
This is a repository copy of General Upper Bounds on the Runtime of Parallel Evolutionary
Algorithms.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98934/

Version: Accepted Version

Article:

Lässig, J. and Sudholt, D. orcid.org/0000-0001-6020-1646 (2014) General Upper Bounds
on the Runtime of Parallel Evolutionary Algorithms. Evolutionary Computation, 22 (3). pp.
405-437. ISSN 1063-6560

https://doi.org/10.1162/EVCO_a_00114

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

General Upper Bounds on the Running Time
of Parallel Evolutionary Algorithms∗

Jörg Lässig jlaessig@hszg.de
Department of Electrical Engineering and Computer Science,
University of Applied Sciences Zittau/Görlitz, Germany

Dirk Sudholt d.sudholt@sheffield.ac.uk
Department of Computer Science, University of Sheffield, United Kingdom

Abstract
We present a general method for analyzing the running time of parallel evolutionary
algorithms with spatially structured populations. Based on the fitness-level method, it
yields upper bounds on the expected parallel running time. This allows to rigorously
estimate the speedup gained by parallelization. Tailored results are given for common
migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph.
Example applications for pseudo-Boolean optimization show that our method is easy
to apply and that it gives powerful results. In our examples the performance guaran-
tees improve with the density of the topology. Surprisingly, even sparse topologies like
ring graphs lead to a significant speedup for many functions while not increasing the
total number of function evaluations by more than a constant factor. We also identify
which number of processors lead to the best guaranteed speedups, thus giving hints
on how to parametrize parallel evolutionary algorithms.

Keywords
Parallel evolutionary algorithms, runtime analysis, island model, spatial structures

1 Introduction

Due to the increasing number of CPU cores, exploiting possible speedups by parallel
computations is nowadays more important than ever. Parallel evolutionary algorithms
(EAs) form a popular class of heuristics with many applications to computationally
expensive problems [29, 31, 46]. This includes island models, also called distributed EAs,
multi-deme EAs or coarse-grained EAs. Evolution is parallelized by evolving subpopu-
lations, called islands, on different processors. Individuals are periodically exchanged
in a process called migration, where selected individuals, or copies of these, are sent
to other islands, according to a migration topology that determines which islands are
neighboring. Also more fine-grained models are known, where neighboring subpopu-
lations communicate in every generation, first and foremost in cellular EAs [46].

By restricting the flow of information through spatial structures and/or infrequent
communication, diversity in the whole system is increased. Researchers and practition-
ers frequently report that parallel EAs speed up the computation time, and at the same
time lead to a better solution quality [29].

Despite these successes, a long history [5] and very active research in this
area [2, 29, 39], the theoretical foundation of parallel EAs is still in its infancy. The im-
pact of even the most basic parameters on performance is not well understood [41].

∗A preliminary version of this paper with parts of the results was published at PPSN 2010 [24].

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

J. Lässig and D. Sudholt

Past and present research is mostly empirical, and a solid theoretical foundation is
missing. Theoretical studies are mostly limited to artificial settings. In the study of
takeover times, one asks how long it takes for a single optimum to spread throughout
the whole parallel EA, if the EA uses only selection and migration, but neither muta-
tion nor crossover [38, 39]. This gives a useful indicator for the speed at which com-
munication is spread, but it does not give any formal results about the running time of
evolutionary algorithms with mutation and/or crossover.

One way of gaining insight into the capabilities and limitations of parallel EAs
is by means of rigorous running time analysis [15, 47]. By asymptotic bounds on the
running time we can compare different implementations of parallel EAs and assess the
speedup gained by parallelization in a rigorous manner. Many running time analyses
have been presented [4, 18, 34, 35], from simple pseudo-Boolean test functions [8] to
NP-hard problems from combinatorial optimization [9, 17, 48, 50].

In [23] the authors presented the first running time analysis of a parallel evo-
lutionary algorithm with a non-trivial migration topology. It was demonstrated for
a constructed problem that migration is essential in the following way. A suitably
parametrized island model with migration has a polynomial running time while the
same model without migration as well as comparable panmictic populations1 need ex-
ponential time, with overwhelming probability. Neumann, Oliveto, Rudolph, and Sud-
holt [32] presented a similar result for island models using crossover. If islands perform
crossover with immigrants during migration, this can drastically speed up optimiza-
tion. This was demonstrated for a pseudo-Boolean example as well as for instances of
the VERTEXCOVER problem [32].

In this work we take a broader view and consider the speedup gained by paral-
lelization in terms of the number of generations, for various common pseudo-Boolean
functions and function classes of varying difficulty. A general method is presented for
proving upper bounds on the parallel running time of parallel EAs. The latter is de-
fined as the number of generations of the parallel EA until a global optimum is found
for the first time. This allows us to estimate the speedup gained by parallelization,
defined as the ratio of the expected parallel running time of a single island and the ex-
pected running time of an island model with multiple islands (see Section 2 for formal
definitions). It also can be used to determine how to choose the number of islands such
that the best possible upper bounds on the parallel running time are obtained, while
still maintaining an asymptotically optimal speedup.

Our method is based on the fitness-level method or method of f -based partitions, a
simple and well-known tool for the analysis of evolutionary algorithms [8, 47]. The
main idea of this method is to divide the search space into sets A1, . . . , Am, strictly
ordered according to fitness values of elements therein. Elitists EAs, i. e., EAs where the
best fitness value in the population can never decrease, can only increase their current
best fitness. If, for each set Ai we know a lower bound si on the probability that an
elitist EA finds an improvement, i. e., for finding a new search point in a new best
fitness-level set Ai+1 ∪ · · · ∪ Am, this gives rise to an upper bound

∑m
i=1 1/si on the

expected running time. The method is described in more detail in Section 2.
In Section 3 we first derive a general upper bound for parallel EAs, based on fitness

levels. Our general method is then tailored towards different spatial structures often
used in fine-grained or cellular evolutionary algorithms and parallel architectures in
general: ring graphs (Theorem 8 in Section 4), torus graphs (Theorem 10 in Section 5),

1A panmictic population is an unstructured population with no mating restrictions.

2 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

hypercubes (Theorem 12 in Section 6) and complete graphs (Theorems 14 and 17 in
Section 7).

The only assumption made is that islands run elitist algorithms, and that in each
generation each island has a chance of transmitting individuals from its best current fit-
ness level to each neighboring island, independently with probability at least p. We call
the latter the transmission probability. It can be used to model various stochastic effects
such as disruptive variation operators, the impact of selection operators, probabilistic
migration, probabilistic emigration and immigration policies, and transient faults in
the network. This renders our method widely applicable to a broad range of settings.

1.1 Main Results

Our estimates of parallel running times from Theorems 8, 10, 12, 14, and 17 are sum-
marized in the following theorem, hence characterizing our main results. Throughout
this work µ always denotes the number of islands.

Theorem 1. Consider an island model with µ islands where each island runs an elitist EA. For
each island let there be a fitness-based partition A1, . . . , Am such that for all 1 ≤ i < m all
points in Ai have a strictly worse fitness than all points in Ai+1, and Am contains all global
optima. We say that an island is in Ai if the best search point on the island is in Ai. Let si be a
lower bound for the probability that in one generation a fixed island in Ai finds a search point
in Ai+1 ∪ · · · ∪Am.

Further assume that for each edge in the migration topology in every iteration there is a
probability of at least p that the following holds, independently from other edges and for all 1 ≤
i < m. If the source island is in Ai then after the generation the target island is in Ai∪· · ·∪Am.
Then the expected parallel running time of the island model is bounded from above by

1. O

(

1
p1/2

∑m−1
i=1

1

s
1/2
i

)

+ 1
µ

∑m−1
i=1

1
si

for every ring graph or any other strongly connected2

topology (Theorem 8),

2. O

(

1
p2/3

∑m−1
i=1

1

s
1/3
i

)

+ 1
µ

∑m−1
i=1

1
si

for every undirected grid or torus graph whose side

lengths are at least
√
µ in both directions (Theorem 10),

3. O
(

m+
∑m−1

i=1 log(1/si)

p

)

+ 1
µ

∑m−1
i=1

1
si

for the (logµ)-dimensional hypercube graph (Theo-

rem 12),

4. O(m/p) + 1
µ

∑m−1
i=1

1
si

for the complete topology Kµ, as well as

O
(

m+ m log µ
min{pµ,1}

)

+ 1
µ

∑m−1
i=1

1
si

(Theorems 14 and 17).

A remarkable feature of our method is that it can automatically transfer upper
bounds for panmictic EAs to parallel versions thereof. The only requirement is that
bounds on panmictic EAs have been derived using the fitness-level method, and that
the partition A1, . . . , Am and the probabilities for improvements s1, . . . , sm−1 used
therein are known. Then the expected parallel time of the corresponding island model
can be estimated for all mentioned topologies simply by plugging the si into Theo-
rem 1. Fortunately, many published runtime analyses use the fitness-level method—
either explicitly or implicitly—and the mentioned details are often stated or easy to

2A directed graph is strongly connected if for each pair of vertices u, v there is a directed path from u to v

and vice versa.

Evolutionary Computation Volume x, Number x 3

J. Lässig and D. Sudholt

derive. Hence even researchers with limited expertise in runtime analysis can easily
reuse previous analyses to study parallel EAs.

Further note that we can easily determine which choice of µ, the number of is-

lands, will give an upper bound of order 1/µ ·∑m−1
i=1 1/si—the best upper bound we

can hope for, using the fitness-level method. In all bounds from Theorem 1 we have
a first term that varies with the topology and p, and a second term that is always

1/µ ·∑m−1
i=1 1/si. The first term reflects how quickly information about good fitness

levels is spread throughout the island model. Choosing µ such that the second term
becomes asymptotically as large as the first one, or larger, we get an upper bound of

O
(

1/µ ·
∑m−1

i=1 1/si

)

. For settings where
∑m−1

i=1 1/si is an asymptotically tight upper

bound for a single island, this corresponds to an asymptotic linear speedup. The max-
imum feasible value for µ depends on the problem, the topology and the transmission
probability p.

(1+1) EA Ring Grid/Torus Hypercube Complete

O
n

eM
ax best µ µ = Θ(log n) µ = Θ(log n) µ = Θ(log n) µ = Θ(log n)

E (T par) Θ(n log n) Θ(n) Θ(n) Θ(n) Θ(n)
E (T seq) Θ(n log n) Θ(n log n) Θ(n log n) Θ(n log n) Θ(n log n)

E (T com) 0 Θ(n log n) Θ(n log n) Θ(n(log n) log log n) Θ(n log2 n)

L
O

best µ µ = Θ(n1/2) µ = Θ(n2/3) µ = Θ
(

n
logn

)

µ = Θ(n)

E (T par) Θ(n2) Θ(n3/2) Θ(n4/3) Θ(n log n) Θ(n)
E (T seq) Θ(n2) Θ(n2) Θ(n2) Θ(n2) Θ(n2)

E (T com) 0 Θ(n2) Θ(n2) Θ(n2 log2 n) Θ(n3)

u
n

im
o

d
al best µ µ = Θ(n1/2) µ = Θ(n2/3) µ = Θ
(

n
logn

)

µ = Θ(n)

E (T par) O(dn) O
(

dn1/2
)

O
(

dn1/3
)

O(d log n) O(d)
E (T seq) O(dn) O(dn) O(dn) O(dn) O(dn)
E (T com) 0 O(dn) O(dn) O(dn log n) O

(

dn2
)

Ju
m

p
k

best µ µ = Θ(nk/2) µ = Θ(n2k/3) µ = Θ(nk−1) µ = Θ(nk−1)
E (T par) Θ(nk) O

(

nk/2
)

O
(

nk/3
)

O(n) O(n)
E (T seq) Θ(nk) O

(

nk
)

O
(

nk
)

O
(

nk
)

O
(

nk
)

E (T com) 0 O
(

nk
)

O
(

nk
)

O
(

knk log n
)

O
(

n2k−1
)

Table 1: Asymptotic bounds on expected parallel (T par, number of generations) and
sequential (T seq, number of function evaluations) running times and expected commu-
nication efforts (T com, total number of migrated individuals) for various n-bit functions
and island models with µ islands running the (1+1) EA and using migration probabil-
ity p = 1. The number of islands µ was always chosen to give the best possible upper
bound on the parallel running time, while not increasing the upper bound on the se-
quential running time by more than a constant factor. For unimodal functions d + 1
denotes the number of function values. See [8] for bounds for the (1+1) EA. Results
for Jumpk were restricted to 3 ≤ k = O(n/ log n) for simplicity. All upper bounds for
OneMax and LO stated here are asymptotically tight, as follows from general results
in [43].

We give simple examples that demonstrate how our method can be applied. Our
examples are from pseudo-Boolean optimization, but the method works in any set-
ting where the fitness-level method is applicable. The simple (1+1) EA is used on

4 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

each island (see Section 2 for details). Table 1 summarizes the resulting running time
bounds for the considered algorithms and problem classes. For simplicity we assume
p = 1; a more detailed table for general transmission probabilities is presented in the
appendix, see Table 3. The number of islands µ was chosen as explained above: to give
the smallest possible parallel running time, while not increasing the sequential time,
asymptotically. The table also shows the expected communication effort, defined as the
total number of individuals migrated throughout the run. Details are given in Theo-
rems 8, 10, 12, 14, and 17. Bounds on the expected communication effort follow easily
from bounds on the parallel running time using Theorem 2. The functions used in this
table are explained in Section 2. Table 3 in the appendix shows all our results for a
variable number of islands µ and variable transmission probabilities p.

The method has already found a number of applications and it spawned a number
of follow-up papers. After the preliminary version of this work [24] was presented, the
authors applied it for various problems from combinatorial optimization: the sorting
problem (as maximizing sortedness), finding shortest paths in graphs, and Eulerian cy-
cles [26]. Very recently, Mambrini, Sudholt, and Yao [30] also used it for studying how
quickly island models find good approximations for the NP-hard SETCOVER problem.
This work has also led to the discovery of simple adaptive schemes for changing the
number of islands dynamically throughout the run, see Lässig and Sudholt [25]. These
schemes lead to near-optimal parallel running times, while asymptotically not increas-
ing the sequential running time on many examples [25]. These schemes are tailored to-
wards island models with complete topologies, which includes offspring populations
as special case. The study of offspring populations in comma strategies is another re-
cent development that was inspired by this work [37].

2 Preliminaries

We are interested in the following performance measures, where the number of islands,
µ, in the considered island model is obvious from the context. First we define the
parallel running time T par as the number of generations until the first global optimum is
evaluated. Let Tµ be the number of generations before the island model finds a global
optimum for the first time. Then

T par := Tµ.

The sequential running time T seq is defined as the number of function evaluations un-
til the first global optimum is evaluated. It thus captures the overall effort across all
processors. It is formally defined as

T seq := µ · Tµ.

In both measures T par and T seq we allow ourselves to neglect the cost of the initializa-
tion as this only adds a fixed term to the running times.

The speedup is defined as the ratio of expected running times of a single island and
an island model with µ islands:

E (T1) /E (Tµ) .

Our definition of speedup is called weak orthodox speedup in Alba’s taxonomy [1]. If the
speedup is at least of order µ, i. e., if it is Ω(µ), we speak of a linear speedup. In this
work it is generally understood in an asymptotic sense, unless we call it a perfect linear
speedup.

Note that our notion of speedup is defined with regard to the number of gener-
ations. In terms of wall-clock time, when the algorithm is stopped when reaching a

Evolutionary Computation Volume x, Number x 5

J. Lässig and D. Sudholt

global optimum, the execution time of an island model with µ islands can be estimated
as

Execµ = Tµ · (Execgenµ + Execmigr
µ) (1)

where Execgen is the execution time for one generation (excluding migration) and
Execmigr is the execution time for migration. The latter depends on the number of
islands, the communication topology, and the number of individuals migrated. For

sequential algorithms (µ = 1) we have Execmigr
1 = 0. Contrarily, for homogeneous

parallel systems we may assume that Execgenµ is fixed, that is, independent of µ.
Many common definitions of “speedup” consider the wall-clock time, where the

differences in Execmigr play a role. Here we consider speedups with regard to the num-
ber of generations only, ignoring the differences in Execmigr. This makes sense in setting
where Execgen ≫ Execmigr; for instance, when fitness evaluations are so expensive that
they dominate the execution time. Otherwise, the speedups stated here may be op-
timistic as the overhead induced by migration is ignored. Note, however, that with
additional information about Execgen and Execmigr and Equation (1) our results easily
extend to more sophisticated notions of speedups.

To get a more complete picture of the resources used in a parallel system and to
take into account the overhead by communication, we also consider the communica-
tion effort T com. It is defined as the total number of individuals migrated to other is-
lands during the course of a run. The communication effort therefore captures the total
bandwidth used during a run of an island model. It represents an important factor for
determining the performance of a parallel EA, alongside the parallel running time.

The expected communication effort is a multiple of the parallel expected running
time, with the factor depending on the number of (directed) edges in the topology, the
transmission probability p and the number of individuals migrated in each migration
event.

The following theorem lists various topologies: a unidirectional ring is a graph
consisting of a single directed cycle, whereas a directed ring has undirected edges. Note
that an undirected edge can be regarded as two directed edges. In a torus graph all ver-
tices are arranged on a two-dimensional grid, with undirected edges wrapping around
(vertices in the top row are neighbored to the ones in the bottom row and vice versa,
similarly for the leftmost and rightmost columns). Each vertex in a torus thus has 4
distinct neighbors, provided that the torus has at least 3 rows and at least 3 columns.
Hypercubes are formally defined in Section 6, and the complete graph Kµ contains
undirected edges between all pairs of nodes.

Theorem 2. Consider an island model with a directed graph T = (V,E) as topology, such that
in each generation along each directed edge migration takes place independently with probabil-
ity p. Assume that ν individuals are migrated in each migration event. Let T par be the parallel
running time of the island model, then the expected communication effort E (T com) is

E (T com) = pν · |E| · E (T par) . (2)

Thereby, if |V | = µ, we have

• |E| = µ for a unidirectional ring and |E| = 2µ for a bidirectional ring,

• |E| = 4µ for any torus graph where both sides have length at least 3,

• |E| = µ logµ for the (logµ)-dimensional hypercube, and

• |E| = µ(µ− 1) for the complete graph Kµ.

6 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

Proof. Fix a single edge e, then the expected number of migration events across e equals

∞
∑

t=0

Prob (T par = t) · t · p = p · E (T par)

by definition of E (T par). By linearity of expectations, we can add these values for all
edges to get the expected number of migration events across the whole topology. This
yields a factor of |E|. Additionally multiplying by ν gives the expected communication
effort.

Hence to estimate the expected communication effort it suffices to analyze the ex-
pected parallel running time.

In our example applications we consider the maximization of a pseudo-Boolean
function f : {0, 1}n → R. It is easy to adapt the method for minimization. The num-
ber of bits is always denoted by n. The following well known example functions have
been chosen because they exhibit different probabilities for finding improvements in
a typical run of an EA. For a search point x ∈ {0, 1}n write x = x1 . . . xn, then

OneMax(x) :=
∑n

i=1 xi counts the number of ones in x and LO(x) :=
∑n

i=1

∏i
j=1 xi

counts the number of leading ones in x, i. e., the length of the longest prefix containing
only 1-bits. A function is called unimodal if every non-optimal search point has a Ham-
ming neighbor (i. e., a point with Hamming distance 1 to it) with strictly larger fitness.
Observe that LO is unimodal as flipping the first 0-bit results in a fitness increase. For
LO every non-optimal point has exactly one Hamming neighbor with a better fitness.
For 1 ≤ k ≤ n we also consider

Jumpk :=

{

k +
∑n

i=1 xi, if
∑n

i=1 xi ≤ n− k or x = 1n,
∑n

i=1(1− xi) otherwise.

This function has been introduced by Droste, Jansen, and Wegener [8] as a function
with tunable difficulty as evolutionary algorithms typically have to perform a jump to
overcome a gap by flipping k specific bits. It is also interesting because it is one of very
few examples where crossover has been proven to be essential [19, 22].

Our method for proving upper bounds is based on the fitness-level method [8,47].
The idea is to partition the search space into sets A1, . . . , Am called fitness levels that are
ordered with respect to fitness values. We say that an algorithm is in Ai or on level i if
the current best individual in the population is in Ai. An evolutionary algorithm where
the best fitness value in the population can never decrease (called an elitist EA) can only
improve the current fitness level. If one can derive lower bounds on the probability of
leaving a specific fitness level towards higher levels, this yields an upper bound on the
expected running time.

Theorem 3 (Fitness-level method). For two sets A,B ⊆ {0, 1}n and a fitness function f
let A <f B if f(a) < f(b) for all a ∈ A and all b ∈ B. Partition the search space into non-
empty sets A1, A2, . . . , Am such that A1 <f A2 <f · · · <f Am and Am only contains global
optima. For an elitist EA let si be a lower bound on the probability of creating a new offspring
in Ai+1 ∪ · · · ∪ Am, provided the population contains a search point in Ai. Then the expected
number of iterations of the algorithm to find the optimum is bounded from above by

m−1
∑

i=1

1

si
.

Evolutionary Computation Volume x, Number x 7

J. Lässig and D. Sudholt

In contrast to other methods such as drift analysis [16, 21], the fitness-level method
is applicable in cases where “easy” and “hard” fitness levels are mixed up, so that the
progress towards the optimum cannot reasonably be bounded by a closed formula.

The fitness-level method has also been applied to other elitist optimization meth-
ods, including elitist ant colony optimizers [14, 33] and a binary particle swarm opti-
mizer [45]. It gives rise to powerful tail inequalities [51] and it can be used to prove
lower bounds as well, when combined with additional knowledge on transition prob-
abilities [43]. Finally, Lehre [27] recently showed that the fitness-level method can be
extended towards non-elitist EAs with additional mild conditions on transition proba-
bilities and the population size.

Note that the method only requires a finite number of fitness-level sets, not a finite
set of fitness values. So in principle the method can be applied to continuous fitness
functions as well, provided a suitable discretization is made and the goal is to find the
best fitness-level set. This might not be the most practical approach, though.

In the following we apply the fitness-level method to parallel EAs. For the consid-
ered EAs we assume that there is a migration topology, given by a directed graph. Islands
represent vertices of the topology and directed edges indicate neighborhoods between
the islands. We often describe undirected graphs for use as migration topology, un-
derstanding that for an undirected edge {u, v} we have two directed edges (u, v) and
(v, u). In other words, though formally the migration topology is a directed graph, we
often use the language of undirected graphs to describe it.

Our methods for proving upper bounds require that the islands run elitist evo-
lutionary algorithms. All islands create new offspring independently by mutation
and/or recombination among individuals in the island. In every generation there is
a chance that migration will send an individual on the current best fitness level to some
target island, and that this individual will be included on the target island. This would
effectively increase the fitness level of the target island to the current best level (or an
even better one). For every pair of connected islands, we call this probability trans-
mission probability and denote it p. Note that for any pair of islands, the mentioned
transmission events are independent.

The transmission probability can model various settings, where randomness and
stochasticity may be involved:

• migrations do not take place in every generation, but only probabilistically with
probability p,

• islands do not automatically select individuals on the best fitness level for emigra-
tion, but there is a probability of at least p that this happens,

• similarly, islands do not automatically include immigrants on higher fitness levels,
but only with probability at least p,

• during migration crossover is performed, and p is a lower bound on the probability
that crossover does not disrupt the fitness of an individual on a current best fitness
level (if a crossover probability pc is used, then clearly p ≥ 1− pc),

• the physical architecture suffers from transient faults and p is a lower bound on
the probability that migration is executed correctly.

Of course, the transmission probability can also model any combination of the above,
in which case the product of all above probabilities gives a lower bound on the trans-
mission probability.

8 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

Most of our results also apply when instead of probabilistic migration a fixed mi-
gration interval τ is used. This is similar to a migration probability p = 1/τ ; in fact, it
can be regarded as a derandomized or quasi-random version of probabilistic migration.
With a fixed migration interval the variance in the information propagation is reduced,
and all islands operate in synchronicity. Probabilistic migrations are asynchronous; this
simplifies the analysis as we do not need to keep track on how much time has passed
since the last migration. We expect our results for probabilistic migration to transfer
to the study of migration intervals. The only notable exception is the case of a com-
plete topology, when the migration probability is rather small (Theorem 17) as there
synchronous and asynchronous migrations lead to different effects.

As elaborated above, our method is robust and it applies in various settings, and
for various types of EAs simulated on the islands. In our applications for illustrating
concrete speedups for test problems, we use a simple (1+1) EA for all islands. The
(1+1) EA maintains a single current search point, and in each generation it creates an
offspring by mutation. The offspring replaces its parent if its fitness is not worse. The
resulting island model is shown in Algorithm 1.

Algorithm 1: Parallel (1+1) EA with µ islands and migration probability p

For all 1 ≤ i ≤ µ choose xi ∈ {0, 1}n uniformly at random.
repeat

For all 1 ≤ i ≤ µ do in parallel
Create yi by flipping each bit in xi with probability 1/n.
if f(yi) ≥ f(xi) then xi := yi.
Send a copy of xi to each neighboring island, independently with prob. p.
Choose zi with maximum fitness among all incoming migrants.
if f(zi) ≥ f(xi) then xi := zi.

3 Proving Upper Bounds for Parallel EAs

3.1 A General Upper Bound

Now we describe how to prove upper bounds on the running time of parallel EAs. In
contrast to panmictic EAs, in an island model several islands might participate in the
search for improvements from the current-best fitness level. The number of islands
may vary over time according to the spread of information.

The following theorem transfers upper bounds for panmictic EAs derived by the
fitness-level method into upper bounds for parallel EAs in a systematic way.

Theorem 4 (Fitness-level method for parallel EAs). Consider a partition of the search space
into fitness levels A1 <f A2 <f · · · <f Am such that Am only contains global optima. Let
si be (a lower bound on) the probability that a fixed island running an elitist EA creates a new
offspring in Ai+1 ∪ · · · ∪ Am, provided the island contains a search point in Ai. Let µt for
t ∈ N denote (a lower bound on) the number of islands that have discovered an individual in
Ai ∪ · · · ∪ Am in the t-th generation after the first island has found such an individual. Then
the expected parallel running time of the parallel EA on f is bounded from above by

E (T par) ≤
m−1
∑

i=1

∞
∑

t=0

(1− si)
∑t

j=1 µj .

Evolutionary Computation Volume x, Number x 9

J. Lässig and D. Sudholt

Proof. Let Ti denote the random time until the first island finds an individual on a
fitness level i + 1, . . . ,m, starting with at least one individual on fitness level i in the
whole population. The expected parallel running time can be written as

E(T par) ≤
m−1
∑

i=1

E (Ti) =

m−1
∑

i=1

∞
∑

t=1

Prob (Ti ≥ t) =

m−1
∑

i=1

∞
∑

t=0

Prob (Ti ≥ t+ 1) .

A necessary condition for Ti ≥ t + 1 is that during all t generations after the first in-
dividual has reached fitness level i all islands are unsuccessful in finding an improve-
ment. In the j-th of these generations there are at least µj islands with individuals in
Ai∪· · ·∪Am. Each island is successful with probability at least si. Using that the islands
create new offspring independently, the probability of all islands being unsuccessful is
at most (1− si)

µj . Thus,

m−1
∑

i=1

∞
∑

t=0

Prob (Ti ≥ t+ 1) ≤
m−1
∑

i=1

∞
∑

t=0

t
∏

j=1

(1− si)
µj =

m−1
∑

i=1

∞
∑

t=0

(1− si)
∑t

j=1 µj .

The upper bound from Theorem 4 is very general as it does not restrict the com-
munication among the islands in any way. These aspects are hidden in the definition
of the variables µt. When looking at one particular fitness level, say level i, we also
speak of islands being informed if and only if they contain an individual on level i. The
variable µt then gives the number of informed islands t generations after the first island
has become informed by reaching level i.

The spread of information obviously depends on the migration topology, the mi-
gration interval, and the selection strategies used to choose migrants that are sent and
how migrants are included in the population. The basic method works for all choices of
these design aspects. We elaborate on these aspects and then move on to more specific
scenarios where we can obtain more concrete results.

3.2 How to Deal with Migration Intervals

With a migration interval of τ > 1 the µt-value remains fixed for periods of τ gen-
erations, unless further islands are raised towards the current best fitness level by
variation. If we pessimistically ignore this effect, then we have for appropriate t that
µt = µt+1 = · · · = µt+τ−1. In any case we have µt ≤ µt+1 ≤ · · · ≤ µt+τ−1, hence

the sum of µ-values is at least
∑t

j=1 µj ≥ τ
∑t/τ

j=1 µ(j−1)τ+1. This implies the following
simplified upper bound.

Corollary 5. For a parallel EA with migration interval τ the bound from Theorem 4 simplifies
to

E (T par) ≤
m−1
∑

i=1

∞
∑

t=0

(1− si)
τ
∑t/τ

j=1 µ(j−1)τ+1 .

The values µ(j−1)τ can be estimated like the values µj in a setting with τ = 1. In
order to keep the presentation simple, in the following applications we only consider
the case that τ = 1, i. e., migration happens in every generation. This reflects com-
mon principles used in fine-grained or cellular evolutionary algorithms. The following
considerations can always be combined with the above arguments to handle migration
intervals larger than 1.

10 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

3.3 Stochastic Communication and Finding Improvements

In order to arrive at more concrete bounds on the parallel running time for common mi-
gration topologies, we need to understand how the number of informed islands grows
on each fitness level, i. e., the growth curves underlying the µj-variables. Note that
these variables are random variables in all settings where we have a transmission prob-
ability less than 1. This means that getting a closed formula for the expected parallel
running time is not easy. In Theorem 4 we cannot simply replace the µj-variables by
their expectations as by Jensen’s inequality [20] this would yield an estimation in the
wrong direction (i. e., it would give a lower bound where an upper bound is needed).
More work is required in order to arrive at closed formulas for common topologies.

Instead of arguing with the random number of informed islands, it is easier to
argue with expected hitting times for the time until a specified number of islands is
informed. If we know such expected hitting times, or upper bounds thereof, we can
estimate the time until the parallel EA finds a better fitness level.

Lemma 6. Consider an island model running elitists EAs and fix some fitness level i with
success probability si for each island. Let ξ (k) denote the random number of generations until
at least k islands are informed. Then for every k ≤ µ the expected time until this fitness level is
left towards a better one is at most

E (ξ (k)) + 1 +
1

k
· 1

si
.

Proof. The following argument is similar to previous work by Witt on parent popula-
tions [49]. After E (ξ (k)) expected generations there are at least k informed islands.
Then the probability of leaving the fitness level is at least 1− (1− si)

k and the expected
time is bounded from above by

1

1− (1− si)k
≤ 1 +

1

k
· 1

si
, (3)

where the inequality was published in [37, Lemma 3] and additionally stated as
Lemma 19 in the appendix. Together, this proves the claim.

A good choice for k is one where E (ξ (k)) ≈ 1
k · 1

si
as this is likely to minimize the

bound from Lemma 6, at least asymptotically.
The lemma ignores the fact that during the first ξ (k) generations islands can al-

ready find improvements. It also ignores that the number of informed islands might
grow beyond k after this time. However, we will see that for appropriate choices of k,
the lemma can still give near-optimal results. In the first generations the number of
informed islands is likely to be too small anyway to yield a significant benefit. In addi-
tion, after k islands have been informed this number is large enough to guarantee that
improvements are found quickly, for appropriate k.

3.4 Information Propagation in Networks

It remains to estimate the first hitting time for informing a certain number of vertices.
Note that this is similar to studying growth curves and takeover times. In fact, ξ(µ)
is the expected time until the whole island model is informed. Growth curves and
takeover times have been studied in artificial settings where no variation takes place,
see [3, 10–13, 38–40] or recent surveys [29, Chapter 4], [42].

Evolutionary Computation Volume x, Number x 11

J. Lässig and D. Sudholt

In the following, we refer to our model of transmission probabilities as it is a gen-
eral model that captures many stochastic components in the dynamic behavior of island
models. But at the same time it is simple enough to allow for a theoretical analysis.

Transmission probabilities give rise to a stochastic information propagation pro-
cess in networks. Each informed vertex in the network independently tries to inform
all its neighbors in every iteration, and information is successfully transmitted across
any of these edges with probability p. This process was studied by Rowe, Mitavskiy,
and Cannings [36], who considered the propagation time as the time until all vertices in
the network are informed. They presented bounds for interesting graph classes as well
as a general upper bound of

8 diam(G) + 8 log n

p(1− e−1)

for the propagation time on an undirected graph G. Thereby diam(G) denotes the di-
ameter of G, defined as the maximum number of edges on any shortest path between
two vertices in the graph.

Interestingly, the same probabilistic process also underlies the way randomized
search heuristics find shortest paths in weighted undirected graphs. Doerr, Happ, and
Klein [6,7] showed that the (1+1) EA can find shortest paths in graphs by simulating the
Bellman-Ford algorithm. The task is to find shortest paths from a source v∗ to all other
vertices. For vertices whose shortest paths have few edges, shortest paths are found
quickly. In our language these vertices would be called informed. If u is informed and
the graph contains an edge {u, v}, then v can become informed with a fixed probability
during a lucky mutation, if the shortest path from v∗ to v contains u. This way, shortest
paths propagate through the graph in the same fashion as information does. The same
can be observed for ant colony optimizers [44].

Doerr, Happ, and Klein [6] independently used a different argument for bounding
the expected propagation time. Fix a shortest path in the graph, leading from v∗ to some
fixed vertex v. In every generation there is a chance of informing the first uninformed
vertex on the path, until eventually the information reaches v. If the path has at least
log n edges, the time until v is informed is highly concentrated. Using tail bounds, the
probability of significantly exceeding the expectation is very small. This allows us to
apply a union bound for all considered vertices v.

Following the proof of [6, Lemma 3], we get the following lemma. An advantage
over the general bound from [36] is that it not only bounds the propagation time for the
whole network. It also bounds expected hitting times for informing smaller numbers
of vertices.

Lemma 7. Consider propagation with transmission probability p on any undirected graph
where initially a single vertex v∗ is informed. For i ∈ N0 let Vi contain all vertices v whose

shortest path from v∗ to v contains i edges. Let nk :=
∑k

i=1 |Vi|. The probability of not having
informed nk vertices in time λk/p, λ ≥ 2, is at most

nk · exp
(

− (λ− 1)2

2λ
· k
)

≤ nk · exp
(

−λk

8

)

.

The expected time until nk vertices are informed is at most

c
c−1 ·max {2k, 8 ln(cnk)}

p

for every c > 1.

12 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

Proof. The first claim follows from the proof of Lemma 3 in [6] and the fact that (λ −
1)2/λ ≥ λ/4 for λ ≥ 2.

If (8/k) · ln(cnk) ≥ 2 we use λ := (8/k) · ln(cnk) and have that after λk/p iterations
the probability of not having informed all vertices is at most

nk · exp (− ln(cnk)) =
1

c
.

If not, we repeat the argument with another phase of λk/p iterations. As each phase is
successful with probability at least 1− 1/c, the expected propagation time is at most

1

1− 1/c
· λk
p

=
c

c−1 · 8 ln(cnk)

p
.

If (8/k) · ln(cnk) < 2 then k/4 > ln(cnk). The first statement with λ := 2 then gives a
probability bound of

nk · exp
(

−k

4

)

≤ nk · exp (− ln(cnk)) ≤
1

c

and using the same arguments as before we get a time bound of

1

1− 1/c
· λk
p

=
c

c−1 · 2k
p

.

Note that putting k := diam(G) and c = 2, we get a bound of

max

{

4 diam(G)

p
,
16 ln(2n)

p

}

≤ 4 diam(G) + 11.2 log(n) + 11.2

p
.

For all non-empty graphs this is better than the general upper bound

8 diam(G) + 8 log n

p(1− e−1)
≈ 12.7 diam(G) + 12.7 log n

p

from Rowe, Mitavskiy, and Cannings [36]. However, the asymptotic behavior of both
bounds is the same (since max{x, y} = Θ(x+ y) for all x, y ∈ R

+
0).

Now we are prepared to analyze parallel EAs with concrete topologies.

4 Parallel EAs with Ring Structures

We start with ring graphs as they are often used as topologies [46]. Rings can either be
unidirectional, in which case there is exactly one directed cycle, or bidirectional, when
all edges are undirected. The following theorem holds for both kinds of graphs, and
in fact for all strongly connected graphs. Recall that a directed graph is called strongly
connected if for every two vertices u, v there is a directed path from u to v (implying that
there is also a path from v to u).

Theorem 8. Consider an island model running elitists EAs on a function f with a fitness-level
partition A1 <f · · · <f Am and success probabilities s1, . . . , sm−1. Let p be (a lower bound
on) the probability that a specific island on fitness level i informs a specific neighbor in the
topology in one generation. The expected parallel running time on f with an unidirectional or

Evolutionary Computation Volume x, Number x 13

J. Lässig and D. Sudholt

bidirectional ring and µ islands—or in fact any strongly connected topology—is bounded from
above by

2

p1/2

m−1
∑

i=1

1

s
1/2
i

+
1

µ
·
m−1
∑

i=1

1

si
.

The expected communication effort for ring graphs is by a factor of at most 2pµ larger than the
expected parallel time.

The shape of this formula deserves some explanation. The second term 1
µ ·
∑m−1

i=1
1
si

is by a factor of µ smaller than the upper bound for a single island by Theorem 3. If
the latter is asymptotically tight, the second term in Theorem 8, regarded in isolation,
would give a perfect linear speedup. The first term is related to the speed at which in-
formation is propagated; it reflects the time needed to bring a reasonably large number
of islands to the current best fitness level. Unlike for the second term, it is independent
of µ, but it depends on the transmission probability p. We do have a linear speedup if

the first term 2
p1/2

∑m−1
i=1

1

s
1/2
i

asymptotically does not grow faster than the second term,

again assuming that the bound for a single island is tight.
As µ grows, the second term becomes smaller, while the first term remains fixed.

So if we have a linear speedup for small µ, there is a point where with growing µ the
linear speedup disappears. This threshold can be easily computed by checking which
value of µ gives rise to the first and second terms being of equal asymptotic order. As
will be seen in the next sections, the same also holds for other migration topologies.

Proof of Theorem 8. For the unidirectional ring we have E (ξ (k)) ≤ (k − 1)/p since a
new island is informed with probability at least p. As this happens independently
in each generation, the expected waiting time until this happens is at most 1/p. In
fact, this argument holds for all strongly connected topologies and in particular for the
bidirectional ring.

Now, if 1 ≤ k := p1/2/s
1/2
i ≤ µ (ignoring rounding issues), by Lemma 6 the ex-

pected number of generations on fitness level i is bounded from above by

k − 1

p
+ 1 +

1

k
· 1

si
≤ 1

p1/2s
1/2
i

+
1

p1/2s
1/2
i

=
2

p1/2s
1/2
i

.

In case p1/2/s
1/2
i < 1 we trivially get an upper bound of

1

si
≤ 1

p1/2s
1/2
i

.

If p1/2/s
1/2
i > µ, Lemma 6 for k := µ gives an upper bound of

µ− 1

p
+ 1 +

1

µ
· 1

si
<

1

p1/2s
1/2
i

+
1

µ
· 1

si
.

Taking the maximum of the above upper bounds gives

max

(

2

p1/2s
1/2
i

,
1

p1/2s
1/2
i

+
1

µ
· 1

si

)

≤ 2

p1/2s
1/2
i

+
1

µ
· 1

si
.

Summing over all fitness levels proves the claim.
The claim on the expected communication effort follows from Theorem 2.

14 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

As remarked in the proof, the bound from Theorem 8 holds for arbitrary strongly
connected topologies as the unidirectional ring is a worst case for the µt-values. Along
with Theorem 2, this also gives a general upper bound on the expected communication
effort for any strongly connected topology.

For bidirectional rings we have E (ξ (k)) ≤ k
2p . This can be seen from applying

Johannsen’s drift theorem, stated in the appendix as Theorem 20, applied to the dif-
ference between k and the current number of informed vertices. If there is more than
one uninformed vertex, there are always at least two vertices neighboring to informed
ones. The number of informed vertices then increases by 2p in expectation. This means
that we can use h(1) = p and h(x) = 2p for x > 1 as drift function. This decreases the
constant 2 in the first term towards

√
2, at the expense of an additional term m − 1. In

some settings this upper bound may be better than the upper bound from Theorem 8
for unidirectional rings; where it isn’t we may still use the latter for bidirectional rings
as Theorem 8 applies to all strongly connected topologies.

Also note that if p < si then the trivial bound 1/si gives a better estimate for
the time until this fitness level is left. If this holds for all fitness levels, information is
propagated too slowly and our method does not give any provable speedups for the
parallel model.

Contrarily, if, say, p = Ω(1), compared to a single island in a ring the expected
waiting time for every fitness level can be replaced by its square root. This can yield
significant speedups. We make this precise for concrete functions in the following the-
orem. For comparing these times with runtime bounds for the (1+1) EA we refer to
Table 1.

Theorem 9. The following holds for the parallel (1+1) EA with transmission probability at
least p on a unidirectional or bidirectional ring (or any other strongly connected topology):

• E (T par) = O
(

n
p1/2 + n logn

µ

)

for OneMax,

• E (T par) = O
(

dn1/2

p1/2 + dn
µ

)

for every unimodal function with d+ 1 function values,

• E (T par) = O
(

nk/2

p1/2 + nk

µ

)

for Jumpk with k ≥ 2.

Proof. For OneMax we choose the canonical partition Ai := {x | OneMax(x) = i}.
The probability of increasing the current fitness from fitness level i is at least si ≥
(n− i) · 1/(en) since there are n− i Hamming neighbors of larger fitness and a specific
Hamming neighbor is created with probability at least 1/n · (1−1/n)n−1 ≥ 1/(en). The
second sum in Theorem 8 is

1

µ
·
n−1
∑

i=0

en

n− i
=

en

µ

n
∑

i=1

1

i
= O

(

n log n

µ

)

.

The first sum in Theorem 8 is

2

n−1
∑

i=0

(

en

n− i
· 1
p

)1/2

= 2

(

en

p

)1/2 n
∑

i=1

1√
i

≤ 2

(

en

p

)1/2 ∫ n

0

1√
i
di ≤ 2

(

en

p

)1/2

·
√
n = O(n/p1/2).

Evolutionary Computation Volume x, Number x 15

J. Lässig and D. Sudholt

For unimodal functions we choose a partition A1, . . . , Ad+1 where Ai contains all search
points with the i-th smallest function value. The probability of improving the fitness
from level i is at least si ≥ 1/(en) because there is at least one search point in the next
fitness level which is at Hamming distance one. Theorem 8 gives an upper bound of

2

d
∑

i=1

(

en

p

)1/2

+

d
∑

i=1

en

µ
≤ 2d ·

(

en

p

)1/2

+
den

µ
= O

(

dn1/2

p1/2
+

dn

µ

)

.

For Jumpk we again choose Ai to contain all search points with fitness i, leading to sets
A1, . . . , An and An+k. The levels A1, . . . , Ak−1 resemble those for OneMax (modulo
swapping the meaning of zeros and ones), and the same estimations for the si apply.
The same holds for levels Ak, . . . , An−1, where Ai corresponds to a success probability
of si−k in the context of OneMax. So the expected time for getting to either of the two
best fitness levels, the set An ∪ An+k, is bounded by twice the above upper bound for
OneMax. In case we have reached An, to reach the highest level An+k, a specific bit
string with Hamming distance k has to be created. This has probability at least

sn ≥
(

1

n

)k

·
(

1− 1

n

)n−k

≥
(

1

n

)k

·
(

1− 1

n

)n−1

≥ 1

enk
.

Theorem 8 and the above bound for OneMax give

O

(

n

p1/2
+

n log n

µ

)

+ 2

(

enk

p

)1/2

+
enk

µ
= O

(

nk/2

p1/2
+

nk

µ

)

.

The speedups obtained are indeed significant, particularly for those functions
where improvements are hard to find.

The proof of Theorem 9 uses well-known fitness-level partitions [8, 47], and hence
it simply consists of plugging in known values si and simplifying. This shows how
easy it is to obtain results for parallel EAs based on analyses of panmictic EAs.

5 Parallel EAs with Two-Dimensional Grids and Tori

For two-dimensional grids and tori we adapt Theorem 4 in a similar manner, making
an effort to get the best possible leading constant in the first term of the running time
bound. We also consider applications of the resulting theorem similar to the applica-
tions for ring graphs.

Theorem 10. Consider an island model running elitists EAs on a function f with a fitness-
level partition A1 <f · · · <f Am and success probabilities s1, . . . , sm−1. Let p be (a lower
bound on) the probability that a specific island on fitness level i informs a specific neighbor in
the topology in one generation. The expected parallel running time of the island model on a grid
or torus topology whose side lengths are at least

√
µ in both directions is bounded from above by

35/3

p2/3

m−1
∑

i=1

1

s
1/3
i

+
1

µ

m−1
∑

i=1

1

si
.

The expected communication effort for µ-vertex topologies is by a factor of at most 4pµ larger
than the expected parallel time.

16 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

Proof. Note that within a square area of
√
k×

√
k vertices in the graph all shortest paths

between any two vertices have at most 2
√
k − 2 edges. So for every vertex in this area,

the number of vertices that can be reached via up to k′ := 2
√
k − 2 edges is n′

k ≥ k. We
pessimistically assume n′

k = k; if not, we consider a slower propagation process where
we remove edges of the graph to ensure n′

k = k. Applying Lemma 7 with respect to

the primed variables k′ := 2
√
k − 2, n′

k = k and c = 4 we have that for every k ≤ µ the
expected time until k islands are informed is bounded from above by

max

{

16/3 ·
√
k − 16/3

p
,
32/3 · ln(4k)

p

}

.

We also get an upper bound of k/(2p) using Johannsen’s variable drift theorem [21],
Theorem 20 in the appendix, as before. If there is more than one uninformed vertex,
there are always at least two vertices neighboring to informed ones. So the expected
number of informed vertices increases by 2p in expectation. Applying Johannsen’s drift
theorem as for the bidirectional ring gives an upper bound of k/(2p). It is easy to check
that the best upper bound is as follows: for all k ∈ N

min

{

k

2p
,max

{

16/3 ·
√
k − 16/3

p
,
32/3 · ln(4k)

p

}}

≤ 6
√
k − 1

p
.

Now, if 1 ≤ k := 3−2/3 · (p/si)2/3 ≤ µ (ignoring rounding issues) by Lemma 6 the
expected number of generations on fitness level i is bounded from above by

6
√
k − 1

p
+ 1 +

1

k
· 1

si
≤ 6 · 3−1/3

p2/3s
1/3
i

+
32/3

p2/3s
1/3
i

=
35/3

p2/3s
1/3
i

.

If 3−2/3 · (p/si)2/3 < 1 we trivially get an upper bound of

1

si
≤ 32/3

p2/3s
1/3
i

.

If 3−2/3 · (p/si)2/3 > µ, we get for k := µ an upper bound of

6
√
µ− 1

p
+ 1 +

1

µ
· 1

si
<

2 · 32/3

p2/3s
1/3
i

+
1

µ
· 1

si
.

Taking the maximum of the above upper bounds gives

max

(

35/3

p2/3s
1/3
i

,
2 · 32/3

p2/3s
1/3
i

+
1

µ
· 1

si

)

≤ 35/3

p2/3s
1/3
i

+
1

µ
· 1

si
.

Summing over all fitness levels yields the claim.
The claim on the expected communication effort follows from Theorem 2.

Note that the communication effort in one generation is asymptotically as large
as for ring graphs, but for large p the upper bound on the parallel running time is
generally smaller (or asymptotically equal, in case upper bounds are dominated by the

term 1/µ ·∑m−1
i=1 1/si). If p < 3si then again the trivial upper bound 1/si is better as

then the spread of information is too slow.

Evolutionary Computation Volume x, Number x 17

J. Lässig and D. Sudholt

Compared to a single island, in a torus the expected waiting time for every fit-
ness level can be replaced by its third root. This leads to improved upper bounds for
unimodal functions and Jumpk.

Theorem 11. The following holds for the parallel (1+1) EA with transmission probability p on
a grid or torus topology whose side lengths are at least

√
µ in both directions:

• E (T par) = O
(

n
p2/3 + n logn

µ

)

for OneMax,

• E (T par) = O
(

dn1/3

p2/3 + dn
µ

)

for every unimodal function with d+ 1 function values,

• E (T par) = O
(

n+nk/3

p2/3 + nk

µ

)

for Jumpk with k ≥ 2.

Proof. We choose the same partitions as in the proof of Theorem 9. Note that the second
terms in Theorem 8 and 10 are identical, so we only estimate the first terms and refer to
Theorem 9 for the second terms.

For OneMax the first sum in Theorem 10 is

35/3

p2/3

n−1
∑

i=0

(

en

n− i

)1/3

=
35/3e1/3n1/3

p2/3

n
∑

i=1

(

1

i

)1/3

≤ 35/3e1/3n1/3

p2/3

∫ n

i=0

(

1

i

)1/3

di

=
35/3e1/3n1/3

p2/3
· 3
2
· n2/3 =

38/3/2 · e1/3n
p2/3

.

This gives an upper bound of

O

(

n

p2/3
+

n log n

µ

)

.

For unimodal functions Theorem 10 gives

35/3

p2/3

d
∑

i=1

(en)
1/3

+

d
∑

i=1

en

µ
≤ 35/3d · e1/3n1/3

p2/3
+

den

µ
= O

(

dn1/3

p2/3
+

dn

µ

)

.

For Jumpk we get

O

(

n

p2/3
+

n log n

µ

)

+ 35/3 · (en
k)1/3

p2/3
+

enk

µ
= O

(

n+ nk/3

p2/3
+

nk

µ

)

.

6 Parallel EAs with Hypercube Graphs

Hypercube graphs are popular topologies in parallel computation. In a d-dimensional
hypercube each vertex has a label of d bits. Two vertices are neighboring if and only if
their labels differ in exactly one bit. The number of vertices is then 2d, and each vertex
has d neighbors. The diameter of a d-dimensional hypercube is d, hence only logarith-
mic in the size of the graph. The small diameter implies that in many communication
models information is spread rapidly, even though the degree of vertices is quite small.
With regard to the propagation process investigated here, we get a small first term in
the following running time bound, and still have a very moderate communication ef-
fort.

18 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

Theorem 12. Consider an island model running elitists EAs on a function f with a fitness-
level partition A1 <f · · · <f Am and success probabilities s1, . . . , sm−1. Let p be (a lower
bound on) the probability that a specific island on fitness level i informs a specific neighbor in
the topology in one generation. The expected parallel running time of the island model on a
(logµ)-dimensional hypercube graph with µ islands is bounded from above by

25m+ 12
∑m−1

i=1 log(1
si
)

p
+

1

µ
·
m−1
∑

i=1

1

si
.

The expected communication effort is by a factor of at most pµ logµ larger than the expected
parallel time.

Proof. In the notation of Lemma 7 we have for the hypercube and 1 ≤ k ≤ logµ that
the number of vertices reachable with at most k edges is bounded from below by

nk =

k
∑

i=1

(

µ

i

)

≥ 2k.

As in the proof of Theorem 8 we consider n′
k = 2k instead of nk, justified by the fact

that we can remove edges in the graph to slow down propagation. Invoking Lemma 7
with k, n′

k = 2k, and c = 2, the expected time until 2k vertices are informed is therefore
at most

16 ln(2 · 2k)
p

=
16 · (ln 2) · (k + 1)

p
<

12(k + 1)

p
.

By Lemma 6 the expected time on fitness level i is hence bounded, for any integer
0 ≤ k ≤ logµ, by

12(k + 1)

p
+ 1 +

1

2k
· 1

si
≤ 13

p
+

12k

p
+

1

2k
· 1

si
. (4)

If p/(12si) < 1, we get a trivial upper bound of 1/si ≤ 12/p. If p/(12si) > µ, which
implies d < log(p/(12si)) ≤ log(1/si), we get an upper bound of

13 + 12d

p
+

1

µ
· 1

si
<

13 + 12 log(1
si
)

p
+

1

µ
· 1

si
.

Otherwise, (4) is minimized for 2k = p/(12si), leading to

13

p
+

12 log(p
12si

)

p
+

12

p
≤ 25

p
+

12 log(1
si
)

p
.

The maximum over all these bounds is at most

25 + 12 log(1
si
)

p
+

1

µ
· 1

si
.

Summing over all fitness levels yields the claim.
The claim on the expected communication effort follows from Theorem 2.

Results for our example applications are as follows.

Evolutionary Computation Volume x, Number x 19

J. Lässig and D. Sudholt

Theorem 13. The following holds for the parallel (1+1) EA with transmission probability p on
a (logµ)-dimensional hypercube:

• E (T par) = O
(

n
p + n logn

µ

)

for OneMax,

• E (T par) = O
(

d logn
p + dn

µ

)

for every unimodal function with d+ 1 function values,

• E (T par) = O
(

n+k logn
p + nk

µ

)

for Jumpk with k ≥ 2.

Proof. For OneMax we have

n−1
∑

i=0

log

(

1

si

)

=
n
∑

i=1

log
(en

i

)

= log

(

n
∏

i=1

en

i

)

= log

(

ennn

n!

)

≤ log

(

ennn

(n/e)n

)

= log
(

e2n
)

= 2n log (e) .

Theorem 12 gives an upper bound of

25n+ 24n log e

p
+O

(

n log n

µ

)

= O

(

n

p
+

n log n

µ

)

.

For unimodal functions Theorem 12 gives

25d+ 12d log(en)

p
+O

(

dn

µ

)

= O

(

d log n

p
+

dn

µ

)

.

For Jumpk we get, using log(enk) ≤ log(eknk) = O(k log n),

O

(

n

p
+

n log n

µ

)

+
25 + 12 log(enk)

p
+O

(

nk

µ

)

= O

(

n+ k log n

p
+

nk

µ

)

.

If p = Ω(1), we get linear speedups for OneMax if µ = O(log n), and linear
speedups for unimodal functions where the bound O(dn) for a single island is tight,
if µ = O(n/ log n). For Jumpk, if k = O(n/ log n) we can choose µ = O(nk−1) to get a
linear speedup. As can be seen from Table 1 the upper bounds on the expected parallel
times for LO and Jumpk are much better for the hypercube than for rings and torus
graphs, if p is large.

7 Parallel EAs with Complete Topologies

Finally, we consider the densest topology, the complete graph Kµ, where every island
is neighboring to every other island. The complete graph is interesting because it rep-
resents an extreme case: the largest possible communication effort with regard to one
generation, but also the fastest possible spread of information.

For the special case of p = 1 a parallel (1+1) EA is basically equivalent to a
(1+µ) EA, which creates µ offspring independently and then compares a best offspring
against the current search point. The only difference is that the parallel (1+1) EA can
store different individuals of the same fitness. But this issue is irrelevant when using

20 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

the fitness-level method. Hence our results for a parallel (1+1) EA with a complete
topology and p = 1 also apply to the (1+µ) EA. For p < 1 the two models are generally
different.

We start with a simple argument. Clearly, if there is at least one informed island,
each other island will become informed with probability at least p.

Theorem 14. Consider an island model running elitists EAs on a function f with a fitness-
level partition A1 <f · · · <f Am and success probabilities s1, . . . , sm−1. Let p be (a lower
bound on) the probability that a specific island on fitness level i informs a specific neighbor in
the topology in one generation. The expected parallel running time of the island model on a
complete topology is

E(T par) ≤ m+
2m

p
+

2

µ

m−1
∑

i=1

1

si
.

The expected communication effort is by a factor of at most pµ(µ − 1) < pµ2 larger than the
expected parallel time.

Proof. We estimate the expected time until at least µ/2 islands are informed after an
improvement. If more than µ/2 islands are uninformed, the expected number of islands
that become informed in one generation is at least pµ/2. By standard drift analysis
arguments [16] the desired expectation is bounded from above by 2/p.

By Lemma 6 we then get that the expected time on fitness level i is at most

1 +
2

p
+

2

µ
· 1

si
.

Adding these times for all fitness levels proves the claim.
The claim on the expected communication effort follows from Theorem 2.

As mentioned, the complete graph leads to a maximal spread of information. In
comparison to the previous sections, we obtain the best upper bounds for the con-
sidered function classes. However, a maximum amount of migration takes place in
each generation, so the expected total communication effort is also highest (cf. Tables 1
and 3).

Theorem 15. Let µ ∈ N. The following holds for the expected parallel running time of the
parallel (1+1) EA with topology Kµ. In the case p = 1, the same holds for the (1+µ) EA:

• E (T par) = O
(

n
p + n logn

µ

)

for OneMax,

• E (T par) = O
(

d
p + dn

µ

)

for every unimodal function with d+ 1 function values, and

• E (T par) = O
(

n
p + nk

µ

)

for Jumpk with k ≥ 2.

The proof is obvious by now.
The term 2/p for the time until at least µ/2 islands are informed is a reasonable

estimate if p is large (e. g., p = Ω(1)). But for small p this estimation is quite loose as
we have completely neglected that all informed vertices have a chance to inform other
islands.

We therefore also present a more detailed analysis for small p. The motivation for
studying complete graphs and small p is that it captures random migration policies.
Assume that each island decides randomly with probability p for each other island

Evolutionary Computation Volume x, Number x 21

J. Lässig and D. Sudholt

whether to migrate individuals to that island. Then this can be regarded as a complete
topology with transmission probability p.

Values around p = 1/µ seem particularly interesting as then in each generation
one migration takes place for each island in expectation. In fact, we get different results
for p > 1/µ and p < 1/µ.

Lemma 16. Consider propagation with transmission probability p on the complete topology
with µ vertices. Let ξ (k) be as in Lemma 6, then

ξ (µ) ≤ 8 log(µ)

min(pµ, 1)
.

Proof. The claim is obvious for µ ≤ 2, so we assume µ ≥ 3 in the following. Let Xt

denote the random number of informed vertices after t iterations. We first estimate the
expected time until at least µ/2 vertices become informed, and then estimate how long
it takes to get from µ/2 informed vertices to µ informed ones.

If Xt = i each presently uninformed vertex is being informed in one iteration with
probability (using Lemma 19 in the appendix)

1− (1− p)i ≥ 1− 1

1 + ip
=

ip

1 + ip
.

This holds independently from other presently uninformed vertices. In fact, the num-
ber of newly informed vertices follows a binomial distribution with parameters µ − i
and ip

1+ip . The median of this binomial distribution is i(µ− i) · p
1+ip (assuming that this

is an integer), hence with probability at least 1/2 we have at least i(µ − i) · p
1+ip newly

informed vertices in one iteration. Hence, it takes an expected number of at most 2 iter-
ations to increase the number of informed vertices by i(µ− i) · p

1+ip , which for i ≤ µ/2

is at least i · pµ
2+pµ .

For every 0 ≤ j ≤ log(µ) − 2 the following holds. If i ≥ 2j and i ≤ µ/2 then in
an expected number of 2 generations at least 2j · pµ

2+pµ new vertices are informed. The

expected number of iterations for informing a total of 2j new vertices is therefore at
most 2 · 2+pµ

pµ . Then we have gone from at least 2j informed vertices to at least 2j+1

informed vertices. Summing up all times across all j, the expected time until at least
2log(µ)−1 = µ/2 vertices are informed is at most

2(log(µ)− 1) · 2 + pµ

pµ
.

For pµ ≤ 1 we have 2+pµ
pµ ≤ 3/(pµ), yielding an upper time bound of 6(log(µ)−1)/(pµ).

Otherwise, we use 2+pµ
pµ ≤ 3 to get a bound of 6(log(µ)− 1).

For the time to get from µ/2 to µ informed vertices, observe that the expected

number of newly informed vertices is still i(µ−i)p
1+ip , if currently i vertices are informed.

Equivalently, if i vertices are uninformed, the expected decrease of the number of unin-

formed vertices is i(µ−i)p
1+(µ−i)p . This function is monotone increasing if i ≤ µ/2. Applying

Johannsen’s drift theorem, Theorem 20 in the appendix, for the number of uninformed

22 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

nodes, using h(i) := i(µ−i)p
1+(µ−i)p as drift function, gives an upper bound of

1 + (µ− 1)p

(µ− 1)p
+

∫ µ/2

1

1 + (µ− i)p

i(µ− i)p
di

≤ 1 + (µ− 1)p

(µ− 1)p
+

ln(µ− 1)(1 + pµ)

pµ

≤ 1 + pµ

pµ
+

1

µ(µ− 1)p
+

ln(µ− 1)(1 + pµ)

pµ

≤
(ln(µ) + 1)(1 + pµ) + 1

µ−1

pµ
.

For pµ ≤ 1 this is at most

2 ln(µ) + 2 + 1
µ−1

pµ
≤ 2 ln(µ) + 5/2

pµ
.

Otherwise, this is at most

(ln(µ) + 1) · 2pµ+ pµ
µ−1

pµ
≤ 2 ln(µ) + 5/2.

Together, along with ln(µ) ≤ log(µ) this proves the claim.

Combining Lemma 16 with Lemma 6 gives the following. Apart from an additive
term m, the case of p ≤ 1/µ yields a bound where the first term is smaller by a factor of
order log(µ)/µ. For fairly large transmission probabilities, p ≥ 1/µ, in the first term we
have replaced the factor 1/p by log(µ). These improvements reflect that the complete
graph can spread information much more quickly than previously estimated in the
proof of Theorem 14.

Theorem 17. Consider an island model running elitists EAs on a function f with a fitness-
level partition A1 <f · · · <f Am and success probabilities s1, . . . , sm−1. Let p be (a lower
bound on) the probability that a specific island on fitness level i informs a specific neighbor in
the topology in one generation. The expected parallel running time of the island model on a
complete topology is bounded as follows. If p ≥ 1/µ we have

E(T par) ≤ m+ 8m logµ+
1

µ

m−1
∑

i=1

1

si

and if p ≤ 1/µ we have

E(T par) ≤ m+
8m logµ

pµ
+

1

µ

m−1
∑

i=1

1

si
.

For our example applications, the refinements in Theorem 17 result in the follow-
ing refined bounds. As we only get improved upper bounds for p = O(1/µ), we do not
mention the special case of the (1+µ) EA with p = 1.

Theorem 18. Let µ ∈ N. The following holds for the expected parallel running time of the
parallel (1+1) EA with topology Kµ:

Evolutionary Computation Volume x, Number x 23

J. Lässig and D. Sudholt

• E (T par) = O
(

n log(µ) + n logn
µ

)

for OneMax if p ≥ 1/µ and

E (T par) = O
(

n+ n log µ
pµ + n logn

µ

)

otherwise,

• E (T par) = O
(

d log(µ) + dn
µ

)

for unimodal functions with d+ 1 values, if p ≥ 1/µ, and

E (T par) = O
(

d+ d log(µ)
pµ + dn

µ

)

otherwise, and

• E (T par) = O
(

n log(µ) + nk

µ

)

for Jumpk with k ≥ 2, if p ≥ 1/µ and

E (T par) = O
(

n+ n log(µ)
pµ + nk

µ

)

otherwise.

8 Experiments

In order to complement the analytical results above, we also give experimental results
on the behavior of island models for different topologies. As a detailed experimental
evaluation is beyond the scope of this paper, we only present illustrative results for the
two functions OneMax and LO.

First we investigate the parallel running time T par and the communication effort
for different transmission probabilities. The experiments were repeated 100 times per
data point for the parallel (1+1) EA with µ = 64 islands and an instance size of n = 256
for both example functions, varying the transmission probability p in steps of 0.01.
Figure 1 shows the behavior for the topologies K64, a bidirectional ring graph, an 8× 8
torus graph, and a 6-dimensional hypercube.

Looking at the influence of the transmission probability on the running time, a
higher transmission probability improves the running time behavior of the algorithm,
also according to the expectations from our theoretical analysis. In particular, all not too
small values p lead to much smaller running times compared to the pathological setting
p = 0, where we have no communication, but µ independent runs of the (1+1) EA. This
demonstrates for our functions that parallelization and migration can lead to drastic
speedups. For larger or intermediate values for p the parallel running time does not
vary much, as then for all topologies the running time is dominated by the second terms
from our bounds: 1/µ ·O(n log n) and 1/µ ·O(n2) for OneMax and LO, respectively.

Comparing the behavior of those topologies, we see that the parallel running time
indeed depends on the density of the topology, i. e., more dense topologies spread
information more efficiently, which results in a faster convergence. As expected, the
topology Kµ performs best, the ring graph performs worst.

We have used two-sided Mann-Whitney U tests on the data from Figure 1(a)
and 1(b), and a comparison of mean ranks, to make pairwise comparisons between
the topologies concerning the parallel running time. We performed separate tests for
each individual data point (e. g. each tested transition probability) as this illuminates
in which settings one topology is better than another3. For both OneMax and LO and
all transmission probabilities at least 0.01, the outcome is that Kµ < hypercube < torus
< ring on a significance level of 0.001.

Looking at the communication effort, Figure 1(c) and 1(d), it seems that it is larger
for more dense topologies, as expected. Hence, although the topology Kµ shows the

3This is particularly relevant as for the upcoming experiments in Figure 2 some of the curves cross, and
then we cannot say that one topology is always better than another. The large number of tests means that
we cannot exclude the possibility that some of the results may be false positives. To minimize this issue, we
report results for a very low significance level of 0.001 wherever possible.

24 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

0 0.2 0.4 0.6 0.8 1

102

103

transmission probability

n
u

m
b

er
o

f
g

en
er

at
io

n
s

ring
torus

hypercube
Kµ

(a) OneMax

0 0.2 0.4 0.6 0.8 1

103

104

transmission probability

n
u

m
b

er
o

f
g

en
er

at
io

n
s

ring
torus

hypercube
Kµ

(b) LO

0 0.2 0.4 0.6 0.8 1
103

104

105

transmission probability

co
m

m
u

n
ic

at
io

n
ef

fo
rt

ring
torus

hypercube
Kµ

(c) OneMax

0 0.2 0.4 0.6 0.8 1

10−2

100

102

104

106

transmission probability

co
m

m
u

n
ic

at
io

n
ef

fo
rt

ring
torus

hypercube
Kµ

(d) LO

Figure 1: Average parallel running time and communication effort for the parallel
(1+1) EA using µ = 64 islands and different transmission probabilities, both for One-
Max and LO on n = 256 bits. The lines connect all data points, i. e. varying transmission
probabilities in increments of 0.01; plot marks are put in increments of 0.05.

best runtime behavior, the communication effort is highest for all transmission prob-
abilities. Interestingly, the communication effort is about the same for the other three
topologies. This is in particular the case for LO, i. e., although e. g. the ring graph is
more sparse, its parallel running time is higher, so that the communication effort re-
mains similar to the hypercube and the torus graph.

Applying the Mann-Whitney U test for the communication effort and OneMax we
have ring < torus < hypercube <Kµ for all transmission probabilities at least 0.01 on a
significance level of 0.001. Looking at LO, the level of significance is slightly less when
comparing ring and torus. For the communication effort and LO, the relation ring <
torus for a transmission probability of at least 0.01 only holds on a significance level
of 0.05. Additionally, there are three exceptions: for transmission probabilities 0.13,
0.14, and 0.17 results were not significant.

Next we investigate the impact of the number of islands on the performance, with
regard to different topologies and transmission probabilities, see Figures 2(a) and 2(b)
for a transmission probability p = 1.0 and Figures 2(c) and 2(d) for a transmission

Evolutionary Computation Volume x, Number x 25

J. Lässig and D. Sudholt

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

number of islands

ring
torus

hypercube
Kµ

(a) Efficiency for OneMax with p = 1.0

0 10 20 30 40 50 60
0.4

0.6

0.8

1

number of islands

ring
torus

hypercube
Kµ

(b) Efficiency for LO with p = 1.0

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

number of islands

ring
torus

hypercube
Kµ

(c) Efficiency for OneMax with p = 0.1

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

number of islands

ring
torus

hypercube
Kµ

(d) Efficiency for LO with p = 0.1

Figure 2: Efficiency for the parallel (1+1) EA with transmission probabilities p ∈ {0.1, 1}
for µ ∈ {1, . . . , 64} numbers of islands.

probability p = 0.1. As the parallel running time shows a steep decrease, we plot the
efficiency instead, defined as

T seq

T par · µ .

It can be regarded as a normalized version of speedup, normalized by the number
of islands. Small efficiencies indicate small speedups, large efficiencies indicate good
speedups. An efficiency of 1 corresponds to a perfect linear speedup.

Again, the instance size of the benchmark functions was set to n = 256 and the
number of islands µ was chosen from 1 to 64. Only square torus graphs were used. So
our torus graphs and hypercubes are only defined for square numbers and powers of 2,
respectively, leading to fewer data points.

For lower numbers of islands the efficiency of the algorithm is better than for larger
numbers of islands. This is expected as a single (1+1) EA, i. e., our setting with µ = 1
minimizes the number of function evaluations for both OneMax and LO [43], among
all EAs that only use standard bit mutation. This excludes superlinear speedups on
OneMax and LO, for such EAs, from a theoretical perspective.

26 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

It can be seen that more dense topologies are more efficient than sparse topologies.
In accordance with our theoretical analyses, the efficiency decreases more rapidly for
OneMax. For OneMax, and p = Ω(1), only values µ = O(log n) were guaranteed to
give a linear speedup. And indeed the efficiency in Figure 2(c) degrades quite quickly
for OneMax and p = 1.0.

Higher numbers of islands are still efficient for LO. For the ring, the range of good
µ-values is up to µ = O(

√
n). This is reflected in Figure 2(d) as the efficiency degrades

as µ increases beyond
√
n = 16. For denser topologies the efficiency only degrades

for large µ. The complete graph remains effective throughout the whole scale—even
stronger, for values up to µ = 256 (not shown in Figure 2) the efficiency was always
above 0.75. This was also expected as µ = Θ(n) still guarantees a linear speedup for
LO.

Comparing the running time behavior for different transmission probabilities, the
plots confirm again that in our examples a higher transmission probability for individ-
uals allows for a better overall performance.

Also for the results in Figure 2 pairwise two-sided Mann-Whitney U tests were per-
formed as before. For the efficiency the mean ranks in each setup indicate the ordering
ring < torus < hypercube < Kµ, but with different levels of significance. In Table 2
we list those numbers of islands for which the pairwise comparisons are statistically
significant on a significance level of 0.001. Note that torus and hypercube by defini-
tion only share very few data points (squares of powers of two): µ ∈ {1, 4, 16, 64}. For
very small values of µ results are not significant, as the topologies are too similar and
hence show indistinguishable performance. But for larger topologies, that is, µ > 16,
all comparisons are indeed significant on a very low level of 0.001.

Torus Hypercube Complete
OneMax, 0.1 Ring µ > 1 µ > 4 µ > 4
OneMax, 0.1 Torus - µ > 16 µ > 4
OneMax, 0.1 Hypercube - - µ > 1
LO, 0.1 Ring µ > 4 µ > 4 µ > 5
LO, 0.1 Torus - µ > 16 µ > 4
LO, 0.1 Hypercube - - µ > 1
OneMax, 1.0 Ring µ > 4 µ > 4 µ > 7
OneMax, 1.0 Torus - µ > 16 µ > 9
OneMax, 1.0 Hypercube - - µ > 8
LO, 1.0 Ring µ > 16 µ > 16 µ > 8
LO, 1.0 Torus - µ > 16 µ > 16
LO, 1.0 Hypercube - - µ > 16

Table 2: A summary of test results regarding pairwise comparisons between the differ-
ent migration topologies with Mann-Whitney U tests, according to the efficiency shown
in Figure 2. Here the lines of the table are for different fitness functions and migration
probabilities (0.1 or 1.0) and a line-column combination describes the number of is-
lands of the model, where the Mann-Whitney U test was significant on a significance
level of 0.001.

Evolutionary Computation Volume x, Number x 27

J. Lässig and D. Sudholt

9 Conclusions

We have provided a general method for the running time analysis of parallel evolution-
ary algorithms, including applications to a set of well-known and illustrative example
functions. Our method provides a way of automatically transforming running time
bounds obtained for panmictic EAs to parallel EAs with spatial structures. In addition
to a general result, we have provided methods tailored towards specific topologies:
ring graphs, torus graphs, hypercubes and complete graphs. The latter also covers
offspring populations and random migration topologies as special cases. Our results
can estimate the expected parallel running time from above, thus lower-bounding the
speedup obtained through parallelization with regard to the number of generations.
They also bound the expected total communication effort in terms of the total number
of individuals migrated as an indicator of the bandwidth used.

Our example applications revealed insights which are remarkable in their own
right, see Table 1 and a more general version in Table 3. Compared to upper bounds
obtained for a single panmictic island by the fitness-level method, for ring graphs the
expected waiting time for an improvement can be replaced by its square root in the par-
allel running time, provided the number of islands is large enough and improvements
are transmitted efficiently, i. e., p = Ω(1). This leads to a speedup of order log n for One-
Max and of order

√
n for some unimodal functions, such as LO. On Jumpk the speedup

is even of order at least nk/2. A similar effect is observed for torus graphs where the
expected waiting time can be replaced by its third root. The hypercube reduces the
(upper bound on the) expected waiting time on each level to its logarithm, and on the
complete graph it is reduced to a constant, again provided there are sufficiently many
islands. This way, even on functions like LO and Jumpk (3 ≤ k = O(n/ log n)) the
expected parallel time can be reduced to O(n). In all these results the population size
can be chosen in such a way that the total number of function evaluations does not
increase, in an asymptotic sense. The population sizes leading to best possible upper
bounds on the parallel running time have been stated explicitly (cf. Tables 1 and 3),
therefore giving hints on how to parametrize parallel EAs.

The tables also reveal that in certain situations there is a tradeoff between the ex-
pected parallel time and the communication effort—at least with regard to the upper
bounds shown here. For instance, on LO the torus graph has the smallest communica-
tion effort of O(n2) at the expense of a higher parallel time bound of O(n4/3). The com-
plete graph has the smallest bound for the parallel time, O(n), but the largest bound for
the communication effort: O(n3). The hypercube provides a good compromise, com-
bining the smallest bounds up to polylogarithmic factors. A similar observation can be
made for Jumpk, but there the hypercube is the better choice than the complete graph
(strictly better in terms of communication effort and equally good in the parallel time
bound). In all our examples the ring never gave better upper bounds than torus graphs
in both objectives.

We also gave experimental results for the parallel (1+1) EA on OneMax and LO
with the four topologies ring, torus, hypercube, and complete graph (in order of
increasing density). These results and statistical tests confirm that, also in a non-
asymptotic sense, in almost all parameters settings the following holds. Going from
sparse to dense topologies, the parallel running time of the parallel (1+1) EA decreases,
but the communication effort increases.

Future work should deal with lower bounds on the running time of parallel evo-
lutionary algorithms to establish in which cases our upper bounds are asymptotically

28 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

tight. It might be possible to extend drift analysis methods [16, 21] in such a way that
both the current best fitness and the number of islands on the current best fitness level
are considered; a similar strategy was used for the analysis of population-based evolu-
tionary algorithms by Lehre and Yao [28]. Also in our example functions no diversity
was needed. Further studies are needed in order to better understand how the topology
and the parameters of migration affect diversity, and how diversity helps for optimiz-
ing more difficult, multimodal problems.

Acknowledgments

The authors were supported by postdoctoral fellowships from the German Academic
Exchange Service while visiting the International Computer Science Institute, Berkeley,
CA, USA. Dirk Sudholt was also supported by EPSRC grant EP/D052785/1. We would
like to thank the anonymous reviewers for their comments that helped to improve the
paper.

References

[1] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters, 82(1):7–13, 2002.

[2] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, 2005.

[3] E. Alba and G. Luque. Growth curves and takeover time in distributed evolution-
ary algorithms. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, volume 3102 of LNCS, pages 864–876. Springer, 2004.

[4] A. Auger and B. Doerr, editors. Theory of Randomized Search Heuristics – Foundations
and Recent Developments. Number 1 in Series on Theoretical Computer Science.
World Scientific, 2011.

[5] E. Cantú Paz. A survey of parallel genetic algorithms. Technical report, Illinois Ge-
netic Algorithms Laboratory, University of Illinois at Urbana Champaign, Urbana,
IL, 1997.

[6] B. Doerr, E. Happ, and C. Klein. A tight analysis of the (1+1)-EA for the single
source shortest path problem. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’07), pages 1890–1895. IEEE Press, 2007.

[7] B. Doerr, E. Happ, and C. Klein. Tight analysis of the (1+1)-EA for the single source
shortest path problem. Evolutionary Computation, 19(4):673–691, 2011.

[8] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

[9] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation, 18(4):617–633, 2010.

[10] M. Giacobini, E. Alba, A. Tettamanzi, and M. Tomassini. Selection intensity in cel-
lular evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary
Computation, 9:489–505, 2005.

Evolutionary Computation Volume x, Number x 29

J. Lässig and D. Sudholt

[11] M. Giacobini, E. Alba, and M. Tomassini. Selection intensity in asynchronous cel-
lular evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO ’03), pages 955–966. Springer, 2003.

[12] M. Giacobini, M. Tomassini, and A. Tettamanzi. Modelling selection intensity for
linear cellular evolutionary algorithms. In Proceedings of the Sixth International Con-
ference on Artificial Evolution, Evolution Artificielle, pages 345–356. Springer, 2003.

[13] M. Giacobini, M. Tomassini, and A. Tettamanzi. Takeover time curves in random
and small-world structured populations. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’05), pages 1333–1340. ACM Press, 2005.

[14] W. J. Gutjahr and G. Sebastiani. Runtime analysis of ant colony optimization
with best-so-far reinforcement. Methodology and Computing in Applied Probability,
10:409–433, 2008.

[15] J. He and X. Yao. Towards an analytic framework for analysing the computation
time of evolutionary algorithms. Artificial Intelligence, 145(1–2):59–97, 2003.

[16] J. He and X. Yao. A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[17] C. Horoba. Exploring the runtime of an evolutionary algorithm for the multi-
objective shortest path problem. Evolutionary Computation, 18(3):357–381, 2010.

[18] T. Jansen. Analyzing Evolutionary Algorithms – The Computer Science Perspective.
Springer, 2013.

[19] T. Jansen and I. Wegener. On the analysis of evolutionary algorithms—a proof that
crossover really can help. Algorithmica, 34(1):47–66, 2002.

[20] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes.
Acta Mathematica, 30:175–193, 1906.

[21] D. Johannsen. Random Combinatorial Structures and Randomized Search Heuristics.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany and the Max-
Planck-Institut für Informatik, 2010.

[22] T. Kötzing, D. Sudholt, and M. Theile. How crossover helps in pseudo-Boolean
optimization. In Proceedings of the 13th Annual Genetic and Evolutionary Computation
Conference (GECCO 2011), pages 989–996. ACM Press, 2011.

[23] J. Lässig and D. Sudholt. The benefit of migration in parallel evolutionary al-
gorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2010), pages 1105–1112. ACM Press, 2010.

[24] J. Lässig and D. Sudholt. General scheme for analyzing running times of parallel
evolutionary algorithms. In 11th International Conference on Parallel Problem Solving
from Nature (PPSN 2010), volume 6238 of LNCS, pages 234–243. Springer, 2010.

[25] J. Lässig and D. Sudholt. Adaptive population models for offspring populations
and parallel evolutionary algorithms. In Proceedings of the 11th Workshop on Foun-
dations of Genetic Algorithms (FOGA 2011), pages 181–192. ACM Press, 2011.

30 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

[26] J. Lässig and D. Sudholt. Analysis of speedups in parallel evolutionary algorithms
for combinatorial optimization. In 22nd International Symposium on Algorithms and
Computation (ISAAC 2011), volume 7074 of LNCS, pages 405–414. Springer, 2011.

[27] P. K. Lehre. Fitness-levels for non-elitist populations. In Proceedings of the 13th
Annual Genetic and Evolutionary Computation Conference (GECCO ’11), pages 2075–
2082. ACM Press, 2011.

[28] P. K. Lehre and X. Yao. On the impact of mutation-selection balance on the run-
time of evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
16(2):225–241, 2012.

[29] G. Luque and E. Alba. Parallel Genetic Algorithms–Theory and Real World Applica-
tions, volume 367 of Studies in Computational Intelligence. Springer, 2011.

[30] A. Mambrini, D. Sudholt, and X. Yao. Homogeneous and heterogeneous island
models for the set cover problem. In Parallel Problem Solving from Nature (PPSN
2012), volume 7491 of LNCS, pages 11–20. Springer, 2012.

[31] N. Nedjah, L. de Macedo Mourelle, and E. Alba. Parallel Evolutionary Computations.
Springer, May 2006.

[32] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt. On the effectiveness of
crossover for migration in parallel evolutionary algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2011), pages 1587–1594.
ACM Press, 2011.

[33] F. Neumann, D. Sudholt, and C. Witt. Analysis of different MMAS ACO algo-
rithms on unimodal functions and plateaus. Swarm Intelligence, 3(1):35–68, 2009.

[34] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization –
Algorithms and Their Computational Complexity. Springer, 2010.

[35] P. S. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algorithms for
combinatorial optimization: A decade of results. International Journal of Automation
and Computing, 4(3):281–293, 2007.

[36] J. Rowe, B. Mitavskiy, and C. Cannings. Propagation time in stochastic communi-
cation networks. In Second IEEE International Conference on Digital Ecosystems and
Technologies, pages 426–431, 2008.

[37] J. Rowe and D. Sudholt. The choice of the offspring population size in the (1,λ) EA.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012),
pages 1349–1356, 2012.

[38] G. Rudolph. On takeover times in spatially structured populations: Array and
ring. In Proceedings of the 2nd Asia-Pacific Conference on Genetic Algorithms and Ap-
plications, pages 144–151. Global-Link Publishing Company, 2000.

[39] G. Rudolph. Takeover time in parallel populations with migration. In BIOMA
2006, pages 63–72, 2006.

[40] J. Sarma and K. De Jong. An analysis of local selection algorithms in a spatially
structured evolutionary algorithm. In Proceedings of the 7th International Conference
on Genetic Algorithms, pages 181–186. Morgan Kaufmann, 1997.

Evolutionary Computation Volume x, Number x 31

J. Lässig and D. Sudholt

[41] Z. Skolicki and K. De Jong. The influence of migration sizes and intervals on
island models. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005), pages 1295–1302. ACM, 2005.

[42] D. Sudholt. Parallel evolutionary algorithms. In Handbook of Computational Intelli-
gence. Springer. To appear.

[43] D. Sudholt. A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435, 2013.

[44] D. Sudholt and C. Thyssen. Running time analysis of ant colony optimization for
shortest path problems. Journal of Discrete Algorithms, 10:165–180, 2012.

[45] D. Sudholt and C. Witt. Runtime analysis of a binary particle swarm optimizer.
Theoretical Computer Science, 411(21):2084–2100, 2010.

[46] M. Tomassini. Spatially Structured Evolutionary Algorithms: Artificial Evolution in
Space and Time. Springer, 2005.

[47] I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions. In R. Sarker, X. Yao, and M. Mohammadian, editors, Evolu-
tionary Optimization, pages 349–369. Kluwer, 2002.

[48] C. Witt. Worst-case and average-case approximations by simple randomized
search heuristics. In Proceedings of the 22nd Symposium on Theoretical Aspects of
Computer Science (STACS ’05), volume 3404 of LNCS, pages 44–56. Springer, 2005.

[49] C. Witt. Runtime analysis of the (µ+1) EA on simple pseudo-Boolean functions.
Evolutionary Computation, 14(1):65–86, 2006.

[50] Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary
optimization with application to minimum set cover. Artificial Intelligence, 180–
181(0):20–33, 2012.

[51] D. Zhou, D. Luo, R. Lu, and Z. Han. The use of tail inequalities on the probable
computational time of randomized search heuristics. Theoretical Computer Science,
436(0):106 – 117, 2012.

32 Evolutionary Computation Volume x, Number x

General Upper Bounds for Parallel EAs

A Appendix

The following inequality was brought to our attention by Jon Rowe. A proof is found
in [37, Lemma 3].

Lemma 19. For any 0 ≤ x ≤ 1, and any n > 0

(1− x)n ≤ 1

1 + nx
.

We also state Johannsen’s variable drift theorem [21], in a version with slightly
improved conditions [37].

Theorem 20 (Johannsen’s Variable Drift Theorem [21, 37]). Consider a stochastic process
{X}t≥0 on {0, 1, . . . ,m}, with m ∈ N. Suppose there is a monotonic increasing function
h : R+ → R

+ such that the function 1/h(x) is integrable on {1, . . . ,m}, and with

E (Xt −Xt+1 | Xt = k) ≥ h(k)

for all k ∈ {1, . . . ,m}. Then the expected first hitting time of state 0 is at most

1

h(1)
+

∫ m

1

1

h(x)
dx.

Evolutionary Computation Volume x, Number x 33

J.L
ässig

an
d

D
.S

u
d

h
o

lt

(1+1) EA Ring Grid/Torus Hypercube Complete/Kµ Kµ with p = O(1/µ)
OneMax

E (T par) Θ(n log n) O
(

n

p1/2
+ n logn

µ

)

O
(

n

p2/3
+ n logn

µ

)

O
(

n
p
+ n logn

µ

)

O
(

n
p
+ n logn

µ

)

O
(

n log µ
pµ

+ n logn
µ

)

E (T seq) Θ(n log n) O
(

µn

p1/2
+ n log n

)

O
(

µn

p2/3
+ n log n

)

O
(

µn
p

+ n log n
)

O
(

µn
p

+ n log n
)

O
(

µ(log µ)n
pµ

+ n log n
)

E (T com) 0 O
(

p1/2µn+ pn log n
)

O
(

p1/3µn+ pn log n
)

O(µn(log µ) + p(log µ)n logn) O
(

µ2n+ pµn log n
)

O(µ(log µ)n+ pµn log n)

LO

E (T par) Θ(n2) O
(

n3/2

p1/2
+ n2

µ

)

O
(

n4/3

p2/3
+ n2

µ

)

O
(

n logn
p

+ n2

µ

)

O
(

n
p
+ n2

µ

)

O
(

n log µ
pµ

+ n2

µ

)

E (T seq) Θ(n2) O
(

µn3/2

p1/2
+ n2

)

O
(

µn4/3

p2/3
+ n2

)

O
(

µn logn
p

+ n2
)

O
(

µn
p

+ n2
)

O
(

µ(log µ)n
pµ

+ n2
)

E (T com) 0 O
(

p1/2µn3/2 + pn2
)

O
(

p1/3µn4/3 + pn2
)

O
(

µn(logn)(log µ) + p(log µ)n2
)

O
(

µ2n+ pµn2
)

O
(

µ(log µ)n+ pµn2
)

unimodal

E (T par) O(dn) O
(

dn1/2

p1/2
+ dn

µ

)

O
(

dn1/3

p2/3
+ dn

µ

)

O
(

d logn
p

+ dn
µ

)

O
(

d
p
+ dn

µ

)

O
(

d log µ
pµ

+ dn
µ

)

E (T seq) O(dn) O
(

dµn1/2

p1/2
+ dn

)

O
(

dµn1/3

p2/3
+ dn

)

O
(

dµ logn
p

+ dn
)

O
(

dµ
p

+ dn
)

O
(

d log µ
pµ

+ dn
)

E (T com) 0 O
(

p1/2dµn1/2 + pdn
)

O
(

p1/3dµn1/3 + pdn
)

O(dµ(logn)(log µ) + p(log µ)dn) O
(

dµ2 + pdµn
)

O(dµ log µ+ pµdn)

Jump
k

E (T par) Θ(nk) O
(

nk/2

p1/2
+ nk

µ

)

O
(

n+nk/3

p2/3
+ nk

µ

)

O
(

n
p
+ nk

µ

)

O
(

n
p
+ nk

µ

)

O
(

n log µ
pµ

+ nk

µ

)

E (T seq) Θ(nk) O
(

µnk/2

p1/2
+ nk

)

O
(

µ(n+nk/3)

p2/3
+ nk

)

O
(

µn
p

+ nk
)

O
(

µn
p

+ nk
)

O
(

n log µ
p

+ nk
)

E (T com) 0 O
(

p1/2µnk/2 + pnk
)

O
(

p1/3µnk/3 + pnk
)

O
(

µn(log µ) + p(log µ)nk
)

O
(

µ2n+ pµnk
)

O
(

µ(log µ)n+ pµnk
)

Table 3: Asymptotic bounds on expected parallel (T par, number of generations) and sequential (T seq, number of function evaluations)
running times and expected communication efforts (T com, total number of migrated individuals) for various n-bit functions and island
models with µ islands running the (1+1) EA and using migration probability p. The number of islands µ was always chosen to give the
best possible upper bound on the parallel running time, while not increasing the upper bound on the sequential running time by more
than a constant factor. For unimodal functions d+1 denotes the number of function values. See [8] for bounds for the (1+1) EA. Results
for Jumpk were restricted to 3 ≤ k = O(n/ log n) for simplicity.

34
E

v
o

lu
tio

n
ary

C
o

m
p

u
tatio

n
V

o
lu

m
e

x
,N

u
m

b
er

x

