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Crowd-averse robust mean-field games: approximation

via state space extension
D. Bauso and T. Mylvaganam and A. Astolfi

Abstract—We consider a population of dynamic agents, also

referred to as players. The state of each player evolves according

to a linear stochastic differential equation driven by a Brownian

motion and under the influence of a control and an adversarial

disturbance. Every player minimizes a cost functional which

involves quadratic terms on state and control plus a cross-

coupling mean-field term measuring the congestion resulting

from the collective behavior, which motivates the term “crowd-

averse”. Motivations for this model are analyzed and discussed

in three main contexts: a stock market application, a production

engineering example, and a dynamic demand management

problem in power systems. For the problem in its abstract

formulation, we illustrate the paradigm of robust mean-field

games. Main contributions involve first the formulation of the

problem as a robust mean-field game; second, the development

of a new approximate solution approach based on the extension

of the state space; third, a relaxation method to minimize the

approximation error. Further results are provided for the scalar

case, for which we establish performance bounds, and analyze

stochastic stability of both the microscopic and the macroscopic

dynamics.

I. INTRODUCTION

We illustrate the robust mean-field game approach on a

population of dynamic agents that wish to regulate their state

to zero. The robust approach is particularly useful to account

for model mis-specifications, uncertainties, or irrational be-

haviors on the part of the players. Each agent’s state evolves

according to a linear stochastic differential equation (SDE)

driven by a Brownian motion and under the influence of a

control and an adversarial disturbance. The control minimizes

a cost functional which involves quadratic terms on state

and control plus a cross-coupling mean-field term involving

the control of the single player and the mean control. The

mean state is referred to as common state. The structure
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of the cost functional, involving the common state in the

cross-term, has a straightforward interpretation in terms of

pricing and mechanism or incentive design. Justifications

for the model are provided in the context of three different

applications: stock market, production, and power systems. In

the latter example, for instance, the mean-field cross term is

useful as it allows the redistribution of the control load away

from peak “hours” thus reducing congestion, from which the

term “crowd-averse”. Indeed every player pays a cost from

controlling its own system when the population as a whole

has a high mean control.

We highlight three main contributions. First, we establish

a robust mean-field system for the considered game under

adversarial disturbances. The resulting solution is referred

to as worst-disturbance feedback mean-field equilibrium.

Second, we provide a new approximate solution to compute

such an equilibrium. The approach is based on the extension

of the state space in the same spirit as [24], [25]. The method

assumes that any player has an internal reference model for

the common state. The proposed method relies only on the

solution of a differential Riccati equation. Preliminarily to

the illustration of the method, we also investigate on the

solution of the Hamilton-Jacobi-Isaacs (HJI) equation under

the assumption that the time evolution of the common state

is given. We show that the problem reduces to solving three

matrix equations. The state space extension is a heuristic

method justified by bounded rationality and limited compu-

tation capabilities on the part of the players. The players

agree on the internal models and act based on the estimate

of the common state as obtained from the internal model. The

quality of the approximation method depends on the accuracy

of the internal reference model for the common state. Thus,

as third contribution, we study a relaxation method aiming

at minimizing the approximate error.

A few other contributions of the paper are obtained for the

scalar case. The first result describes performance bounds.

A second result establishes that the microscopic dynamics

is exponential asymptotic stable almost surely. A third result

shows that the macroscopic dynamics, involving the common

state, is exponentially asymptotic stable.

Mean-field games were formulated by Lasry and Lions in

[18] and independently by M.Y. Huang, P. E. Caines and R.

Malhamé in [15], [16]. The mean-field theory of dynamical

games is a modeling framework at the interface of differential

game theory, mathematical physics, and H∞-optimal control

that tries to capture the mutual influence between a crowd and

its individuals. Mean-field games arise in several application

domains such as economics, physics, biology, and network

engineering (see [1], [7], [14], [16], [17], [22], [28]).

From a mathematical point of view the mean-field ap-
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proach leads to a system of two PDEs. The first PDE is

the Hamilton-Jacobi-Bellman equation. The second PDE is

the Fokker-Planck equation which describes the density of

the players [18], [26]. Explicit solutions in terms of mean-

field equilibria are not common unless the problem has a

linear-quadratic structure, see [3], and are extended to more

general cases in [10]. In this sense, a variety of solution

schemes has been recently proposed based on discretization

and/or numerical approximations [1].

There has been substantial progress in the theory of weak

solutions [9] and classical solutions [11], [12] for mean-field

games. Robust mean-field games have been formulated in [5],

[6]. The connection between robustness and risk-sensitivity

is discussed in [26], [27]. Therein, an explicit solution in the

case of the affine-exponentiated-Gaussian mean-field game

is given. In this paper we provide an explicit approximate

solution under milder assumptions on the distribution, which

need not necessarily be Gaussian.

The paper is organized as follows. In Section II we formu-

late the problem. In Section III we provide some motivations.

In Section IV we derive the mean-field game. In Section V

we introduce the approximate solution approach. In Section

VI we deal with the minimization of the approximation

error. In Section VII we provide additional results for the

scalar case. In Section VIII we carry out some numerical

studies. Finally in Section IX we provide some conclusions.

Preliminary results of the work presented herein have been

published in [13].

Notation. We denote by (Ω,F ,P) a complete probability

space. We let B be a finite-dimensional Brownian motion

defined on this probability space. Let F = (Ft)t≥0 be

its natural filtration augmented by all the P−null sets (sets

of measure-zero with respect to P). We use ∂x and ∂2
xx to

denote the first and second partial derivatives with respect

to x, respectively. Given a vector x ∈ R
n and a matrix

Q ∈ R
n×n we denote by ‖x‖2Q the weighted two-norm

xTQx. The symbol Qi• denotes the ith row of a given matrix

Q. We denote by Diag(x) the diagonal matrix in R
n×n

whose entries in the main diagonal are the components of x.

II. PROBLEM SET-UP

In this section we first introduce the model considered and

then formulate the problem studied. Consider a game with an

infinite number of homogeneous players. For each player let

x0 ∈ R
n be its initial state, which is realized according to the

probability distribution m0. The state of the player at time

t, denoted by xt ∈ R
n, evolves according to a controlled

stochastic process over a finite horizon T > 0, i.e.

dxt = [Axt +But +Mζt]dt+Σ(xt)dBt, (1)

where ut ∈ R
r is the control input, ζt ∈ R

w is an adversarial

disturbance, Bt ∈ R
n is an n-dimensional Brownian motion,

which is independent across its components, independent of

the initial state x0, and independent across players and time.

The matrices A ∈ R
n×n, B ∈ R

n×r , and M ∈ R
n×w, and

Σ(.) = Diag((σixi)i=1,...,n) ∈ R
n×n for given scalars σi,

all full column rank. For each player, the admissible controls

and disturbances are square integrable and are adapted to

the filtration generated by the initial states and the Brownian

motion, and possibly also adapted to some aggregate filtration

associated with other players’ dynamics.

To introduce a macroscopic description of the game,

consider probability density functions on the state, control

and disturbance spaces:






m : Rn × [0,+∞] → [0,+∞], (x, t) 7→ m(x, t),
∫

Rn m(x, t)dx = 1 for every t,

z : Rr × [0,+∞] → [0,+∞], (u, t) 7→ z(u, t),
∫

Rr z(u, t)du = 1 for every t.

z̃ : Rw × [0,+∞] → [0,+∞], (ζ, t) 7→ z̃(ζ, t),
∫

Rw z̃(ζ, t)dζ = 1 for every t.

In the following we use the compact notation mt = m(x, t).
At a given time t, function m(.) describes the density

of players in a given state x ∈ R
n, and z(.) describes the

density of players using a given control u ∈ R
r . Define the

mean state, control, and disturbance at time t as

m̄t :=
∫

Rn xm(x, t)dx, z̄t :=
∫

Rr uz(u, t)du,
ζ̄t :=

∫

Rw ζz̃(ζ, t)dζ.

The mean m̄t represents an aggregate or macroscopic de-

scription of the state of the system and therefore, henceforth,

we will refer to it as the common state.

Finally we introduce a cost functional with penalty on the

final state gT (·), stage cost function c(·), and quadratic

penalty on the unknown disturbance:

J(x0, ut, m̄t, ζt) = E

(

gT (xT )+
∫ T

0
c(xt, ut, m̄t)dt−

1
2
γ2

∫ T

0
‖ζt‖

2dt
)

.
(2)

Players wish to stabilize their states to zero, and therefore

we set the stage cost as follows:

c(xt, ut, m̄t) =
1

2

[
‖ut‖

2
R+S(m̄t) + ‖xt‖

2
Q

]
,

where, for given nonnegative scalar weights ĥi, i = 1, . . . , r,

S(m̄t) = Diag((ĥi|k̂i•m̄t|)i=1,...,r)

= Diag((ĥi|z̄t,i|)i=1,...,r),
(3)

for some k̂ ∈ R
r×n.

The term 1
2
‖xt‖

2
Q, with Q > 0, is the cost of a non-zero

state, and 1
2
‖ut‖

2
R, with R > 0, accounts for a penalty on

the control energy. The penalty on the final state gT (x) is, in

general, convex with minimum in zero, thus penalizing non-

zero states at the end of the horizon. Let us take for it the

expression gT (x) =
1
2
‖x‖2Φ, where Φ is a positive matrix.

The term 1
2
‖ut‖

2
S(m̄t)

represents a cross-term coupling

the control of each player and the common state of the

population. The common state is in turn related to the

mean control as explained next. By taking the mathematical

expectation of both sides of (1) we can derive the following

dynamics for the common state:

d

dt
m̄t = Am̄t +Bz̄t +Mζ̄t.

Considering a deterministic disturbance ζt, and using

indistinguishability, the mean of the average control solves

the equation:

z̄t = (BTB)−1
[

B
T

(
d

dt
m̄t

)

−B
T
Am̄t −B

T
Mζ̄t

]

.
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A relation between d
dt
m̄t and m̄t is yet to be introduced.

We will see that both d
dt
m̄t and ζ̄t can be approximated by

linear functions in m̄t and therefore we can rewrite

z̄t = k̂m̄t, (4)

for some k̂ ∈ R
r×n. This is useful in the definition of the cost

functional to reduce the number of independent variables,

in that we turn all functions of z̄t as functions explicitly

dependent on m̄t. The above preamble leads to the following

robust mean-field game problem.

Problem 1: (Robust mean-field problem) Let x0 be in-

dependent of B and with density m0(x). Let mt be the

mean-field trajectory. The robust mean-field problem in R
n

and (0, T ] is given by
{

inf
{ut}t

sup
{ζt}t

J(x0, ut, m̄t, ζt)

dxt = [Axt +But +Mζt] dt + Σ(xt)dBt.

III. MOTIVATIONS

In this section we first motivate the role of the common

state in the cross-term and then we discuss three different

applications or extensions of the model introduced Section

II. It turns out that the structure of the cost functional

has a straightforward interpretation in terms of pricing and

mechanism, or incentive, design.

We first reframe the model within the context of stock

market literature. Here the continuous-time stochastic model

having the structure of a geometric Brownian motion finds

its natural collocation as a classical model for the random

stock price with specific volatility. This model is used in

the derivation of the well-know Black and Scholes equation,

this being a renowned model for the value of a European call

option [8]. The stock market model offers the opportunity to

indulge in the derivation and interpretation of the cross-term

in the objective function (2) as shadow price of a global opti-

mization problem solved by a regulatory authority. Under this

perspective, the problem takes a two-layer or leader-follower

hierarchical structure with a leader, the regulatory agent

setting the price, and multiple followers, the players adapting

their strategies to the new price. Two other examples that

accommodate well this hierarchical problem are a production

model and a power model. In the first one, the regulatory

authority is concerned with guaranteeing that the total supply

is equal to the total demand. In the second example, the

regulatory authority aims at stabilizing the mains frequency

in a population of thermostatically controlled loads by using

a dynamic demand management policy.

In all of the above examples, the mean-field term can

be viewed as an incentive to encourage socially desirable

behavior on the part of the players.

A. Pricing

Consider a central planner that aims at solving the follow-

ing infinite horizon linear quadratic optimization problem

minπt

1
2

∫
(‖z̄t‖

2
Ξ + ‖πt‖

2
Π)dt

subject to ˙̄zt = πt,
(5)

where Ξ and Π are opportune positive definite matrices.

The term πt represents the pricing action. Thus the above

constraint models the influence of the pricing action on

the common state evolution. If the central planner adopts

a closed-loop state feedback control policy, we get

minφ̂
1
2

∫
(‖z̄t‖

2
Ξ + ‖φ̂z̄t‖

2
Π)dt

subject to ˙̄zt = φ̂z̄t.
(6)

In order to compute the optimal feedback control, let us

consider the Hamiltonian function

H(z̄t, λ) =
1

2

(

‖z̄t‖
2
Ξ + ‖φ̂z̄t‖

2
Π

)

+ λφ̂z̄t.

From Pontryagin maximum principle, we know that the co-

state λ satisfies the adjoint equation

λ̇ = −
∂H(z̄t, λ)

∂z̄
= (Ξ + φ̂

TΠφ̂)z̄t + λφ̂.

At the equilibrium, obtained by taking the LHS equal to

zero, we obtain for the adjoint equation

λ∞ =
∂v∞(z̄)

∂z̄
= φ̂

−1(Ξ + φ̂
TΠφ̂)z̄t.

Let us take h = 2φ̂−1(Ξ + φ̂TΠφ̂) and we have

λ∞ = 1
2
hz̄t =

1
2







ĥ1 . . . 0

. . .
. . .

...

. . . . . . ĥr












z̄1
...

z̄r




 =







ĥ1z̄1
...

ĥr z̄r






.

The significance of the above derivation is that the term

Diag((ĥi|k̂i•m̄t|)i=1,...,r) = Diag((ĥi|z̄t,i|)i=1,...,r) in

(2) represents the shadow price of the global constraint

z̄t = 0, namely, the price paid by the community due to the

violation of the constraint z̄t = 0, and which the regulatory

authority charges to the individuals in order to enforce the

satisfaction of the constraint.

B. Stock market model [21]

The most plausible interpretation of dynamics (1) lies in

a stock market context. This is a financial market involving

a risky asset, referred to as stock, and a risk-averse asset,

denoted as bond. A largely adopted dynamical model of the

price of the stock Ŝt is given by

dŜt = Ŝt[µdt+ σdBt],

where Bt is the standard one-dimensional Brownian motion,

and µ and σ are given constants. Let us also assume that the

bond price has a constant interest rate, denote it r̂, i.e.,

dBt = Bt[r̂dt].

For each time t, we denote by Xt the money invested in the

bond, Yt the investments in the stock, lt the rate of transfer

from the bond holdings to the stock, ωt the rate of opposite

transfers and ĉt the rate of consumption. The time evolution

of Xt and Yt is then given by

dXt = r̂Xtdt− ltdt+ ωtdt− ĉtdt

dYt = Yt[µdt+ σdBt] + ltdt− ωtdt.
(7)

Let the portfolio be obtained as sum of the invested money

in the bond and at the stock, namely

Zt = Xt + Yt,
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and denote the relative amount invested in the stock by

πt =
Yt

Zt
.

It can be shown that the time evolution of the portfolio

follows a stochastic differential equation in the form of a

geometric Brownian motion of type:

dZt = Zt[(r̂ + πt(µ− r̂))dt+ πtσdBt]− ĉtdt.

Note that the above has the same structure as (1) once we

take Zt represented by state xt, the consumption ĉt by the

control variable ut, and for the parameters we take A = r̂+
πt(µ− r̂). Here the central planner is a regulatory authority.

The cost functional (2) aims at incentivizing the players to

consume or spend the value of their portfolio within the end

of the game while at the same time regulatory decisions apply

taxes to consumption if the average consumption rate exceeds

a predefined target value.

C. Production [5], [14]

Suppose we have a continuum of producers with initial

reserve x0 distributed according to m0. Let the state be the

reserve of raw material or resource available at a given time.

Let the control be the production rate by a single producer

and the adversarial disturbance be a disturbance parameter

reflecting the taxation or inflation on the produced quantity.

A scalar version of equation (1) can be adapted to describe

the variation of the reserve at time t given the current reserve

and the consumed resource quantity:

dxt = [−ut + σζt]dt+ σxtdBt, (8)

where σ is a given scalar. The term σζt captures the

negative and uncertain influence of taxation, or inflation,

on the reserve. The stochastic term σxtdBt captures model

misspecification due to the fact that the estimation of the

reserves is not perfect or that reserves are random.

The cost functional, k̂m̄t is the sale price of the final

product and the cross-term is related to the income collected

from producing and selling the quantity ut;
Q

2
(xt)

2 accounts

for a production energy consumed, Q > 0 and Ru2
t is a

known linear taxation on production. The penalty on the final

state g(xT ) can be assumed quadratic in the reserve, so that

unexploited reserve at the end of the horizon is penalized.

Finally, the term σtζt is intended to capture the negative

and uncertain influence of taxation or inflation on the pro-

duction. The shadow price λ∞ = 1
2
hz̄t is obtained from a

global constraint on demand/supply equilibrium,
∫

R

uz(u, t)du = Dt = 0.

In other words, around the equilibrium, when demand is

equal to supply, we assume inelastic demand and take the

mean demand equal to zero. Note that such a global balance

of demand and supply is particularly significant in the power

market [23].

As regards the cost functional (2), this involves a penalty

term on production rate, namely 1
2
Ru2

t and storage, 1
2
Qx2t .

The additional cross-term 1
2
hz̄tu

2
t aims at penalizing pro-

duction when the total supply exceeds the total demand, and

vice versa, to encourage production in the opposite case. The

penalty on final state is a convex nonnegative penalty term

accounting for unexploited reserve at the end of the horizon.

The cost functional (2) can be modified in different ways

without compromising the results of this paper. A common

expression in production models with a large number of

producers [14], which finds it roots in the Cournot duopoly,

appears as

c(xt, ut, z̄t, ζt) = −h(z̄t, ζt)ut +
1

2

[
(b+ hz̄t)u

2
t + ax

2
t

]
.

Here the cross-term h(z̄t, ζt) is the sale price of the manu-

factured product and thus h(z̄t, ζt)ut is the income collected

from producing and selling the quantity ut.

A slight change in the sign of the coefficients in (8),

and the dynamics mirrors a classical multi-retailer inventory

control equation describing the evolution of the inventory

over time [22]:

dxt = [ut − σζt]dt+ σxtdBt. (9)

In the above, the control is the reordered quantity and the

disturbance is the unknown market demand. A classical

scenario is where the transportation cost is shared among

all retailers who reorder at a given time instant. A certain

level of coordination of the retailers’ replenishment strategies

may lead to individual costs reduction. The cross mean-field

term in the objective function (2) accounts for the reduced

cost when orders are placed jointly. The other two terms are

the cost of reordering and the cost of inventory shortage or

inventory holding. We can generalize the framework to any

application where multiple players share a service facility

as airport facilities or telephone systems, drilling for oil,

cooperative farming, and fishing (see also the references on

cost-sharing games in [22])

D. Dynamic demand management [2], [20]

Players are electrical appliances, say for instance heating

or cooling appliances, and their state X(s) is the temperature

at time t ≤ s ≤ T , where [t, T ] is the time horizon window.

Each appliance can be in one of two modes, ON or OFF ,

thus the control variable is a measurable function of time

πON (·) defined as s 7→ {0, 1} and such that πON (s) = 1
means that, at time s, the appliance is set to ON and

πON (s) = 0 means that the appliance is set to OFF . Dy-

namics (1) describes the time evolution of the temperature of

each appliance. To see this, consider that when the appliance

is ON the temperature decreases exponentially up to a fixed

lower temperature whereas in OFF position the temperature

increases exponentially up to a higher temperature. Then,

the temperature of each appliance evolves according to the

following differential equations, for t < s < T :

X
′(s) =

{
−α(X(s)−XON ) if πON (s) = 1
−α(X(s)−XOFF ) if πON (s) = 0

, (10)

with initial state X(t) = x and where α > 0 is a given scalar

(the rate) and XON , XOFF are the steady-state temperatures

of the appliances when in state ON or OFF , respectively.

Here, considering a same rate for the two states has the only

meaning of simplifying future computations.
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Let us convexify the control set and consider the control of

a single agent as the probability of setting the appliance ON ,

thus we have u(t) ∈ U := [0, 1] where U is the control set. It

turns out that (10) can be rewritten in the form X ′ = f(X,u)
where f : R× U → R is the following affine dynamics:

{
X ′(s) = −αX(s) + σu(s) + c, s > t,

X(t) = x,
(11)

where x ∈ [XON , XOFF ], t ∈ [0, T ] are the initial state

and the initial time, respectively, σ := −α(XOFF −XON ),
c := αXOFF . For sake of simplicity and without loss of

generality we will take XOFF = −XON . Indeed, we can

always select lower and upper bounds of the temperature

symmetric with respect to xref . In addition, note that the

closed set [XON , XOFF ] is invariant and that the two

extremes are not reachable from any other interior point.

Hence, it is not restrictive to assume that no appliances have

the temperatures XON and XOFF .

Each controller is given a cost function that accounts for

i) the energy consumption, which is captured by the penalty

on the control, ii) the deviation of the mains frequency from

the nominal value, represented by the cross-term, and iii) the

deviation of the agent’s temperature from the reference value,

described by the penalty on the state. With respect to goal

ii), the cross mean-field term incentivizes the appliances to

switch to OFF if the mains frequency is below the nominal

value and to switch to ON if the mains frequency is above

the nominal value. This model is a simple one which can be

adapted to the case in which the deviation is on the power

rather than on the frequency.

IV. THE RESULTING MEAN-FIELD GAME

In this section we formulate the problem considered as

a robust mean-field game. To this purpose, let vt(xt) be

the (upper) value of the robust optimization problem under

worst-case disturbance starting at time t from state xt. The

next theorem provides the mean-field system associated to

the robust mean-field game introduced in Problem 1. The

proof, which is given in the appendix, makes use of the

definition of the Hamiltonian function, given by

H(xt, p, m̄t) = inf
ut

{

c(xt, ut, m̄t) + p
T (Axt +But)

}

,

where p is the co-state, and of the robust Hamiltonian (see

[4, Chaps 4,8] and [6]), which is obtained as

H̃(xt, p, m̄t) = H(xt, p, m̄t)+sup
ζt

{

p
T
Mζt−

1

2
γ
2
ζ
T
t ζt

}

.

Theorem 1: The mean-field system associated to the ro-

bust mean-field game for the crowd-averse system is de-

scribed by the equations:







∂tvt +
1
2
(∂xvt)

T
[

−B(R+ S(m̄t))
−1BT

+ 1
γ2
MMT

]

∂xvt + (∂xvt)
TAxt

+ 1
2
xTt Qxt +

1
2

∑n

i=1 σ
2
i x

2
i ∂

2
xixi

vt = 0,
in R

n × [0, T [,

vT (x) =
1
2
xTΦx, in R

n,

∂tmt + ∂x

[

mt

(

Axt −B(R+ S(m̄t))
−1BT ∂xvt

+ 1
γ2
MMT ∂xvt

)]

− 1
2

∑n

i=1 ∂
2
xixi

[σ2
i x

2
imt] = 0,

in R× [0, T [,

m0(x) = d(x) in R
n ,

m̄t :=
∫

R
xmtdx, in [0, T [,

(12)

Furthermore, the optimal control and worst disturbance are

u∗
t = −(R+ S(m̄t))

−1BT ∂xvt, ζ∗t = 1
γ2
MT ∂xvt.

(13)

Proof: Given in the appendix. �

Any solution of the above system of equations is referred

to as worst-disturbance feedback mean-field equilibrium. The

significance of the above result is that to find the optimal

control input we need to solve the two coupled PDEs in (12)

in vt and mt with given boundary conditions. This is usually

done by iteratively solving the HJI equation for fixed mt and

by entering the optimal u∗
t and ζ∗t obtained from (13) in the

FPK equation in (12), until a fixed point in vt and mt is

reached.

Since the Bellman equation depends explicitly on the

mean of the mean-field and not on the other moments, one

can reduce the mean-field system to a lower dimensional

system. The reduced mean-field system associated to the

robust mean-field game for the problem under study is (12)

complemented with the following additional equations

{
d
dt
m̄t = Am̄t +Bū∗

t +Mζ̄∗t , in [0, T [,
m̄0 =

∫

Rn xm0dx,
(14)

where







ū∗
t :=

∫

R
(−B(R+ S(m̄t))

−1BT ∂xvt)mtdx,

in [0, T [,
ζ̄∗t :=

∫

R
( 1
γ2
MT ∂xvt)mtdx, in [0, T [,

(15)

and where ū∗
t = z̄t is the mean of the optimal individual

state feedback control.

The resulting mean-field game maintains the same struc-

ture as in the deterministic case, but now both PDEs involve

the second order derivatives of the value function v(·) and

the density m(·) as shown in Table I.

Because of the presence of the second derivatives, the

above game is called second-order mean-field game. The ad-

vection equation is now renamed Kolmogorov-Fokker-Planck

(KFP) equation.
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∂tvt + H̃(xt, ∂xvt, m̄t) +
1
2

∑n
i=1 σ

2
i x

2
i ∂

2
xixi

vt = 0,

vt

��

(HJB)-backward

∂tmt + ∂x

(

mt∂pH̃(x, ∂xvt,m)
)

−

1
2

∑n
i=1 ∂

2
xixi

[σ2
i x

2
imt] = 0

m̄t

UU

(Kolmogorov)-forward

TABLE I
STRUCTURE OF THE MEAN-FIELD GAME.

V. ON MEAN–FIELD EQUILIBRIA AND THEIR

APPROXIMATION

In this section, we introduce an approximate solution

approach based on a state-space extension and internal refer-

ence model. The approach does not require the existence of a

fixed-point for the system in Table I. The approach provides

a description of the microscopic and macroscopic evolution

of the system when all players agree on modeling the

“environment” using the aforementioned reference models.

We then study equilibria and stability properties based on

such reference models.

A. Considerations on the parametrized HJI

We now investigate the solution of the HJI equation under

the assumption that the time evolution of the common state

is given. We show that the problem reduces to solving three

matrix equations. To see this, by isolating the HJI part of

(12) for fixed mt, for t ∈ [0, T ], we have







∂tvt +
1
2
(∂xvt)

T
[

−B(R+ S(m̄t))
−1BT

+ 1
γ2
MMT

]

∂xvt + (∂xvt)
TAxt +

1
2
xTt Qxt

+ 1
2

∑n

i=1 σ
2
i x

2
i ∂

2
xixi

vt = 0,
in R× [0, T [,

vT (x) =
1
2
xTΦx, in R

n.

(16)

Consider the following value function

vt(x) =
1

2
x
T
Ptx+Ψtx+ χt, (17)

so that (16) can be rewritten as







1
2
xT Ṗtx+ Ψ̇tx+ χ̇t

+(Ptx+Ψt)
T
[

−B(R+ S(m̄t))
−1BT

+ 1
γ2
MMT

]

(Ptx+Ψt) + (Ptx+Ψt)
TAx

+ 1
2
xTt Qxt +

1
2

∑n

i=1 σ
2
i x

2
iPii(t) = 0 in R× [0, T [,

PT = Φ, ΨT = 0, χT = 0.

The boundary conditions are obtained by imposing that

vT (x) =
1

2
x
T
PTx+ΨTx+ χT =

1

2
x
TΦx.

Again, since this is an identity in x, it reduces to three

equations:







Ṗt + 2PTt

[

−B(R+ S(m̄t))
−1BT

+ 1
γ2
MMT

]

Pt + 2PTt A

+Q+ P̃t = 0 in [0, T [, PT = Φ,

Ψ̇t + PTt

[

−B(R+ S(m̄t))
−1BT + 1

γ2
MMT

]

Ψt

+ΨTt

[

−B(R+ S(m̄t))
−1BT + 1

γ2
MMT

]

Pt

+ΨTt A = 0 in [0, T [, ΨT = 0,

χ̇t +ΨTt

[

−B(R+ S(m̄t))
−1BT

+ 1
γ2
MMT

]

Ψt = 0 in [0, T [, χT = 0,

(18)

where

P̃ = Diag((σ2
i Pii)i=1,...,n)

=








σ2
1P11 . . . 0

...
. . .

...

. . . . . . σ2
nPnn







.

(19)

For the optimal control and worst-case disturbance we have

{
u∗
t (x) = (R+ S(m̄t))

−1BT (Ptx+Ψt),
ζ∗t (x) =

1
γ2
MT (Ptx+Ψt).

(20)

Existence of a solution for the equations (18) is guaranteed

under standard assumptions on convexity-concavity of the

value function with respect to the control and the disturbance

[4, Chap. 8]. This also justifies the choice of the quadratic

structure for the value function (17).

B. Internal reference model and state space extension

In this section, we study the problem in the extended

state space involving both the state of the player and the

average state distribution. The main idea is illustrated in

Fig. 1. In the mean-field system (12) the gradient ∂xvt is

parametrized in the average distribution m̄t, which evolves

according to a nonlinear differential equation. Then, we

replace the dynamics of m̄t with two linear dynamics on the

new variables m̂t and m̃t (dashed and dotted trajectories)

that upper and lower bound the nonlinear dynamics of m̄t

(solid). In the extended state space, the state variable evolves

according to the equations

{
dxt = [Axt +But +Mζt]dt+Σ(xt)dBt,
˙̄mt = Am̄t +Būt +Mζ̄t,

(21)
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−∂xvt m̂t

m̄t

m̃t

Fig. 1. Extended state space: the gradient ∂xvt depends on m̄t,
which is upper and lower bounded by m̂t (dashed) and m̃t (dotted)
respectively.

which can be rewritten in matrix form as
[
dxt
dm̄t

]

=
(

A

[
xt
m̄t

]

+B

[
ut
ūt

]

+M

[
ζt
ζ̄t

])

dt+

[
Σ(xt)dBt

0

]

.

(22)

The main idea is that each player has an internal model for

the common state. In particular, each player approximates the

evolution of the common state through a dynamics of type

{
d
dt
m̃t = Θtm̃t, for all t ∈ [0, T ],

m̃0 = m̄0.
(23)

Though this introduces an approximation, it must be said

that second-order systems are commonly used to approximate

higher-order dynamics.

By substituting the current average distribution m̄t by its

estimate m̃t, the problem at hand can be rewritten as

inf
{ut}t

sup
{ζt}t

∫ T

0

1

2

[

‖ut‖
2
R+S(m̃t) + ‖m̃t‖

2
Q̄

+
(

‖xt‖Q − γ2‖ζt‖
2
)]

dt

[
dxt
dm̃t

]

=
([

A 0
0 Θt

] [
xt
m̃t

]

+

[
B

0

]

u∗
t

+

[
M

0

]

ζ∗t

)

dt+

[
Σ(xt)dBt

0

]

,

for some positive definite matrix Q̄.

Reformulating the problem in terms of the extended state

Xt =
[
xTt m̃T

t

]T
,

yields the linear quadratic problem:

inf
{ũt}t

sup
{ζt}t

∫ T

0

[
1

2

(

X
T
t Q̃Xt + R̃ũ

2
t − Γ̃ζ2t

)]

dt

dXt =
(

ÃXt + B̃ũt + Cζt

)

dt+DdBt,

where

Q̃ =

[
Q 0
0 Q̄

]

, R̃ = R+ S(m̃t), Γ̃ = γ2,

Ã =

[
A 0
0 Θt

]

, B̃ =

[
B

0

]

,

C =

[
M

0

]

, D =

[
Σ(xt)
0

]

.

The idea is therefore to consider a new value function

Vt(x, m̃) (in compact form Vt(X)) in the extended state

space which satisfies






∂tVt(X) +H(X, ∂XVt(X)) + 1
2

1
γ2
MMT |∂xVt(X)|2

+ 1
2

∑n

i=1 σ
2
i x

2
i ∂

2
xixi

Vt(X) = 0, in R
2 × [0, T [,

VT (X) = g(x) in R
2.

Assume that VT (X) is given by the quadratic form

Vt(X) =
1

2
[xTt m̃

T
t ]

[
P11(t) P12(t)
P21(t) P22(t)

]

︸ ︷︷ ︸

Pt

[
xt
m̃t

]

,

where the matrix Pt is the solution of the differential Riccati

equation

Ṗt + PtÃ+ ÃTPt + Q̃

−2Pt(B̃R̃
−1B̃T − CΓ̃−1CT )Pt +Wt = 0,

(24)

and where

B̃R̃−1B̃T − CΓ̃−1CT

=

[
B(R+ S(m̃t))

−1BT − 1
γ2
MMT 0

0 0

]

,

Wt =

[
P̃11(t) 0

0 0

]

.

Here P̃11(t) is as in (19).

Note that in the stationary case the above differential equation

simplifies to

PÃ+ ÃTP + Q̃− 2P(B̃R̃−1B̃T

−CΓ̃−1CT )P +W = 0.
(25)

The above algebraic Riccati equation is then associated to

the infinite horizon formulation of the game under study.

Back to the finite horizon game, let Pt be the solution of the

differential Riccati equation (24), then the optimal control is

given by

ũt = −R̃−1B̃TPtXt
= −(R+ S(m̄t))

−1[BT 0]

·

[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]

= −(R+ S(m̄t))
−1BT

·(P11(t)xt + P12(t)m̄t),

(26)

and the worst-case disturbance is

ζ̃t = Γ̃−1CTPtXt

= 1
γ2

[ΣT 0]

[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]

= 1
γ2

ΣT (P11(t)xt + P12(t)m̄t).

(27)

From (26) and (27), we can approximate the mean-field

equilibrium, which is captured by the evolution of m̄t over

the horizon (0, T ], as follows:
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d
dt
m̄t =

[

A+
(

−B(R+ S(m̄t))
−1BT + 1

γ2
MMT

)

·(P11(t) + P12(t))
]

m̄t t ∈ (0, T ], x0 ∈ R.

The equation above corresponds to saying that the mean

distribution converges to zero in absence of the stochastic

disturbances (the Brownian motion), under the assumption

that all the eigenvalues of the matrix
[

A +
(

− B(R +

S(m̄t))
−1BT + 1

γ2
MMT

)

(P11(t)+P12(t))
]

have strictly

negative real parts.

VI. MINIMIZING THE APPROXIMATION ERROR

In this section we introduce a relaxation method aiming

at minimizing the approximate error. Indeed, the quality

of the approximate problem solved in the previous section

depends on the accuracy of the internal reference model for

the common state (23).

Let us start by noting that the common state m̄t and its

approximation m̃t evolve according to

˙̄mt =
[

A+ (−B(R+ S(m̃t))
−1
B
T +

1

γ2
MM

T )

·(P11(t) + P12(t))
]

m̄t, (28)

˙̃mt = Θtm̃t. (29)

Henceforth, for sake of conciseness, let us denote

Θ′ =
[

A+ (−B(R+ S(m̃t))
−1BT + 1

γ2
MMT )

·(P11(t) + P12(t))
]

.

Consequently, dynamics (28) can be rewritten in compact

form as
˙̄mt = Θ′

tm̄t.

Dynamics (28) is obtained from averaging the optimal con-

trol (26) and worst-case disturbance (27) in order to obtain

ū∗
t and ζ̄∗t , respectively. These values are then substituted in

the dynamics for the average distribution d
dt
m̄t = Am̄t +

Bū∗
t + Σζ̄∗t . The best approximation, namely, the one with

the best bound, is given by the following least-square error

minimization

minΘ0,{ut}t∈[0,T ]

∫ T

0

[‖Θ′
t −Θt‖

2 + u
T
t ρut]dt

subject to Θ̇t = ut,

P11(t) + P12(t) from (24).

(30)

In other words, the functional (30) accounts for the approxi-

mation error using the internal model. Actually, the internal

model returns a predicted common state which differs from

the exact value.

Obviously, for ρ→ ∞ we force Θt to be constant and we

limit to consider the best constant value for Θ that minimizes

the least mean square error.

The least mean square problem (30) yields a gradient

algorithm based on the following update law for Θt(τ):

Θ̇t(τ) = k
([

A+ (−B(R+ S(m̃t))
−1BT + 1

γ2
MMT )

·(P11(t) + P12(t))
]

−Θt(τ)
)

,

where k is the update coefficient.

At the equilibrium Θ∗
t , setting the LHS Θ̇t(τ) equal to

zero, the resulting solution is the least mean square solution,

namely the solution at minimum distance from

Θ∗
t =

[

A+ (−B(R+ S(m̃t))
−1BT + 1

γ2
MMT )

·(P11(t) + P12(t))
]

.

If the least mean square error, i.e., the optimal cost of (30)

is null, then the solution is Θ∗
t .

We are now interested in investigating conditions under

which the equilibrium point is asymptotically stable. This

implies that starting from any solution in a bounded neigh-

borhood of Θ∗
t , the resulting solution converges asymptot-

ically to Θ∗
t . For this to be true, for any Θ 6= Θ∗

t in a

neighborhood of the equilibrium point, it must hold

∂
∂Θ

([

A+ (−B(R+ S(m̃t))
−1BT + 1

γ2
MMT )

·(P11(t) + P12(t))
]

−Θt(τ)
)

< 0.

Two main considerations arise. First, when the coefficient

tends to infinity, the RHS is negative since Θ′ is bounded.

Second, when the coefficient tends to zero, the RHS is

positive since Θ′ is bounded as well. Both considerations

can be schematically summarized as follows:

C1 Θt → ∞ the quantity Θ′ = −
[

A + (−Bb−1BT +

1
γ2
MMT )(P11(t)+P12(t))

]

is bounded and therefore

Θ̇ < 0
C2 Θt → 0 the quantity Θ′ = −

[

A + (−B(R +

S(m̃0))
−1BT + 1

γ2
MMT )(P11(t) + P12(t))

]

is

bounded and positive and therefore Θ̇ > 0

Considerations C1 and C2 guarantee the existence and allow

the computation of a lower and a upper bound for the cost.

VII. SCALAR CASE

In this section we provide some results for the scalar

case. The first result describes performance bounds. The

second result establishes that the microscopic dynamics is

exponentially asymptotically stable almost surely. The third

result shows that the macroscopic dynamics is exponentially

asymptotically stable.

A. Performance bounds

Consider the scalar version of the dynamics (1):

dxt = [αxt + βut + µζt]dt+ σ(xt)dBt . (31)

In the scalar case Q ∈ R, Q̄ ∈ R, R = R and S(m̃t) =
ĥk̂m̃t = sm̃t ∈ R. From C1 and C2 we can deduce that

there exist two variables that approximate from above and

from below the evolution of the common state.

First, consider the following assumption.

Assumption 1: There exists θ and κ such that

κm̄t ≥
d

dt
m̄t = αm̄t+βū

∗
t+σζ̄

∗
t ≥ θm̄t, for all t ∈ [0, T ].
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Possible values for κ and θ are the one obtained with

maximal and minimal congestion, namely,

θ =
[

α+ (−
β2

R
+

σ2

2γ2
)(P11(t) + P12(t))

]

, (32)

κ =
[

α+ (−
β2

R+ sm̄0
+

σ2

2γ2
)(P11(t) + P12(t))

]

. (33)

In other words, the main idea is to approximate the mean

distribution m̄t from below by m̃t and from above by m̂t.

To do this, we wish the following condition to hold:

m̃t ≤ m̄t ≤ m̂t, for all t ∈ [0, T ]. (34)

The above reasoning is particularly meaningful when σ = 0,

in which case we consider the following dynamics:






d
dt
m̄t =

(

α− 2β(P11+P12)
R+sm̄t

)

m̄t,

d
dt
m̃t =

(

α− 2β(P11+P12)
R

)

m̄t := −θtm̃t,

d
dt
m̂t =

(

α− 2β(P11+P12)
R+sm̂0

)

m̂t := −κm̂t,

m̄0 = m̂0 = m̃0.

(35)

In the above system of equations, we have set
{

θt = −α+ 2β(P11+P12)
R

,

κ = −α+ 2β(P11+P12)
R+sm̂0

.
(36)

We are then in the position to establish the following result,

which provides a lower bound for the value function in (12)

when σ = 0.

Theorem 2: Let σ = 0. Then Vt(X) approximates v(x)
from below, i.e.,

Vt(X) ≤ vt(x), ∀X,x, t. (37)

Furthermore, the approximation error is upper bounded as

established by the inequality below

d
dt
(vt(x)− Vt(x))

≤ s
(

2β(P11+P12)
R

)2

m̄3
0

[

e−3κt − e(−θt−2κ)t
]

.
(38)

Proof: Given in the appendix. �

B. Exponential asymptotic stability of microscopic dynamics

The stochastic differential equation describing the closed-

loop system has an exponentially and asymptotically stable

equilibrium. To see this from (26)-(27) rewrite the dynamics

for xt in (21) as

dxt = [αxt + βu∗
t + σζ∗t ] dt+ σxtdBt

=
[

αxt + (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t)xt + P12(t)m̄t)

]

dt

+σxtdBt t ∈ (0, T ], x0 ∈ R,

and consider the following assumption, ensuring that the evo-

lution of the state is bounded from above by an exponential

decay.

Assumption 2: There exists κ > 0 such that

−κxt ≥
[

α+ (− 2β2

R+sm̄t
+ σ2

γ2
)P11(t)

]

xt

+
[

(− 2β2

R+sm̄t
+ σ2

γ2
)P12(t)

]

m̄t.
(39)

The analysis is then performed within the framework of

stochastic stability theory [19]. To this end, consider the

infinitesimal generator

L =
1

2
σ
2
x
2
t

d2

dx2t
− κxt

d

dxt
, (40)

and the Lyapunov function V (x) = x2. The stochastic

derivative of V (x) is obtained by applying (40) to V (x),
which yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt
= [σ2 − 2κ]x2t .

Proposition 7.1: [[19]] Let Assumption 2 hold. If V (x) ≥
0, V (0) = 0 and LV (x) ≤ −ηV (x) on Q̂ǫ := {x : V (x) ≤
ǫ} for some η > 0 and for arbitrarily large ǫ, then the origin

is asymptotically stable “with probability one”, and

Px0

{

sup
T≤t<+∞

x
2
t ≥ λ

}

≤
V (x0)e

−ψT

λ

for some ψ > 0.

From Proposition 7.1 we have the following result, es-

tablishing exponential stochastic stability of the mean-field

equilibrium.

Corollary 7.1: Let Assumption 2 hold. If [σ2 − 2κ] < 0
then lim

t→∞
xt = 0 almost surely and

Px0

{

sup
T≤t<+∞

x
2
t ≥ λ

}

≤
V (x0)e

−ψT

λ

for some ψ > 0.

C. Mean-field equilibrium for macroscopic dynamics

Let Assumption 2 hold. We can approximate the mean-

field equilibrium, which is captured by the evolution of m̄t

over the horizon (0, T ], as follows:

d
dt
m̄t ≤ −κm̄t, t ∈ (0, T ], m0 ∈ R× [0, T ],

which yields the upper bound for m̄t:

m̄t ≤ m̄0e
−κt

, t ∈ (0, T ], x0 ∈ R.

Essentially, the inequality above describes converging linear

dynamics which upper bound the time evolution of m̄t, for

all t ∈ (0, T ]. As a result

d
dt
m̄t =

[

α+ (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t) + P12(t))

]

m̄t

t ∈ (0, T ], x0 ∈ R.

Actually, we can derive a differential equation describing

the evolution of the mean distribution which represents a

bound, namely
{

m̄t = m̄0e
ρt

ρ = α+ (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t) + P12(t)).

The equation above corresponds to saying that the mean

distribution converges exponentially to zero in absence of

stochastic disturbances (the Brownian motion), under the

assumption that ρ is strictly negative.
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α β Q R θt Q̄ γ m̄0

0.1 2 2 1 10 0.1 1 80

TABLE II
SIMULATION PARAMETERS

VIII. NUMERICAL STUDIES

In this section we present numerical studies of the robust

mean-field game with dynamics (31). In particular, we study

in more detail the numerical example introduced in [13]. Af-

ter computing optimal controls and worst-case disturbances

using the heuristic method illustrated earlier, we simulate the

macroscopic evolution of the population of players. Consider

a system consisting of n = 103 indistinguishable players,

where each player seeks to minimize a cost functional of the

form (2) subject to an adversary disturbance. I.e. consider

Problem 1. Note that for this scalar problem we use the

same notation as in Section VII, i.e. S(m̃t) = sm̃t. An

approximate solution to the mean-field game is found using

the method introduced in Section V. The matrix

P =

[

P11(m̄) 0

0 Q̄

4θt

]

,

with P11(m̄) =
√

(σ2 + 2α)2 + 8( β2

R+sm̄
− σ2

2γ2
)+σ2+2α,

is the positive definite solution to the algebraic Riccati

equation (25). The resulting control (26) and the disturbance

(27) are adopted using this solution. The set of states is

discretized and numerical results are obtained using the

algorithm in Table III. The quantities σ(xt) and µ determine

the influence of the Brownian motion Bt and the disturbance

ζt, respectively. In this example consider the case in which

σ(xt) is constant, i.e. σ(xt) = σ and we set µ = σ.

Simulations have been run for two different values of σ,

namely σ0 = 0, σ1 = 0.1. The selection σ = σ0 corresponds

to the case in which there is no disturbance and dynamics

(1) is deterministic. The simulations have also been run for

two different values of s, namely s1 = 0.5 and s2 = 1.5.

Note that large values of s correspond to large penalties when

congestion occurs. The remainder of the parameters are as

shown in Table II.

Figure 2 shows the time histories of the states of the

players with the weights s = s1 (top row) and s = s2
(bottom row) and the parameters σ = σ0 (left column) and

σ = σ1 (right column). Figure 3 shows the distribution, mt,

of the players’ states at different times for the four different

selections of parameters. The initial and final distributions

are indicated by the dashed and solid curves, respectively,

whereas the distribution at intermediate times are denoted by

the dotted curves. Figure 4 shows the time histories of the

mean, m̄t, (left) and the standard deviation (right) for s = s1
(top) and s = s2 (bottom). The solid curves correspond to

σ = σ1 whereas the dashed lines correspond to σ = σ0.

Note that in all four cases the players successfully drive

their states to zero. However, for a given value of the

parameter s, the convergence is fastest in the absence of

noise and disturbances, i.e. when σ = σ0. Figure 5 shows the

time histories of the control actions (26) of the players with

Input: Set of parameters as in Table II.

Output: Distribution function mt, mean m̄t

and standard deviation std(mt).
1 : Initialize. Generate x0 given m̄0 and std(m0)
2 : for time t = 0, 1, . . . , T − 1 do

3 : if t > 0, then compute mt, m̄t, and std(mt)
4 : end if

5 : for player i = 1, . . . , n do

6 : Compute control ũ using current m̄t

7 : compute new state xt+1 by executing (1)

8 : end for

9 : end for

10 : STOP

TABLE III
SIMULATION ALGORITHM
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Fig. 2. Time histories of the state of each player. Top row: s = s1,
bottom row: s = s2, left column: σ = σ0, right column: σ = σ1.

s = s1 (top row) and s = s2 (bottom row), and σ = σ0 (left

column) and σ = σ1 (right column). For the case in which

σ = σ1, it is clear that when s = s1 is selected the players

put a larger effort at the beginning of the simulation than

when s = s2 is selected, and the same is true for σ = σ0.

Since s2 > s1, this implies that in the former case a larger

penalty is incurred when congestion occurs and therefore one

would expect the players to stall to avoid this, resulting in the

convergence to the zero equilibrium being somewhat slower.

The simulations are consistent with this, as for a given value

of σ it takes more time for the players to drive their states

to zero when the parameter s = s2 is selected in place of

s = s1.

IX. CONCLUDING REMARKS

We have illustrated robust mean-field games as a paradigm

for crowd-averse systems. We have discussed these systems

in the context of stock market, production engineering,

and dynamic demand management in power systems. We

have presented a new approximation method based on the

extension of the state space.
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Fig. 3. The initial (dashed line), final (solid line) and intermediate
(dotted lines) distribution, mt, of the states of the players. Top row:
s = s1, bottom row: s = s2, left column: σ = σ0, right column:
σ = σ1.
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Fig. 4. Time histories of the mean m̄t (left) and the standard
deviation (right) of the states of the players for s = s1 (left), s = s2
(right), σ = σ0 (dashed line) and σ = σ1 (solid line).

We can extend our study in at least three directions. These

include i) the extension of the approximation method to more

general cost functionals, ii) the study of the case with “local”

mean-field interactions rather than “global” as in the current

scenario, and iii) the analysis of crowd-seeking scenarios in

contrast to the crowd-averse cases analyzed in this paper.
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APPENDIX

Proof of Theorem 1.

We first prove condition (13). To this end write the

Hamiltonian as:

H(xt, ∂xvt,mt) = infu
{

1
2
(‖ut‖

2
R+S(m̄t)

+‖xt‖
2
Q) + ∂xvt(Axt +But)

}

.
(41)

Differentiating with respect to ut gives

(R+ S(m̄t))ut +B
T
∂xvt = 0, (42)

which yields (13).

For the robust Hamiltonian we then have

H̃(xt, p, m̄t) = H(xt, p, m̄t) + sup
ζt

{

p
T
Mζt −

1

2
γ
2
ζ
T
t ζt

}

whose solution in terms of ζt is given by ζ∗t = 1
γ2
MT ∂xvt.

We now prove (12). Substituting the above expression for ζ∗t
back in the expression for the robust Hamiltonian we then

have

H̃(xt, p, m̄t) = H(xt, p, m̄t) +
1
2

1
γ2
∂xv

T
t MMT ∂xvt.

Then the mean-field system associated to the robust mean-

field game introduced in Problem 1 is given by






∂tvt +H(xt, ∂xvt, m̄t) +
1

2γ2
∂xv

T
t MMT ∂xvt

+ 1
2

∑n

i=1 σ
2
i x

2
i ∂

2
xixi

vt = 0, in R
n × [0, T [,

vT (x) =
1
2
xTΦx, in R

n,

∂tmt + ∂x (mt∂pH(x, ∂xvt,m))
+ 1
γ2
∂x(mtMMT ∂xvt)

− 1
2

∑n

i=1 ∂
2
xixi

[σ2
i x

2
imt] = 0, in R

n × [0, T [,
m0(x) = d(x) in R

n,

m̄t :=
∫

R
xmtdx, in [0, T [,

(43)

where d(x) is the initial population state distribution and g

the terminal payoff.

First note that the second and last equations are the bound-

ary conditions and derive straightforwardly from Bellman

equations and the evolution of the state.

To prove the first equation, which is a PDE corresponding

to the HJI equation, replace u in the Hamiltonian (41) by its

expression (13), i.e.

H(xt, ∂xvt,mt) =
1

2
(‖u∗

t ‖
2
R+S(m̄t) + ‖xt‖

2
Q)

+(∂xvt)
T (Axt +Bu

∗
t )

=
1

2

[

x
T
t Qxt + u

∗T

t

(

R+ S(m̄t)
)

u
∗
t

]

+(∂xvt)
T
Axt + (∂xvt)

T
Bu

∗
t

= −
1

2
(∂xvt)

T [B(R+ hz̄t)
−1
B
T ]∂xvt

+(∂xvt)
T
Axt +

1

2
x
T
t Qxt.

Using the above expression of the Hamiltonian in the HJI

equation in (43), we obtain the HJI in (12).

To prove the third equation, which is a PDE representing

the FPK equation, we simply bring (13) into the FPK

equation in (43), and this concludes the proof.

Proof of Theorem 2.

Let us start by noting that, from convexity on m̄, we can

write the following HJI inequality as






∂tvt + c(xt, ũt, m̃t)− γ2ζ̃2t + ∂xvt(αxt
+βũt + σζ̃t) +

1
2
σ2x2∂2

xxvt ≤ 0,
in R× [0, T [,
vT (x) =

1
2
Φx2, in R.

(44)

In other words

Ṽt(x) :=

∫ T

0

(c(xt, ũt, m̃t)− γ
2
ζ̃
2
t )dt ≤ vt(x).

Then, for the approximation error we have

e(t) := vt(x)− Vt(X)

≤
∫ T

0
sũ2
τ (m̄τ − m̃τ )dτ

≤
∫ T

0
sũ2
τm̄0(

m̂τ

m̄0
− m̃τ

m̄0
)dτ,

(45)

for any m̄t, m̃t, and m̂t satisfying (34). Now, from (35)-(36),

the above inequalities can be rewritten as

e(t) ≤
∫ t

0
sũ2
τm̄0

[

e−κτ − e−θtτ
]

dτ, (46)

from which, after differentiating with respect to t and sub-

stituting ũt with the expression in (26), we obtain

ė(t) ≤ s
(

2β(P11+P12)
b

m̃t

)2

m̄0

[

e−κτ − e−θtτ
]

≤ s
(

2β(P11+P12)
b

)2(
m̂t

m̄0

)2

m̄3
0

[

e−κτ − e−θtτ
]

≤ s
(

2β(P11+P12)
b

)2

m̄3
0

[

e−3κt − e(−θt−2κ)t
]

,

which proves the thesis.
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