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Abstract

Aims: We set out to investigate the antibacterial activity of a new Mn-based photoactivated carbon monoxide-
releasing molecule (PhotoCORM, [Mn(CO)3(tpa—K3N)]+) against an antibiotic-resistant uropathogenic strain
(EC958) of Escherichia coli. Results: Activated PhotoCORM inhibits growth and decreases viability of E. coli
EC958, but non-illuminated carbon monoxide-releasing molecule (CORM) is without effect. NADH-supported
respiration rates are significantly decreased by activated PhotoCORM, mimicking the effect of dissolved CO
gas. CO from the PhotoCORM binds to intracellular targets, namely respiratory oxidases in strain EC958 and a
bacterial globin heterologously expressed in strain K-12. However, unlike previously characterized CORMs, the
PhotoCORM is not significantly accumulated in cells, as deduced from the cellular manganese content. Ac-
tivated PhotoCORM reacts avidly with hydrogen peroxide producing hydroxyl radicals; the observed peroxide-
enhanced toxicity of the PhotoCORM is ameliorated by thiourea. The PhotoCORM also potentiates the effect of
the antibiotic, doxycycline. Innovation: The present work investigates for the first time the antimicrobial
activity of a light-activated PhotoCORM against an antibiotic-resistant pathogen. A comprehensive study of the
effects of the PhotoCORM and its derivative molecules upon illumination is performed and mechanisms of
toxicity of the activated PhotoCORM are investigated. Conclusion: The PhotoCORM allows a site-specific and
time-controlled release of CO in bacterial cultures and has the potential to provide much needed information on
the generality of CORM activities in biology. Understanding the mechanism(s) of activated PhotoCORM
toxicity will be key in exploring the potential of this and similar compounds as antimicrobial agents, perhaps in
combinatorial therapies with other agents. Antioxid. Redox Signal. 00, 000-000.

Introduction plied or generated by heme oxygenases (HO) in animals,
plants, and pathogenic microorganisms (5, 62), exerts potent

ARBON MONOXIDE HAS a concentration-dependent bio-  beneficial effects on vasodilation and inflammation (35,37, 43)
logical activity and can act as a toxic gas and biological and promotes phagocytosis and bacterial clearance in sepsis
signaling molecule (35, 43). CO, whether endogenously ap- (8, 47). Carbon monoxide-releasing molecules (CORMs)
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Innovation

It is essential to define carbon monoxide-releasing mol-
ecule (CORM) toxicity if site-specific and time-controlled
release of CO is to be exploited. We report a detailed
characterization of the toxicity of a photoactivable carbon
monoxide-releasing molecule ([Mn(CO)3(tpa—;c3N)]+) to a
uropathogenic E. coli. Although extracellular light-driven
CO release results in bacterial toxicity and respiratory in-
hibition, we here identify Mn-dependent hydroxyl forma-
tion in the presence of hydrogen peroxide as a critical
factor. Models of CORM toxicity that invoke generation of
reactive oxygen species, membrane damage, or accumu-
lation of the metal center are not supported. Such insights
open the way for new compound design and novel, clinical
combinatorial therapies.

largely circumvent the problems of delivering CO gas in the
laboratory and clinic (42). For example, CORMs have potential
in the treatment of infectious diseases, ischemia-reperfusion
injury or multiple sclerosis (3, 14). Although many CORMs are
available for biological use, most studies have used Ru-based
CORMs that exhibit multispecies antibacterial activity (11,
73); however, our limited understanding of the modes of
CORM action and the role of the metal and released CO
hampers progress.

[Mn(CO)3(tpa-K3N)]Br is a novel water-soluble photo-
activatable carbon monoxide-releasing molecule (Photo-
CORM) stable in solution in the dark that releases CO on
illumination at 365 nm (44) (Fig. 1). It is toxic to Escherichia
coli K-12 on photoactivation, but not in dark cultures. Growth
inhibition on a non-fermentable carbon source after activat-
ing the PhotoCORM in situ, together with the observation of
CO binding to terminal oxidases, suggested that the mecha-
nism of action of this PhotoCORM is attributable, at least in
part, to the inhibition of respiration by CO (44).

Urinary tract infections (UTIs), caused predominantly by
uropathogenic E. coli (UPEC), are the most common bacte-
rial infections acquired outside the clinic. High prevalence,
recurrence, and related morbidities are aggravated by the
emergence of antibiotic resistance (13). E. coli 131 (ST131)
is a multidrug-resistant UPEC associated with the increasing
prevalence worldwide of UTIs and blood stream infections,
linked with the spread of extended-spectrum f-lactamase (6)
and resistance to fluoroquinolones, aminoglycosides, tri-
methoprim—sulfamethoxazole, and carbapenems (48). The
genome of the clinically isolated uropathogen, E. coli EC958,
a multidrug-resistant O25b:H4 strain (66), contains a number
of putative virulence factors, including siderophore recep-
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FIG. 1. Structure of PhotoCORM [Mn(CO);(tpa-
K3N)]+Br_. PhotoCORM, photoactivable carbon monox-
ide-releasing molecule.
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tors, autotransporters, and genes conferring resistance to ci-
profloxacin and other antibiotics (66).

We hypothesized that in contrast to Ru-based CO-releasing
molecules such as widely used CORM-2 and -3 (71), Mn
carbonyl complexes might avoid toxicity issues unrelated to
the released CO alone. Furthermore, the ability to activate the
compound on demand could allow controlled CO release in
clinical settings using photoactivated chemotherapy (PACT)
via catheter light guides (15, 41).

We therefore report the first study of the action of a Pho-
toCORM against a bacterial pathogen. We investigate the
effects of CO released from the PhotoCORM on respiration,
assess the fate of CO and the Mn ion when the PhotoCORM is
activated in the presence of cells, and demonstrate synergy
with antibiotic activity. We also report associated transcrip-
tional changes of genes implicated in membrane integrity and
metal transport, respiration, and oxidative stress. Finally, we
show that PhotoCORM reacts with hydrogen peroxide
(H,0,) to give hydroxyl radicals, enhancing toxicity.

Results

Activation of PhotoCORM in cultures of pathogenic
E. coli EC958

The antimicrobial effect of [Mn(CO)3(tpa-K3N)]+ is illu-
mination dependent (44). However, since UV itself is anti-
microbial (20), we first determined the optimum activation
time for PhotoCORM toxicity, without damage caused by
UV (Supplementary Fig. S1A, B; Supplementary Data are
available online at www.liebertpub.com/ars). We found
photoactivation for 6 min to be appropriate and this was used
for all further experiments unless stated otherwise.

Detection and quantification of CO release
from the PhotoCORM and preparation of CO-depleted
PhotoCORM control molecules

To measure CO release from activated PhotoCORM in the
presence of biological targets, dithionite-reduced myoglobin
(Mb, 12 uM) was illuminated in the presence of Photo-
CORM. CO difference spectra were plotted by subtracting
the spectrum of the reduced Mb from the CORM- or CO-
treated globin. Adding 2 or 4 uM PhotoCORM produced ~4 or
7.2 uM CO-bound Mb; thus, per mole of PhotoCORM, ap-
proximately two of the three carbonyl ligands bind Mb (44).
Addition of 10 uM PhotoCORM produced CO saturation of Mb,
yielding 12 uM CO-Mb, similar to the effect observed by bub-
bling Mb with CO gas (Fig. 2A). Excess PhotoCORM (90 uM
PhotoCORM, 7 uM reduced Mb) did not elicit spectral changes
until the sample was exposed to UV (not shown). Thus, sodium
dithionite, which triggers CO release from CORM-3 (40), does
not cause CO release from [Mn(CO)3(tp.91-K3N)]+ and the Mb
assay is a suitable method for CO quantification.

To fully release CO from the PhotoCORM and use the
resulting molecule as a control (i.e., an inactivated Photo-
CORM or, more correctly, PhotoCORM exposed to UV light
for 30 min with stirring to deplete CO [CO-depleted Photo-
CORM]), a PhotoCORM stock solution (3 mM) was exposed
to UV for up to 40 min with constant stirring to promote gas
liberation to the atmosphere. Addition of PhotoCORM, pre-
viously subjected to illumination, to reduced Mb (4 uM
PhotoCORM and 12 uM Mb) produced only 0.16 uM CO-
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FIG. 2. Detection and quantification of CO release from PhotoCORM using ferrous Mb. A stock solution of Mb
(12 uM) was reduced with sodium dithionite. In (A), increasing concentrations of PhotoCORMs were added to myoglobin,
followed by exposure to UV light (365 nm) for 6 min, and the difference in absorbance was plotted (globin plus Photo-
CORM miinus globin, all reduced). Reduced Mb was bubbled with CO gas and plotted as a control. In (B), PhotoCORM
(1 mM) was exposed to UV for increasing periods of time while stirring and then added to reduced Mb. Difference spectra
were obtained as in (A). Numbers with arrows in the graphs correspond to the concentrations of CO-Mb (uM) formed by the
addition of PhotoCORM or CO gas. Plots are representative of three independent repetitions. Mb, myoglobin.

Mb, 1.3% of the total Mb (Fig. 2B). Illumination for 30—
40 min did not reveal a typical heme-CO complex (Fig. 2B)
(note difference in abscissa scales in Fig. 2A, B). Exposure of
PhotoCORM to UV light for 30—40 min also promoted for-
mation of a brownish insoluble precipitate (not shown) on the
container wall, which may contribute to the spectral changes
observed with PhotoCORM and Mb. PhotoCORM pre-
exposed to UV (pre-illuminated PhotoCORM) and the super-
natant of the CO-depleted PhotoCORM (30 min illumination)
were used as control compounds.

Activated PhotoCORM inhibits respiration of EC958
membranes

CO binding to respiratory oxidases and other heme pro-
teins is generally assumed to be the principal mode of toxicity
(28). However, CORM metal centers have also been impli-
cated in the antibacterial activity of CORMs [reviewed in
(64)]. To investigate inhibition of oxidase activity, bacterial
membranes were treated with PhotoCORMs (200 uM), ex-
posed to UV, and then immediately transferred to a closed
oxygen electrode chamber. Because NADH-supported res-
piration rates were not linear, they were calculated at both
50% and 15% of air saturation (Fig. 3A). Illuminated Pho-
toCORMs inhibited respiration compared with the untreated
samples at 50% O, an effect even more pronounced at low
O, tension (15%) (Fig. 3B). Membranes exposed to UV in the
presence of PhotoCORMs were inhibited by 80% and 95% at
50% and 15% oxygen tensions, respectively, when compared
with the untreated control, while membranes treated with pre-
illuminated PhotoCORM were inhibited by 40% and 60%
(Fig. 3B), probably due to CO loss to the atmosphere during
the transfer of the pre-exposed PhotoCORM. Since Photo-
CORM or CO-depleted PhotoCORM failed to inhibit mem-
brane respiration in the dark, but CO gas (200 uM) did (Fig.
3B), we deduce that inhibition of respiration by illuminated
PhotoCORM (200 uM) was directly related to CO release.

This was confirmed by direct spectroscopic examination of
the oxidases in intact cells after treatment with PhotoCORM
(Fig. 3C). Over 615 min after illumination, the spectral sig-
natures were indistinguishable from the effects of bubbling the

cells with CO gas. Most evident are features from the quinol
oxidase, cytochrome bd; the peak near 645 nm is due to the
CO-ligated ferrous cytochrome d and the trough centered at
about 625 nm is due to bleaching of the cytochrome d absor-
bance. Features at 550-570 nm are due to b-type hemes.

The respiratory inhibition of membranes by pre-illuminated
PhotoCORM (Fig. 3B) was surprising given that little CO
was detected in the Mb assay (see above and Fig. 2B). This
may be due to initial loss of two CO equivalents upon pho-
toactivation, while the third requires a slow dark reaction (2).
Further polarographic measurements were therefore carried
out in an open chamber system to follow changes in respiration
for longer times. Purified membranes, supplemented with
NADH, reached a steady state at ~10% O, (Supplementary
Fig. S2A). Adding pre-illuminated PhotoCORM (200 uM)
immediately inhibited respiration, reflected in a new higher
steady state after 5min. Similar effects were observed with
subsequent aliquots of pre-illuminated PhotoCORM (Supple-
mentary Fig. S2A, B). Since no effect was observed on adding
nonexposed PhotoCORM (Supplementary Fig. S2A inset, B),
and three subsequent aliquots of 200 uM CO gas or pre-
illuminated PhotoCORM caused comparable results (Sup-
plementary Fig. S2C), we conclude that CO remaining in
solution after illumination inhibits respiration.

We further investigated the effects of PhotoCORM on
EC958 respiratory systems by measuring expression of genes
encoding the two main terminal oxidases of E. coli, cyto-
chromes bo” (cyoA) and bd (cydA). Both were only slightly
downregulated by exposure to activated PhotoCORM and a
slight downregulation was also seen following exposure to
CO-depleted PhotoCORM (Supplementary Table S1).

Activation of PhotoCORM in cultures reduces viability
and inhibits growth of strain EC958

Growth of E. coli K-12 MG1655 (a non-pathogenic strain)
is inhibited only slightly by 500 uM activated PhotoCORM in
glucose minimal medium (44). However, for pathogenic
strain EC958, also growing on glucose, all concentrations
tested (200-500 uM) reduced viability after illumination
(Fig. 4A), but not in the dark (Fig. 4B). PhotoCORMs also
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FIG. 3. Activated PhotoCORM inhibits respiration of EC958-purified membranes and releases CO to oxidases.
Isolated membranes from Escherchia coli EC958 were resuspended in Tris-HCl buffer (50 mM, pH 7.4). In (A), are shown
representative O, electrode traces of O, consumption in a closed chamber after adding NADH (arrows) to untreated mem-
branes (control) or membranes exposed to UV light for 6 min in the presence of 200 M PhotoCORM (PhotoCORM, UV). The
Figure also shows 50% and 15% air saturation (dashed lines) at which respiration rates were calculated. In (B), are shown
respiration rates at 50% and 15% air saturation from control and PhotoCORM, UV samples [as in (A)], and samples treated
with PhotoCORM pre-exposed to UV light for 6 min (pre-illuminated PhotoCORM) or 30 min (to UV light for 30 min with
constant stirring) or PhotoCORM kept in the dark (200 uM final concentrations), followed by transfer to the closed chamber. A
solution of CO (200 uM) or an equivalent volume of water, followed by exposure to UV light for 6 min, was used as control.
Bars represent standard deviation of at least three technical repeats of one representative biological repeat (**p<0.0001;
*p < 0.0005 with respect to the untreated control. In (C), are shown difference spectra (globin plus PhotoCORM or CO minus
globin, all reduced) of intact cells of strain EC958 (suspension OD ~ 55) treated after reduction with sodium dithionite with

either CO gas or 100 uM PhotoCORM. Illumination was for 6—15min as indicated. OD, optical density.

inhibited growth significantly at concentrations of 200 uM
and above (Fig. 4C), but not in the dark (Fig. 4D). Although
UV-pretreated PhotoCORM significantly inhibited respira-
tion (Fig. 3 and Supplementary Fig. S2), adding 500 uM of
this compound did not inhibit growth (not shown), presum-
ably because glucose supports nonrespiratory fermentative
metabolism.

It is often assumed that the microbicidal toxicity of
CORMs is due to released CO (46) that inhibits aerobic
respiration by competing with O, We therefore investigated
PhotoCORM toxicity in anoxic cultures. Lower optical
density (ODgponm) Values were reached anoxically, so lower
PhotoCORM concentrations were tested (Supplementary
Fig. S3). A significant inhibitory effect was observed with
150 uM light-activated PhotoCORM and the inhibition was
slightly increased by addition of 200 or 250 uM activated
PhotoCORM (Supplementary Fig. S3A). As observed aero-
bically, cultures exposed to UV without PhotoCORM, treated
with 250 uM pre-illuminated PhotoCORM, or PhotoCORM
kept in the dark were unaffected (Supplementary Fig. S3B).
In conclusion, (a) the inhibitory effects of PhotoCORMs
depend on light activation of the compound, but (b) the an-
timicrobial effect is independent of O, and thus distinct from
classical CO respiratory inhibition. Importantly, the effects of
a CORM cannot always be attributed to heme binding.

Activated PhotoCORM, but not CO gas, inhibits
the aerobic growth of EC958

Since CO gas inhibited membrane respiration, we hy-
pothesized that growth of EC958 cultures would be affected
similarly. However, CO dissolved in culture medium even at
600 uM (final concentration) was not toxic, yet adding
200 uM PhotoCORM, followed by light activation, was
clearly inhibitory (Supplementary Fig. S4). Rationalization
of such results is difficult, but direct delivery of CO into
bacteria by CORM internalization and the delivery of high
CO concentrations have been suggested (11, 73).

CO is released from PhotoCORMs in dense cell
suspensions upon UV illumination

One potential drawback of using PhotoCORMs as an anti-
bacterial agent might be releasing CO in turbid suspensions or
tissues where UV may not penetrate. Gas-phase Fourier trans-
form infrared (FT-IR) spectroscopy, measuring the intrinsic
absorption of CO gas in the mid-infrared (400—4000cm™
[2500-25,000 nm]) (29, 50), was exploited to follow CO re-
lease from PhotoCORM (200 uM) in a constantly stirred sus-
pension of EC958 (ODgoonm = 50) exposed to UV for 10 min.
The equivalent CO detected in the headspace of the flask
containing the cell suspension was ~430 uM (Fig.5) [~2 mol
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FIG. 4. PhotoCORM reduces viability and inhibits aerobic growth of E. coli EC958. Cultures were grown in glucose
minimal medium at 37°C, 200 rpm. (A) Shows quantification of CFU from cultures treated with O (e), 200 (A ), 350 (V),
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FIG. 5. PhotoCORM releases CO in thick cell sus-
pensions upon exposure to UV. Cell suspensions of E. coli
EC958 (ODgponm=50) in glucose minimal medium were
treated with PhotoCORMSs (200 uM) (e) and exposed to UV
light for 10 min. Spectra of the headspace were measured
every 2min from 15 min before illumination, during the il-
lumination period, and for 35min afterward by Fourier
transform infrared spectroscopy. For comparison, headspace
measurements of PhotoCORM (200 uM) illuminated for
10min in minimal medium without bacteria were also
measured (0). Error bars represent standard deviation of
three independent experiments.

CO per mol PhotoCORM, in agreement with the Mb assay
(Fig. 2A)]. In culture medium lacking cells, a slightly higher
CO concentration was detected in the headspace (~ 500 uM
equivalent CO) (Fig. 5). This is unlikely to be because CO is
trapped by cells and unable to reach the gas phase since total
heme content determined in the cell suspension was only
2.21 uM (not shown). Thus, only very high cell concentrations
or tissue density might limit UV penetration.

CO from activated PhotoCORMs reaches the bacterial
cytoplasm, but Mn is not accumulated in EC958 cells

Figure 3C showed that CO from activated PhotoCORMs
reaches membrane oxidases, but to investigate cytoplasmic ac-
cess, we used a non-pathogenic laboratory strain, MG1655,
overexpressing a heterologous globin—the truncated hemo-
globin (Ctb) from Campylobacter jejuni (1). The cytoplasmic
globin sink traps CO released from the PhotoCORM, and the
formation of CO-bound Ctb can be visualized in intact cells by
dual-wavelength spectroscopy (68). Although Ctb has been
extensively studied (68), no absorbance coefficient for the Soret
region of the CO difference spectrum (CO reduced minus re-
duced) is available for in vivo quantitation of the CO-Ctb adduct.
Therefore, known concentrations of Ctb, quantified from Ajgg
measurements, were used to prepare CO difference spectra and
AA (422-447 nm) plotted against concentration, giving an ab-
sorbance coefficient of 44 x 10* M~! s™'. Second, hemochrome
(alkaline pyridine, reduced minus oxidized) assays on the protein
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FIG. 6. Intracellular for-
mation of CO-bound bac-
terial globin from activated
PhotoCORM. In (A), E. coli
MG1655 cell suspensions
overexpressing globin (Ctb)
were reduced by addition of
glucose (15mM) and then
bubbled with CO gas to sat-
uration or treated with 20 uM
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were performed (51); assuming a 1:1 ratio of heme B:protein,
we derived an absorbance coefficient of 43x10° M~ s™'.

Ctb-expressing cells in buffer were supplemented with
glucose to promote respiration, thereby removing O, and
providing reducing equivalents for globin reduction essential
for CO binding. A cell suspension containing ~ 13 uM fer-
rous Ctb was either bubbled with CO or treated with Photo-
CORM (20 uM), then exposed to UV. Difference spectra (CO
reduced minus reduced) revealed that both CO gas and acti-
vated PhotoCORM generated 10-13 uM CO-bound Ctb (Fig.
6A). When Ctb-expressing cells were treated with increasing
concentrations of PhotoCORMs and exposed to UV (Fig.
6B), the concentration of PhotoCORM correlated with the
amount of intracellular CO-bound Ctb (Fig. 6C).

To investigate whether CO might be delivered to hemes
directly from accumulated PhotoCORMs, intracellular Mn
was assayed by inductively coupled plasma mass specto-
metry (ICP-MS) in cells grown with 50 uM PhotoCORM,
either in the dark or activated in sifu. The intracellular Mn
concentration detected, even after 80 min, was not signifi-
cantly higher than in samples without the PhotoCORM, re-
gardless of incubation time or whether the cultures were
exposed to UV (Supplementary Fig. S5A). When culture
supernatants and cell washes (to capture loosely bound Mn)
were analyzed, ~ 50 uM Mn remained (Supplementary Fig.
S5B, C) showing that Mn from the PhotoCORM is not sig-
nificantly accumulated. This conclusion appears at variance
from a study with strain MG1655 (44) where, on prolonged
dark incubation with the PhotoCORM, a late abrupt uptake of
the compound was observed. However, (i) that strain was
grown in Evans medium, not defined minimal medium, (ii)
dimethylsulfoxide was present as solvent, and (iii) strain
MG1655 consistently accumulates more metal than does
EC958 (results not shown). Nevertheless, as positive con-
trols, we tested EC958 with CORM-3 and CORM-401.
CORM-3 is accumulated to high levels (11), and CORM-401

reaches millimolar levels in strain MG1655 (L.K. Wareham
and R.K. Poole, in preparation). EC958 also accumulated
both CORM-3 and CORM-401 to high levels (2370 uM Ru
and 1430 uM Mn, respectively; not shown). We conclude that
PhotoCORM is not significantly accumulated by strain
EC958, although other CORM:s are.

It is possible that cells internalize the PhotoCORM that is
then rapidly exported (after CO release following activation).
However, the partition coefficients (log P) determined for
activated PhotoCORM, the PhotoCORM kept in the dark,
and the CO-depleted PhotoCORM show that the compounds
are not hydrophobic and probably unable to passively cross
biological membranes (Table 1). It should be noted that the
genome of EC958 encodes drug export systems that could
transport PhotoCORMS or its products (66).

Effects of PhotoCORMSs on transport gene expression

To investigate possible transport mechanisms for the Pho-
toCORM, we performed real-time polymerase chain reaction
(RT-PCR) on PhotoCORM-treated cells and examined trans-
port systems for Mn. These, however, probably act on naked
Mn ions in the +II oxidation state, possibly [Mn(HzO)(,]2+ in

TABLE 1. LIPOPHILICITY AND PARTITION COEFFICIENT
(LoG P) For PHOTOCORM AND THE CO-DEPLETED FORM

Aqueous  Organic log
Compound phase (a)* phase (0)* P (o/a)
PhotoCORM, UV 99.0 1.00 -2.00
PhotoCORM dark 99.5 0.50 -2.30
CO-depleted PhotoCORM 96.8 3.20 -1.50

“Mn (determined by ICP-MS) recovered from aqueous and organic
phases, expressed as a percentage of the total found after partition.

CO-depleted PhotoCORM, PhotoCORM exposed to UV light for
30min with stirring to deplete CO; PhotoCORM, photoactivable
carbon monoxide-releasing molecule.


http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2015.6484&iName=master.img-006.jpg&w=360&h=266

EFFECTS OF PHoToCORM AGAINST A PATHOGENIC BACTERIUM 7

aqueous solution, whereas the PhotoCORM is in the +1 state and
embedded by the tpa ligand and the three CO ligands. Indeed,
mntH, encoding an Mn importer (34), was downregulated
twofold on treatment with PhotoCORMs and illumination
(Supplementary Table S1) and to a lesser extent by CO-depleted
PhotoCORMs, consistent with the lack of significant Mn ac-
cumulation. In E. coli strain, MG1655, aerobic CO exposure
elicits extensive downregulation of the enterochelin genes re-
quired for high-affinity iron uptake (L.K. Wareham and R.K.
Poole, submitted). Therefore, transcriptional changes in entE
were investigated (Supplementary Table S1). Although entE
was upregulated about fourfold in response to UV-activated
PhotoCORM (Supplementary Table S1), it was also 5.5-fold
elevated in response to CO-depleted PhotoCORM. In patho-
genic E. coli, uptake of heme as an iron source is facilitated by
the ChuA receptor (65); in this study, chuA (operonic with chusS,
encoding HO) was upregulated by PhotoCORM (>2-fold) and
CO-depleted PhotoCORM (3.5-fold). The modest upregulation
of iron acquisition systems is currently unexplained.

The combination of activated PhotoCORM and H»O,
is highly toxic to EC958 cultures

The failure of CO gas to mimic the toxicity of activated
PhotoCORM in EC958 cultures led us to hypothesize that the

Mn center, which undergoes oxidation state changes upon
UV-activated loss of CO ligands (2), might also be involved
in the toxicity together with, or perhaps instead of, the re-
leased CO. As Mn was not accumulated intracellularly
(Supplementary Fig. S5), interaction of the activated Photo-
CORM with reactive extracellular molecules was considered.
H,0, endogenously generated in respiration can diffuse from
cells (33), so we tested whether the presence of external H,O,
increased toxicity of the activated PhotoCORM. EC958
cultures were highly resistant to H,O, (Fig. 7A), 10 mM
H,0, being required for almost total inhibition. However,
when cultures containing a subinhibitory concentration of
PhotoCORM (100 uM) were treated with H,O, and exposed
to UV, only 4 mM H,0, completely impaired growth (Fig.
7B) and decreased viability to zero after 1 h (Fig. 7C).
Since H,0, reacts avidly with iron, generating hydroxyl
radicals, and glucose minimal medium contains a high con-
centration of FeCl; (~20 uM) (16), we tested PhotoCORMs
and H,0O, in Fe-depleted medium. Inhibition of the growth
caused by activated PhotoCORMs (PhotoCORM, UV) in Fe-
depleted (Fig. 8B) and Fe-replete media was similar (compare
Figs. 4C and 8B). However, cultures containing PhotoCORMSs
not exposed to UV grew faster and reached higher ODs than
the untreated control (Fig. 8A), a phenomenon that we did not
observe in iron-replete conditions (compare Figs. 4D and 8A).
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FIG.7. Combination of activated PhotoCORM with H,O, impairs growth of EC958. Cultures were grown in glucose
minimal medium at 37°C, 200 rpm. In (A), cultures were added with 0 (e), 6 (), 7 (A), 8 (¥), 9 (®), and 10 (@) mM
H,0,. In (B), control (no additions) (e) and cultures treated with PhotoCORM (100 uM) plus 4 (), 5 (A), 6 (V), 7 (®),
and 8 (@) mM H,0, were exposed to UV for 6 min. Compounds were added at time zero (arrows). In (C), over the same
time scale as in (A) and (B), cell viability is shown in cultures exposed to UV for 6 min in the absence (white bars) or
presence of PhotoCORM (100 uM) (light gray bars), H,O, (4 mM) (dark gray bars), or a combination of both compounds
(black bars). Samples taken immediately before treatment were recorded as time zero. Bars represent the standard error of at
least three independent experiments. Student’s test was used to compare the viability of cultures treated with H,O, and
PhotoCORM at 14 h to each of the other conditions, *p <0.05. H>O,, hydrogen peroxide.
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Cultures grown in Fe-depleted medium were substantially
more resistant to H,O, (6-10mM) (Fig. 8D) than those
grown in Fe-replete medium (compare Figs. 8D with 7A),
attributable to the production of hydroxyl radicals in the
Fenton reaction. Strikingly, combining activated Photo-
CORM (100 uM) with H,O, (4-8 mM) produced remarkable
inhibition of growth in Fe-depleted medium (Fig. 8E), al-
though it was slightly less pronounced compared with iron-
replete medium (compare Figs. 8E and 7B). Cultures treated
with nonactivated PhotoCORMSs or pre-illuminated Photo-
CORMs (100 uM each) in combination with H,O, (6 mM)
were not significantly inhibited (Supplementary Fig. S6).

Since the toxicity of PhotoCORMs combined with H,O,
depended on the activation of the compound in situ (Fig. 8E),
and growth was not inhibited by addition of CO gas com-
bined with H,O, (not shown), it seemed plausible that H,O,
directly interacts with the Mn-containing compound that re-
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sults from the UV-promoted release of CO. To explore this,
we tested the effect of CO-depleted PhotoCORM alone and in
combination with H,0,. The toxicity of the inactivated
compound was significant at the highest concentrations tested
(300 and 500 uM), while lower concentrations failed to cause
inhibition (Fig. 8G). On the other hand, addition of CO-
depleted PhotoCORM (100 uM) plus H,O, produced det-
rimental effects at all concentrations (4—-8 mM H,0,) (Fig.
8H). However, the toxicity was marginally lower than that
observed with PhotoCORM, UV (compare Fig. 8H and E).
Thus, light activation of PhotoCORMEs in situ promotes, but
is not essential for, the synergy with H,O,. To further in-
vestigate the interaction between PhotoCORM and H,0,,
we tested whether manganese sulfate as a source of Mn",
alone or with H,O, and/or CO gas, inhibited growth fol-
lowing UV illumination, but no growth inhibition was ob-
served (not shown).
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FIG. 8. Toxicity from the combination of activated PhotoCORM and H,0, is alleviated by thiourea in cultures of
EC958. Cultures were grown in Fe-depleted glucose minimal medium at 37°C, 200 rpm. (A): 0 (e), 50 (), 100 (A ), 200
(V),300 (®), and 500 (@) uM PhotoCORMs. In (B), PhotoCORM was added as in (A), followed by being exposed to UV
light (365 nm) for 6 min. (C) is as (B), but thiourea (80 mM) was added to cultures before the treatment with PhotoCORM.
In (D), 0(e), 6 (M), 7 (A),8(V¥),9 (#), and 10 (@) mM H,O, was added. In (E), cultures treated with PhotoCORM
(100 uM) 4 (J),5(A), 6 (V¥), 7 (#), and 8 (@) mM H,0, were exposed to UV for 6 min and compared with an untreated
control (e). (F) is as (E), but thiourea (80 mM) was added to all cultures before the addition of PhotoCORM and H,0,. (G)
is as (A), but CO-depleted PhotoCORM was added instead. In (H), cultures treated with CO-depleted PhotoCORM
(100 uM) were supplemented with 4 (), 5 (A),6(V),7 (#), and 8 (@) mM H,0, and compared with an untreated control
(o). (I) is as (H), but thiourea (80 mM) was added to all cultures before the addition of CO-depleted PhotoCORM and H,0,.
Compounds were added at time zero (arrows). Bars represent the standard error of at least three independent experiments.
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We tested the hypothesis that PhotoCORM toxicity is re-
lated to endogenous generation of oxidative stress, as pro-
posed for some CORMs (61). Very little change of expression
was seen in genes responsible for oxidative stress defense
(katG and sodA ) in response to PhotoCORM or CO-depleted
PhotoCORM alone. As expected, katG was substantially
upregulated by H,O, (55-fold, expressed as log, in Supple-
mentary Table S1), but was upregulated less by H,O, in
combination with PhotoCORM (14-fold), perhaps due to
depletion of H>O, in hydroxyl formation (18) (see below).

Finally, we examined whether the PhotoCORM induces
membrane damage, as inferred from massive upregulation of
the spy gene by CORMs such as CORM-3 (11, 74). EC958
cells treated with 150 uM PhotoCORM, then illuminated, did
not show spy upregulation (Supplementary Table S1). In-
terestingly, however, combining H,O, with PhotoCORM and
illumination elicited extensive spy upregulation (~ 14-fold)
compared with H,O, (~6-fold) or PhotoCORM alone,
consistent with generation of reactive oxygen species on re-
action of the Mn in CO-depleted CORM with H,O,.

Toxicity of activated PhotoCORM against EC958 is
partially alleviated by the hydroxyl scavenger, thiourea

We hypothesized that Mn from PhotoCORM reacts with
H,0, to produce, as in the case of Fe, hydroxyl radicals.
Indeed, thiourea (80mAf) added before activated Photo-

CORM or CO-depleted PhotoCORM plus H,O, (Fig. 8F, I)
protected cultures from inhibition. This is persuasive evi-
dence for the formation of hydroxyl radicals by reaction of
PhotoCORM with H,0,. Cultures containing activated
PhotoCORM (without H,O,) were only marginally protected
by thiourea (Fig. 8C). Since the activated PhotoCORM in-
hibits growth anaerobically (Supplementary Fig. S3A), re-
action with reactive oxygen species cannot be the sole
explanation.

Activated PhotoCORM and Mn react with H>O»
producing hydroxyl radicals

To test whether activated PhotoCORM reacts with H,O5,
generating hydroxyl radicals, the dye 3’-( p-hydroxyphenyl)
fluorescein (HPF), which specifically detects hydroxyl radi-
cals, but does not react with H,O,, was used (58). A rapid
sustained increase in fluorescence revealed the production of
hydroxyl radicals in samples containing PhotoCORM
(10 uM) and H,0, (300 uM), and then light activated (Fig. 9
and Supplementary Fig. S7). Addition of ethylenediamine-
tetraacetic acid (EDTA, 5mM) drastically decreased the
fluorescence, presumably by chelating Mn (4). Combination
of nonactivated PhotoCORM (PhotoCORM dark) with H,O,
failed to produce hydroxyl radicals (Fig. 9C, F). MnSO,4
alone did not generate hydroxyl radicals, but on illumination
in the presence of H,O,, significant hydroxyl generation
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FIG. 9. The combination of PhotoCORM and H,0, produces hydroxyl radicals. Fluorescence was measured in
glucose minimal medium (A—C) or Fe-depleted glucose minimal medium (D-F). Samples containing PhotoCORMs were
exposed to UV light for 6 min (PhotoCORM, UV) or kept in the dark (PhotoCORM dark). PhotoCORM and CO-depleted
PhotoCORM final concentrations were 10 uM. HPF (5 uM) was added after the activation of the PhotoCORM, the addition
of PhotoCORM dark or CO-depleted PhotoCORM, and before the addition of H,O, (300 uM). EDTA or thiourea (5 and
3mM final concentration, respectively) was added to samples before the addition of the PhotoCORM or CO-depleted

PhotoCORM. EDTA, ethylenediaminetetraacetic acid; HPF,

3’-( p-hydroxyphenyl) fluorescein.
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occurred (Supplementary Fig. S7), approaching the levels
seen with illuminated PhotoCORM at 120 min. Thus, the
toxicity observed in cultures arises directly from the inter-
action of the Mn center with peroxide once the PhotoCORM
loses CO. Interestingly, some fluorescence was detected in
Fe-depleted minimal medium from activated PhotoCORM
and CO-depleted PhotoCORM in the absence of H,O, (Fig.
9F). However, as thiourea failed to prevent fluorescence (not
shown), the basis of this phenomenon remains unknown.

Potentiation by PhotoCORM of the antimicrobial effect
of an antibiotic

Strain EC958 is characterized by multiple antibiotic re-
sistance (48). When bacteriological testing indicates appro-
priate susceptibility to the drug, doxycycline, a member of
the tetracycline family, may be used to treat infections, in-
cluding those caused by gram negatives such as E. coli.
However, strain EC958 is relatively resistant to this antibi-
otic; growth studies in liquid medium showed a minimal
inhibitory concentration of around 96 pug/ml, which was re-
duced to 24 pg/ml after treatment with 200 M PhotoCORM
and illumination (Supplementary Fig. S8).

Discussion

Most CORMs studied biologically release CO via ligand
exchange reactions (25), but trigger mechanisms may be
employed, including enzymatic cleavage (54), magnetic
heating of CORM-loaded magnetite nanoparticles (30), and
light-induced CO release (49, 53, 56, 57). In this study, we
report the activities of an Mn PhotoCORM in far more detail
than has been previously been achieved (44, 70).

Activation of CO release by UV illumination produces a
compound that is more effective at reducing bacterial growth
and viability than is CO gas at higher concentrations. Such
findings have sometimes been attributed to high levels of
intracellular CORM accumulation (11) and consequent lo-
calized CO delivery to target sites. However, the Photo-
CORM is not measurably accumulated in this pathogenic
strain, so CO is presumably liberated outside bacteria and the
toxic effects are, in part, due to facile diffusion of CO to
intracellular targets.

Nevertheless, the view that CO alone explains the toxicity
of CORMs is oversimplistic. Bacteria demonstrate multiple
transcriptomic changes to CORM-3 that cannot be under-
stood in terms of known CO biochemistry [e.g., (11, 73)],
even bacteria lacking hemes are inhibited by CORM-3 and
make transcriptomic responses (74). It is striking that ruthe-
nium CORMEs display much higher toxicity (11, 24, 73) than
CO gas (72) or the Mn CORM, CORM-401 (10) (L.K.
Wareham and R.K. Poole, in preparation), and the present
PhotoCORM. Indeed, other ruthenium compounds are ac-
cumulated with toxic consequences even though they are
not CORMs [e.g., (31, 32)] and, in lysozyme, Ru(II)(CO),-
protein adducts formed at a histidine residue release CO (7).
The relative lack of toxicity of Mn CORMs may prove valu-
able in clinical settings.

Even CORMs that do not release CO (inactivated or CO-
depleted CORMs) can exert toxicity and alter gene regulation
(39). In this study, we show that CO-depleted PhotoCORM
retains biological activity, including the ability, like the native
PhotoCORM, to react with H,O,, generating hydroxyl radi-
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cals. For example, spy regulation (and by inference membrane
damage) results from the reaction of CO-depleted CORM with
H,0,. The H,O, concentration required to produce a lethal
combination with PhotoCORM is well below the level of H,O,
that is itself growth inhibitory. It is unlikely that endogenously
generated H,O, could diffuse from cells in concentrations
sufficient to mimic the combined effect of exogenous H,0,
and PhotoCORM (21). High H,O, concentrations inactivate
iron enzymes and iron—sulfur dehydratases (59, 60), but a 15-
fold increase in H,O, production, representing an unrealistic
45% of cellular oxygen consumption (22) would be needed to
generate even 8 uM intracellular H,O,, which is not bacteri-
cidal (23). Thus, while endogenously generated H,O, is in-
sufficient to augment the bactericidal activity of PhotoCORM,
the required concentrations could easily be administered in
certain settings where surface sterilization is required as in
topical and odontogenic infections.

CORMs were developed for safe and controlled CO de-
livery (17, 19, 36) and were only later investigated for anti-
microbial activity. It is important to recognize that for no
CORM—even those that have been extensively studied for
many years—do we have a complete picture of the mecha-
nisms of toxicity. This is due to the complicated speciation
of the resulting metal-coligand fragment (CO-depleted or
iCORM =inactivated CORM) that can bind constituents of
the medium and/or the cell in place of the CO released and, in
the case of transition metal-based CORMs, undergo oxidation
state changes based on the redox state of the system. Thus,
only by understanding the toxicity of a well-characterized
compound can CORMs more suitable for clinical use be de-
signed. In this study, we extensively studied a PhotoCORM
and draw the following conclusions: (i) UV illumination,
even in thick suspensions (and, by extension, tissues), re-
leases two CO ligands that access intracellular heme targets,
thereby inhibiting aerobic respiration, even though the
CORM manganese cannot be detected intracellularly. (ii) The
inhibition of anaerobic growth by activated PhotoCORM
suggests mechanisms of toxicity unrelated to classical aero-
bic respiration. (iii) Illuminated PhotoCORM is a more ef-
fective antimicrobial agent than CO or the nonactivated
species. (iv) PhotoCORM and subtoxic concentrations of
H,O, are synergistic in their antimicrobial effects and gen-
erate hydroxyl radicals. (v) CO-depleted PhotoCORM also
generates, with H,O,, toxic species that perturb membrane
integrity. (vi) The doxycycline resistance of this pathogenic
strain is, in part, overcome by coapplication of the activated
PhotoCORM. (vii) Finally, our data do not support models of
CORM toxicity that invoke generation of other reactive ox-
ygen species or intracellular metal accumulation as key
players. These findings are summarized in Figure 10.

Only by understanding the multifaceted aspects of CORM
reactivity with biological systems can the potential for con-
trolled spatial and temporal CO release be realized. Photo-
CORMs, in particular, may have translational applications in
topical treatments or where a photolyzing source can access
the desired sites of application, as in the oral cavity or urinary
tract [for examples of PACT, see refs. (27, 41)]. Indeed, a
catheter light guide for prostate or bladder surgery incorpo-
rates a waveguide for light transmission (Patent application
US20100016844 A1). Thus, PhotoCORMSs warrant much more
detailed investigation and understanding, potentially in combi-
natorial therapies with antibiotics (Supplementary Fig. S8).
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FIG. 10. Schematic visualization of the activities of PhotoCORM against E. coli strain EC958. Light activation of the
PhotoCORM at 365 nm @ leads to release of the CO ligands from the manganese coordination sphere. The resulting Mn
complex is not transported inward @, while CO enters the cell via passive diffusion @, and inhibits NADH-supported
respiration @ by competing with oxygen, thereby restricting ATP generation. ROS may be formed. CO binds to cytoplasmic
heme proteins (not shown) and is sensed by TFs @, resulting in transcriptional changes @ in, for example, genes involved in
metal acquisition @. Following the loss of CO, the compound reacts with hydrogen peroxide, exogenous, or metabolism
derived @, forming cytotoxic products such as hydroxyl radicals @ that perturb membrane integrity. The symbol L indicates
the diverse solvent- or biomolecule-derived ligands that take the position of the released carbon monoxide. ROS, reactive

oxygen species; TF, transcription factor.

Materials and Methods
Reagents

Synthesis of PhotoCORM [Mn(CO)3(tpa-K3N)]Br is de-
scribed in Nagel et al. (44). Aqueous stock solutions (10 mM)
were kept in the dark for up to 24 h at 4°C. Pre-illuminated
PhotoCORM was obtained by illuminating the PhotoCORM
stock for 6 min with a UV lamp (UVITEC Cambridge,
365 nm) placed 3 cm above the sample. CO-depleted Photo-
CORM was prepared by exposing 1 ml PhotoCORM (3 mM)
to UV for 30 min with stirring. CO-saturated solutions were
prepared by bubbling CO gas into water or glucose minimal
medium for 30 min and used immediately. Other chemicals
were from Sigma.

Growth conditions

Bacteria were stored on Luria Broth (LB) (Miller; For-
medium) plates at 4°C. For E. coli EC958, plates were sup-
plemented with ampicillin (100 pg/ml). EC958 was used
throughout unless otherwise stated. Starter cultures were grown
in LB broth overnight at 37°C, 200 rpm. After centrifugation,
cells were resuspended in minimal medium (16) or Fe-depleted
minimal medium (lacking the FeCl; present in minimal me-
dium) with glucose (20 mM) as sole carbon source and used to
inoculate (at 3% [v/v]) fresh medium (~0.12 ODgponm). For
aerobic growth, 2.5 ml cultures were prepared in 5-ml plastic
containers and, when indicated, treated with PhotoCORM, CO-
depleted PhotoCORM, H,0O,, and/or thiourea. To activate

PhotoCORM, open containers were exposed to UV from
above (3cm) (PhotoCORM, UV samples). An aliquot
(200 ul) was transferred to 96-well plates and incubated for
14h at 37°C, 200rpm, in a Sunrise™ microplate reader
(TECAN). For anaerobic growth, 7-ml vials were filled to the
brim with medium and statically incubated at 37°C. For FT-
IR measurements, LB cultures were grown to an ODggopm Of
1.0. Cells were harvested by centrifugation and resuspended
in glucose minimal medium (~ 10 ml [S0 ODgqol).

Viability studies

Samples (20 ul) were serially diluted in phosphate-buffered
saline. Eight aliquots (10 ul each) from each dilution were
inoculated onto LB plates and incubated overnight at 37°C,
and colony-forming units were determined and averaged.

FT-IR measurements

Infrared spectra of the headspace were recorded using a
Matteson Research Series FT-IR spectrometer equipped with
a DTGS detector at a resolution of 0.4cm™". The cell sus-
pension was transferred to a custom flask equipped with two
gas-tight taps and a third port equipped with a rubber seal for
purging and reagent addition. This was then attached to a
custom IR gas cuvette (CaF, windows, 14.5 cm path length)
housed within the IR spectrometer. An airtight peristaltic
pump (7 1/h flow rate) circulated the culture headspace into
the gas cuvette and back into the flask, bringing vapor phase


http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2015.6484&iName=master.img-016.jpg&w=324&h=244

12

to equilibrium within 2 min. Each IR spectrum was accu-
mulated for eight scans (1 min each). The resulting trans-
mission spectra were converted to absorbance using an
independent background measurement of laboratory air re-
corded before each series of measurements. Spectra were
baseline corrected. Before measurements, the system was
purged with a nitrogen flow for 30 min with continuous
stirring. PhotoCORM was added (200 uM) and the system
was purged for a further 10 min in darkness. IR spectra of the
headspace were recorded every 2min to test for non-
photolytic CO release. After removal of the nitrogen purge
line, the sample was illuminated at 365 nm for 10 min through
the vessel wall with continuous stirring and cycling of the
headspace. Spectra were recorded every 2min during illu-
mination and for 35 min afterward to follow CO release to the
headspace. CO in the gas phase was quantified by comparing
the integrated absorbance of the R-branch of the CO funda-
mental (2142-2235cm™") with the absorption cross sections
from the HITRAN2012 database (55).

Expression of Ctb in E. coli

For overexpression of C. jejuni hemoglobin (Ctb) in E.
coli, strain MG1655 lacking the flavohemoglobin (hmp mu-
tant) and transformed with plasmid pLW 1 [c#b under control
of an arabinose-inducible promoter (67)] [strain RKP3920,
(D] or an empty vector [RKP3919 (1)] was grown aerobi-
cally in LB supplemented with ampicillin (100 pug/ml),
5-aminolevulinic acid (500 uM), and FeCl; (12 uM). When
0.3 ODgoonm Was reached, 0.02% arabinose (v/v) was added
and cultures were incubated for 4h and stored overnight
at 4°C.

Optical spectrometry

CO release from the PhotoCORM was assessed in vitro by
the Mb assay (9). A solution of Mb (12 uM) in 0.1 M phos-
phate buffer (pH 7.4) was reduced with a few grains of so-
dium dithionite. In a 3-ml cuvette, 2 ml of the reduced Mb
solution was bubbled with CO gas for 3 min or treated with
PhotoCORM and exposed to UV or treated with pre-illumi-
nated PhotoCORM. For spectroscopy of oxidases in vivo,
difference spectra (CO reduced, or reduced and treated with
PhotoCORM, minus reduced) were recorded with a Johnson
Foundation SDB3 dual-wavelength scanning instrument
(26). For studying intracellular formation of CO-Ctb, dif-
ference spectra (CO reduced minus reduced) were recorded
using an Olis RSM1000 spectrophotometer. Cultures over-
expressing Ctb or carrying an empty vector were harvested
and resuspended in 10 ml Tris-HCI S0 mM (pH 7.4) and the
ODgqo was standardized. Reduction was achieved by adding
glucose (15mM) (63), and O, consumption was followed
polarographically in a closed chamber. Upon depletion of O,,
the lid was removed to allow air diffusion into the sample and
the O, levels recorded for a further 1 h with stirring. Reduced
samples of the Ctb-expressing strain (RKP 3920) were trea-
ted with increasing concentrations of PhotoCORMs and ex-
posed to UV light, and changes in the spectra were recorded
immediately. As a control, a reduced sample of the same
strain was bubbled with CO gas for 3 min. A strain carrying
the empty vector (RKP 3919) was used to obtain the absolute
spectrum of intracellular Ctb and assure reduction before
PhotoCORM addition. Difference spectra (CO reduced mi-
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nus reduced) were plotted. Intracellular concentration of Ctb
was determined by reducing the Ctb-expressing samples with
sodium dithionite, followed by bubbling with CO gas. The
extinction coefficient of the Ctb difference spectrum (CO
reduced minus reduced) is 43.5 mM/cm. Heme was deter-
mined as in Poole et al. (51).

For whole cell spectroscopy, cells were grown to mid-
exponential phase and suspended after washing to an ap-
proximate ODgqq of 55. Difference spectra were taken of cells
reduced by dithionite and incubated with [Mn(CO)3(tpa-
x3N)]Br (100 uM) at room temperature minus reduced cells
alone using the SDB3 spectrophotometer. During incubation
(6, 10, and 15 min), the cell suspensions were illuminated at
365nm using a UV hand lamp (UVIlite LF-206LS, 6 W,
UVltec Ltd.).

Isolation of bacterial membranes

This was based on Poole and Haddock (52). Cultures
were grown until they reached ~ 1.5 ODgqp, then centri-
fuged, and the pellet resuspended in membrane isolation
buffer (52). Protein concentration was determined by the
Markwell assay (38).

Respiration measurements

For assays in a closed system (73), purified membranes
resuspended in Tris-HCI buffer (S0mM, pH 7.4) 2ml in a
7-ml vial) were illuminated from above with a UV lamp at
365nm (distance ~3cm) in the presence or absence of
PhotoCORM (200 uM) and the sample immediately trans-
ferred to the O, electrode chamber to measure respiration.
Controls were performed by addition of PhotoCORM in the
dark, pre-illuminated PhotoCORM, CO-depleted Photo-
CORM, or CO gas from CO-saturated water, all at final con-
centrations of 200 uM. Assays in an open electrode system
were performed in the same chamber, but lacking the sealing
cap (12). A steady state was achieved on adding membranes to
buffer (2ml), followed by NADH (2.5 mM) to promote res-
piration. At steady state, three subsequent additions of Pho-
toCORM pre-exposed to UV or PhotoCORM kept in the dark
were performed (200 uM final concentration each). Respira-
tion rates were calculated from the measured inward oxygen
diffusion rates (12) and normalized by protein content.

Mn uptake by growing cells

Aerobic cultures of EC958 at mid-exponential phase
(~0.4 ODgq) were treated with PhotoCORMs (50 uM) and
either kept in the dark or exposed to UV. Samples were an-
alyzed as in Davidge et al. (11) using literature values for
single cell dry mass and volume (45).

Determination of the lipophilicity of PhotoCORM
and its derivatives

A modification of the shake-flask method was utilized
(69). Briefly, glucose minimal medium was used as the
aqueous phase and n-hexane (presaturated with medium) as
the organic phase. The hexane layer was then isolated. Pho-
toCORM was dissolved in medium at 10 mM and exposed to
UV or kept in the dark. CO-depleted PhotoCORM was pre-
pared by dissolving PhotoCORM in medium at 3 mM, fol-
lowed by exposure to UV for 30 min with constant stirring.
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An equal volume of n-hexane and medium containing acti-
vated PhotoCORM, PhotoCORM in the dark, or CO-de-
pleted PhotoCORM were mixed and left to shake overnight
at 37°C. After separation, each layer was sampled. The n-
hexane was evaporated at room temperature and the volume
replaced with aqueous solution. The amount of Mn in both
layers was determined by ICP-MS.

Hydroxyl! radical production

The assay was performed in glucose minimal medium or
Fe-depleted glucose minimal medium. Samples (3 ml medi-
um) containing PhotoCORM were exposed to UV or kept in
the dark. PhotoCORM and CO-depleted PhotoCORM final
concentrations were 10 uM. The fluorescent reporter dye HPF
(Invitrogen; 5 uM) was used for detecting hydroxyl radicals.
The probe was added after activation of the PhotoCORM, the
addition of PhotoCORM dark, CO-depleted PhotoCORM or
MnSQ,, and before the addition of H,O,. EDTA or thiourea (5
and 3 mM final, respectively) was added to samples before the
PhotoCORM or CO-depleted PhotoCORM. Fluorescence in-
tensity was measured using an F-2500 fluorescence spectro-
photometer (Hitachi) (490 nm excitation, 515 nm emission).

Real-time polymerase chain reaction

Exponential phase cultures were treated with PhotoCORM
(150 uM), CO-depleted PhotoCORM (150 uM), or H,O,
(2mM), alone or in combination. Following treatment, cul-
tures were incubated at 37°C for 10min with shaking at
200 rpm and exposed where indicated to UV. Aliquots of
culture were removed to RNAprotect (Qiagen) and total RNA
was prepared using an RNeasy RNA purification kit (Qiagen)
and quantified using a NanoDrop 1000 spectrophotometer
(Thermo Scientific). RT-PCR was done in an Mx3005P
Thermocycler (Agilent Technologies) using the Brilliant IIT
Ultra-Fast SYBR Green qRT-PCRMaster Mix kit (Agilent
Technologies). A genomic DNA dilution series was used to
correct for differences in primer amplification efficiencies,
and the housekeeping gene gyrA was used for normalization.
The mean log, ratios of individual gene expression relative to
that in unstressed cells were calculated (n=3 + SD). The
primer sets used were spy, 5 CTGCACTGTTTGTT
GCCTCTAC 3’ and 5 AACTTGCCTTTGTGGTGCAT3’;
katG, 5" CCATAACACCACAGCCACTG 3’ and 5" AGTTG
ATTTGGCCACCAGTC 3’; sodA, 5 TGAGCTATACCC
TGCCATCC 3’ and 5" TCTGATGGTGTTTGGTGTGG 3;
cyoA, 5" TTGCAGGCACTGTATTGCTC 3’ and 5* CCAAA
TGCCGTCAGTATCAG 3’; cydA, 5 TAGTCGAACTG
TCGCGCTTA 3’ and 5" GAGGACGTAGACCGTTTCCA
3’; chuA, 5 CAATTTACTTCGTTGCGTTTGA 3’ and 5
CGTAACGGTCATGGTTTCAGTA 3'; entE, 5° AAGAG
TTTGCCCGTCGCTAT 3’ and 5 AGTCAGAATGTCGGT
CAGTGG 3’; mntH, 5" AACTATCGCGTTGAGAGTAGCA
3" and 5" CAATCCCTAGTTTGGCAGAGAG 3’; and gyrA,
5" GGTACACCGTCGCGTACTTT 3’ and 5" TACCGATT
ACGTCACCAACG 3'.
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Abbreviations Used

CFU = colony-forming unit
CO-depleted PhotoCORM = PhotoCORM exposed to UV
light for 30min with stirring
to deplete CO
CO-Mb = CO-bound myoglobin
CORM = carbon monoxide-releasing

molecule

EDTA = ethylenediaminetetraacetic
acid

FT-IR = Fourier transform
infrared

HO =heme oxygenases

HPF = 3’-( p-hydroxyphenyl) fluorescein
ICP-MS =inductively coupled plasma
mass spectometry
Mb = myoglobin
OD = optical density
PACT = photoactivated chemotherapy
PhotoCORM = photoactivable carbon monoxide-
releasing molecule
ROS =reactive oxygen species
RT-PCR =real-time polymerase chain reaction
TF = transcription factor
UPEC = uropathogenic E. coli
UTI =urinary tract infection




