
This is a repository copy of Tolerating Transient Late-Timing Faults in Cloud-Based
Real-Time Stream Processing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98900/

Version: Accepted Version

Proceedings Paper:
Garraghan, P, Perks, S, Ouyang, X et al. (2 more authors) (2016) Tolerating Transient
Late-Timing Faults in Cloud-Based Real-Time Stream Processing. In: Proceedings: 2016
IEEE 19th International Symposium on Real-Time Distributed Computing. ISORC 2016,
17-20 May 2016, York, UK. IEEE , pp. 108-115. ISBN 978-1-4673-9032-3

https://doi.org/10.1109/ISORC.2016.24

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Tolerating Transient Late-timing Faults in Cloud-based

Real-time Stream Processing

Peter Garraghan, Stuart Perks, Xue Ouyang, David McKee, Ismael Solis Moreno*

School of Computing

University of Leeds

Leeds, UK

{p.m.garraghan, sc14sp, scxo, scdwm}@leeds.ac.uk

*Advanced Research Center

CIATEQ

Santiago de Querétaro, Mexico

ismael.solis@ciateq.mx

Abstract � Real-time stream processing is a frequently

deployed application within Cloud datacenters that is

required to provision high levels of performance and

reliability. Numerous fault-tolerant approaches have been

proposed to effectively achieve this objective in the presence

of crash failures. However, such systems struggle with

transient late-timing faults � a fault classification challenging

to effectively tolerate � that manifests increasingly within

large-scale distributed systems. Such faults represent a

significant threat towards minimizing soft real-time execution

of streaming applications in the presence of failures. This

work proposes a fault-tolerant approach for QoS-aware data

prediction to tolerate transient late-timing faults. The

approach is capable of determining the most effective data

prediction algorithm for imposed QoS constraints on a failed

stream processor at run-time. We integrated our approach

into Apache Storm with experiment results showing its ability

to minimize stream processor end-to-end execution time by

61% compared to other fault-tolerant approaches. The

approach incurs 12% additional CPU utilization while

reducing network usage by 44%.

Keywords- Fault-tolerance, Stream Processing, Data

Prediction, Cloud computing.

I. INTRODUCTION

Huge surges in data generation and consumption
globally has resulted in a rapid increase of both data volume
and velocity � two key characteristics of Big Data �
exploited to address societal, technologic, and scientific
needs. A popular application that exploits these
characteristics are real-time data stream processing systems.
These systems are capable of processing single or multiple
data sources in motion through multiple data processing
nodes to fulfill timing requirements of users. Such systems
perform filtration or aggregation of large volumes of data in
real-time, and are used in a plethora of application domains
including social media [1], Cloud datacenter monitoring [2],
security [3] and the Internet of Things (IoT).

Fault-tolerance � a means to attain dependability � is an
important approach towards achieving reliable streaming
[4]. However, its effectiveness is directly threatened by the
system�s requirement for massive scalability in response to
Big Data. Specifically, the increased demand of voluminous
and high-velocity data results in increased complexity, and
subsequent failure manifestation [5]. Such failures directly
translate into violation of user Quality of Service (QoS) as
well as economic costs to application providers.

There have been numerous works that have proposed
novel fault-tolerant approaches through replication [6][7],

perform active/passive standby [8], upstream backup [25],
and speculative execution [9] of data processing nodes. In
addition, works in [10][11] have proposed state rollback
recovery and micro-batch processing across remaining
nodes. While these approaches are successful in improving
system reliability, they face challenges in overhead; ranging
from high resource usage to complex coordination protocols
that slows down replication. This is particularly true for
tolerating late-timing transient faults that are increasingly
commonplace in massive-scale distributed systems caused
by stragglers [23]. This emergent system phenomena at
scale manifest from numerous root-causes transient in
nature (i.e. high server utilization, daemon processes) [24].
These faults result in poor performance of stream processing
systems, and cascade their impact upon the entire system
due to data dependencies. As a result, applying current fault-
tolerant approaches still results in delays to real-time
processing and violation to deadlines imposed by user QoS.

One promising approach for tolerating transient (and
short-lived) faults is data prediction, where speculated data
values are determined based off historical data patterns. This
approach has been recently applied successfully to the
Cloud gaming domain [12], however incurs substantial
overhead and applies an identical prediction algorithm
across the entire system. It has been demonstrated in [13]
that a combination of data prediction techniques can achieve
greater performance. As a result, different algorithms for
data prediction are more effective within certain scenarios
(i.e. overhead, data value, QoS) in response to the failure
characteristics of a stream processing system.

In this paper we propose a novel fault-tolerant approach
that uses QoS-aware data prediction to tolerate transient
late-timing faults in real-time stream processing. The
approach uses distributed agents to detect late-timing faults
within each processing node. Upon detection the system
applies the most appropriate data prediction algorithm to the
scenario that is capable of achieving the highest accuracy
whilst fulfilling timing deadlines specified by QoS. We
implemented our approach within Storm [22], an open
source real-time distributed computation framework and
demonstrate through experiments the approach�s
effectiveness under numerous operational scenarios as well
as contrasted against other fault-tolerant approaches.

The paper is structured as follows: Section 2 describes
the research background; Section 3 discusses related work;
Section 4 presents the system design and architecture;
System 5 details the experiment setup; Section 6 presents
the evaluation; Section 7 discusses the conclusions and
future work.

II. BACKGROUD

Stream processing (also known as complex event
processing systems [14] and continuous query processing
systems [15]) are systems developed to process single or
multiple sources of data in motion [7][16]. These systems
are typically represented as Directed Acyclic Graphs [9] and
can be deployed as sequential (processing node performs a
small subset of operation which is outputted to the next
node), parallel (i.e. no dependency between tasks) or a
combination of both. A common usage of such systems is
the ability to perform query processing in real-time - where
the physical timings of the result is equally important as
result correctness [17].

Stream processing frameworks such as Storm [18],
Spark, and Kinesis have enabled a transition from capturing
data for online transaction processing to real-time analytics
processing [19], with numerous applications across multiple
domains such as IoT, fraud detection, social media and
video. Real-time stream processing effectiveness is
measured by four criteria; high availability to handle
demand at all times [4], low latency for high volume
processing to avoid bottlenecks in dataflow [9][18],
scalability to operate across potentially thousands of nodes,
and fault-tolerance for reliable system operation in the
presence of failures. An important consideration for the
latter is minimal overhead in terms of resource utilization,
as well as rapid failure recovery that does not impact other
processing nodes within the system [20].

Late-timing transient faults are classified as intermittent
faults that produce late timing failures (i.e. late service
delivered). Such faults are difficult to reproduce and occur
due to system conditions affecting the hardware or software
by high workload intensity and synchronization issues [28].
Such faults are increasingly common in large-scale Cloud
datacenters due to complexity and larger system scale
resulting in an increased number of faults resulting in
subsequent failure manifestation [29]. These faults result in
debilitated effectiveness for stream processing systems
which are required to process data in a timely manner and
provision applications effectively in soft real-time.

III. RELATED WORK

There have been numerous fault-tolerant approaches
proposed for streaming processing systems broadly
categorized as replication, upstream and data prediction.

Hwang et al. [8] present three approaches to achieve
high availability stream processing. These approaches
consist of replication techniques deployed as (1) passive
standby, (2) upstream backup (i.e. data sent to a faulty node
is rerouted to other processing nodes), and (3) active
standby. Each of these approaches are extended using K-
safety where nodes are replicated K times to enable recovery
from multiple node failures. Approaches are compared
though simulation demonstrating that approaches result in
low recovery time and that trade-offs exist between
recovery time, overhead, and network distribution.

Shah et al. [6] present Flux; a technique for replica
coordination for parallel data flows using traditional query
processing for partitioned parallelism combined with
process-pairs. This allows Flux to provide automated
recovery of lost state rapidly with minimal interference to
other partitions. The approach was implemented in a four

node cluster demonstrating its ability to tolerate injected
faults with incurred overhead costs due to synchronization
between two processes resulting in task slowdown.

Balazinska et al. [7] present DPC (Delay, Process, and
Correct) � a replication protocol to tolerate process nodes
and network failures. Their approach uses a combination of
upstream backup to neighboring process nodes and replicas
in order to guarantee eventual consistency, however results
in overhead when buffering tuples during failure occurrence.
Their results demonstrate that different failure duration
characteristics require different fault-tolerant techniques to
be applied for maximum effectiveness.

Koldehofe et al. [11] propose a method for rollback
recovery without requiring persistent memory for state
storage to recovery from multiple failures in streaming
architectures. State is saved when its execution is dependent
on the state of incoming event streams and where the state
has minimal non-reproducible state. They prove the
proposed algorithm correctness and evaluate its behavior in
different parameter configuration for active replications.

Zaharia et al. [10] develop a new processing model
termed discretized streams (D-Streams). The main objective
is a scalable means to tolerate both faults and task stragglers.
This is achieved through using micro-batch processing
which simplifies synchronization between distributed nodes.
They provide comprehensive detail of the processing model
system architecture and fault recovery. D-Stream is
implemented within Spark, demonstrating its ability to
process over 60 million records/second on 100 nodes and
recover from faults and stragglers in sub-second time.

In terms of data prediction, Wang et al. [13] present a
hybrid approach for prediction in order to tolerate data
dependences in instruction level parallelism. These methods
for prediction comprise last value outcome and time stamp
distance. They demonstrate that their method achieves
accuracy between 25-49% separately.

Zhou et al. [21] proposed two approaches on how
prediction can be applied in the presence of failures. They
claim that using a confidence measure within the context of
a given scenario is essential, that includes determining the
impact of incorrect predictions prior to execution. They
propose two models to address this � confidence saturating
counter and confidence history counter.

Lee et al. [12] present the speculative execution engine
Outatime. Their main objective is to overcome network
latency in Cloud based mobile gaming systems. Outatime
produces predictive future frames based on recent input
behavior, state space sub-sampling, incorrect prediction
compensation and bandwidth compression. Results
demonstrate that their approach is capable of masking
250ms network latency in Cloud based mobile gaming.

It is observable that these fault-tolerant techniques
applied in the context of real-time stream processing were
not developed in order to tolerate transient slow processing
tasks. Discretized stream approach is capable of tolerating
slow tasks however uses micro batch processing which is
not applicable to stream processing. Outatime is the most
relevant piece of work, however is restricted to a single
prediction algorithm within the gaming domain, and is
unable to handle heterogeneity of transient faults which may
exist within a large processing application (i.e. processing

nodes experiencing heterogeneous failure scenarios in terms
of data volume, data velocity and slowdown).

IV. SYSTEM ARCHITECTURE

In this section we describe how data prediction can be
used as a means to develop QoS-aware fault-tolerance for
transient late-timing faults in Stream Processors.

Figure 1 provides a high-level description of the
approach, with Table 1 detailing all leveraged parameters.
A Data Source (an external system) sends numerical data
din to a Stream Processor to perform data aggregation or
filtration. The Stream Processor sends the resultant data dout

to Output as a final result, intermediate results to another
stream processor, or another external system.

The Prediction Agent monitors the data flow of the
Stream Processor, specifically time stamps for din and dout

occurrence. When a late-timing fault is detected in the
Stream Processor by the Prediction Agent, a data prediction
algorithm executes and sends predicted data dpred to Output.
The philosophy of this approach is that the data prediction
is capable of tolerating transient late-timing faults for a
finite period of time until an appropriate recovery technique
is deployed (i.e. hot-standby replica, checkpointing), and
that within the context of real-time systems it is
advantageous to send potentially inaccurate results rather
than omitted results. A practical example of such practice
can be found in Twitter where approximate answers for
meeting time requirements are desired [18].

A. Data Prediction Heterogeneity

 An important consideration for the Prediction Agent is
determining which algorithm is most effective within the
context of tolerating late-timing faults in real-time systems.
All data prediction algorithms have the potential to output
incorrect results or possess the inability to produce a
prediction due to insufficient training data. Furthermore,
forming a prediction model takes time and requires
computing power on stored data. Studies within [13] have
demonstrated that a combination of prediction techniques
and different algorithms are effective for improved
performance. As a result, it is necessary to demonstrate the
heterogeneity of prediction algorithms with respect to
accuracy and timing constraints for different types of data
attribute characteristics.

We applied five data prediction algorithms to publicly
available datasets for weather sensor data [26] and Cloud
datacenter server monitoring [27]. We implemented a Java
program within a single node that sends n rows at a regular
time interval (n = 1000), and applies model training on
previously recorded data. The algorithms selected include
Last Outcome and Stride based (detailed in [13]), Long
Stride Based, Simple Markov, and k-Nearest Neighbor
(KNN) where k = 4.

Table 2 and Figure 2 depict algorithm accuracy when
applied to different data attributes for weather sensors and
Cloud datacenter monitoring, respectively. It is observable
that while prediction for rainfall and battery are highly
accurate across all algorithms, it is apparent that certain
algorithms are better suited for different data attributes. This
is demonstrated by accuracy ranging between 1.26 � 99%
for atmospheric pressure and 4 � 100% for surface
temperature. This is due to the nature of the prediction
algorithm as well as the data characteristics; for example
KNN performs well on small spatial data while attributes
such as rainfall and battery exhibit minor deviation from
historical data, resulting in stable model creation. In contrast
wind direction exhibits larger deviation resulting in
difficulties for constructing an accurate prediction model.

While the algorithm Last Outcome produced the highest
accuracy on average at 87.95%, it is observable that there is
no single prediction algorithm that outperforms all others
for each data attribute. However as shown in Figure 3, each
algorithm requires different execution time to complete
ranging between 0.02 � 0.8 seconds. This is also true when
configuring algorithm parameters such as KNN, with
algorithm execution time ranging between 0.2 � 1.1 seconds
when varying k between 10 to 10,000. This deviation in
time is worth highlighting, as the model must be repeatedly
trained after k new values enter into the system, or data is
trained periodically. This has direct impact on additional
resource usage as well as increased data volume within the
Stream Processor.

These results demonstrate that data prediction accuracy
varies dependent on the data heterogeneity and attribute
modeled each requiring different processing times for model
training. Both aspects must be considered in the context of
the proposed real-time fault-tolerant streaming system;
algorithms must achieve the highest prediction accuracy
whilst abiding to a specified time deadline.

TABLE 1. FAULT-TOLERANT APPROACH PARAMETERS.

Symbol Description

S Stream Processor

tn Current time

f Late-timing fault

D Deadline

din Data input

dout Data output

dpred Predicted data

c Prediction Algorithm

C Set of Prediction Algorithms i.e. c א C

TABLE 2. PREDICTION ACCURACY FOR WEATHER SENSOR DATA.

Atmos.

pressure
Rainfall

Wind

Dir.

Surface

Temp.
Humid. Battery

Simple

Markov
54% 100% 8% 68.2% 77.9% 100%

Stride

Based
1.38% 99.2% 0.4% 6.1% 5.1% 100%

Stride

Multiple
1.26% 98.4% 0.6% 4% 3.26% 100%

Last

Outcome
97.3% 98.3% 20% 100% 97.3% 100%

KNN 99% 98.6% 9% 94.6% 38.8% 100%
Figure 1. Data prediction fault-tolerant approach.

B. Prediction Agent

The Prediction Agent is responsible for monitoring the
Stream Processor, fault detection, as well as determining
and executing the most appropriate data prediction
algorithm for tolerating failure until recovery. This
functionality comprises multiple sub-components depicted
in Figure 4.

Processor Monitor: Responsible for monitoring data
flow through the Stream Processor. The monitor records
timestamps for both din and dout within the Stream
Processor; if dout is not detected before a specified timing
constraint imposed by the QoS, a late-timing fault is
detected within the Stream Processor.

Prediction Model Builder: Periodically executes data
prediction algorithms by training data previously completed
by the Stream Processor prior to failure. Data prediction is
performed by training a limited subset of historical data
stored within a data cache that is periodically updated. An
agent can hold multiple prediction algorithms at a given
time which data is trained for individually.

Algorithm Rank: Models trained within the Prediction
Model Builder are periodically evaluated asynchronous to
the Stream Processor. This is to ensure that models are kept
as accurate as possible and reflect recent data
characteristics. The QoS calculator records several Key
Performance Indicators (KPIs) for accuracy (mean squared
error, root mean squared error, mean absolute error) and
execution time (time to train, execution). This is used to
construct a ranking order for algorithms.

Prediction Hot-swap: This component acts as the
decision maker for selecting the optimal prediction
algorithm upon fault detection. The component will execute
the prediction algorithm with the highest recorded accuracy
and execution time (defined in Algorithm Rank) while
adhering to time deadlines specified by the QoS. Dpred will
continue to output data until the Stream Processor recovers
or another mitigation technique is applied (i.e. upstream
backup). This decision making can be expressed formally
shown in Equation (1) and Algorithm 1. ݐ ࣞǡ ݀௨௧ ؠ ݂ ൌ maxא ܲሺܿሻ ݀ ൌ ݂ሺ݀ሻ ฺ ݐ ࣞǡ ݀௨௧ ൌ ݀

C. System Model

The concept of the Prediction Agent monitoring a
Stream Processor can be applied to the entire streaming
system as shown in Figure 5. One advantage of this
approach is that Prediction Agents are loosely coupled from
a specific stream processor (i.e. they can be deployed on
separate physical machines).

The system design is decentralized in nature; the
decision to not include a central Prediction Agent is due to
increase data traffic transferring data for model training, as

Figure 4. Prediction Agent components.

Inputs:

d_in = data source input

d_out = data output

QoS = Quality of Service with timing

deadline

Algorithm:

1. Start d_out = STREAM_PROCESS (d_in, QoS)

2. PREDICT (t(d_in), QoS)

1. Deadline = t(d_in) + QoS

2. SLEEP UNTIL Deadline

3. IF d_out == NULL

1. GET Manager.Predictions

2. GET Manager.Evaluations

3. SORT Predictions BY

Evaluations.Accuracy THEN BY

Evaluations.Overhead

4. d_out = Prediction[0].Run

5. STREAM_PROCESS.Clear

4. END IF

Algorithm 1. Prediction Algorithm Hotswap.

Figure 2. Prediction Accuracy for Cloud monitoring.

0

10

20

30

40

50

60

70

80

90

100

CPU Usage Memory Usage

A
cc

u
ra

cy
 %

Simple Markov

Stride Based

Stride Multiple

Last Outcome

KNN

Figure 3. Algorithm overhead time for Cloud monitoring.

0

100

200

300

400

500

600

700

800

900

CPU Usage Memory Usage

M
o

d
e

l
T
ra

in
in

g
 t

im
e

 (
m

s)

Simple Markov

Stride Based

Stride Multiple

Last Outcome

KNN

(1)

well as sending predicted data across the network in the
event of failure resulting in challenges pertaining to
scalability and bottlenecks (further aggravated in the event
of simultaneous failure, or multi-tenant systems).
Furthermore, a decentralized approach allows for Prediction
Agents to operate even if a failure occurs within another
Prediction Agent.

Due to their decentralized nature, it is advantageous to
construct a light weight manager which communicates with
all Prediction Agents. This Agent Manager is responsible to
monitoring Prediction Agents that periodically send
heartbeats reporting their current status; this Agent Manager
provides a complete view of the current state of the system.
An additional feature of the Agent Manager is the ability to
upload different data prediction algorithms into Prediction
Agents. This allows for the system administrator to control
the number of prediction algorithms within an individual
Prediction Agent, as well as select the algorithm type of a
specific parameter configuration.

We describe an example scenario of the fault-tolerant
approach in operation in the event of a late-timing fault:

1) Data is sent to Stream Processor, with its time stamp

sent to the Prediction Agent. The Stream Processor has

a timing deadline specified by stream system QoS.

2) A data output fails to be produced prior to deadline

imposed by the QoS, and is detected as a late-timing

fault within the Process Monitor.

3) Prediction hot-swap compiles a list of all algorithms

ranked by their accuracy and time overhead in

descending and ascending order, respectively to

complete model training.

4) The selected prediction algorithm executes, with the

predicted value generated from previously trained data.

This is sent to the output address in place of the data

output for the Stream Processor. The Stream Processor

clears the previous data tuple.

An advantage of this approach is the ability to provide
different data prediction algorithms towards fulfilling QoS
constraints in response to heterogeneous failure scenarios.
For example, two Stream Processors with different data
throughput affected by different failure duration are capable

of selecting different data prediction algorithms in order to
fulfill timing requirements imposed by the specified QoS.

V. EXPERIMENT SETUP

We implemented our proposed fault-tolerant technique
within Apache Storm in order to develop a Cloud datacenter
monitoring system. The system reports datacenter server
operation in real-time detailing resource utilization and
status periodically. The abstract system concepts shown in
Figure 5 can be directly mapped to implementations used by
Storm. Specifically, Storm stream topologies can be
represented as serial and/or parallel, use spouts for reading
tuples from external sources (Data Source), and bolts for
processing (Stream Processor).

We implemented the Prediction Agent as a library
within Apache Storm available at [22]. The Prediction
Agent was implemented in Java as a single object attached
to each Stream Processor. The Process Monitor calculates
tuple execution duration in a Stream Processor by recording
input and output timestamps matched by message ID. The
Prediction Model Builder is constructed by periodically
training prediction algorithms on n data tuples stored in
memory within the Data Cache, with n configured to 50. For
experiments we implemented four data prediction
algorithms comprising KNN, Stride Based, Last Outcome
and Simple Markov. Model training was performed offline
with metrics of accuracy, training time and execution time
recorded within Algorithm Rank.

The Storm cluster was implemented into the University
of Leeds Cloud Test Bed, comprising 15 Intel Xeon CPU
E5-2630 v3 servers @ 2.40GHz using up to 7 VMs

TABLE 3. EXPERIMENT CONFIGURATION PARAMETERS.

Metric Configuration Value

System Scale
2 VMs 11 Stream Processor nodes

7 VMs 44 Stream Processor nodes

Fault Size
Small 10% Stream Processor nodes

Large 50% Stream Process nodes

Data Input Size Fixed 18 Spouts

Data Input

Throughput

Small 250ms

Medium 500ms

Large 1000ms

Figure 5. System architecture of fault-tolerant approach within a sequential Stream Processor.

configured with 2 VCPU and 1 GB memory. Each VM
contained Ubuntu OS with multiple workers representing an
individual Stream Processor.

Numerous experiments were conducted reflecting
different operational and failure scenarios. We varied key
parameters including data input size, fault injection
percentage, and number of VMs as shown in Table 3. Data
input size was altered by increasing and decreasing the
velocity which data is sent to the Storm system. Faults were
injected through using sleep threads to reduce data
throughput and injected every 30 seconds and lasting 8
seconds. This was to simulate failures due to memory leaks,
memory bloats or un-terminated threads resulting in locks.
With these experiment configurations we measured several
metrics including resource overhead, algorithm accuracy
and throughput. Furthermore, we calculate the tuple end-to-
end time for the application (i.e. first input into the system
until the final result).

For evaluation against other approaches, we executed
the same experiment conditions for our approach, upstream
backup [13][26], and no fault tolerance (referred to as
baseline). Upstream backup timeout was configured to the
default value of 30 seconds. Each experiment case was
executed for 150 seconds 10 times each. For our
experiments we assume that there is failure isolation
between VMs (which typically reside within separate
physical machines), and that there is sufficient data
available for prediction model training. Furthermore we
assume that all faults will eventually be corrected and not
exhibit crash failure characteristics (i.e. will eventually send

data). Our approach is focused on fault-tolerance, therefore
we do not evaluate fault correction and recovery practices.
Furthermore, it is assumed that the input data itself is non-
faulty and contains no missing data.

VI. EVALUATION

Table 4 shows the end-to-end execution time of data
tuples within the Stream Processor in numerous experiment
configurations. It is observable that data prediction
minimizes execution time under the presence of failures by
approximately 61% on average compared to upstream
backup. In particular, the approach minimizes the maximum
end-to-end time spike that occurs during failure as depicted
in Figure 6 and Figure 7. The number of VM failures also
impacts the effectiveness of techniques; with large faults
producing greater end-to-end time on average compared to
small faults across all experiment cases. We observe that
while large faults impact the average execution time of all
approaches, we observe that there is minimal difference in
effectiveness between baseline and upstream backup for
long faults compared to short faults. The exception to this is
large faults and large data where upstream outperforms all
methods. This is due to less burden upon a Stream Processor
when re-routing tuples to other Stream Processors. In
contrast, while prediction results in a considerably lower
average and maximum end-to-end time its effectiveness is
more sensitive to large faults. This is due to the reliance on
predicting values on already data impacted by late-timing
failures, requiring more time to train prediction algorithms.
This results in an increase of 46.5% and 96.8% for
experiments for small and large faults, respectively.

TABLE 4. STREAM PROCESSOR END-TO-END EXECUTION TIME (ms) FOR FAULT-INJECTION EXPERIMENTS.

System

Size
 Baseline Upstream Prediction

2 VMs

Fault Throughput Average Max Average Max Average Max

Small Small 257.90 5264.12 183.61 3258.36 14.967 292.49

Small Medium 293.86 6489.63 213.77 4303.70 57.15 572.34

Small Large 202.72 4288.72 222.55 5832.72 129.32 1792.72

Large Small 378.99 5654.00 426.68 6477.08 202.41 2237.52

Large Medium 539.17 6204.43 524.27 6667.13 306.45 3249.78

Large Large 429.95 6819.42 558.76 6523.19 345.87 4110.62

7 VMs

Small Small 182.38 3539.57 193.65 4394.59 13.86 1151.71

Small Medium 142.09 4460.15 159.44 3933.50 25.96 3079.77

Small Large 143.96 4649.28 201.83 4196.15 133.96 3584.50

Large Small 253.24 4832.33 322.22 4736.22 26.76 280.81

Large Medium 305.43 4868.63 228.35 4227.59 88.68 3794.32

Large Large 340.97 5217.39 180.89 5636.30 227.14 3462.26

 (a) (b) (c)

Figure 6. End-to-end execution times for small faults in 2 VMs with data size (a) small, (b) medium, (c) large.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

D
a

ta
 E

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline

Upstream

Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

D
a

ta
 E

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline
Upstream
Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

D
a

ta
 e

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline

Upstream

Prediction

While the prediction approach results in minimized end-
to-end time under the presence of faults, it does so by
potentially sending inaccurate results shown in Table 2 as
discussed in Section 4a. Within all experiments we
discovered that algorithm accuracy does not drastically
fluctuate and ranged between 65-75%.

It is worth noting that Storm contains functionality
which buffers data, and is capable of accelerating the
throughput of an individual processing node. This is
indicated by a slight drop and sudden increase in throughput
as shown in Figure 8 for baseline and upstream backup
caused by delay in fault mitigation. As prediction operates
on immediate mitigation upon fault detection, this results in
a minimized impact towards throughput, however increases
with data size.

Figure 6 and 7 also depict the impact of faults under
various data tuple sizes. We observe that increasing the data
size of tuples results in increased end-to-end time of the
stream processor for faults. This is resultant of increased
volume of data that must be queued by the Stream Processor
until model training on previous tuples has been completed.
Such behavior is reflected by a larger spike in throughput
for processing as shown within Figure 8(c).

Each technique also exhibits different resource
characteristics in terms of CPU and network across the
entire system as shown in Figure 9(a) and 9(b). It is
observable that Prediction uses the highest amount of CPU
utilization 12% higher in comparison to other techniques.
Higher CPU utilization is due to continuous model training
and evaluation to produce prediction results. In contrast, this
results in reduced network usage required up to 44% and
35% less than upstream for upload and download,
respectively. Upstream backup requires just under 7 MiB
network usage to reroute data tuples to other processing
nodes within the system. These results present an important

consideration for considering network congestion, and
trade-off between reducing end-to-end times. Memory
usage of all technique remains stable between 6-9% across
all experiments.

 (a) (b) (c)

Figure 8. Throughput for small faults in 2 VMs with data size (a) small, (b) medium, (c) large.

0

50

100

150

200

250

300

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

T
h

ro
u

g
h

p
u

t

Time (seconds)

Baseline Upstream Prediction

0

50

100

150

200

250

300

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

T
h

ro
u

g
h

p
u

t

Time (seconds)

Baseline Upstream Prediction

0

50

100

150

200

250

300

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

T
h

ro
u

g
h

p
u

t

Time seconds)

Baseline Upstream Prediction

 (a) (b) (c)

Figure 7. End-to-end execution times for large faults in 2 VMs with data size (a) small, (b) medium, (c) large.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

D
a

ta
 E

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline

Upstream

Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

D
a

ta
 E

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline

Upstream

Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

D
a

ta
 E

n
d

-t
o

-e
n

d
 (

m
s)

Time (seconds)

Baseline

Upstream

Prediction

(a)

(b)

Figure 9. Stream processor resource usage.

(a) CPU and memory, (b) Network.

0

5

10

15

20

25

30

35

Baseline Upstream Prediction

S
e

rv
e

r
U

ti
li

za
ti

o
n

 %

CPU

Memory

0

1

2

3

4

5

6

7

8

Baseline Upstream Prediction

N
e

tw
o

rk
 U

sa
g

e
 (

M
iB

)

Upload

Download

In summation, while using prediction for fault-tolerance
results in decreased end-to-end execution time, stabilized
throughput and decreased network usage in contrast to other
methods, it does so at the cost of increased CPU overhead
and potential result inaccuracy. Furthermore, the
effectiveness of upstream backup towards minimizing end-
to-end time increases with increased system size, however
incurs additional network resource usage. Such design
trade-off must be considered when designing real-time
stream processing applications within the context of system
resource constraints and whether application specific QoS
favors timing over potential inaccuracy.

VII. CONCLUSIONS

In this paper we have presented an approach for
tolerating late-time transient failures in real-time stream
processor applications. The approach is capable of applying
data prediction algorithms heterogeneously in response to
various failure conditions for different Stream Processors to
satisfy imposed QoS. We have described core concepts of
the fault-tolerant approach and presented its architecture
which has been implemented within Apache Storm.
Numerous experiments have been conducted to evaluate its
effectiveness for different system configurations and
scenarios in comparison to other fault-tolerance approaches.
Our conclusions are summarized as follows:

Data prediction can improve the performance of stream
processing under the presence of transient timing faults.
Using data prediction for fault-tolerance reduces Stream
Processor end-to-end execution time however can
potentially provide inaccurate results. Such accuracy can be
improved with the inclusion of more effective prediction
algorithms configured to patterns within the data.

Design considerations for applying fault-tolerance with
respect to failure type and resource overhead. Our
experiments demonstrate that different fault-tolerant
approaches exhibit different effectiveness for different data
size and system scale. Furthermore, each approach produce
various resource utilization characteristics predominantly
within CPU and network. Such behavior is important to
system administrators when designing the infrastructure.

Future work will include further investigation into
additional application domains such as video streaming and
online gaming. Furthermore, we believe there is opportunity
to further improve the approach by investigating methods to
reduce the produced resource overhead and expansion to
include crash failures.

ACKNOWLEDGMENTS

This work was supported by CIATEQ Division of

Information Technologies and Control.

REFERENCES

[1] S. T Allen, M. Jankowski, P. Pathirana, �Storm Applied Strategies for

Real-time Event Processing�, NY:Manning Publications Co, 2015.

[2] G. Aceto, A. Botta, W. de Donato, A. Pescapè, "Cloud Monitoring: A

Survey�, Computer Networks, 57(9), 2013, pp. 2093-2115.

[3] G. Vigna, W. Robertson, V. Kher, R. A. Kemmerer, "A Stateful

Intrusion Detection System for World-wide Web Servers", Computer

Security Applications Conference, 2003, pp. 34-43.

[4] M. Stonebraker, U. Çetintemel, S. Zdonik, "The 8 Requirements of

Realtime Stream Processing", ACM SIGMOD Record 34.4, 2005, pp.

42-47.

[5] B. Schroeder, G. A. Gibson, "A Large-Scale Study of Failures in

High-Performance Computing Systems", IEEE Transactions on

Dependable and Secure Computing, vol. 7, 2010, pp. 337-351.

[6] M.A. Shah, J.M. Hellerstein, E. Brewer, "Highly available, fault-

tolerant, parallel dataflows", ACM SIGMOD International

conference on Management of Data, 2004, pp. 827-838.

[7] M. Balazinska, H. Balakrishnan, S. Madden, M. Stonebraker, "Fault-

tolerance in the Borealis distributed stream processing system�, ACM

Transactions on Database Systems (TODS), vol. 33(1), 2008.

[8] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,

S. Zdonik, "A Comparison of Stream-oriented High-availability

Algorithms", Technical Report TR-03-17, Computer Science

Department, Brown University, 2003.

[9] A. Brito, C. Fetzer, P. Felber, "Minimizing Latency in Fault-tolerant

Distributed Stream Processing Systems", IEEE International

Conference on Distributed Computing Systems, 2009, pp. 173-182.

[10] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica,

"Discretized Streams:Fault-tolerant Streaming Computation at Scale",

ACM Symposium on Operating Systems Principles, 2013, pp.423-

438.

[11] B. Koldehofe, R. Mayer, U. Ramachandran, K, Rothermel, M. Völz,

"Rollback Recovery without Checkpoints in Distributed Event

Processing Systems�, ACM International Conference on Distributed

Event-based Systems, 2013, pp. 27-38.

[12] K. Lee, D. Chu, E. Cuervo, Y. Degtyarev, S. Grizan, J. Kopf, A.

Wolman, J. Flinn, "Outatime: Using Speculation to Enable Low-

latency Continuous Interaction for Mobile Cloud Gaming", In

Proceedings of MobiSys, 2015, pp. 151 � 166.

[13] K. Wang, F. Manoj, "Highly Accurate Data Value Prediction using

Hybrid Predictors", In Proceedings ACM/IEEE International

Symposium on Microarchitecture, 1997, pp. 281-290.

[14] D. Robins, "Complex Event Processing�, International Workshop on

Education Technology and Computer Science, 2010.

[15] S. Chandrasekaran et al., "TelegraphCQ: Continuous Dataflow

Processing", In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2003, pp. 668-668.

[16] B Ellis, �Real-time Analytics: Techniques to Analyze and Visualize

Streaming Data�, John Wiley & Sons, 2014.

[17] H. Kopetz, �Real-time Systems: Design Principles for Distributed

Embedded Applications�, Springer Science & Business Media, 2011.

[18] A. Toshniwal, et al. "Storm@ Twitter", In Proceedings of ACM

SIGMOD International Conference on Management of Data, 2014,

pp. 147-156.

[19] Apache. Apache Spark.. Internet: http://spark.apache.org/streaming/

[20] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch,

"Integrating Scale Out and Fault Tolerance in Stream Processing

using Operator State Management", ACM SIGMOD International

Conference on Management of Data, 2013, pp. 725-736.

[21] H. Zhou, C. Y. Fu, E. Rotenberg, T. M. Conte, "A Study of Value

Speculative Execution and Misspeculation Recovery in Superscalar

Microprocessors", North Carolina State University, Tech. Rep, 2000.

[22] Apache, Apache Storm, 2015 Internet:

https://storm.apache.org/documentation/Powered-By.html

[23] P. Garraghan, X. Ouyang, P. Townend, J. Xu, �Timely Long Tail

Identification Through Agent Based Monitoring and Analytics�,

IEEE International Symposium on Real-time Computing (ISORC),

2015, pp. 19-26.

[24] J. Dean, J, Barroso "The Tail at Scale", Communications of the ACM,

56(2), 2013, pp. 74-80.

[25] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,

S. Zdonik, "High-availability algorithms for distributed stream

processing", International Conference in Data Engineering (ICDE),

2015, pp.779-790.

[26] I. Witten, E. Frank, �Data Mining: Practical machine learning tools

and techniques�, Morgan Kaufmann, 2005.

[27] Google, Google Cluster Data V2., 2015, Internet:

https://github.com/google/cluster-data

[28] A. Avizienis, J.C. Laprie , B. Randell , C. Landwehr, "Basic Concepts

and Taxonomy of Dependable and Secure Computing", IEEE

Transactions on Dependable and Secure Computing, vol. 1, 2004,

pp.11-33.

[29] U. Hölzle, L. A. Barroso, "The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines", Synthesis

Lectures on Computer Architecture, 2009.

