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Abstract: We formulate the deformation theory for instantons on nearly Kähler six-
manifolds using spinors and Dirac operators. Using this framework we identify the
space of deformations of an irreducible instanton with semisimple structure group with
the kernel of an elliptic operator, and prove that abelian instantons are rigid. As an
application, we show that the canonical connection on three of the four homogeneous
nearlyKähler six-manifoldsG/H is a rigid instantonwith structure group H . In contrast,
these connections admit large spaces of deformations when regarded as instantons on
the tangent bundle with structure group SU(3).

1. Introduction

Instantons are connections whose curvature solves a certain linear algebraic equation.
Although instantons were first introduced in dimension four, the study of instantons
on manifolds of dimension greater than four has a long history [1,6,7,13,14,16,17,
19–21,30,33,34,36–38,40,41,43,46–59] (not to mention the long and fruitful study
of Hermitian–Yang–Mills connections). In favourable circumstances instantons solve
the Yang–Mills equation; for this reason and others the study of instantons informs
string theory, supergravity, and theoretical physics. It is hoped by many that analysing
instantonswill lead to the construction of invariants of seven-dimensionalG2-manifolds,
just as was the case for four-dimensional manifolds.

Nearly Kähler manifolds were first studied byWolf and Gray [28,60–62]. The lowest
dimension in which non-trivial nearly Kähler manifolds exist is six, and in this dimen-
sion nearly Kähler manifolds admit Killing spinors. Dimension six is also relevant to
the theory of special holonomy, as the cone over any nearly Kähler six-manifold has
holonomy contained in G2 [9]. There are precisely four homogeneous nearly Kähler
six-manifolds [11] (see [12] for an English version). Until recently these were the only
known complete examples, but within the last year new complete examples have been
constructed by taking quotients of the homogeneous examples by freely acting discrete
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groups [18] and by analysing the ordinary differential equations that describe nearly
Kähler metrics with cohomogeneity one [23].

Nearly Kähler six-manifolds are a natural arena in which to study instantons. Instan-
tons on nearly Kähler six-manifolds are Yang–Mills [63, Proposition 2.10], and the
tangent bundle over any nearly Kähler six-manifold admits an instanton [32], which is
known as the canonical connection and characterised by having skew-symmetric torsion
and holonomy contained in SU(3).

There are two ways in which the study of instantons on nearly Kähler six-manifolds
informs their study on seven-manifolds with holonomy contained in G2. The first is
through the Bryant–Salamon manifolds [10,27]: these are complete non-compact G2-
manifolds that asymptote to cones over the homogeneous nearly Kähler six-manifolds.
Non-trivial instantons have been constructed on these [15,44] and on the cone over the
nearly Kähler six-sphere [22,25]; in all cases the seven-dimensional instanton asymp-
totes to a non-trivial instanton on the nearly Kähler six-manifold. Thus studying instan-
tons on the Bryant–Salamon manifolds seems to entail studying instantons on nearly
Kähler six-manifolds.

The second link to G2-geometry is through “bubbling”. The instantons on R
7 con-

structed in [22,25] form a one-parameter family. The parameter describes the size of the
instantons and is related to the conformal symmetry of the instanton equations. At one
end of the family the energy density of the instantons spreads out and the instanton con-
verges to a flat connection. At the other end the energy density becomes concentrated and
the instanton converges to a singular connection on R

7\{0}. The latter is the pull-back
of an instanton on S6 (in fact, of the canonical connection). This example suggests that
instantons on G2-manifolds could form point-like singularities whilst maintaining finite
energy; such a process would be consistent with the results of Tao and Tian [56,57].

This paper concerns the deformation theory for instantons on nearly Kähler six-
manifolds. We show that the space of solutions to the linearisation of the instanton
equations about a given instanton can be identified with a subspace of the kernel of
a Dirac operator (in fact, under mild assumptions it is identified with the whole of the
kernel). The Dirac operator has index zero, so one expects instantons to be rigid and their
moduli spaces to consist of isolated points. We confirm this expectation in a number of
examples, including those of abelian instantons and of the canonical connection on the
six-sphere. We similarly analyse the allowed perturbations of the canonical connection
on the remaining three homogeneous nearly Kähler six-manifolds. In some cases we find
non-zero spaces of solutions to the linearised instanton equations, so the construction of
new instantons by perturbing known examples remains a tantalising possibility.

In Sect. 2, we review the geometry of nearly Kähler six-manifolds from a spinorial
point of view. In Sect. 3, we introduce the deformation theory for instantons on nearly
Kähler six-manifolds. In Sects. 4 and 5, we apply this theory to investigate perturbations
of some homogeneous examples of instantons. We note that a proof of the rigidity of
the canonical connection on S6 was previously claimed in [63, Theorem 3.5]. The proof
given in that paper was unfortunately incorrect, as explained in Sect. 4, but our analysis
in Sect. 5 confirms that this instanton is indeed rigid. The paper closes with a few
appendices in which technical details are provided.

2. Geometry of Nearly Kähler Manifolds

Let M be a six-dimensional Riemannian manifold and let ∇LC denote the Levi-Civita
connection on M . The manifold M is called nearly Kähler if there is a real non-zero
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constant λ and a non-zero section ψ of the real spinor bundle such that

∇LC
X ψ = λX · ψ ∀X ∈ Γ (T M). (1)

The sectionψ is called a real Killing spinor. Any nearly Kähler manifold admits at least
two Killing spinors, since the section Volg · ψ satisfies

∇LC
X Volg · ψ = −λX · Volg · ψ ∀X ∈ Γ (T M).

By rescaling themetric and if necessary replacingψ withVolg ·ψ the sign andmagnitude
of λ can be altered to any given value; therefore for simplicity this document uses a
convention in which

λ = 1

2
.

Any six-dimensional nearly Kähler manifold is automatically Einstein [8], with Ricci
curvature Ric = 5g. Moreover, a six-dimensional nearly Kähler manifold admits an
SU(3) structure, essentially because the stabiliser of any real spinor in six dimensions
is isomorphic to SU(3). The SU(3)-structure is characterised by an almost complex
structure, aKähler form, and aholomorphic volume form.All of thesemaybe constructed
directly from the Killing spinor, as explained below.

Let (V, g) denote a real six-dimensional vector space V equipped with a positive
definite metric g. Recall that Cl(V, g) ∼= Λ∗V as vector spaces. Many algebraic expres-
sions are very easy to prove. We record a few here in a lemma for they are used often in
the course of this paper.

Lemma 1. Let α ∈ Λ1V and β ∈ ΛpV . Then in Cl(V, g),

[α, β] =
{
2α ∧ β, if p is odd,
−2α�β, if p is even,

(2)

{α, β} =
{

−2α�β, if p is odd,
2α ∧ β, if p is even.

(3)

Recall that the space S of spinors for (V, g) is a real eight-dimensional vector space
equipped with a positive-definite symmetric bilinear form (·, ·) which carries a repre-
sentation of the Clifford algebra Cl(V, g). Let ψ ∈ S be any spinor of unit length, and
let ψT ∈ S∗ be the conjugate of ψ with respect to the symmetric bilinear form. Then
ψ ⊗ ψT is a self-adjoint element of S ⊗ S∗ ∼= Cl(V, g).

The self-adjoint subspace of Cl(V, g) is identified under the canonical isomorphism
Cl(V, g) ∼= Λ∗V with the subspace Λ0 ⊕ Λ3 ⊕ Λ4. Therefore ψ ⊗ ψT defines unique
forms of degrees zero, three, and four. The zero-form is equal to 1

8 , because
1
8TrS(ψ ⊗

ψT ) = 1
8 . Thus ψ uniquely determines P ∈ Λ3V and Q ∈ Λ4V through the equation

8ψ ⊗ ψT = 1 + P − Q. (4)

Let us note here for future reference that the stabiliser subgroup in Spin(V, g) ofψ is iso-
morphic to SU(3), and that the corresponding subgroup of SO(V, g) is again isomorphic
to SU(3).

The spinor ψ defines a linear map φ 
→ φ · ψ from Λ0 ⊕ Λ1 ⊕ Λ6 to S. This map is
easily seen to be an isometry with respect to the metrics g and (·, ·) so must be injective.
Since its domain and target have equal dimension it is an isomorphism:

S ∼= Λ0V ⊕ Λ1V ⊕ Λ6V . (5)
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Lemma 2. The subspaces of S isomorphic to Λ0,Λ6 and Λ1 are eigenspaces of the
operations of Clifford multiplication by P and Q. The associated eigenvalues are

Λ0 Λ1 Λ6

P 4 0 −4
Q −3 1 −3.

Proof. The operations of multiplication by P and Q are SU(3)-equivariant, since P
and Q are constructed from ψ and ψ is SU(3)-invariant. Therefore the subspaces of
S isomorphic to Λ0 ⊕ Λ6 and Λ1 are fixed by P and Q. The subspace Λ1 forms an
irreducible representation of SU(3), so P and Q act by scalar multiplication on this
subspace.

Since the action of Q is self-adjoint and commutes with the action of Volg on Λ0 ⊕
Λ6, Q must act as multiplication by some real constant q1 on this space. Since the action
of P is self-adjoint and anti-commutes with the action of Volg , there must exist constants
p1 and p2 such that P · ψ = p1ψ + p2Volg · ψ and P · Volg · ψ = p2ψ − p1Volg · ψ .
Given additionally that the actions of P and Q are both traceless, they must take the
following form with respect to the decomposition S ∼= Λ0 ⊕ Λ6 ⊕ Λ1:

P =
⎛
⎝ p1 p2 0

p2 −p1 0
0 0 0

⎞
⎠ , Q =

⎛
⎝q1 0 0

0 q1 0
0 0 −q1/3

⎞
⎠ .

Equation (4) then implies that 1+ p1−q1 = 8, 1− p1−q1 = 0, p2 = 0 and 1+q1/3 = 0.
The unique solution of this system of equations is p1 = 4, p2 = 0 and q1 = −3, giving
the advertised result. �


A complex structure may be defined on V using the isomorphism given in Eq. (5). If
u ∈ V then Volg · u · ψ belongs to the subspace Λ1V ⊂ S; therefore we may define Ju
through the equation

Ju · ψ = Volg · u · ψ.

Having identified a complex structure one may define a Kähler form ω in the usual
way and a unique (up to normalisation) complex 3-formΩ of type (3,0). Although these
are not needed in what follows we pause to explain how these are related to the forms
P and Q. With suitable normalisation of Ω , it holds that

ω = ∗Q and that Ω = P + i ∗ P. (6)

Proofs of these equations are supplied in Appendix A. Let us remark here that Lemma
(2) implies that ‖P‖2 = 1

8TrS(P2) = 4. This relation implies that Ω is given a standard
normalisation in which

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6)

in some orthonormal basis e1, . . . , e6.
If ψ solves the real Killing spinor Eq. (1) then its length is constant. Therefore any

six-dimensional nearly Kähler manifold admits non-vanishing forms P and Q defined
as above. Since ψ is non-vanishing it defines an SU(3)-structure on M , such that ψ and
the forms P and Q are parallel with respect to any connection with holonomy group
contained in SU(3).
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Lemma 3. The differential forms P and Q satisfy the differential identities,

dP = 4Q, d ∗ Q = 3 ∗ P.

Proof. The exterior derivative of any form φ may be calculated using the Levi-Civita
connection via the identity

dφ = ∇LC ∧ φ.

Let ea be a local orthonormal frame for the cotangent bundle, andwrite∇LC = ea⊗∇LC
a .

Then, from Eq. (4) defining P and Q and the Killing spinor Eq. (1),

∇ ∧ (1 + P − Q) =
6∑

a=1

ea ∧ 1

2
[ea, 1 + P − Q]

=
6∑

a=1

ea ∧ (ea ∧ P + ea�Q)

= 4Q.

Therefore dP = 4Q and dQ = 0. Similarly, since P · Volg = ∗P and Q · Volg = ∗Q,

∇ ∧ (Volg + ∗P − ∗Q) =
6∑

a=1

ea ∧ 1

2
[ea, (1 + P − Q)] · Volg

=
6∑

a=1

ea ∧ 1

2
{ea,Volg + ∗P − ∗Q}

=
6∑

a=1

ea ∧ (−ea� ∗ P − ea ∧ ∗Q}

= −3 ∗ P.

Therefore d ∗ Q = 3 ∗ P and d ∗ P = 0. �

It should also be noted that the real Killing spinor equation is equivalent to the

differential equations

(∇X J )X = 0 ∀X ∈ Γ (T M),

for J [29]. Thus Kähler six-manifolds may equivalently be defined to be almost Her-
mitian manifolds whose non-integrable almost complex structure satisfies this identity.

Vector fields X that preserve the metric g and the Killing spinor ψ are called auto-
morphic. If X is automorphic, then X preserves also P, Q, ω,Ω and J .

A key feature of nearly Kähler geometry is the presence of a distinguished connection
on the tangent bundle with holonomy SU(3) and skew parallel torsion. Let t ∈ R be
a parameter, and let ∇ t be the connection constructed from the Levi-Civita connection
∇LC as follows:

g(∇ t
X Y, Z) = g(∇LC

X Y, Z) +
t

2
P(X, Y, Z) ∀X, Y, Z ∈ Γ (T M). (7)
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The torsion tensor T t of the connection ∇ t is proportional to P:

g(X, T t (Y, Z)) = t P(X, Y, Z).

The connection ∇ t acts on sections η of the spin bundle as follows:

∇ t
Xη = ∇LC

X η +
t

4
(iX P) · η. (8)

It follows from Eq. (1) and Lemma 2 that, for any vector field X ,

∇ t
Xψ = 1

2
X · ψ − t

8
(X · P + P · X) · ψ

= 1 − t

2
X · ψ.

Therefore ψ is parallel with respect to the connection ∇1, and ∇1 has holonomy group
contained in SU(3). The connection ∇1 is known as the “canonical” or “characteristic”
connection.

For later use, we note here the following formula for the Ricci curvature tensor of
the connection ∇ t :

Proposition 1. The Ricci tensor Rict of the connection ∇ t is equal to (5− t2) times the
metric g.

Proof. Friedrich and Ivanov derive [24] an expression for theRicci tensor of a connection
with totally skew-symmetric torsion in terms of the Ricci tensor of the Levi-Civita
connection and the torsion 3-form. In the case where the torsion three-form is t P their
formula reads

Ric0(X, Y ) = Rict (X, Y ) +
t

2
d∗ P(X, Y ) +

t2

2
g(iX P, iY P).

By Lemma 3, d∗ P = 0. As has already been noted, the Ricci tensor Ric0 of the Levi-
Civita connection equals 5 times the metric g.

The remaining term may be evaluated by a direct calculation, using the identity

g(iX P, iY P) = − 1

32
TrS({X, P}{Y, P}).

With the aid of Lemma 2 one finds that

{X, P}ψ = X · P · ψ

= 4X · ψ,

and similarly that

{X, P}Volg · ψ = −4X · Volg · ψ

= 4J X · ψ.



Deformations of Nearly Kähler Instantons 965

Finally, {X, P} · Z · ψ can be evaluated by taking inner products with elements of SM .
It holds that

(ψ, {X, P} · Z · ψ) = (ψ, P · X · Z · ψ)

= (P · ψ, X · Z · ψ)

= 2
(
ψ,

([X, Z ] − 2g(X, Z)
)
ψ

)
= −4g(X, Z)

since the element [X, Z ] in the Clifford algebra is an antisymmetric endomorphism of
SM . Similarly, (Volg ·ψ, {X, P}·Z ·ψ) = −4g(J X, Z)ψ and (W ·ψ, {X, P}·Z ·ψ) = 0
for all W ∈ T M . Therefore

{X, P}Z · ψ = −4g(X, Y )ψ − 4g(J X, Z)Volg · ψ.

These formulae together allow evaluation of the trace:

− 1

32
TrS({X, P}{Y, P}) = 2g(X, Y ).

The result follows. �


3. Instantons and Deformations

Let A be a connection on a principal K -bundle P over a nearly Kähler six-manifold
(M, g, ψ) and let F be its curvature. Then A is called an instanton if its curvature F
satisfies

F · ψ = 0. (9)

Note that in this equation only the two-form part of F is acting on ψ . Thus if the adjoint
bundle associated to the principal bundleP is denotedAdP , the left hand side is a section
of AdP ⊗ SM .

The instanton Eq. (9) can be reformulated in a number of ways. Firstly, the SU(3)-
structure defines a subbundle su(3)M of End(T M) and also, via the metric-induced
isomorphism End(T M) ∼= Λ2M , of Λ2M . The instanton Eq. (9) is equivalent to the
statement,

F ∈ Γ (su(3)M ⊗ AdP ) ⊂ Γ (Λ2M ⊗ AdP ). (10)

Secondly, as on Kähler manifolds, the instanton equation given by Eq. (10) is equiv-
alent to the Hermitian–Yang–Mills equation

F2,0 = 0, ω�F = 0. (11)

Thirdly, the instanton equation is equivalent to

F�Q = −F. (12)

It is straightforward to see that Eq. (9) implies Eq. (12): Eq. (9) implies that the two-
form part of F acts trivially on Λ0 ⊕ Λ6 and sends Λ1 to itself with respect to the
decomposition S ∼= Λ0 ⊕ Λ1 ⊕ Λ6; Lemma 2 then implies that F�Q = − 1

2 {F, Q} =
− 1

2 {F, 1} = −F . It can further be proved that (12) implies (11) by classifying the
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eigenvalues and eigenspaces of the operator on two-forms given by contraction with Q
[31].

Instantons on nearly Kähler manifolds have the desirable property of solving the
Yang–Mills equation—see [32] for a proof based on Eq. (9) and the Killing spinor
equation, or [63, Proposition 2.10] for a proof based on Eq. (12) and the differential
identities given in Lemma 3. The canonical connection ∇1 on the tangent bundle of a
nearly Kähler manifold is always an instanton [32].

The purpose of this note is to study perturbations of instantons. A perturbation of
a connection A is a section ε of AdP ⊗ T ∗M , and to leading order the corresponding
perturbation of the curvature F is dAε. The gauge freedom in the perturbation can be
fixed by imposing the standard condition dA ∗ ε = 0; thus an infinitesimal perturbation
of an instanton A is given by a solution ε to the equations,

dAε · ψ = 0, dA ∗ ε = 0. (13)

The purpose of the next proposition is to identify solutions of the above system with
eigenmodes of a Dirac operator.

Proposition 2. Let ε be a section of AdP ⊗ T ∗M, let t ∈ R, and let Dt,A be the Dirac
operator constructed from the connections ∇ t and A. Then ε solves Eq. (13) if and only
if

Dt,A(ε · ψ) = 2ε · ψ. (14)

Proof. Let ea be a local orthonormal frame for T ∗M . The identity

D0,A(ε · ψ) = (dAε + (dA)∗ε) · ψ + ea · ε · ∇0
aψ

is easily verified. The Killing spinor Eq. (1) and the identity ea · ε · ea = 4ε then imply
that

D0,A(ε · ψ) = (dAε + (dA)∗ε + 2ε) · ψ.

It follows from Eq. (8) that the Dirac operator Dt,A is given by

Dt,A = D0,A +
3t

4
P.

Then by Lemma 2, we have

Dt,A(ε · ψ) = (dAε + (dA)∗ε + 2ε) · ψ.

From this identity one obtains that the equation Dt,A(ε · ψ) = 2ε · ψ is equivalent
to (dAε + (dA)∗ε) ·ψ = 0. The latter is equivalent to the pair (13) of equations, because
the two components dAε · ψ and (dA)∗ε · ψ belong to the complementary subspaces
(Λ1M ⊕ Λ6M) ⊗ AdP and Λ0M ⊗ AdP of SM ⊗ AdP . �


It is worth noting that Eq. (14) is independent of t . The linearised instanton equations
can also be formulated as part of an elliptic complex [48]. However, we have found the
spinorial formulation more practical to work with, not least because there already exists
a large body of literature containing useful identities for Dirac operators with torsionful
connections.

By the previous proposition, to prove that an instanton is rigid it suffices to prove
that 2 does not belong to the spectrum of the restriction of the Dirac operator Dt,A to
Λ1M ⊗AdP ⊂ SM ⊗AdP . To this end, we need a Schrödinger–Lichnerowicz formula
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for the square of the Dirac operator. Such a formula has been obtained in the case A = 0
by Agricola and Friedrich [3]; the following proposition provides a gauged version of
their formula. A complete proof is presented below in order to keep this discussion
self-contained.

Proposition 3. Let E M be the vector bundle obtained from P through some represen-
tation E of G and let η ∈ Γ (E M ⊗ SM). Let A be any connection on P and let t ∈ R.
Then

(Dt/3,A)2η = (∇ t,A)∗∇ t,Aη +
1

4
Scalgη +

t

4
dP · η − t2

8
‖P‖2η + F · η. (15)

(Note that in this formula the two-form part of F acts by Clifford multiplication on SM
and the AdP part of F acts on E M in the usual way).

Proof. Let e1, . . . , e6 be a local orthonormal frame for the tangent bundle. The square
of the Dirac operator expands as follows:

(Dt/3,A)2η =
(

D0,A +
t

4
P

)2

η

= (D0,A)2η +
t

4
{D0,A, P}η +

t2

16
P · P · η.

By the usual Schrödinger–Lichnerowicz formula, the first of the three terms on the right
of this expression is

(D0,A)2η = (∇0,A)∗∇0,Aη +
1

4
Scalgη + F · η.

The second term is

t

4
{D0,A, P}η = − t

2
(ea�P) · ∇0,A

a η +
t

4
dP · η +

t

4
d∗ P · η.

One simplifies the third term using the identity α · α = ‖α‖2 − (ea�α ∧ ea�α) valid for
any three-form α. Note that the expression for α ·α has no components inΛ2M orΛ6M ,
because α · α is self-adjoint while two-forms and six-forms are skew-adjoint. Thus

t2

16
P · P · η = t2

16
‖P‖2η − t2

16
(ea�P ∧ ea�P) · η.

Now, for any two-form β, we have β ·β = −‖β‖2+β∧β. Given that
∑

a ‖ea�P‖2 =
3‖P‖2, we have (ea�P) · (ea�P) = −3‖P‖2 + (ea�P) ∧ (ea�P). Hence at the center
of a normal frame (where the Christoffel symbols vanish), we have

(∇ t,A)∗∇ t,Aη = −
(

∇0,A
a +

t

4
ea�P

) (
∇0,A

a +
t

4
ea�P

)
η

= −∇0,A
a ∇0,A

a η − t

2
(ea�P) · ∇0,A

a η +
t

4
d∗ P · η

+
t2

16
(3‖P‖2 − ea�P ∧ ea�P) · η.

Combining the above equations yields the desired result. �
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The proof of the preceding proposition is very general and makes no assumptions
about the dimension of M , the existence of Killing spinors, or whether A is an instanton.
In the case of interest, the scalar curvature is equal to 30 (when λ = 1/2), ‖P‖2 = 4,
and dP = 4Q (see Lemma 3), hence

(Dt/3,A)2η = (∇ t,A)∗∇ t,Aη +

(
15 − t2

2

)
η + t Q · η + F · η. (16)

This formula should be compared with [4, Eq. (2)] in the case A = 0, t = 1.
From Lemma 2 one learns that Q acts as multiplication by 4 on Λ1M ⊂ SM and as

multiplication by −3 on Λ0M ⊕ Λ6M ⊂ SM . By virtue of the instanton equation, the
curvature term acts trivially on Λ0M ⊂ SM while

F · ε · ψ = −2(F�ε) · ψ,

where it should be noted that F acts on ε by contraction of forms and via the action of the

Lie algebra of the gauge group on E . Hencewe obtain for η ∈ Γ
(

E M⊗(
Λ0M⊕Λ6M

))

(Dt/3,A)2η = (∇ t,A)∗∇ t,Aη +

(
15

2
− 3t − t2

2

)
η, while (17)

(Dt/3,A)2(ε · ψ) = (∇ t,A)∗∇ t,A(ε · ψ) +

(
15

2
+ t − t2

2

)
ε · ψ − 2(F�ε) · ψ. (18)

The most useful case of the identity (18) is when t = 1, for the following two
reasons. Firstly, t = 1 is the value that maximises the right hand side of the identity, and
hence yields the strongest lower bound on the square of the Dirac operator. Secondly,
when t = 1 the Laplace operator on the right hand side of the identity is the one
for the canonical connection, which (as demonstrated in the next section) has useful
representation-theoretical properties on homogeneous spaces. Since ψ is parallel with
respect to ∇1, the t = 1 case of the identity is equivalent to

(D1/3,A)2(ε · ψ) =
(
(∇1,A)∗∇1,Aε + 8ε − 2F�ε

)
· ψ. (19)

From the point of view of analysing instantons, the most useful case of Proposition
3 is when the vector bundle E M equals AdP . Let H ⊂ K denote the holonomy group
of the connection A. The group H acts on the Lie algebra k of K . Let k1 ⊂ k be the
subspace on which H acts trivially, and suppose that there is a complementary subspace
k0 ⊂ k such that k ∼= k0 ⊕ k1 (when k admits an H -invariant non-degenerate bilinear
form, such a complementary subspace exists). There is a corresponding splitting of the
adjoint bundle:

AdP = L0 ⊕ L1.

Proposition 4. Let A be an instanton on P with holonomy group H and suppose that
AdP splits as above. Then

(i) ker((D1/3,A)2 − 4) = ker((D1/3,A)2 − 4) ∩ (Ω1L0 ⊕ Ω0L1 ⊕ Ω6L1);
(ii) ker((D1/3,A)2 − 4) ∩ (Ω0L1 ⊕ Ω6L1) ∼= 2k1;

(iii) ker((D1/3,A)2 − 4) ∩ Ω1L0 ∼= 2
(
ker(D1/3,A − 2) ∩ Ω1L0

)
.
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Moreover, the volume form induces on both ker((D1/3,A)2 − 4) ∩ (Ω0L0 ⊕ Ω6L0) and
ker((D1/3,A)2 − 4) ∩ Ω1L0 almost-complex structures that swap the two copies of the
vector space in the decompositions given above.

Proof. Note that ∇1,A respects the decomposition

SM ⊗ AdP = (Λ1M ⊗ L0) ⊕ (Λ1M ⊗ L1)

⊕ ((Λ0M ⊕ Λ6M) ⊗ L0) ⊕ ((Λ0M ⊕ Λ6M) ⊗ L1),

as does (D1/3,A)2 (by Proposition 3). Therefore to establish the first identity we must
show that ker((D1/3,A)2 − 4) ∩ Ω1L1 and ker((D1/3,A)2 − 4) ∩ (Ω0L0 ⊕ Ω6L0) are
zero-dimensional vector spaces. If ε · ψ ∈ ker((D1/3,A)2 − 4) ∩ Ω1L1 then the term
involving F in Eq. (19) is zero (because H acts trivially on k1). So

0 =
∫

M
(ε · ψ, ((D1/3,A)2 − 4)ε · ψ)Volg

=
∫

M

[
(∇1,Aε · ψ,∇1,Aε · ψ) + 4(ε · ψ, ε · ψ)

]
Volg

≥ 4
∫

M
(ε · ψ, ε · ψ)Volg.

Therefore ε · ψ = 0. If η ∈ ker((D1/3,A)2 − 4) ∩ (Ω0L0 ⊕ Ω6L0), we use Eq. (17) to
get

0 =
∫

M
(η, ((D1/3,A)2 − 4)η)Volg =

∫
M

(∇1,Aη,∇1,Aη)Volg ≥ 0.

Therefore ∇1,Aη = 0. However, Λ0L0 ⊕ Λ6L0 has no non-zero parallel sections,
because the fibre k0 of L0 has no non-zero elements fixed by the action of the holonomy
group H of A (and the holonomy group of ∇1 acting on Λ0 ⊕ Λ6 is trivial).

To establish the second identitywe argue as above that any element of ker((D1/3,A)2−
4)∩(Ω0L1⊕Ω6L1) is parallel. By the general holonomy principle the space of parallel
sections of Λ0L1 is isomorphic to the fixed set of H in k1, which is the whole of k1 by
definition. Similarly, the space of parallel sections ofΛ6L1 is isomorphic to k1. The sum
of these two spaces is naturally isomorphic to k⊗C, with the almost complex structure
given by multiplication with Volg .

To establish the third identity we note that the connection A fixes the subbundle
L0 ⊂ AdP and, by the first part of this proposition, ker((D1/3,A)2−4)∩Γ (SM ⊗L0) =
ker((D1/3,A)2 −4)∩Ω1L0 hence the space ker((D1/3,A)2 −4)∩Ω1L0 is mapped into
itself by the operator D1/3,A. Therefore

ker((D1/3,A)2 − 4) ∩ Ω1L0 = ker(D1/3,A − 2) ∩ Ω1L0 ⊕ ker(D1/3,A + 2) ∩ Ω1L0.

Multiplication by the volume form defines a linear map from this vector space to itself.
This map squares to −1 so is an almost complex structure. It also swaps the two sum-
mands on the right hand side because it anti-commutes with D1/3,A. Therefore the total
space is isomorphic to the complexification of one of the two factors. �


The preceding proposition has important consequences in two particular cases.
Firstly, if the structure group K is abelian then k0 = 0 and ker((D1/3,A)2−4)∩Ω1AdP
is zero-dimensional, so the space of deformations of the instanton is a subspace of a
zero-dimensional space and hence is zero-dimensional. Thus:
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Theorem 1. Any instanton on a principal bundle with abelian structure group is rigid.

Secondly, we recall that a connection on a principal bundle is called irreducible if its
holonomy group equals the structure group of the principal bundle. If A is an irreducible
connection and the structure group of P is semisimple then k1 = 0. In this case the
previous proposition implies that:

Theorem 2. The space of deformations of an irreducible instanton on a principal bundle
with semisimple structure group is isomorphic to the kernel of the elliptic operator

(D1/3,A − 2) : Γ (SM ⊗ AdP ) → Γ (SM ⊗ AdP ).

We end this section with some comments on a geometrical interpretation of the
eigenspace of (D1/3,A)2 acting on Ω1AdP with eigenvalue 4. Given any orthogonal
connection ∇ on the tangent bundle and any connection A on a principal bundle with
curvature F , the ∇-Yang–Mills equation for A is

(∇ A)∗F = 0.

When ∇ is the Levi-Civita connection, this equation is just the usual Yang–Mills equa-
tion. The instanton equation on a nearly Kähler six-manifold implies the∇ t -Yang–Mills
equation for any t ∈ R. Indeed, the term involving the torsion is proportional to F�P ,
and vanishes as F is a (1,1)-form while P is the real part of a (3,0)-form.

The Yang–Mills equation for the canonical connection ∇1,

(dA)∗F + F�P = 0,

linearises to
(dA)∗dAε − F�ε + dAε�P = 0, (20)

with ε a section of AdP ⊗ T ∗M . The next proposition proves an identity which relates
this equation to the operator (D1/3,A)2.

Proposition 5. Let E M be the vector bundle obtained from a K -principal bundle P
over a nearly Kähler six-manifold through some representation E of K and let ε ∈
Γ (E M ⊗ T ∗M). Let A be any connection on P . Then

(D1/3,A)2(ε · ψ) − 4ε · ψ =
(
dA(dA)∗ε + (dA)∗dAε − F�ε + dAε�P

)
· ψ.

Proof. The Weitzenböck identity states that(
(dA)∗dA + dA(dA)∗

)
ε = (∇0,A)∗∇0,Aε + Ric0ε − F�ε.

With our normalisation conventions, Ric0 is equal to 5 times the identity. The Laplacian
(∇0,A)∗∇0,A is related to the Laplacian (∇1,A)∗∇1,A that appears in Eq. (19) as follows:

(∇1,A)∗∇1,Aε = (∇0,A)∗∇0,Aε + dAε�P + ε.

Combining the above two identities with Eq. (19) yields the desired result. �
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Suppose now that A is an instanton and ε is a section ofΛ1M ⊗AdP which solves the
linearised torsionful Yang–Mills Eq. (20) and the gauge-fixing condition (dA)∗ε = 0.
Then by the previous proposition (D1/3,A)2ε·ψ = 4ε·ψ . Conversely, if (D1/3,A)2ε·ψ =
4ε · ψ then by Proposition 4 we may write ε = ε+ + ε− with D1/3,Aε± · ψ = ±2ε · ψ .
One can easily check that both ε+ and ε− satisfy (dA)∗ε = 0, and hence by the previous
proposition both solve Eq. (20). Thus we have proved:

Proposition 6. Let A be an instanton on a principal bundle P over a nearly Kähler six-
manifold and let ε ∈ Γ (AdP ⊗ T ∗M). Then ε satisfies the linearised torsionful Yang–
Mills Eq. (20) and the gauge-fixing condition (dA)∗ε = 0 if and only if (D1/3,A)2ε ·ψ =
4ε · ψ .

4. Instantons on Homogeneous Nearly Kähler Manifolds

There are precisely four homogeneous nearly Kähler six-manifolds:

S6 = G2/SU(3), S3 × S3 = SU(2)3/SU(2),

CP3 = Sp(2)/Sp(1) × U(1), F1,2,3 = SU(3)/U(1)2.

In all four cases, the nearly Kähler metric on G/H is induced from a multiple of the
Cartan–Killing form on the Lie algebra g of G. In particular, the metric normalised as
in Sect. 2 is induced from the positive symmetric bilinear form [42],

B(X, Y ) = − 1

12
Trg(ad(X)ad(Y )) ∀X, Y ∈ g.

Let m denote the orthogonal complement with respect to B of the Lie algebra h of
H . The subspacem is invariant under the adjoint action of H , making the homogeneous
space reductive. The tangent and cotangent bundles of G/H may be identified with the
bundles associated to the H -principal bundle G → G/H via the natural representations

ρm : H → GL(m), ρm∗ : H → GL(m∗).

The canonical connection on the H -principal bundle G → G/H is by definition the
h-valued part of the left-invariant Maurer–Cartan form on G. The curvature of this con-
nection is G-invariant, and may be identified with the H -invariant element ofΛ2m∗ ⊗ h
given by

F(X, Y ) = −πh([X, Y ]) ∀X, Y ∈ m (21)

(here πh denotes projection onto h). The canonical connection on the principal bundle
induces a connection on the tangent bundle, and it is well-known that this connection
coincides with the canonical connection associated with the nearly Kähler structure. To
verify this fact, it suffices to verify that the holonomy is contained in SU(3) and that
the torsion is skew-symmetric, and then appeal to [24, Theorem 10.1]. Alternatively,
one could further verify that the torsion is parallel and appeal to [2, Theorem 4.2]. In
particular, this connection is an instanton.

The four nearly Kähler coset spaces therefore provide an ideal testing ground for the
study of nearly Kähler instanton deformations. There are in fact two natural deformation
problems to consider, as the canonical connection provides a connection on both the
H -principal bundle G → G/H and the SU(3)-principal bundle associated with the
SU(3)-structure. The remainder of this article is devoted to answering the following two
questions on the four nearly Kähler coset spaces G/H :
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1. Does the canonical connection admit any deformations as an instanton with gauge
group contained in H?

2. Does the canonical connection admit any deformations as an instanton with gauge
group contained in SU(3)?

To answer these questions, we solve the equation D1/3(ε ·ψ) = 2ε ·ψ for a section ε of
the bundle associated to the H -representation h⊗m∗ in the first case and su(3)⊗m∗ in
the second case. Note that a positive answer to the first question implies a positive answer
to the second. For the case of SU(3)/U(1)2, the first question has already been answered
in the negative in Theorem 1 using a simple positivity argument. In the remainder of
this section we show that the same argument is inapplicable for the remaining three
coset spaces, and in the following section complete answers are derived using group-
theoretical analysis.

To this end, we first present a formula for the F-dependent term in Eq. (18) in terms
of a Casimir operator for h. We define Cash ∈ Sym2(h) to be the inverse of the metric
on h obtained by restriction of B. If I1, . . . , Idim(H) is an orthonormal basis for h then

Cash =
dim(H)∑

i=1

Ii ⊗ Ii .

If ρ is any representation of H we write ρ(Cash) = ∑dim(H)
i=1 ρ(Ii )ρ(Ii ). (Here and

throughout we denote by the same symbol representations of a Lie group and its Lie
algebra).

Lemma 4. Let (E, ρE ) be any representation of H. Let F ∈ Λ2m∗ ⊗h be as in Eq. (21)
and let ε ∈ m∗ ⊗ E. Then

−2F�ε = (ρm∗(Cash) ⊗ 1E + 1m∗ ⊗ ρE (Cash) − ρm∗⊗E (Cash))ε. (22)

Proof. Pick orthonormal bases Ii with i ∈ {1, . . . , dim(H)} for h and Ia with a ∈
{dim(H) + 1, . . . , dim(H) + 6} for m. To simplify notation, we use indices i, j, k ∈
{1, . . . , dim(H)} and a, b, c ∈ {dim(H) + 1, . . . , dim(H) + 6}. Let ea be the basis for
m∗ dual to Ia . The structure constants f k

i j , f b
ia, f i

ab, f c
ab are defined by the formulae

[Ii , I j ] = f k
i j Ik, [Ii , Ia] = f b

ia Ib, [Ia, Ib] = f i
ab Ii + f c

ab Ic.

Then

ρm(Ii )Ia = f b
ia Ib,

and

ρm∗(Ii )e
a = − f a

ibeb.

The expression for F in components is F = − 1
2 f i

abea ∧ eb Ii . Let us write ε = ea ⊗ εa ,
with εa ∈ E . Then

−2F�ε = f i
ab(e

a ∧ eb)�ec ⊗ ρE (Ii )εc

= 2 f i
abea ⊗ ρE (Ii )εb

= 2 f b
iaea ⊗ ρE (Ii )εb

= −2ρm∗(Ii ) ⊗ ρE (Ii )ε.
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Now ρm∗⊗E (Ii ) = ρm∗(Ii ) ⊗ 1E + 1m∗ ⊗ ρE (Ii ), so

ρm∗⊗E (Cash) = ρm∗(Cash) ⊗ 1E + 1m∗ ⊗ ρE (Cash) + 2ρm∗(Ii ) ⊗ ρE (Ii ).

The result follows. �

For the positivity argument used in Theorem 1 to be applied to any other instanton,

it is necessary that the curvature term in Eq. (19) is greater than −4. The following
proposition shows that this condition does not hold for any of the homogeneous nearly
Kähler manifolds other than SU(3)/U(1)2.

Proposition 7. Let M = G/H be a homogeneous nearly Kähler manifold and let A be
the canonical connection on T M. Then the operator ε 
→ −2F�ε on m∗ ⊗ h has the
following eigenvalues and eigenspace dimensions:

− Case G2/SU(3)

Eigenvalue −9 −3 3
Dimension 6 12 30

− Case SU(2)3/SU(2)

Eigenvalue −8 −4 4
Dimension 2 6 10

− Case Sp(2)/Sp(1) × U(1)

Eigenvalue −8 0 4
Dimension 4 12 8

Proof. In all cases the operator is evaluated using theCasimir expression given inLemma
4, with E = h or an irreducible subspace thereof. We use the Freudenthal formula for
Cash, which states that (for any Lie algebra h)

ρλ(Cash) = B(λ, λ) + 2B(λ, δ) (23)

in the irreducible representation with highest weight λ, with δ equal to half of the sum
of the positive roots of h (see for instance [35, p. 122]).

Case G2/SU(3)

We first choose the Cartan subalgebra of su(3) consisting of diagonal matrices and call
a weight positive if it evaluates to a positive quantity on diag(1, 0,−1). The matrices
H1 = diag(1,−1, 0) and H2 = diag(0, 1,−1) are dual to the fundamental weights λ1
and λ2. A word of caution is advisable here and as one computes the similar quantity in
the other cases: h is not a Cartan subalgebra of g, it is the Lie algebra of H and B is not
(− 1

12 )th of the Cartan–Killing form of h: the trace is taken over all of g. One may verify
by direct calculation that[

B(H1, H1) B(H1, H2)

B(H2, H1) B(H2, H2)

]
=

[−4/3 2/3
2/3 −4/3

]
. (24)

Hints are provided in Appendix B. It follows that[
B(λ1, λ1) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2)

]
=

[ −1 −1/2
−1/2 −1

]
.
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One finds that δ = λ1+λ2. Therefore, in the complex representation (V(m1,m2), ρ(m1,m2))

with highest weight m1λ1 + m2λ2 one finds that

ρ(m1,m2)(Cash) = −(m2
1 + m2

2 + m1m2 + 3m1 + 3m2). (25)

The representations that appear in Eq. (22) break up into irreducibles as follows:

m∗
C

∼= V(1,0) ⊕ V(0,1),

hC ∼= V(1,1),

hC ⊗ m∗
C

∼= (V(1,0) ⊗ V(1,1)) ⊕ (V(0,1) ⊗ V(1,1))

∼= (V(1,0) ⊕ V(0,2) ⊕ V(2,1)) ⊕ (V(0,1) ⊕ V(2,0) ⊕ V(1,2)).

As vector spaces, this decomposition reads

hC ⊗ m∗
C

∼= C
3 ⊕ C

6 ⊕ C
15 ⊕ C

3 ⊕ C
6 ⊕ C

15

and with respect to this decomposition

ρhC⊗m∗
C
(Cash) = diag(−4,−10,−16,−4,−10,−16),

while

ρh(Cash) = −9 and ρm∗
C
(Cash) = −4.

The result follows by adding these numbers as dictated by Lemma 4.

Case SU(2)3/SU(2)

Let J1, J2, J3 be a basis for su(2) satisfying [Ji , J j ] = εi jk Jk . A basis for the diagonal
subalgebra h of su(2) ⊕ su(2) ⊕ su(2) is given by Ii = (Ji , Ji , Ji ) for i = 1, 2, 3.
By direct calculation (see for instance Appendix C), one finds that B(Ii , I j ) = 1

2δi j , so

Cash = 2
∑3

i=1 Ii ⊗ Ii . Denote by (Vm, ρm) the (m+1)-dimensional complex irreducible
representation of h ∼= su(2); then

ρm(Cash) = − 1
2m(m + 2). (26)

The representations that appear in Eq. (22) break up into irreducibles as follows:

m∗
C

∼= 2V2,

hC ∼= V2,

hC ⊗ m∗
C

∼= 2V0 ⊕ 2V2 ⊕ 2V4.

As vector spaces, this decomposition reads

hC ⊗ m∗
C

∼= C
2 ⊕ C

6 ⊕ C
10

and with respect to this decomposition

ρhC⊗m∗
C
(Cash) = diag(0,−4,−12),

while

ρhC(Cash) = −4 and ρm∗
C
(Cash) = −4.
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The result now follows by adding these numbers as dictated by Lemma 4.

Case Sp(2)/Sp(1) × U(1)

A basis for h = sp(1) ⊕ u(1) is given by

I1 =
(
i 0
0 0

)
, I2 =

(
j 0
0 0

)
, I3 =

(
k 0
0 0

)
, I4 =

(
0 0
0 i

)
.

By direct calculation one finds that B(Ii , I j ) = δi j . Since su(2) ∼= sp(1), we can reuse
some of the previous computation. Let’s use notation with prime (I ′

1, I ′
2, I ′

3, B ′,Cas′) to
denote the previous case. Since [i, j] = 2k, we have [Ii , I j ] = 2εi, j,k Ik , hence I ′

i = 1
2 Ii .

Also, we know that B ′(I ′
i , I ′

j ) = 1
2δi j while B(Ii , I j ) = δi j , so

B(Ii , I j ) = δi j = 2B ′(I ′
i , I ′

j ) = 1

2
B ′(Ii , I j ),

hence B = 1
2 B ′, henceCassp(1) = 2Cas′ = 4

∑3
i=1 I ′

i ⊗ I ′
i = ∑3

i=1 Ii ⊗ Ii .We therefore

have that Cash = ∑4
i=1 Ii ⊗ Ii . Let (V(m,n), ρ(m,n)) denote the unique irreducible (m+1)-

dimensional complex representation of sp(1) ⊕ u(1) in which ρ(m,n)(I4) = ni. Then
ρ(m,n)(Cash) has eigenvalue −m(m + 2) − n2.

One finds that

m∗
C

∼= V(1,−1) ⊕ V(1,1) ⊕ V(0,−2) ⊕ V(0,2), (27)

hC ∼= V(2,0) ⊕ V(0,0). (28)

The Casimir has a single eigenvalue −4 on m∗
C
. On the subspace V(2,0) of hC it has

eigenvalue −8, and on the tensor product

V(2,0) ⊗ m∗
C

∼= V(1,−1) ⊕ V(3,−1) ⊕ V(1,1) ⊕ V(3,1) ⊕ V(2,−2) ⊕ V(2,2) (29)

it has eigenvalues −4,−12 and −16 with eigenspaces of dimension 4, 6 and 8 respec-
tively. On the subspace V(0,0) of hC it has eigenvalue zero and on the tensor product
V(0,0) ⊗ m∗

C
∼= m∗

C
it has eigenvalue −4. The result then follows from Lemma 4. �


In [63] the eigenvalues of an operator proportional to ε 
→ −2F�ε are calculated for
the canonical connection on S6. It was claimed that all eigenvalues were non-negative,
leading to the conclusion that this instanton is rigid. The previous proposition shows
that, on the contrary, this operator has both negative and positive eigenvalues.

Support for the accuracy of our calculation is provided by the following observation.
Since both the action of two-forms by contraction on 1-forms and the adjoint action of
su(3) are traceless, the operator ε 
→ −2F�ε must be traceless. The result presented
in Proposition 7 is consistent with the tracelessness of this operator. In contrast, the
calculation leading to [63, Lemma 3.4] implies that this operator is not traceless, so
cannot be correct. In fact, any traceless non-negative operator is necessarily zero, so this
curvature operator is non-negative only in trivial cases.

Thus the proof of rigidity of the instanton on S6 given by [63, Theorem 3.3] is invalid.
For reasons explained above we have not been able to prove the rigidity of the instanton
on S6 using a positivity argument along the lines of [63]. In the next section we prove
the rigidity of this instanton using more powerful methods.
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5. The Spectrum of the Laplacian

In this section the space of deformations of the canonical connection on each of the
homogeneous nearly Kähler manifolds is determined. To compute this space, we first
derive a representation-theoretic expression for the whole of the operator on the right
hand side of the Schrödinger–Lichnerowicz formula given by Eq. (19), and then deter-
mine its spectrum using Frobenius reciprocity and standard formulae for the eigenvalues
of the quadratic Casimir in particular representations.

Let E be any representation of H ⊂ G, and let L2(G;m∗ ⊗ E) denote the L2

completion of the space of m∗ ⊗ E-valued functions on G. This linear space carries the
following left representations of G:

− The left regular representation f 
→ ρL(g) f , where

ρL(g) f (g′) := f (g−1g′) ∀g, g′ ∈ G, f ∈ L2(G;m∗ ⊗ E);
− The right regular representation f 
→ ρR(g) f , where

ρR(g) f (g′) := f (g′g) ∀g, g′ ∈ G, f ∈ L2(G;m∗ ⊗ E);
− The representation induced by the representation ρm∗ on m∗ (denoted by the same

symbol ρm∗ );
− The representation induced by the representation ρE on E (denoted by the same

symbol ρE ).

The L2 completion of the space of sections of the vector bundle T ∗(G/H) ⊗ P ×H E
can be identified with the fixed set L2(G;m∗ ⊗ E)H ⊂ L2(G;m∗ ⊗ E) of the combined
actions of ρR, ρE and ρm∗ . On the level of Lie algebras, elements of L2(G;m∗ ⊗ E)H
are functions f satisfying

ρR(X) f + ρm∗⊗E (X) f = 0 ∀X ∈ h. (30)

Proposition 8. Let A be the canonical connection on a nearly Kähler coset space G/H,
let F be its curvature, let ψ be the Killing spinor, let (ρE , E) be a representation of H,
and let ε be a smooth section of T ∗(G/H) ⊗ E(G/H). Then

(D1/3,A)2ε · ψ = (−ρL(Casg)ε + ρE (Cash)ε + 4ε) · ψ.

Proof. By the Schrödinger–Lichnerowicz formula (19) the square of the Dirac operator
can be expressed as a sum of three terms involving a Laplacian, a curvature operator,
and scalar multiplication.

The covariant derivative∇1,A fromwhich the Laplacian is built is equal to the covari-
ant derivative onm∗⊗E induced by the canonical connection of the homogeneous space.
It is a standard result (see [42]) that the Laplacian can be identified with the action of a
Casimir on C∞(G;m∗ ⊗ E)H :

(∇1,A)∗∇1,Aε = −ρR(Casm)ε.

(Note that the right action of Casm on C∞(G;m∗ ⊗ E) descends to an action on
C∞(G;m∗ ⊗ E)H because Casm is H -invariant).

The curvature term may be expressed as a sum of Casimirs by virtue of Lemma 4.
Inserting these expressions into the Schrödinger–Lichnerowicz formula (19) yields

(D1/3,A)2(ε · ψ) = ( − ρR(Casm) − ρm∗⊗E (Cash) + ρm∗(Cash) + ρE (Cash) + 8
)
ε · ψ.
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Equation (30) implies that ρm∗⊗E (Cash)ε = ρR(Cash)ε for every ε ∈ C∞(G;m∗ ⊗
E)H . Moreover,

−ρR(Casm) − ρR(Cash) = −ρL(Casg),

because the left and right actions of Casg = Cash + Casm on C∞(G;m∗ ⊗ E) agree.
Finally, the operator ρm∗(Cash) is equal to minus the action of the Ricci curvature of the
canonical connection on the cotangent bundle. Proposition 1 tells us the Ricci curvature
is equal to 4 times the identity. Combining the above observations yields the advertised
result. �


The previous proposition allows direct verification of the rigidity of the canonical
connections on the nearly Kähler homogeneous spaces. Deformations correspond to
eigenfunctions ε · ψ of the Dirac operator with eigenvalue 2. Any such section satisfies
(D1/3,A)2(ε · ψ) = 4ε · ψ , or equivalently,

ρL(Casg)ε = ρE (Cash)ε. (31)

This equation may be solved using the Frobenius reciprocity theorem (see for instance
[39, Theorem 1.14]) by following this algorithm:

1. Identify the complex representation E of H associated with the principal bundle
under question. In the case of the H -bundle G → G/H, E = hC := h⊗Cwith its
adjoint action. In the case of the SU(3)-bundle associated with the tangent bundle,
note that the action of H onm∗ defines a homomorphism H → SU(3) ⊂ End(m∗).
Then E = su(3)C and H acts on this space adjointly.

2. Identify the irreducible components Eα of the representation E of H , so that

(E, ρE ) =
⊕

α

nα(Eα, ρα).

3. For each α, calculate the eigenvalue

Cα = ρα(Cash)

of Cash acting on Eα .
4. Identify all irreducible representations (Wαγ , σαγ )ofG forwhichσαγ (Casg) = Cα .
5. For each α identify the decomposition Eα ⊗ m∗

C
= ⊕

β

Uαβ into irreducible com-

ponents as representations of H . For each (α, β, γ ), determine the multiplicity
n(α, β, γ ) of each such Uαβ in the representation (Wαγ , σαγ |H ) of H .

We then have that
L2(G; E ⊗ m∗

C
)H =

⊕
α,β

nα L2(G; Uαβ)H

and Frobenius reciprocity tells us that the multiplicity of (Wαγ , σαγ ) in L2(G; Uαβ)H as
representations of G is equal to the multiplicity n(α, β, γ ) of Uαβ in Wαγ as representa-
tions of H . Since L2(G; E ⊗ m∗

C
)H = ⊕

α,β

nα L2(G; Uαβ)H and since by construction,

the space of solutions to Eq. (31) in L2(G; Uαβ)H isomorphic to
⊕

γ n(α, β, γ )Wαγ ,

the space of solutions to Eq. (31) in L2(G; E ⊗ m∗
C
)H is isomorphic to⊕

α,β,γ

nαn(α, β, γ )Wαγ .
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This vector space is the complexification of ker
(
(D1/3,A)2 − 4

) ∩ Ω1L0, so
ker

(
(D1/3,A)2 − 4

)∩Ω1L0 is a real representation of G whose complexification is iso-
morphic to the above sum of irreducibles. By Proposition 4, ker

(
(D1/3,A)2−4

)∩Ω1L0

is isomorphic to two copies of ker
(
D1/3,A − 2

) ∩ Ω1L0. Therefore we have proved the
following result.

Lemma 5. The space of instanton perturbations is a real representation of G whose
complexification is isomorphic to

⊕
α,β,γ

nαn(α, β, γ )

2
Wαγ .

Theorem 3. Let G/H be one of the four homogeneous six-dimensional nearly Kähler
manifolds and let A be its canonical connection. The spaces of deformations of A within
the H-principal bundle G → G/H are isomorphic to the following representations of
G:

G2/SU(3) SU(2)3/SU(2) Sp(2)/Sp(1) × U(1) SU(3)/U(1)2

0 0 WR
(1,0) 0

In the notation to be introduced below, WR
(1,0) is the real representation of Sp(2)

whose complexification is irreducible with highest weight (1, 0); it is the unique five-
dimensional real irreducible representation.

The spaces of deformations of A within the SU(3)-principal bundle associated with
the SU(3)-structure on G/H are isomorphic to the following representations of G:

G2/SU(3) SU(2)3/SU(2) Sp(2)/Sp(1) × U(1) SU(3)/U(1)2

0 g WR
(1,0) ⊕ 2g 6g

In this table g denotes the appropriate adjoint representation in each column.

Proof. We proceed case by case to follow the algorithm explained above.

Case G2/SU(3) with structure group H

The adjoint representation E = su(3) of the gauge group SU(3) is irreducible. As noted
in the proof of Proposition 7, the unique eigenvalue of ρE (Cash) on this space is −9.

In order to calculate eigenvalues of Casg2 we appeal once again to the Freudenthal
formula (23). The Cartan subalgebra for the complexified (g2)C is in fact the Cartan
subalgebra of sl3C ⊂ (g2)C. It is spanned by the matrices H1 = diag(1,−2, 1) and
H2 = diag(0, 1,−1, ) dual to the fundamental weights λ1 and λ2 of g2. By direct
calculation one finds that[

B(H1, H1) B(H1, H2)

B(H2, H1) B(H2, H2)

]
=

[−4 2
2 − 4

3

]
. (32)

Therefore [
B(λ1, λ1) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2)

]
=

[−1 − 3
2− 3

2 −3

]
.
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One finds that δ, defined to be half of the sum of the positive roots, is equal to λ1 + λ2;
see indeed Eq. (38). Therefore the Freudenthal formula of Eq. (23) yields

ν(m1,m2)(Casg2) = B(m1λ1 + m2λ2, m1λ1 + m2λ2) + 2B(m1λ1 + m2λ2, λ1 + λ2)

= −(m2
1 + 3m2

2 + 3m1m2 + 5m1 + 9m2)

for the Casimir in the representation ν(m1,m2) of (g2)C with highest weight m1λ1 +m2λ2.
The smallest eigenvalues for the Casimir operator are 0,−6 and−12. In particular−9 is
not an eigenvalue of Casg2 in any representation. Therefore Eq. (31) admits no solutions
ε ∈ C∞(G2;m∗ ⊗ su(3))SU(3) and the canonical connection admits no perturbations.

Case G2/SU(3) with structure group SU(3)

This case is identical to the case of structure group H , since H = SU(3).

Case SU(2)3/SU(2) with structure group H

The adjoint representation E = su(2) of H = SU(2) is irreducible, and, as has already
been noted in the proof of Proposition 7, the unique eigenvalue of ρE (Cash) on this
space is −4.

A basis for g = su(2)⊕ su(2)⊕ su(2) is given by I (1)
i = (Ji , 0, 0), I (2)

i = (0, Ji , 0)

and I (3)
i = (0, 0, Ji ), where i = 1, 2, 3 and Ji are a basis for su(2) satisfying [Ji , J j ] =

εi jk Jk . One finds that B(I (a)
i , I (b)

j ) = 1
6δi jδab, and hence that Casg = 6

∑
i,a I (a)

i ⊗ I (a)
i .

Irreducible representations of g take the form V (1)
m1 ⊗V (2)

m2 ⊗V (3)
m3 , where V (a)

m denotes the
irreducible representation of the a-th copy of su(2) with highest weight m. The Casimir
is equal to − 3

2

∑
a ma(ma + 2) on such a representation. The following table gives the

smallest eigenvalues of Casg amongst all representations:

(m1, m2, m3) (1,0,0) (1,1,0) (2,0,0) (1,1,1)

ρ(m1,m2,m3)(Casg) −9

2
−9 −12 −27

2

Since −4 does not occur as an eigenvalue of the Casg, Eq. (31) admits no solutions on
L2(G; su(2) ⊗ m∗)H and the instanton is stable.

Case SU(2)3/SU(2) with structure group SU(3)

Next we consider the case of gauge group SU(3). We now give a different basis of
g = su(2) ⊕ su(2) ⊕ su(2). As on page 17, we let Ii = I (1)

i + I (2)
i + I (3)

i = (Ji , Ji , Ji )

be the basis of h = su(2). The orthogonal complement m can either be seen as a six-
dimensional real vector space with basis Xi = ((1+

√
2)Ji , (1−√

2)Ji ,−2Ji ) and Yi =√
6(Ji ,−Ji , 0) or a three-dimensional complex vector space with basis X1, X2, X3. The

almost complex structure sends Xi to Yi and Yi to −Xi .
The action of su(2) on m defines a homomorphism su(2) → su(3) where

ad(Ii )(X j ) = εi jk Xk . Under the adjoint action of su(2), E = su(3) breaks up into
two irreducible pieces:

su(3)C ∼= V2 ⊕ V4. (33)
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The component V2 is just the embedded su(2) ⊂ su(3). We have already shown that
Eq. (31) admits no solutions in L2(G; V2 ⊗ m∗)H . It remains to investigate the same
equation on L2(G; V4 ⊗ m∗)H . On the subspace V4 ⊂ su(3) one has

ρE (Cash) = −12.

The Casimir Casg attains eigenvalue −12 precisely in the irreducible representations
V(2,0,0), V(0,2,0) and V(0,0,2). It remains to determine whether these occur as subrepre-
sentations of L2(G; V4 ⊗ m∗)H .

As representation of H , we decompose V4 ⊗ m∗ into irreducible pieces as

V4 ⊗ m∗
C

∼= 2V2 ⊕ 2V4 ⊕ 2V6.

The restriction of the representation V(2,0,0) of G to H is isomorphic to V2. Therefore
by Frobenius reciprocity V(2,0,0) occurs in L2(G; V2)H with multiplicity 1 and does not
occur in L2(G; V4)H or L2(G; V6)H . Similarly, the representations V(0,2,0) and V(0,0,2)

of G each occur in L2(G; V2)H with multiplicity 1 and do not occur in L2(G; V4)H
or L2(G; V6)H . Therefore the set of solutions to Eq. (31) in L2(G; V4 ⊗ m∗

C
)H is an

18-dimensional vector space isomorphic to

2V(2,0,0) ⊕ 2V(0,2,0) ⊕ 2V(0,0,2).

By Lemma 5, the space of instanton perturbations is isomorphic to a real subspace of

V(2,0,0) ⊕ V(0,2,0) ⊕ V(0,0,2).

This representation is isomorphic to the adjoint representation of G = SU(2)3.

Case Sp(2)/Sp(1) × U(1) with structure group H

As in the proof of Proposition 7, (V(m,n), ρ(m,n)) denotes the unique (m+1)-dimensional
irreducible representation of Sp(1) × U(1) in which U(1) acts with weight n. Again,
ρ(m,n)(Cash) = −m(m + 2) − n2.

The adjoint representation E = hC splits into irreducible pieces as

E ∼= V(2,0) ⊕ V(0,0).

The second component V(0,0) does not give rise to any instanton perturbations since
instanton perturbations from this component correspond to perturbations of the part of
the instanton with gauge group U(1), and we have already shown that abelian instantons
admit no perturbations. Therefore we only consider the first component V(2,0), for which

ρ(2,0)(Cash) = −8.

Now we calculate the eigenvalues of Casg in irreducible representations of G =
Sp(2).We choose the Cartan subalgebra of sp(2)C to be the space of diagonal 2×2 skew-
adjoint quaternionic matrices of the form diag(ai, bi), with a, b ∈ C and i, j,k denoting
the imaginary quaternions. A weight is called positive if it evaluates to a positive real
number on thematrix i diag(2i, i). Thematrices H1 = i diag(0, i) and H2 = i diag(i,−i)
are dual to the fundamental weights λ1, λ2. By direct calculation one finds that[

B(H1, H1) B(H1, H2)

B(H2, H1) B(H2, H2)

]
=

[−1 1
1 −2

]
.
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Therefore [
B(λ1, λ1) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2)

]
=

[−2 −1
−1 −1

]
.

The weight δ, defined to be half of the sum of the positive roots, is equal to λ1 + λ2.
Therefore, by the Freudenthal formula of Eq. (23),

σ(m1,m2)(Casg) = B(m1λ1 + m2λ2, m1λ1 + m2λ2) + 2B(m1λ1 + m2λ2, δ)

= −(2m2
1 + 2m1m2 + m2

2 + 6m1 + 4m2)

in the representation (W(m1,m2), σ(m1,m2)) with highest weight m1λ1 + m2λ2. The fol-
lowing table lists the smallest eigenvalues of Casg:

(m1, m2) (0,0) (0,1) (1,0) (0,2) (1,1)

σ(m1,m2)(Casg) 0 −5 −8 −12 −15
.

The only irreducible representation in which Casg has eigenvalue −8 is W(1,0).
Next we identify the irreducible subrepresentations of E ⊗ m∗

C
. Recall now from

Eqs. (27) and (29) that as representations H ,

m∗
C

∼= V(1,1) ⊕ V(1,−1) ⊕ V(0,2) ⊕ V(0,−2), and

V(2,0) ⊗ m∗
C

∼= V(1,1) ⊕ V(1,−1) ⊕ V(3,1) ⊕ V(3,−1) ⊕ V(2,2) ⊕ V(2,−2).

A direct computation shows that

WR
(1,0) =

{[
a z
z̄ −a

] ∣∣∣∣a ∈ R and z ∈ H

}

with σ(1,0)(v)(A) = [v, A]. As representations of H , we therefore have

W(1,0) ∼= V(1,1) ⊕ V(1,−1) ⊕ V(0,0).

We note that W(1,0) has two components in commonwith V(2,0) ⊗m∗
C
, namely V(1,1) and

V(1,−1). Therefore the space of solutions to Eq. (31) in L2(G; V(2,0)⊗m∗
C
) is isomorphic

to two copies of W(1,0). By Lemma 5, the space of instanton perturbations is isomorphic
to the real subspace of W(1,0), which has real dimension 5.

Case Sp(2)/Sp(1) × U(1) with gauge group SU(3)

It is important here to keep in mind that (A, a) ∈ su(2) ⊕ u(1) ∼= sp(1) ⊕ u(1) sits in
su(3) as diag(A + a,−2a). Hence it acts on su(3) as

ad((A, a))

[
B v

−v∗ b

]
=

[ [A, B] (A + 3a)v

−((A + 3a)v)∗ 0

]
.

Hence the representation E := su(3)C of H splits into irreducible subrepresentations
as

E ∼= V(2,0) ⊕ V(0,0) ⊕ V(1,3) ⊕ V(1,−3).

Perturbations coming from the first two components have already been analysed,
and it remains to consider the final two components V(1,3) and V(1,−3). The eigenvalues
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of Cash on these spaces are both −12. From the analysis of representations of sp(2)
detailed above, we learn that the unique representation of g = sp(2) in which Casg has
eigenvalue −12 is W(0,2), the adjoint representation.

As representations of H , we have

V(1,3) ⊗ m∗
C

∼= V(0,4) ⊕ V(2,4) ⊕ V(0,2) ⊕ V(2,2) ⊕ V(1,5) ⊕ V(1,1),

V(1,−3) ⊗ m∗
C

∼= V(0,−2) ⊕ V(2,−2) ⊕ V(0,−4) ⊕ V(2,−4) ⊕ V(1,−1) ⊕ V(1,−5).

Since the representation W(0,2) of G is the adjoint representation, we have that
W(0,2) ∼= hC ⊕ mC as representations of H . In view of Eqs. (27) and (28), we have
that

W(0,2) ∼= V(2,0) ⊕ V(0,0) ⊕ V(1,1) ⊕ V(1,−1) ⊕ V(0,−2) ⊕ V(0,2) (34)

as representations of H .
This decomposition has two components in common with V(1,3) ⊗m∗

C
(namely V(0,2)

and V(1,1)) and two components in common with V(1,−3) ⊗ m∗
C
(namely V(0,−2) and

V(1,−1)). ThereforeW(0,2) occurs in each of L2(G; V(1,3)⊗m∗
C
) and L2(G; V(1,−3)⊗m∗

C
)

with multiplicity 2. Taking account of the previous calculation for gauge group H , the
space of solutions to (31) in L2(G; E ⊗ m∗

C
) is isomorphic to

2W(1,0) ⊕ 4W(0,2).

By Proposition 4, the space of instanton perturbations is a real dimensional represen-
tation of G whose complexification is isomorphic to W(1,0) ⊕ 2W(0,2).

Case SU(3)/U(1)2 with gauge group H

ByTheorem1 there are no instanton perturbationswith abelian gauge groupU(1)×U(1).

Case SU(3)/U(1)2 with gauge group SU(3)

In the calculation that follows there are two distinct injective homomorphisms from
h = u(1) ⊕ u(1) to su(3). The first is induced from the inclusion of U(1) ×U(1) in the
group SU(3) of isometries. The second is induced from the inclusion of the structure
group U(1) × U(1) of the principal bundle SU (3) → SU(3)/U(1) × U(1) into the
structure group SU(3) of the tangent bundle. To distinguish these two homomorphisms,
we denote the target of the first g or su(3) and the target of the second s̃u(3).

The subalgebra h ⊂ g is generated by

H1 = i diag(1,−1, 0), H2 = i diag(0, 1,−1).

The complexified orthogonal complement mC of h splits into two pieces of types (1,0)
and (0,1) with respect to the almost complex structure. This complex structure can be
given as a function of the 3-symmetry, as in [12, Eqn. (5)]. Given the third root of unity

ζ = e
2π i
3 , the 3-symmetry on SU(3) is given by conjugating with the clock matrix

diag(1, ζ, ζ 2). The fixed set is the diagonal subgroup U(1) × U(1). The resulting 3-
symmetry s on su(3) fixes h = u(1) ⊕ u(1), and on the orthogonal complement m, we
have the almost complex structure J = 2s+1√

3
. A basis for m1,0

C
is given by

C1 =
⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ , C2 =

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ , C3 =

⎛
⎝0 0 0
0 0 0
1 0 0

⎞
⎠ . (35)
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With respect to this basis, the images H̃1, H̃2 of H1, H2 in s̃u(3) := su(m1,0
C

) are

H̃1 = i diag(2,−1,−1), H̃2 = i diag(−1, 2,−1).

We denote by (V(m1,m2), γ(m1,m2)) the complex one-dimensional representation of
U(1) × U(1) such that γ(m1,m2)(Hi ) = imi . From the considerations above, the repre-
sentation E := s̃u(3)C of U(1) × U(1) breaks up into irreducibles as

E ∼= 2V(0,0) ⊕ V(3,0) ⊕ V(−3,0) ⊕ V(0,3) ⊕ V(0,−3) ⊕ V(3,−3) ⊕ V(−3,3),

while m∗
C
of H breaks up as

m∗
C

∼= V(2,−1) ⊕ V(−1,2) ⊕ V(−1,−1) ⊕ V(−2,1) ⊕ V(1,−2) ⊕ V(1,1).

The components V(0,0) correspond to perturbations with gauge group U(1)2, and
these have already been analysed. Therefore we need only consider the remaining six
components.

One finds that B(H1, H1) = B(H2, H2) = 1 and B(H1, H2) = −1/2, so the Casimir
for h = u(1) ⊕ u(1) is

Cash = 4

3
(H1 ⊗ H1 + H2 ⊗ H2) +

2

3
(H1 ⊗ H2 + H2 ⊗ H1).

Then γ(m1,m2)(Cash) = −4(m2
1 + m1m2 + m2

2)/3. Therefore the eigenvalues of Cash on
E are 0 (on the components 2V(0,0) that have already been analysed) and −12 (on the
remaining components).

We have yet to compute Casg. We use H1 = diag(1,−1, 0) and H2 = diag(0, 1,−1)
as on page 16, but this time the trace involved in the definition of B is over sl3C only,
not over g2. We therefore get[

B(H1, H1) B(H1, H2)

B(H2, H1) B(H2, H2)

]
=

[ −1 1/2
1/2 −1

]
. (36)

This B is 3/4 times the B obtained in Eq. (24), hence the Casimir is 4/3 times the
Casimir of Eq. (25)). Thus

ρ(m1,m2)(Casg) = −4

3
(m2

1 + m2
2 + m1m2 + 3m1 + 3m2). (37)

We can see that −12 is an eigenvalue of Casg only in the adjoint representation of g.
Therefore the tensor products of each of the irreducible components of E with m∗

C

are

V(3,0) ⊗ m∗
C

∼= V(5,−1) ⊕ V(2,2) ⊕ V(2,−1) ⊕ V(1,1) ⊕ V(4,−2) ⊕ V(4,1),

V(−3,0) ⊗ m∗
C

∼= V(−1,−1) ⊕ V(−4,2) ⊕ V(−4,−1) ⊕ V(−5,1) ⊕ V(−2,−2) ⊕ V(−2,1),

V(0,3) ⊗ m∗
C

∼= V(2,2) ⊕ V(−1,5) ⊕ V(−1,2) ⊕ V(−2,4) ⊕ V(1,1) ⊕ V(1,4),

V(0,−3) ⊗ m∗
C

∼= V(2,−4) ⊕ V(−1,−1) ⊕ V(−1,−4) ⊕ V(−2,−2) ⊕ V(1,−5) ⊕ V(1,−2),

V(3,−3) ⊗ m∗
C

∼= V(5,−4) ⊕ V(2,−1) ⊕ V(2,−4) ⊕ V(1,−2) ⊕ V(4,−5) ⊕ V(4,−2),

V(−3,3) ⊗ m∗
C

∼= V(−1,2) ⊕ V(−4,5) ⊕ V(−4,2) ⊕ V(−5,4) ⊕ V(−2,1) ⊕ V(−2,4).

The adjoint representation of G breaks up into irreducible representations of H as

gC ∼= 2V(0,0) ⊕ V(2,−1) ⊕ V(−1,2) ⊕ V(−1,−1) ⊕ V(−2,1) ⊕ V(1,−2) ⊕ V(1,1).
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Thus gC has precisely two components in common with each of the six tensor products
with m∗

C
listed above. Therefore the space of solutions to Eq. (31) in L2(G; E ⊗ m∗

C
)

is isomorphic to 12gC. By Lemma 5, the space of instanton perturbations is isomorphic
to 6g. �


The spaces of solutions to the linearised instanton equations described in the previous
theorem are at first sight surprisingly large, given that the expected dimension of the
instanton moduli space is zero. In fact, we can account for all of the perturbations
described in this theorem by just two simple observations.

Wedeal firstwith the five-dimensional pieceWR
(1,0) in the case of Sp(2)/Sp(1)×U(1).

This manifold is the twistor space for S4 and its nearly Kähler structure is the canonical
nearly Kähler structure on the twistor space. The pull-back of any instanton on a self-
dual four-manifold to its twistor space solves the nearly Kähler instanton equation on the
twistor space (see [45]). The canonical connection on Sp(2)/Sp(1)×U(1) splits into two
connections with holonomy groups Sp(1) and U(1); the Sp(1)-part is the pull back of the
unique Sp(2)-invariant instanton on S4 with first Pontryagin number 1. This instanton
belongs to a moduli space of dimension five [5]. Thus the space of deformations of the
canonical connection onSp(2)/Sp(1)×U(1)with gauge group contained inSp(1)×U(1)
is guaranteed to be at least five-dimensional, and the previous theorem states that this
moduli space is in fact exactly five-dimensional.

Corollary 1. The perturbations of the canonical instanton on CP3 are genuine and are
in fact lifts of instantons on S4.

The remaining deformations identified in Theorem 3 are all isomorphic as repre-
sentations of the automorphism group G to multiple copies of the Lie algebra g of
automorphic vector fields on the nearly Kähler manifold. This suggests the existence of
an operation that converts automorphic vector fields into instanton perturbations. Such
an operation is identified in the following proposition.

Proposition 9. Let A be an instanton on a principal bundle P over a nearly Kähler
six-manifold M. Let X be an automorphic vector field for the SU(3) structure and
let χ be a section of su(3)M ⊗ AdP ⊂ Λ2M ⊗ AdP such that ∇1,Aχ = 0. Let
εX = ιXχ ∈ Γ (T ∗M ⊗ AdP ). Then εX solves the infinitesimal instanton equation

dAεX · ψ = 0.

Proof. First we explore the consequences of X being an automorphic vector field. By
definition, the Lie derivatives with respect to X of g, ω and Ω are zero. For any section
u of (T ∗)⊗p M and any connection ∇ on T M with torsion T ,

LX u(Y1, . . . , Yp) − ∇X u(Y1, . . . , Yp)

=
p∑

i=1

u(Y1, . . . , Yi−1,∇Yi X + T (X, Yi ), Yi+1, . . . , Yp).

Suppose that ∇ is a connection with holonomy contained in SU(3) and let u = g. Then
the right hand side describes the natural action of the section∇ X +T (X, ·) of End(T M)

on g, while the left hand side of the identity vanishes. Therefore ∇ X + T (X, ·) takes
values in the sub-bundle of End(T M) that fixes g andwhose fibre is isomorphic to so(6).
Similarly, the cases u = ω,Ω of the identity tell us that ∇ X + T (X, ·) fixes ω and Ω .
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The conclusion then is that if ∇ is any connection with holonomy contained in SU(3)
and X is an automorphic vector field for the SU(3)-structure then

∇ X + T (X, ·) ∈ Γ (su(3)M) ⊂ Γ (End(T M)).

Now we show that εX = ιXχ solves the infinitesimal instanton equation. Given any
connection A on P and vector fields Y, Z ,

dAεX (Y, Z) = Y (εX (Z)) − Z(εX (Y )) − εX ([Y, Z ])
= (∇ A

Y εX )(Z) + εX (∇ A
Y Z) − (∇ A

Z εX )(Y ) − εX (∇ A
Z Y ) − εX ([Y, Z ])

= (∇ A
Y εX )(Z) − (∇ A

Z εX )(Y ) + εX (T (Y, Z)).

We choose to use the canonical connection ∇ = ∇1. This connection has holonomy
contained in SU(3), so ∇1,Aχ = 0 and therefore ∇1,A

Y εX = ι∇1
Y Xχ . Thus

dAεX (Y, Z) = χ(∇1
Y X, Z) − χ(∇1

Z X, Y ) + χ(X, T (Y, Z)).

We rewrite the right hand side of this equation as follows:

dAε(Y, Z) = χ(∇1
Y X + T (X, Y ), Z) + χ(Y,∇1

Z X + T (X, Z))

−χ(T (X, Y ), Z) − χ(Y, T (X, Z)) + χ(X, T (Y, Z)).

The terms on the first line describe the linear action of ∇ X + T (X, ·) on the 2-form
part of χ . Since χ is a section of su(3)M ⊗ AdP ⊂ Λ2M ⊗ AdP and (by the above
argument) the endomorphism ∇ X + T (X, ·) fixes this subbundle, the terms in the first
line also describe a section of this subbundle.

The terms in the second line describe the natural action of the two-form part of χ on
the three-form P . More concretely, if we identify χ with a section χ̃ of End(T M)⊗AdP
such that

g(χ̃(Y ), Z) = χ(Y, Z) ∀Y, Z ∈ Γ (T M)

then the second line is equal to

P(χ̃(X), Y, Z) + P(X, χ̃(Y ), Z) + P(X, Y, χ̃ (Z))

Since the two-formpart ofχ belongs to the subspace identifiedwith su(3) and su(3)fixes
P , these terms vanish. Therefore dAε(Y, Z) is a section of AdP ⊗su(3) ⊂ AdP ⊗Λ2M ,
so solves the infinitesimal instanton equation. �


Proposition 9 accounts for all of the remaining deformations identified in Theorem
3, as we now briefly explain.

Note first that the curvature F of the canonical connection on any coset space is
a parallel section of su(3)M ⊗ AdP , so the previous proposition may be applied to
χ = F . The resulting deformations εX = ιX F have dAεX = LX F + [ιX A, F]. Since F
is invariant under automorphisms up to gauge, L X F = [λX , F] for some infinitesimal
gauge transformation λX . Since [ιX A, F] also corresponds to the action of an infinitesi-
mal gauge transformation, we conclude that the deformations in Proposition 9 obtained
from F are in the direction of the gauge orbit.

In order to apply the proposition we must identify all parallel sections of su(3)M ⊗
AdP with M = G/H and P the SU(3)-structure bundle. These sections are in bijection
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with the H -invariant elements of the representation su(3) ⊗ su(3) of H , which form a
vector space whose dimension equals the sum over all irreducible subrepresentations of
su(3) of the squares of their multiplicities. The number of irreducible components may
be identified from the proof of Theorem 3:

− In the case of G2/SU(3), the representation su(3)C of SU(3) has one irreducible
component; it corresponds to the curvature of the canonical connection so Propo-
sition 9 yields no non-trivial instanton perturbations.

− In the case of SU(2)3/SU(2), the representation su(3)C ∼= V2 ⊕ V4 of SU(2) has
two irreducible components and su(3) ⊗ su(3) contains two copies of the trivial
representation, one in V2 ⊗ V2 and one in V4 ⊗ V4; the invariant element of V2 ⊗ V2
corresponds to the curvature of the canonical connection so the proposition yields
for each element of g a one-dimensional space of instanton perturbations.

− In the case of Sp(2)/Sp(1) × U(1), the representation su(3)C ∼= V(2,0) ⊕
V(0,0) ⊕ V(1,3) ⊕ V(1,−3) has four irreducible components; the invariant elements
of V(2,0) ⊗ V(2,0) and V(0,0) ⊗ V(0,0) correspond to the sp(1)- and u(1)-parts of the
canonical connection, so the proposition yields for each element of g two instanton
perturbations.

− In the case of SU(3)/U(1)2, the representation su(3)C ∼= 2V(0,0)⊕V(3,0)⊕V(−3,0)⊕
V(0,3) ⊕ V(0,−3) ⊕ V(3,−3) ⊕ V(−3,3) of U(1)2 has six irreducible components of
multiplicity one and one irreducible component of multiplicity two. The invariant
elements in 2V(0,0) ⊗ 2V(0,0) are associated with components of the curvature of
the canonical connection, so after discarding them the proposition yields for each
element of g six instanton perturbations.
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Appendices

A. The Kähler Form and the Complex (3, 0)-Form

In this Appendix the identities (6) are proven.
The proof of the first of these requires careful track to be kept of minus signs, so let

us first point out that, by analysis of eigenvalues (using Lemma 2),

∗Q · ∗Q = −3 + 2Q.

This equation is consistent with the identification ω = ∗Q but not with ω = − ∗ Q,
because ∗Q · ∗Q = −‖ ∗ Q‖2 + 2 ∗ Q ∧ ∗Q and ω ∧ ω = 2 ∗ ω in dimension six.

http://creativecommons.org/licenses/by/4.0/
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The full proof of the first equality now follows. The definition of ω is

1

8
TrS(ω · u · v) = −g(u, Jv) ∀u, v ∈ V .

Now

1

8
TrS(∗Q · u · v) = −TrS(ψ ⊗ ψT · Volg · u · v)

= −(ψ,Volg · u · v · ψ)

= (ψ, u · Volg · v · ψ)

= (ψ, u · Jv · ψ)

= −(ψ, g(u, Jv) · ψ)

= −g(u, Jv).

So ∗Q = ω as desired.
To prove the second equality, it suffices to prove that (v − iJv)�(P + i ∗ P) = 0

for all cotangent vectors v. Using Lemma 1, this statement is equivalent to proving that
{v − iJv, P + i ∗ P} = 0 for all vectors v. Having moved the statement to the Clifford
algebra, we can now use the definition of J , namely Jv · ψ = Volg · v · ψ . Since
Volg · v = ∗v, Jv acts on ψ ⊗ ψT just as ∗v does, and from this it can be shown that
{Jv, P} = {∗v, P} and {Jv, ∗P} = {∗v, ∗P}.

Moreover, for any three-formα, we have v ·α = −(∗v)·(∗α) andα ·v = −(∗α)·(∗v).
Thus we have

{v − iJv, P + i ∗ P} = {v, P} + {Jv, ∗P} + i
({v, ∗P} − {Jv, P})

= {v, P} + {∗v, ∗P} + i
({v, ∗P} − {∗v, P})

= {v, P} − {v, P} + i
({v, ∗P} + {∗2v, ∗P})

= {v, P} − {v, P} + i
({v, ∗P} − {v, ∗P})

= 0,

as desired.

B. su(3) ⊂ g2

This Appendix describes very succinctly but explicitly the embedding sl3C ⊂ (g2)C
and exhibits the results needed in the main part of the paper.

We follow the notation and descriptions given in [26, §22.1 to §22.3]. The Lie algebra
(g2)C is spanned by the 14 elements H1, H2, X1, . . . , X6, Y1, . . . , Y6. The Cartan sub-
algebra is spanned by H1, H2, while the Xi belong to the root space of the root αi and the
Yi belong to the root space of the root βi = −αi . In the Cartan subalgebra, one defines
H3 := H1 + 3H2, H4 := 2H1 + 3H2, H5 := H1 + H2, H6 := H1 + 2H2 to simplify the
multiplication table. They have the desirable property that Hi = [Xi , Yi ], [Hi , Xi ] =
2Xi , [Hi , Yi ] = −2Yi . The positive roots are written in terms of the simple roots α1, α2
as α3 = α1 + α2, α4 = 2α1 + α2, α5 = 3α1 + α2, α6 = 3α1 + 2α2. The simple roots
satisfy α1(H1) = 2, α1(H2) = −1, α2(H1) = −3, α2(H2) = 2.

There is a copy h of

sl3C = span{E11 − E22, E22 − E33, E12, E21, E23, E32, E13, E31}



988 B. Charbonneau, D. Harland

in (g2)C given by

h := span{H5, H2, X5, Y5, X2, Y2, X6, Y6}.
The term by term identification of the basis element is an isomorphism of Lie algebras.

Let W be the standard representation of sl3C. Then we have the orthogonal decom-
position

(g2)C = h ⊕ W ⊕ W ∗

as representation of sl3C. So Tr(g2)C(ad(Hi ) ◦ ad(Hj )) = Trh(ad(Hi ) ◦ ad(Hj )) +
2Tr(Hi Hj ). One can thus compute B(Hi , Hj ) = − 1

12Tr(g2)C(ad(Hj ) ◦ ad(Hj )) with
i, j ∈ {5, 2} to obtain (once relabelling 5 into 1) Eq. (24).

The fundamental weights of (g2)C are λ1 = 2α1 + α2 and λ2 = 3α1 + 2α2. They
are dual to the basis H1, H2. In terms of h = sl3C, we have H1 = H5 − H2 =
diag(1,−2, 1) and H2 = diag(0, 1,−1), as mentioned on page 21. We can compute
easily Tr(g2)C(ad(Hi ) ◦ ad(Hj )) for i, j ∈ {1, 2} to obtain Eq. (32).

Note also

δ =
∑6

i=1 αi

2
= 5α1 + 3α2 = λ1 + λ2, (38)

as claimed on page 21.

C. su(2) ⊂ su(2)3

The Lie algebra h = su(2) has a basis J1, J2, J3 such that [Ji , J j ] = εi jk Jk . Then
Trh(ad(Ji ) ◦ ad(J j )) = −2δi j . A basis for the diagonal su(2) ⊂ su(2) ⊕ su(2) ⊕ su(2)
is given by Ii = (Ji , Ji , Ji ). The elements Ki = (Ji ,−Ji , 0) and Li = (Ji , Ji ,−2Ji )

span the orthogonal complement m. Now span(K1, K2, K3) and span(L1, L2, L3) are,
as representations, copies of h. Thus B(Ji , J j ) = − 1

123Trh(ad(Ji ) ◦ ad(J j )) = 1
2δi j .

Given that a vector (X, Y ) ∈ C
6 represents the element

(X1
K1√
2
+ X2

K2√
2
+ X3

K3√
2
, Y1

L1

2
+ Y2

L2

2
+ Y3

L3

2
) ∈ V2 ⊕ V2,

[12, p. 12] gives the expression

J : (X, Y ) 
→ 1√
3
(2Y − X,−2X + Y )

for the almost complex structure. In view of this definition, we have

J (
√
2Ki + Li ) = √

6Ki and J (
√
6Ki ) = −(

√
2Ki + Li ).

Given the complex ordered basis B = (
√
2K1 + L1,

√
2K2 + L2,

√
2K3 + L3) of m,

we have

B[ad(I1)]B =
⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ , B[ad(I2)]B =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , B[ad(I3)]B =

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ .

This actionprovides the homomorphism su(2) ⊂ su(3)necessary to understandEq. (33).
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