et al., 2000)

Scale-free random networks 

(Barabási and Albert, 1999; 

Barabási et al., 1999)

Percolation, diffusion-limited 

aggregation (Witten and 

Sander, 1981; Grimmett, 1999)

Swarm intelligence (Bonabeau 

et al., 1999; Dorigo and Caro, 1999; 

Kennedy and Eberhart, 2001)

Sensor/actuator networks (Beal 

and Bachrach, 2006; Correll et al., 

2006)

World-embedded 

computation (Payton et al., 

2001; Stepney, 2007)

Temporal networks (Holme 

and Saramäki, 2012)

Self-driven particles (Vicsek 

et al., 1995)

Opinion dynamics (Schelling, 

1978; Galam and Moscovici, 1991; 

Hegselmann and Krause, 2002)

Distributed robotics (Weiß, 1996; 

Parker, 2000; Stone and Veloso, 

2000)

Natural computation 

(Castro, 2007)

Ad hoc networks (Bettstetter, 

2004), network simulations 

(McCanne et al., 1997)

In physics, a major achievement is the macroscopic description of many-particle systems with multiple stochastic interactions. In mathematical biology and swarm intelligence, a 

relatively high variety of non-linear agent behaviors is integrated in macroscopic models. In engineering, methodologies to design appropriate microscopic behaviors have been 

defined. Computer science provides appropriate programing paradigms, which help to find a general access to hybrid societies by the computation paradigm. In network theory, an 

outstanding achievement is the generality of results concerning complex networks, which can serve as a role model here. General network models helped to detect basic principles 

that have applications across many fields (Barabási and Albert, 1999).
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The total amount of modeling and investigation techniques for 
homogeneous and heterogeneous collective systems is huge and 
spans fields such as collective animal behavior, statistical physics, 
network theory, control theory, opinion dynamics, and diverse 
subfields of computer science. In order to give a little, incomplete 
overview, we cite only a few of these, see Table  1. Despite the 
strict column-wise presentation of methods, there exist already 
approaches that combine several methods from different fields, 
such as the combination of game theory with networks (Perc and 
Szolnoki, 2010), percolation and networks (Piraveenan et  al., 
2013a), and hybrid systems with temporal networks (Boerkoel and 
Durfee, 2013). Furthermore, the field of evolutionary game theory 
investigates hybrid societies, especially the interaction of agents 
also with reference to collective behavior and self-organization 
(Perc and Szolnoki, 2010; Perc and Grigolini, 2013). However, the 
developed models often abstract away proximate mechanisms, 
that is, the behavioral rules that generate the spatio-temporal 
dynamics of collective systems (André, 2014). Partially due to 
the extreme diversity of methods, it is difficult to compare hybrid 
societies or their models. A generic, formal modeling approach of 
collective hybrid societies would help to overcome that problem.

2.4. secondary challenge: system 
complexity
Another challenge is the complexity of hybrid societies due to 
self-organization that contains by definition a multitude of locally 
interacting agents. Local interactions between agents create 
dynamic environments, which are complex to model. The agents 
operate locally but can trigger emergent global patterns; we have 
different types of agents, and they often live in dynamic environ-
ments, which are challenging to model.

For example, a difficulty specific to self-organization is to 
link the model that describes the global behavior of the system 
to the model that describes the behavior of the individuals. 
Defining the so-called micro–macro link is a fundamental issue 
in both directions (Schelling, 1978; Hamann and Wörn, 2008). 
Macro-to-micro means that a certain global behavior is required;  
however, the respective individual behaviors are unknown.  
Micro-to-macro is the challenge of predicting the macro-behavior 

for a given micro-behavior. Particular internal states of these 
agents may be essential, e.g., the internal energy levels are 
crucial especially in flying agents (e.g., quadrocopters) or forest 
ecosystems (Zamuda and Brest, 2013). The formal approach has 
to address these internal states and model their dynamics. Local 
and global correlations between these internal states add another 
challenge.

In summary, we have the dynamics of the internal states and 
local interactions of individual agents on the one side and the 
overall dynamics of the global system on the other side. The chal-
lenge is to find the link between these two sides, which is key to 
understand and formalize hybrid societies.

2.5. shortcomings in the state of the Art
The vast number of methods of hybrid societies comes with 
individual shortcomings. We discuss only a few that may serve 
as representative examples. The methods of formal specifica-
tion from the field of software engineering [e.g., see Hoare 
(1978) and Jackson (2006)] are challenged by the number of 
interacting entities and their local interactions because the 
size of state space grows with the size of a collective (Brambilla 
et al., 2014). When this is coupled with the complexity of the 
dynamic environments that we typically expect these agents to 
exist in, we rapidly find ourselves in need of novel techniques 
to model and explain the dynamics of our systems. Concise 
mathematical descriptions of systems, such as methods from 
chemistry (van Kampen, 1992), are typically incapable to 
model complex agent-to-agent interactions, especially in the 
case where spatiality plays a central role (Ohkubo et al., 2008). 
Computational models often require rather strong abstractions 
for the sake of run-time efficiency. Agent-based models typi-
cally require an increased number of parameters with increas-
ing system complexity which challenges their significance 
(Mayer et al., 2010).

2.6. Our Perspective and Approaches
Engineered hybrid societies are complex, and therefore it is 
difficult to develop de novo novel mathematical formalisms.  
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A common option is to use frameworks that were developed for 
natural systems to formalize artificial systems when they share 
key features. In general, two aspects are formalized: (1) the 
behavioral mechanisms themselves (at microscopic or macro-
scopic level) and (2) the process that leads to these mechanisms 
(e.g., evolution in natural systems, machine learning in artificial 
systems).

Chemistry and statistical physics provide formal, mechanistic 
descriptions of hybrid systems. They are the disciplines that 
inspired, for example within swarm robotics, the most commonly 
used modeling frameworks (Brambilla et al., 2013), such as the 
master equation approach from chemistry (Martinoli et al., 1999) 
and use of Fokker–Planck and Langevin equations from statisti-
cal physics (Hamann and Wörn, 2008). However, the main chal-
lenge consists in going beyond the typical assumptions of these 
approaches that are intrinsic for large numbers of components 
[“Avogadro-large,” cf. Beni (2005)] and lack capabilities to model 
cognition and communication. Hence, collaborations with physi-
cists and theoretical chemists could help to extend these models, 
to account for smaller system sizes, and to model cognition, and 
to explicit communication.

Less attention has been paid to the formalization of processes 
leading to self-organization as done in theoretical evolutionary 
biology and machine learning. In the first case, evolutionary 
game theory (Nowak, 2006) with infinite (e.g., differential 
equations) and finite (e.g., birth–death processes) populations 
provides promising approaches but is limited to the evolution of 
finite discrete strategies, rather than continuous behavioral traits. 
Reinforcement learning is a framework suited for single-agent 
systems (Kaelbling et  al., 1996) and in some cases collective 
systems (Wolpert and Tumer, 1999). In multi-agent settings, 
machine learning struggles with the combinatorial explosion 
of possibilities, which is usually approached with sophisticated 
methods that reduce the search space (Matarić, 1997). To the best 
of our knowledge, machine learning techniques have never been 
extended to hybrid societies.

3. PriMArY cHALLeNGe B: sYsteM 
DesiGN OF HYBriD sOcieties

Even if we assume that we have a formal specification of our 
hybrid society already, then the actual system design is still a 
big challenge. We would like to define an integrated process that 
implements the step from a specification of a self-organizing 
collective system to the actual real-world system and its deploy-
ment in the field. In addition, we have to consider typical 
requirements for engineered systems, such as safety, reliability, 
and stability. Also note that we consciously take an engineer-
ing perspective on hybrid societies, hence assuming that such 
self-organizing collective systems can actually be designed. 
This hypothesis is in line with assumptions made in standard 
approaches, such as swarm robotics (Martinoli, 1999; Brambilla 
et al., 2013). However, one can also take the perspective that 
self-organizing systems can at most be guided but not fully 
determined (Prokopenko, 2009).

3.1. requirements and Actions  
for system Design
Moving from a specification of a hybrid society to a verified 
implementation on actual hardware remains difficult. Dealing 
with issues such as time, non-determinism, and scale presents 
significant challenges to formal methods. Hybrid societies can be 
designed with a smaller effort for pre-specified environments but 
for real-world implementations quality characteristics have to be 
determined (Mahendra Rajah et  al., 2005; Levi and Kernbach, 
2010; Brambilla et  al., 2013). Formal methods help to develop 
tools that ensure system properties, a level of safety, and guaran-
teed safe software from specification to implementation.

The design for reliability and stability needs to be addressed 
before we are able to deploy many hybrid societies in the real 
world. The stochasticity and the autonomy present in such sys-
tems make assuring reliability a difficult task. Therefore, develop-
ing such systems needs to provide evaluation tools that allows for 
measuring those aspects in a representative way.

3.2. secondary challenge: stochasticity, 
Uncertainty, Unpredictability
Most real-world environments show a high degree of stochastic-
ity, which makes it challenging to deploy hybrid societies in real-
world applications. We need methodologies to deal with known 
uncertainties but also to deal with unforeseen uncertainties. For 
collective behaviors, we are missing a general model that could be 
used to verify the system against the expected behaviors. In addi-
tion, there might be even unpredictable behaviors [cf., emergent 
behavior Matarić (1993) and Bedau (2002)] that prevent us from 
assuring that the system never leaves the set of safe states.

3.3. secondary challenge: Dynamic 
environments, run-time Decisions,  
and Open systems
Related to the above complex problems, we also face the chal-
lenge of dynamic environments that require non-trivial run-time 
decisions of our system. Run-time decisions and coupling the 
collective hybrid society with other systems at run-time require 
new methodologies. Especially systems with high requirements 
for robustness operating in dynamic environments have to be 
able to appropriately self-adapt their behaviors and organization 
structure (e.g., topology). The required time for non-productive 
reorganization and adaptation processes should be minimal.

If we allow dynamic changes of the system size, that is, we have 
an open system, then we need to tackle the challenge of scalability 
at runtime as well. This adds additional uncertainties introduced 
by added or removed system components. These changes need to 
be balanced by the system at run-time to establish a stable and 
robust system behavior. We often face difficulties when attempt-
ing to make guarantees about the behaviors of our systems and 
in the scenarios when existing techniques can be used they often 
model a fixed number of agents, making our proofs meaningless 
as the size of our collective changes dynamically.
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3.4. secondary challenge: Design of 
Feedbacks for self-Organization and  
User Feedback
Natural collective systems exhibit different features that are 
remarkable, such as flexibility, adaptability, and robustness. To 
achieve these through self-organization, they resort to positive 
and negative feedback mechanisms, the ability to amplify and 
weaken local individual decisions. The careful design of appropri-
ate feedback processes requires special attention and sophisticated 
design methods. Besides behavioral feedbacks, collective systems 
also rely on certain network topologies and network properties, 
such as power-law degree distributions (scale-free networks), 
that increase the system’s robustness to the loss of connections 
(Albert et al., 2000; Crucitti et al., 2003; Piraveenan et al., 2013b).

Another feature is that of scale-free correlations (Cavagna 
et  al., 2010), which is the ability of collective systems to influ-
ence far-away neighbors independently of the system size, by 
still resorting to local interactions only. Besides research on 
modulating positive feedback (Valentini et al., 2014), the negative 
feedback and scale-free correlations have received little attention 
yet and are challenging.

A notable quality of deployed systems is user behavior feeding 
back steadily into the system. This inevitably entails risks such 
as collusion, free-riding, or other exploitative and destabiliz-
ing actions. The additional challenges, for example in terms of 
robustness and reliability, therefore need to be considered and 
firmly rooted in the system design.

3.5. Our Perspective and Approaches
Once deployed in the field, bugs are likely to appear in ways 
unforeseen by the formalization process. This limitation of the 
formalization task is termed reality gap in robotics and has been 
studied in recent years. Solutions range from the restriction of the 
search space (Koos et al., 2013; Cully et al., 2015) to the design 
of behaviors during the deployment of the system (Watson et al., 
2002; Bredeche and Montanier, 2010). The design of a hybrid-
society system could benefit from these approaches.

In order to allow our system to adapt to changes in its dynamic 
environment, it requires a sufficient degree of freedom enabling 
it to self-optimize and to show reliable behavior. We need to 
allow for methods of self-repair (Ismail and Timmis, 2010) and 
self-sustainability (Bredeche and Montanier, 2010), which adds 
even more complexity to the system and increases the challenge 
of system design. Incorporating the capability for autonomous 
reasoning (Anshakov and Gergely, 2010) certainly improves the 
system but at first it increases its complexity.

4. PriMArY cHALLeNGe c: 
iNterDisciPLiNAritY iN HYBriD 
sOcietY reseArcH

As the reliance on knowledge gained from other scientific disci-
plines grows, so too does the need for researchers from all fields 
to be prepared to learn from the insights and techniques of oth-
ers. The investigated problems are becoming too complex to stay 
within the scope of a single discipline, and hence, interdisciplinary 

research is becoming more popular (Helbing et al., 2015). Hybrid 
societies are an inherently interdisciplinary problem domain, 
thus the inclusion of findings from various disciplines is essential 
for their structural and algorithmic design [e.g., combination of 
results from plant science, robotics, and architecture (Hamann 
et  al., 2015)]. Interdisciplinarity is crucial to produce a valid 
model of a system observed in another discipline, or to take inspi-
ration from another discipline in the design of systems. From an 
engineering perspective, being inspired by biology, chemistry, 
and sociology is becoming common place. However, engaging 
in a meaningful way with another discipline can be challenging 
and often, not fruitful in part because an approach remains rather 
superficial where an extra effort with additional overhead would 
have been required.

4.1. requirements and Actions  
for interdisciplinarity
Engineering has much to offer to the life sciences, but benefits of 
engagement must be bi-lateral, so that all disciplines benefit from 
the collaboration. In particular, the contribution of computer 
science should go beyond that of a mere service to life sciences 
but instead establish a bidirectional interaction that also scien-
tifically enriches computer science. For example in the context of 
bio-hybrid societies, modeling and simulation can be an effective 
vehicle for collaborations between computer scientists (e.g., 
multi-agent simulations) and biologists (e.g., behavioral models), 
with computational models being useful to help understand chal-
lenges in behavioral biology, yet providing a formal background 
and inspiration to the creation of an artificial system, for example 
based on behavioral models of animals (Schmickl and Hamann, 
2011) or growth models of plants (Zamuda and Brest, 2013; 
Hamann et al., 2015). We should try to get inspiration from biol-
ogy and sociology while lending our skill sets to the understand-
ing of other fields. However, interdisciplinary research in hybrid 
societies has proven to be challenging.

4.2. secondary challenge:  
common Language
Despite our best will to ensure interdisciplinarity, it remains 
difficult to achieve in practice. These difficulties stem from the 
disparity in vocabulary, the different methodologies used, and a 
general lack of understanding of the way of thinking and the tools 
available on each side. Time is needed to develop an interdiscipli-
nary collaboration. A common language needs to be developed so 
that deep and meaningful collaborations are possible.

4.3. secondary challenge: integration  
of Methods
Once a simple mutual understanding of the available methods 
and present problems is obtained, it is tempting to merely transfer 
a method from one field to the other and to directly apply it to a 
particular problem. However, mastering the complex problems at 
hand and lastingly improving these systems goes beyond applying 
existing results but requires true interdisciplinary collaboration. 
Providing a broad set of insightful tools, only highly integrated 
research on novel systems leads to a meaningful design method 
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for hybrid societies. Prime examples of successful integration 
of methods are the integration of robots and fish (Marras and 
Porfiri, 2012) and the automatic analysis of social networks in 
honeybees (Wario et al., 2015). Again, establishing such a deep 
understanding of the other field requires time.

4.4. secondary challenge: interdisciplinarity 
in a Mono-Disciplinary World
Despite the success of interdisciplinary research and a lot of hype 
and lip service in favor of interdisciplinarity, realities still look 
different. Many institutions and traditions in research are still 
forming tiny mono-disciplinary worlds. Hence, there is a chal-
lenge for individual researchers to fulfill their own discipline’s 
requirements in terms of measures of success.

4.5. Our Perspective and Approaches
A probably obvious solution is to enable the human factor and to 
form small, strongly linked teams that work interdisciplinarily. In 
addition, interdisciplinary researchers should receive an elabo-
rate training for the field they are collaborating with. Then the 
methods that are used to design solutions for different problems 
should transgress disciplinary bounds, in order to allow re-use of 
methods across fields of research.

Similarly to the situation when travelers have to adapt to local 
customs, all involved parties need to compromise. The common 
vocabulary needs to be found and the various perspectives and 
the different knowledge need to be understood. Only then one 
can start to discover where and how both sides can benefit from 
each other or how they can join forces to design novel methods 
for hybrid societies.

5. cONcLUsiON

We have identified three primary challenges of designing hybrid 
societies: formalization, system design, and interdisciplinarity. 
All of them require a lot of attention and a major effort to be 
overcome. However, a generic formalization approach and 
efficient interdisciplinary collaborations shall create synergies 
and enable us to re-use methods at intersections between 
disciplines. An appropriate system design approach would 
enable us to quickly deploy safe, reliable, and stable systems 
in hardware.
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