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Crowd-averse cyber-physical systems: the paradigm of

robust mean-field games
Dario Bauso and Hamidou Tembine

Abstract—For a networked controlled system we illustrate the

paradigm of robust mean-field games. This is a modeling frame-

work at the interface of differential game theory, mathematical

physics, and H∞-optimal control that tries to capture the

mutual influence between a crowd and its individuals. First, we

establish a mean-field system for such games including the effects

of adversarial disturbances. Second, we identify the optimal

response of the individuals for a given population behavior.

Third, we provide an analysis of equilibria and their stability.

I. INTRODUCTION

Cyber-physical systems (CPSs) involve computation and

physical processes with, possibly, humans in the loop. CPSs

are required to maintain a “good” performance even in

the presence of adversarial disturbances or cyber-attacks.

A second issue is concurrency as physical processes are

compositions of many parallel dynamics, in contrast to

software processes, which are rooted in sequential steps.

Thus the need to bridge an inherently sequential semantics

with an intrinsically concurrent physical world [8]. In hybrid

systems, a similar aspect yields to minimum attention control

[9].

Robust mean-field games intersect CPSs in at least the

following aspects: i) the game describes a large-scale dis-

tributed system where the players may represent the system

components, ii) worst-case adversarial disturbances represent

cyber-attacks on each single system component, iii) the

mean-field term in the cost accounts for the congestion in

the communication network. In addition, heuristics rather

than cumbersome strategies on the part of the players are

due to the limited computational capabilities of the humans

in the loop. For the above reasons, we have identified in the

“mean-field game theory” a suitable paradigmatic modeling

framework.

Highlights of contributions. Each player evolves according

to a linear stochastic differential equation (SDE) and mini-

mizes a cost functional which includes a cross-coupling term.

Such a term penalizes the use of the shared communication

network when congested and therefore constitutes the cou-

pling term between individuals and population. An adver-
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sità di Palermo, V.le delle Scienze, 90128 Palermo, Italy. Email:
d.bauso@sheffield.ac.uk)

Hamidou Tembine is with Center for Interdisciplinary Studies in
Security and Privacy, Electrical and Computer Engineering, Poly-
technic School of Engineering, New York University, NY, USA, and
Division of Engineering, Saadiyat Island, NYU Abu Dhabi, UAE.
Email: tembine@nyu.edu

sarial disturbance with limited energy resources attacks each

individual player in order to maximize the cost functional

[18].

The contribution of this paper is three-fold: First, we

establish a mean-field system for such a game including the

effects of adversarial disturbances, which we call “robust”

mean-field game. Second, we identify the optimal response of

the individuals for a given population behavior. The latter is

captured by the mean-field term. Third, we provide a detailed

analysis of equilibria.

Related literature on mean-field games. Mean field games

were formulated by Huang et al. in [11] and independently

by Lasry and Lions in [14] and arise in several application

domains (see [1, 6, 10, 11, 13, 16, 20]). The approach leads

to a system of two partial differential equations (PDEs).

The first PDE is the Hamilton-Jacobi-Bellman equation.

The second PDE is the Fokker-Planck-Kolmogorov (FPK)

equation which describes the density of the players [14, 19].

Explicit solutions exist for the linear-quadratic structure, see

[2], while in general a variety of numerical solution schemes

are available in the literature [1]. More recently, robustness

and risk-sensitivity have been brought into the picture of

mean-field games [4, 5, 19]. The first PDE is then the

Hamilton-Jacobi-Isaacs (HJI) equation.

The paper is organized as follows. In Section II, we

formulate the problem. In Section III, we illustrate the mean-

field game. In Section IV, we study equilibria and stability. In

Section V, we provide numerical studies. Finally, in Section

VI, we provide conclusions.

Notation We denote by (Ω,F ,P) a complete probability

space. We let B be a finite-dimensional standard Brownian

motion defined on this probability space. We define F =
(Ft)t≥0, its natural filtration augmented by all the P−null

sets (sets of measure-zero with the respect P). We write

∂x and ∂2
xx to stand respectively for the first and second

derivatives with respect to x. We denote by R+ the set of

nonnegative reals. For any real ξ ∈ R, [ξ]+ denotes the

positive part.

II. CROWD-AVERSION PROBLEM SET-UP

Consider a set of players N = {1, . . . , n} and let xj,0 ∈
R+ be the initial state of generic player j ∈ N , which is

realized according to the probability distribution m0. The

state of player j at time t, denoted by xj,t ∈ R+ evolves

over a finite horizon T > 0 as:

dxj,t = [αxj,t + βuj,t]dt+ σ [xj,tdBj,t + ζtdt] , (1)

where uj,t ∈ R+ is the control input, Bj,t is a standard

Brownian motion, which is independent of the initial state
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xj,0, independent across players and time, α, σ ∈ R and

β < 0 are parameters, ζt is an adversarial disturbance.

Let us denote the empirical measures of the states and

of the controls at time t by mt =
1
n

∑n

j=1 δxj,t and zt =
1
n

∑n

j=1 δuj,t
, respectively, where δ is the Dirac measure. In

addition, let z̄t and m̄t be the mean of the process zt and mt,

respectively. Let us introduce the following cost functional

with penalty on final state g(·), stage cost function c(·), and

quadratic penalty on the unknown disturbance

J(xj,0, uj , z̄, ζ) = E

(

g(xj,T )

+
∫ T

0
c(xj,t, uj,t, z̄t)dt − γ2

∫ T

0
|ζt|

2dt
)

.

Players wish to stabilize their states to zero, and therefore

we can take for the stage cost

c(xj,t, uj,t, z̄t, ζt) = h(z̄t)uj,t +

[
a

2
(xj,t)

2 +
b

2
(uj,t)

2

]

,

where h(z̄t) is a measure of the “crowd”, and thus h(z̄t)uj,t
is a penalty on the control of the single player which is

proportional to the crowd in the control loop for the whole

system; a
2
(xj,t)

2 where a > 0 is the cost of a nonnull state,

and b
2
(uj,t)

2 where b > 0 accounts for the control energy.

The penalty on final state g(xj,T ) = φ(xj,T )
2, for a given

scalar φ > 0, namely it is quadratic with minimum in zero

thus penalizing non null states at the end of the horizon. We

assume that the crowd is proportional to the magnitude of

the average control, namely

h(z̄t) = k|z̄t| = k
∣
∣
∣
1
n

∑n

j=1 uj,t

∣
∣
∣ , k ∈ R+.

= k
∣
∣
∣
1
β
d
dt
m̄t −

α
β
m̄t −

σ
β
ζt

∣
∣
∣ .

(2)

The last equality is obtained by introducing expectations in

(1), by considering deterministic disturbance ζt, and by using

indistinguishability, from which we can write:

[Euj,t] = 1
β

(
d
dt

[Exj,t]
)
− α

β
([Exj,t])−

σ
β
ζt

= 1
β

(
d
dt

∫
xmt(dx)

)
− α

β

(∫
xmt(dx)

)
− σ

β
ζt.

When n −→ +∞, we have the following robust mean-

field game problem [4, 5].

Problem 1. (Robust mean-field response problem) Let B
be a one-dimensional Brownian Motion defined on (Ω,F ,P),
where F is the natural filtration generated by B. Let x0
be independent of B and with density m0(x). Consider the

problem in R and (0, T ]
{

inf
{ut}t

sup
{ζt}t

J(x, u, z̄, ζ)

dxt = [αxt + βut + σζt] dt + σxtdBt.

Model (1) may represent a multi-tank system [12], where

the state is the tank level, the control stabilizes the level to

zero, while an adversary provides obstacles to this. Model (1)

fits also to the case of a power grid, where the state is the

rotor angle of each generator, the control operates in order

to guarantee transient stability despite the volatility of wind

or solar power sources [17]. A third example is given by

cyber-physical economic systems; here (1) shares similarity

with the Black and Scholes model [7] derived in the context

of portfolio selection.

III. THE RESULTING MEAN-FIELD GAME

Let us denote by vt(x) the (upper) value of the robust

optimization problem under worst-case disturbance starting

from time t at state x. Let the Hamiltonian be given by

H(x, p, z̄) = inf
u

{c(x, u, z̄) + p(αx+ βu)} ,

where p is the co-state. The next result introduces the mean-

field system for the case of crowd-averse CPSs and closed-

loop control and disturbance.

Theorem 1. The closed-loop robust mean-field game for the

crowd-averse CPSs takes on the form:







∂tvt +

[

− 1
2b
β2 +

(
σ
2γ

)2
]

|∂xvt|
2

+
[
− 1

2b
(2h(z̄t)β) + αxt

]
∂xvt (HJI)

− 1
2b
h(z̄t)

2 + a
2
(xt)

2 + 1
2
σ2x2∂2

xxvt = 0,
in R+ × [0, T ), vT = φ|x|2, in R+

∂tmt + ∂x

[

mt

(

αxt + β
−h(z̄t)−∂xvtβ

b

+ σ2

2γ2
∂xvt

)]

+ σ2

2γ2
∂x(mt∂xvt) (FPK)

− 1
2
σ2∂2

xx

[
x2mt

]
= 0, in R+ × [0, T ),

m0(x) given in R+,
˙̄mt = αm̄t + βz̄∗t + σζ̄∗t , m̄0 given,

(3)

where z̄∗t :=
∫

R+
u∗
t (x)mt(x)dx, ζ̄∗t :=

∫

R+
ζ∗t (x)mt(x)dx

and the optimal closed-loop control and disturbance are
{

u∗
t (x) =

−h(z̄t)−∂xvtβ
b

,

ζ∗t (x) =
σ

2γ2
∂xvt(x).

(4)

Proof: Given in the appendix.

The significance of the above result is that to find the

optimal control input we need to solve the two coupled PDEs

in (3) in v and m with given boundary conditions (second

and fourth conditions). Any solution of the above system

of equations is referred to as worst-disturbance feedback

mean-field equilibrium. The difference with a mean-field

equilibrium is that the first PDE is now a Hamilton-Jacobi-

Isaacs (HJI) equation involving a minimax optimization and

not a Hamilton-Jacobi-Bellman equation. Analogously to the

mean-field equilibrium case, such a fixed point can be cal-

culated iteratively solving the HJI equation for fixed mt and

by entering the optimal u∗
t and the worst-case disturbance

ζ∗t in the Fokker-Planck-Kolmogorov equation in (3), until a

fixed point in vt and mt is reached.

Remark 1. Let m0 be absolutely continuous with a contin-

uous density function with finite second moment. Since the

running cost is convex in u, and concave in the disturbance

ζ, one gets a convex-concave stage cost function that satisfies
c−γ2‖ζ‖2

‖u‖
−→ +∞ and

c−γ2‖ζ‖2

‖ζ‖
−→ −∞, as ‖u‖, ‖ζ‖

goes to infinity. The drift is linear and hence Lipschitz

continuous because α, β, σ are bounded. We assume that

the Fenchel transform of c is Lipschitz in (x, z). Finally,

we assume that the function p 7−→ σ2

4γ2
‖p‖2 + H is

strictly convex, differentiable and σ2

4γ2
‖p‖2 +H is Lipschitz

continuous. Under the above main assumptions, the existence

of solution is established in Theorem 2.6 in [14].
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IV. A HEURISTIC APPROACH

In this section, we present a heuristic approach to approx-

imate the mean-field equilibrium and provide performance

bounds. The method was first developed in [3] and it is

here adapted to the problem at hand. The heuristic approach

reframes the problem in an extended state space involving

both the state of the player and the average state distribution.

A. Extended state space

In the next assumption, we consider a lower bound on the

rate of change of the mean m̄t. At the end of this section,

we establish a specific value for such a lower bound.

Assumption 1. Suppose there exists a θ > 0 and a

corresponding m̃t such that
{

d
dt
m̄t ≥

d
dt
m̃t = −θm̃t, for all t ∈ [0, T ],

m̄0 = m̃0.
(5)

In addition to this, let us also assume that ζ̄t = δm̃t.

From (2) and substituting m̄t by the approximate dynamics
d
dt
m̃t = −θm̃t, m̄0 = m̃0, we can rewrite

h(z̄t) = k
∣
∣
∣
−θ − α− σδ

β
m̃t

∣
∣
∣ := 2sm̃t. (6)

We can then approximate the problem at hand as follows:

inf
{ut}t

sup
{ζt}t

∫ T

0

[

2sm̃tut +
q

2
m̃

2
t

+
(
a
2
x2t +

b
2
u2
t − γ2ζ2t

)]

dt+ g(xT )

s.t.

[
dxt
dm̃t

]

=
([

α 0
0 −θ

] [
xt
m̃t

]

+

[
β

0

]

ut

+

[
σ

0

]

ζt

)

dt+

[
σxtdBt
0

]

,

where the term q

2
m̃2
t is here introduced to guarantee convex-

ity of the cost as formalized later in Assumption 2.

Reformulating the problem in terms of the expanded state

and a new control expressed as:

Xt =

[
xt
m̃t

]

, ũt = ut +
2

b
sm̃, (7)

and by completing the square in the objective function we

obtain the following linear quadratic problem:






inf
{ũt}t

sup
{ζt}t

∫ T

0

[
1

2
(XT

t Q̃Xt +Rũ
2
t − Γζ2t )

]

dt+ g(xT )

dXt = (ÃXt +Bũt + Cζt)dt+ CxtdBt,

where

Q̃ =

[
a 0
0 q − 4

b
s2

]

, R = b, Γ = 2γ2,

Ã =

[
α −β 2

b
s

0 −θ

]

, B =

[
β

0

]

, C =

[
σ

0

]

.

Now the idea is to consider a new value function Vt(x, m̃)
(in compact form Vt(X)) in the expanded state space, which

satisfies






∂tVt(X) +H(X, ∂XVt(X))

+
(
σ
2γ

)2

|∂xVt(X)|2 + 1
2
σ2x2∂2

xxVt(X) = 0,

VT (X) = g(x).

(8)

Let us take for it the following quadratic expression:

V(x, m̄, t) = [xt m̃t]

[
P11,t P12,t

P21,t P22,t

]

︸ ︷︷ ︸

Pt

[
xt
m̃t

]

,

where the matrix Pt, must be solution of the differential

Riccati equation

Ṗt + PtÃ+ ÃTPt − 2Pt(BR
−1BT

−CΓ−1CT )Pt +
Q̃

2
+W = 0,

(9)

and where

BR−1BT − CΓ−1CT =

[ 1
b
β2 + 1

2γ2
σ2 0

0 0

]

,

W =

[
σ2P11 0

0 0

]

.

(10)

Assumption 2. Parameters q and s are such that

Q̃ =

[
a 0
0 q − 4

b
s2

]

≥ 0. (11)

Let P be solution of the above differential Riccati equa-

tion, then we know that the optimal value for control ũ is of

the form

ũ∗
t (Xt) = −2R−1BTPXt

= − 2
b
[β 0]

[
P11,t P12,t

P21,t P22,t

] [
xt
m̃t

]

= − 2β
b
(P11,txt + P12,tm̃t).

(12)

From the above expression and from (7) it is immediate to

derive the current optimal control

u∗
t (Xt) = − 2

b
[βP11,txt + (βP12,t + s)m̃t], (13)

and the worst disturbance is

ζ̃∗t (Xt) = 2Γ−1CTPXt

= 1
γ2

[σ 0]

[
P11,t P12,t

P21,t P22,t

] [
xt
m̃t

]

= 1
γ2
σ(P11,txt + P12,tm̃t).

(14)

Note that if we take the average in (14) then the condition

ζ̄t = δm̃t in Assumption 1 is satisfied.

In addition, a possible value for θ can be obtained by

taking m̃t = 0 for all t in (13) and (14). By averaging

we obtain z̄∗t and ζ̄∗t , which we can substitute in ˙̄mt =
αm̄t + βz̄∗t + σζ̄∗t to obtain the following expression

θ =
[

α+ (−
2β2

b
+
σ2

γ2
)P11,t

]

.

Bounds for the proposed heuristics when σ = 0 can be

obtained as follows. For the lower bound we take m̃t = 0 for

all t and solve the resulting linear quadratic problem. This

yields the Riccati equation

π̇0 + 2π0α−
2

b
π
2
0β

2 +
1

2
a = 0. (15)

For the upper bound, let us take m̃t = m̄0 for all t, and

consider the Taylor expansion π = π0 + m̄0π1. The Riccati

equation takes the form

π̇ + 2π
(

α+ (− 2
b
βs)m̄0

)

− 2
b
π2β2 + 1

2

(

a+ (q − 2
b
s2)m̄0

)

= d
dt
(π0 + m̄0π1) + 2(π0 + m̄0π1)

(

α+ (− 2
b
βs)m̄0

)

− 2
b
(π0 + m̄0π1)

2β2 + 1
2

(

a+ (q − 2
b
s2)m̄0

)

= 0.
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Neglecting higher order infinitesimals, from (15) and collect-

ing all terms in π1 we have

π̇1 + π1(2α− 4
b
π0β

2) + 2π0(−β
2
b
s) + 1

2
(q − 2

b
s2) = 0.

Observing that for a sufficiently small m̄0, then (q −
2
b
s2)m̄0 ≥ (q − 2

b
s2)m̄2

0, we can conclude

π0x
2 ≤ vt(x),Vt(X) ≤ πx

2
.

Remark 2. Let P1 be the set of Borel probability measures

m on R with finite first order moment and let m̄ be its

mean. Also, let c̃(x, m̄) := 2sm̄u + q

2
m̄2 + a

2
x2. It holds

∀(x1,m1), (x2,m2) ∈ R× P1

|c̃(x1, m̄1)− c̃(x2, m̄2)| ≤ C0[|x1 − x2|+ d1(m1,m2)],

where d1 is the Kantorovitch- Rubinstein distance. Then the

solution to the game with infinite number of players, namely

when n −→ +∞, approximates the game with a finite

number of players following the same approximation bounds

established in [11, 14].

B. Asymptotic stability and mean-field equilibrium

Using the optimal control and worst-case disturbance (13)-

(14) in the SDE (1) we obtain

dxt = αxt + (− 2β2

b
+ σ2

γ2
)P11,txt + [(− 2β2

b
+ σ2

γ2
)P12,t

−β 2
b
s]m̃t + σxtdBt, t ∈ (0, T ], x0 ∈ R.

The above SDE is linear and time-varying. The correspond-

ing stochastic process can be studied in the framework of

stochastic stability theory [15].

To do this, let us take as Lyapunov function the quadratic

function V (x) = Φx2, then the stochastic derivative of V (x)
is obtained by applying the infinitesimal generator to V (x)

which yields LV (x) = [σ2 + 2(α− 2β2

b
+ σ2

γ2
)]Φx2.

Theorem 2 ([15]). If V (x) ≥ 0, V (0) = 0 and LV (x) ≤
−ηV (x) on Qǫ := {x : V (x) ≤ ǫ} for some η > 0 and for

arbitrarily large ǫ, then the origin is asymptotically stable

“with probability one”, and

Px0{ sup
T≤t<+∞

x
2
t ≥ λ} ≤

V (x0)e
−ψT

λ

for some ψ > 0.

From the above theorem, we have the following result,

which establishes exponential stochastic stability of the

mean-field equilibrium provided above.

Corollary IV.1. If [σ2 + 2(α − 2β2

b
+ σ2

γ2
)]Φ < 0 then

limt→∞xt = 0 almost surely and

Px0{ sup
T≤t<+∞

x
2
t ≥ λ} ≤

V (x0)e
−ψT

λ

for some ψ > 0.

The interpretation of the above result is that the players

stabilize their states to zero asymptotically, while predicting

the evolution of congestion as formulated in Problem 1.

We can approximate the mean-field equilibrium, which is

captured by the evolution of m̄t over the horizon (0, T ], as

d
dt
m̄t =

[

α+ (− 2β2

b
+ σ2

γ2
)(P11,t + P12,t)− β 2

b
s
]

m̄t

t ∈ (0, T ], x0 ∈ R.

σ [10−2] std(m0) b Q

I 10−2 {2, 5, 10} 25 5

II {2, 4, 10} 1 25 5

III 1 5 {20, 25, 100} {4, 5, 20}

TABLE I
VARYING SIMULATION PARAMETERS WITH DIFFERENT REGIMES.

Actually, we can derive a differential equation which

represents a bound for the mean distribution:
{

m̄t = m̄0e
ρt

ρ = α+ (− 2β2

b
+ σ2

γ2
)(P11,t + P12,t)− β 2

b
s.

The equation above corresponds to saying that the mean

distribution converges exponentially to zero in absence of

the stochastic disturbances (the Brownian motion), under the

assumption that ρ is strictly negative.

V. NUMERICAL STUDIES

Consider a number of players n = 103 and a discretized

set of states X = {xmin, xmin + 1, . . . , xmax} where

xmin = 0 and xmax = 100 (see parameters in in Table

I). We set α = 0 and β = −1 and consider the influence

of ζt implicitly by increasing the coefficient Q used in the

quadratic approximation of the value function vt = Qx2. The

horizon length is T = 40. We assume m0 to be Gaussian

with mean m̄0 between 20 and 70 and standard deviation

std(m0) between 1 and 10. We adopt the linear function

ĥ(m̄) =

(
102 − m̄

102

)

hmin +

(

1−
102 − m̄

102

)

hmax.

(16)

The above function represents a linear approximation of

h(m̄, .) with minimal value hmin = 0 when the mean

distribution is minimal, m̄ = xmin, and maximal value

hmax = 102 when the mean distribution is maximal,

m̄ = xmax. Note that the heuristic method provides linear

state feedback control and worst-case disturbance policies.

Then the right-hand-side of (2) is linear in m̄. Furthermore,

we approximate ∂xvt = Qx and thus we replace the optimal

production in (4) by

u
∗
t =

−ĥ(m̄t) + 2Qx

b
. (17)

According to a first pattern, we have a constant decrease

of m̄t with time t, as well as of the standard deviation

std(m̄t). Figure 1, left, from top to bottom, shows mt

vs. xt at different times. The initial distribution m0 has

mean m̄0 = 70 and standard deviation std(m0) = 1
(top), std(m0) = 5 (middle), std(m0) = 10 (bottom).

The graphics on the right column display the time plot m̄t

(solid line and y-axis labeling on the left) and the evolution

of std(mt) (dashed line and y-axis labeling on the right).

Note that, at approximately t = 30, m̄t reaches zero while

std(mt) drastically decreases to zero in less than 20 seconds,

which means that all the players first reach consensus on their

states and then drive their states to zero.

The second pattern shows the effects of the Brownian

motion. Indeed, the standard deviation std(mt) as well as
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Algorithm

Input: Set of parameters as in Table I.

Output: Distribution function mt, mean m̄t

and standard deviation std(mt).
1 : Initialize. Generate x0 given m̄0 and std(m0)
2 : for time t = 0, 1, . . . , T − 1 do

3 : if t > 0, then compute mt, m̄t, and std(mt)
4 : end if

5 : compute congestion term ĥ(m̄t),
6 : for player i = 1, 2, . . . , n do

7 : compute new state xt+1 by executing (1)

8 : end for

9 : end for

12 : STOP
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Fig. 1. First pattern: mean distribution m̄t decreases and as well
as standard deviation std(mt).

sparsity increase with time though the mean distribution

m̄t decreases to zero. Before m̄t reaches zero the standard

deviation std(mt) inverts the slope and drastically decays

to zero. This is summarized in Figure 2, left. From top

to bottom, the figure shows the distribution evolution mt

vs. the state xt at different times. The coefficient weighing

the Brownian motion increases from top to bottom, and in

particular is σ = 0.02 (top), σ = 0.04 (middle), σ = 0.1
(bottom). The graphics on the right column display the time

plot m̄t (solid line and y-axis labeling on the left) and the

evolution of the standard deviation std(mt) (dashed line and

y-axis labeling on the right). Note that the standard deviation

std(mt) first increases for t ≤ 8 and then drastically

decreases to zero.

The third pattern highlights the effects of a higher linear

term Qx

b
in comparison with the constant term

ĥ(m̄t)
b

in

the control input expression (17). A higher value for Q can

be linked back to the effects of the disturbance ζt. This

is shown in Figure 3, left. From top to bottom, the figure

displays the distribution evolution mt vs. the state xt at

different times. The linear term Qx

b
dominates more and

more in comparison with the constant term
ĥ(m̄t)
b

from top
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Fig. 2. Second pattern showing the effects of the Brownian motion:
mean distribution m̄t decreases and standard deviation std(mt) first
increases and then decays drastically to zero.

to bottom. Actually Q = 4, b = 20 (top), Q = 5, b = 25
(middle), and Q = 20, b = 100 (bottom). Note that the

ratio Q

b
is kept constant whereas

ĥ(.)
b

is strongly decreasing

from top to bottom. Apparently, the speed of convergence

increases. This is clear from observing the graphics on the

right column which display the time plot m̄t (solid line

and y-axis labeling on the left) and the evolution of the

standard deviation std(mt) (dashed line and y-axis labeling

on the right). Note that both the mean distribution m̄t and the

standard deviation std(mt) decrease monotonically to zero.
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Fig. 3. Third pattern showing the effects of a higher control
coefficient Q (associated with a stronger disturbance ζt): both the
mean distribution m̄t and the standard deviation std(mt) decrease
monotonically.

VI. CONCLUDING REMARKS

We have illustrated robust mean-field games as a paradigm

for CPSs. Future directions include the study of i) the con-

nection with risk-sensitive optimal control problems; ii) the

vector state case and infinite horizon (with discounted payoff

and time-average payoff), iii) a cyber-physical economic

market with some big players and many other small players.
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APPENDIX

Proof of Theorem 1. To obtain (4) let the Hamiltonian be:

H(xt, ∂xvt, z̄t) = inf
u

{

h(z̄t)ut +

[
a

2
x
2 +

b

2
u
2
t

]

+∂xvt(αxt + βut)
}

= 0. (18)

After differentiation we obtain but+h(z̄t)+∂xvtβ = 0 from

which we have the expression of u∗
t (x) in (4). To derive the

expression of ζ∗t (x), we need to solve supζt

{

− γ2ζ2t +

∂xvtσζt

}

, from which, after differentiation and assuming

concavity on ζt (see Remark 1), we have −2γ2ζ∗t +∂xvtσ =
0 and therefore ζ∗t (x) =

σ
2γ2

∂xvt.

We now prove (3). From [4] the robust mean-field game

for Problem 1 is given by






∂tvt(x) +H(x, ∂xvt, z̄t)

+
(
σ
2γ

)2

|∂xvt(x)|
2 + 1

2
σ2x2∂2

xxvt(x) = 0,

in R+ × [0, T ), vT (x) = φx2, in R+,

∂tmt(x) + ∂x (mt(x)∂pH(x, ∂xvt, z̄t))

+ σ2

2γ2
∂x(mt(x)∂xvt(x))

− 1
2
σ2∂2

xx

[
x2mt(x)

]
= 0,

in R+ × [0, T ), m0(x) given in R+.

(19)

First notice that the second and fourth equations are

the boundary conditions and derive straightforwardly from

Bellman equations and the evolution of the law of states.

To obtain the HJI, let us replace u appearing in the

Hamiltonian (18) by its expression (4):

H(xt, ∂xvt, z̄t) = u
∗
t [h(z̄t) + ∂xvtβ]

+
a

2
(xt)

2 +
b

2
(u∗
t )

2 + ∂xvtαxt

= −
1

2b
β
2|∂xvt|

2 +
[

−
1

2b
(2h(z̄t)β)

+αxt
]

∂xvt −
1

2b
h(z̄t)

2 +
a

2
(xt)

2
.

Using the above expression of the Hamiltonian in the HJI

equation in (19), we obtain the HJI in (3).

To prove the third equation, which is a PDE representing

the FPK equation we simply substitute (4) into the FPK in

(19).

Finally, the ordinary differential equation representing the

time evolution for m̄t is simply obtained from (1) by

averaging over the state space and this concludes the proof.


