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Abstract

A class of over-braced but typically flexible body-hinge frameworks is de-

scribed. They are based on polyhedra with rigid faces where an independent

subset of faces has been replaced by a set of holes. The contact polyhedron

C describing the bodies (vertices of C) and their connecting joints (edges of

C) is derived by subdivision of the edges of an underlying cubic polyhedron.

Symmetry calculations detect flexibility not revealed by counting alone. A

generic symmetry-extended version of the Grübler-Kutzbach mobility count-
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ing rule accounts for the net mobilities of infinite families of this type (based

on subdivisions of prisms, wedges, barrels, and some general inflations of a

parent polyhedron). The prisms with all faces even and all barrels are found

to generate flexible perforated polyhedra under the subdivision construction.

The investigation was inspired by a question raised by Walter Whiteley

about a perforated polyhedron with a unique mechanism reducing octahe-

dral to tetrahedral symmetry. It turns out that the perforated polyhedron

with highest (Oh) point-group symmetry based on subdivision of the cube

is mechanically equivalent to the Hoberman Switch-Pitch toy. Both objects

exhibit an exactly similar mechanism that preserves Td subgroup symme-

try over a finite range; this mechanism survives in two variants suggested

by Bob Connelly and Barbara Heys that have the same contact graph, but

lower initial maximum symmetry.

Keywords: rigidity, mobility, cubic polyhedron, symmetry

1. Introduction

A trend in the treatment of mobility of frameworks composed of arrays

of bodies connected by hinges is of the application of symmetry, wherever

possible, to the counting of net mobility m − s, the balance of freedoms

and constraints (or equivalently of mechanisms and states of self-stress)

[10, 11, 18, 4, 20, 21, 31, 27, 30]. One particular flexible framework realised

as a PolydronTM model was described in a 2014 Fields Institute lecture by

Walter Whiteley, at a meeting held to mark his 70th birthday; his observa-
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tion of a symmetry-breaking mechanism of the model inspired the present

investigation of an open-ended class of mobile frameworks based on the cubic

polyhedra.

The basic object that sparked this investigation is W. Two further vari-

ants, R and B, emerged in discussions with Bob Connelly and Barbara Heys.

In W six disjoint square faces of an octahedrally symmetric Archimedean

polyhedron, the (small) rhombicuboctahedron [6], have been replaced by

holes. B is also derived from this polyhedron. R is derived from the pseudo-

rhombicuboctahedron discovered by Miller, as described in [28]. All three

objects are illustrated in Figure 1. All exhibit a symmetry-breaking finite

mechanism. Application of the established techniques for symmetry exten-

sion of mobility rules [18] leads to an account of net mobility in all three

structures. Interestingly, the explanation for the finite mechanism in W,

which takes the structure from octahedral Oh to tetrahedral Td symmetry,

turns out to be identical with the symmetry account of the mechanism of the

famous Hoberman Switch-Pitch toy [22, 3]

The motivation for our symmetry treatment of an infinite class of struc-

tures is the initially surprising flexibility of some heavily over-constrained

objects. W is an object with maximum octahedral rotational and reflec-

tional symmetry belonging to the point group Oh, which has 48 symmetry

operations. Although over-braced by six states of self-stress according to

simple counting, this framework has a mechanism that preserves the 24 sym-

metries of the tetrahedral Td point group along a finite path that proceeds
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(a)

(b)

(c)

Figure 1: Physical models of W, R and B, constructed from Magnetic PolydronTM com-
ponents. Rows (a), (b) and (c) correspond to W, R and B, respectively. Each row shows
points on the path of the characteristic mechanism: initial high-symmetry configuration;
the distortion mechanism, showing the halving of the symmetry group; the fully collapsed
configuration after the pathway has passed through the multifurcation.
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down from the high-symmetry point until a special geometry is reached where

multifurcation into lower symmetries takes place. The multi-branched path-

way for further distortion starts at the point where each of four square faces

becomes co-planar with its neighbours and can individually move radially in

or out. Variants R (C4v) and B (D4h) show similar mechanisms that lead to

halving of the symmetry group, with branching, and the possibility of further

symmetry loss, at the co-planarity point or points. Figure 1 shows snapshots

along the path of the mechanism in W, R and B. In the following, we use

the symmetry-extended mobility criterion to place the flexes of W, R and B

in the context of infinite families of perforated polyhedra.

While we restrict attention to symmetric structures and their symmetry-

induced mobility in this paper, we note that the mobility analysis of generic

perforated polyhedral structures (without symmetry), under the term ‘block-

and-hole’ polyhedra, is currently also an active area of research. In particular,

it was shown in [9] that under certain conditions, a generic embedding of a

simplicial spherical polyhedron (which is rigid by Cauchy’s rigidity theorem)

remains rigid if a triangulated disc is cut out and new constraints are added

into an essentially disjoint disc to create a rigid sub-structure (or rigid block).

This result was very recently extended to structures with one rigid block and

an arbitrary number of holes [5]. Moreover, it was shown in [8, 5] that

swapping the rigid blocks for holes and vice versa does not alter the rigidity

properties of these perforated structures. The approach used here suggests

that investigation of symmetry aspects of these general results for block-and-
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hole polyhedra and block-hole exchange would be a natural next step. This

extension is currently in progress.

2. Symmetry-extended mobility criteria

The classic [23] counting criterion for mobility (relative freedoms) m− s

of a mechanical linkage composed of n bodies connected by g joints is

m− s = 6(n− 1)− 6g +

g∑

i=1

fi, (1)

where the mobility is defined by the difference between the number of mech-

anisms (m) and states of self-stress (s), and each joint i permits fi relative

freedoms.

As discussed elsewhere [18], this counting criterion can be derived for-

mally by supposing one body to be fixed, then allowing for the six relative

freedoms of each of the other (n − 1) bodies, then counting constraints by

considering each joint to remove six freedoms but to restore fi of them. Ef-

fectively, we are supposing the system to be at first rigidly glued but then to

be freed up at each joint by the appropriate number of allowed freedoms.

The symmetry extension of (1) for a linkage in a starting position with

point group G is expressed in terms of representations of the group, Γ, and

properties of the contact polyhedron C. It is [18]

Γ(m)− Γ(s) = (Γ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γfreedoms, (2)
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where Γ(m) and Γ(s) are the representations of the mechanisms and states of

self-stress. In this equation, Γ(v, C) is the permutation representation of the

vertices of C. (A permutation representation of a set has character χ(S) for

operation S equal to the number of objects in the set that are left in place by

the operation S.) Γ‖(e, C) is the representation of a set of vectors along the

edges of C and has characters that depend on the number of edges unshifted

under a given operation and on the effect of the operation on the directions of

vectors along those edges. Γ0 is the totally symmetric representation (Γ(S) =

1 for all S); ΓT and ΓR are respectively the representations of rigid-body

translations and rotations. Lastly, the term Γfreedoms is the representation of

the total set of freedoms notionally restored by the unfreezing of joints in

the procedure described above. We will also find useful the antisymmetric

representation, Γǫ, which has characters χ(S) = 1 for proper operations and

χ(S) = −1 for improper operations.

The notion of the contact polyhedron C encapsulates the relationships

between bodies and joints: each rigid element is associated with a vertex of

C, and each joint is associated with an edge. C is embedded in space, and G is

the point group of the embedded structure. The vertices of C are embedded

in the appropriate 2D or 3D space, in a geometry that is consistent with the

point group symmetry of the array of bodies and joints. Thus, C may have

undetermined lengths and angles, where the symmetry allows. The term

‘contact polyhedron’ can be a misnomer, as C is not always three-connected

and may sometimes have a non-planar graph, but it seems to be the term
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that is used for this object: ‘embedded contact graph’ would be more precise.

All the terms in (2) are either calculated for the particular structure

(Γ(v, C), Γ‖(e, C), Γfreedoms) or are determined by the group and can be looked

up in standard character tables [? 1]. The freedoms term is determined by

simple physical reasoning. In the case we envisage here, the bodies are placed

at the vertices and edge-midpoints of some polyhedron P . The graph of C

is then the subdivision of the graph of P (which, of course, means that C

is not a polyhedron, as it is only 2-connected). The joints correspond to

the edges of the subdivision, two for each original edge of P , and each is a

non-torsional hinge (i.e., has a hinge line that is not collinear with the line of

centres of the bodies that the hinge connects). The freedom allowed by the

joint in this case is a relative rotation of the two connected bodies about the

hinge line. When C lies on a spherical shell, as here, this relative rotation

is fully symmetric under any operation that preserves the associated edge

of C. Hence, Γfreedoms in (2) can be replaced by Γ(e, C), the permutation

representation of the edges of C, to give the specific body-hinge form of the

symmetry-extended mobility equation appropriate to W and to structures

like it:

Γ(m)− Γ(s) = (Γ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γ(e, C). (3)

Figure 2 shows the skeletons, Schlegel diagrams and contact graphs of

the three objects W, R and B. Their mobility is explored in the next section.
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(a)

(b)

(c)

Figure 2: Three perforated polyhedral structures based on the Whiteley example, shown
as three-dimensional skeletons, Schlegel diagrams, and contact graphs. (a) The Whiteley
structure (W) is derived by removing six disjoint square faces that occupied the octahedral
positions in the Archimedean small rhombicuboctahedron [6]. (b) Variant R is obtained
by rotating the top layer of W by π/4 about a fourfold axis. (c) Variant B is obtained
by rotating the middle layer instead. The three structures have related Schlegel diagrams
(shown with holes unshaded) and all have the same contact graph C (that of a subdivided
cube), but with different identifications between the 12 square and 8 triangular bodies and
the vertices of C.
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Figure 3 defines the conventions used for the settings of the symmetry groups

that feature in the discussion.

Figure 3: Generic contact graph C for structures W, R and B. The bodies occupy the
vertices of the subdivided cube, and the hinges are represented by the edges. For the
purpose of using symmetry to give labels to mechanisms and states of self-stress, the
groups Oh, C4v and D4h are chosen such that the class of σd reflection planes always
includes the symmetry plane that runs diagonally from lower left to upper right in the
Schlegel diagram of C, i.e., including six vertices of C. In all three groups, x lies along the
horizontal axis of the diagram, y along the vertical axis and z is normal to the plane of
the paper. In this convention the unique mechanism, which preserves the special σd plane
for all three perforated polyhedra, has the symmetry of the xyz cubic harmonic.

3. Mobility of the Whiteley structure and variants

The equation (3) can be applied directly to the W framework and its

variants R and B. In the tabular form that we have used elsewhere [10, 18],

the calculation of characters for W at the high-symmetry point is

This gives the reducible representation

(W,Oh): Γ(m)− Γ(s) = A2u − A1u − T1g − T2u, (4)

and tells us that there are at least seven states of self-stress spanning sym-

metries A2u (one) and T1g and T2u (three each) and at least one mechanism

of symmetry A1u. The scalar count (1) gives, with n = 20, g = 24, and

fi = 1 for all i: m − s = 6(20 − 1) − 6 × 24 + 24 × 1 = −6, telling us only
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Oh E 8C3 6C2 6C4 3C2
4 i 6S4 8S6 3σh 6σd

Γ(v, C) 20 2 2 0 0 0 0 0 4 6
−Γ‖(e, C) −24 0 0 0 0 0 0 0 0 −4
−Γ0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−5 1 1 −1 −1 −1 −1 −1 3 1
×(ΓT + ΓR) 6 0 −2 2 −2 0 0 0 0 0

−30 0 −2 −2 2 0 0 0 0 0
Γfreedoms 24 0 0 0 0 0 0 0 0 4

−6 0 −2 −2 2 0 0 0 0 4

that the structure is over-braced, with an excess of 6 states of self-stress over

mechanisms.

Hence, counting without symmetry has shown the structure to be over-

constrained, with at least six states of self-stress. Symmetry has revealed the

existence of a mechanism, balanced by a total of seven symmetry-detected

states of self-stress; the A2u mechanism is one-dimensional (as it is of type

A) but is symmetry-breaking in the full Oh point group (as it is not of type

A1g).

Motion along the mechanism reduces the point group symmetry to the

group composed of those operations of Oh for which A2u has character +1.

This group is Td. In the lower symmetry, the mobility representation is

(W, Td): Γ(m)− Γ(s) = A1 − A2 − 2T1. (5)

As there is no state of self-stress of A1 symmetry to block the mechanism

[24, 19, 29], the mechanism is finite. Manipulation of the physical model sug-

gests that there is no other mechanism in the initial tetrahedral structures.

In principle, the symmetry calculation gives only lower bounds on the num-
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bers of mechanisms and states of self-stress, as there could be equisymmetric

mechanisms and states of self-stress with cancelling contributions to the total

Γ(m)− Γ(s) and hence undetectable by symmetry. In particular, symmetry

has nothing to say about the location of the multifurcation point that ap-

pears further down the A2u pathway, as the additional mobility at that point

depends on a specific geometry at which sets of faces become coplanar.

The mechanism has the same symmetry as the xyz cubic harmonic in

both symmetry groups: A2u in Oh, A1 in Td.

Mobility of the other two variant structures can be calculated in a similar

way. Variant R has C4v symmetry and could be treated by making a new

table for this group, but as R and W have the same contact graph, the re-

sult follows by descent in symmetry, by simply deleting irrelevant operations

from the W table. The scalar count is m − s = −6, as before, since scalar

counting corresponds to taking the character under the identity operation.

The symmetry count (in the setting of C4v indicated in Figure 3) is

(R, C4v): Γ(m)− Γ(s) = B2 − 2A2 − B1 − 2E, (6)

with the finite B1 mechanism now leading initially to a C2v point group in a

setting where the σd mirror planes of the structure are preserved, and where

the mobility detected by symmetry is

(R, C2v): Γ(m)− Γ(s) = A1 − 3A2 − 2B1 − 2B2. (7)

The interpretation is the same as for W, with appropriate changes to repre-

sentation labels. Again, the mechanism has the symmetry of the xyz har-
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monic.

For the third variant, B, the calculation is similar. In maximum symme-

try, B has the dihedral D4h symmetry, which is again a subgroup of Oh. The

result for the mobility representation is

(B,D4h): Γ(m)− Γ(s) = B1u − A2g − Eg − A1u − B2u − Eu, (8)

with the symmetry-detected B1u mechanism leading to structures with point

group D2d and

(B,D2d): Γ(m)− Γ(s) = A1 − 2A2 − B1 − 2E. (9)

Once more, the mechanism is equisymmetric with the cubic harmonic xyz.

The mechanism is ‘generic’ for the three subdivisions of the graph of the

cube. The full octahedral symmetry of W is in a sense an accident; the

mechanism survives in the group of the more general square prism (B) and

the group of the square pyramid (R) where the symmetry elements that

exchange top and bottom faces of the prism are lost. We can also imagine

general versions of W, R and B based on [n]-prisms, with groups Dnh, Cnv

and Dnh. These will be discussed below.

Structure W is based on a decoration of the cube, but analogous structures

belonging to the tetrahedral and icosahedral point groups are also easily

envisaged. Experimentally, removal of an independent set of four triangular

faces from the cuboctahedron (with 12 vertices, 6 square and 8 triangular

faces) is found to give a rigid structure. Analysis in the Td group gives the
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result

Γ(m)− Γ(s) = −A1 − E − T2, (10)

corresponding exactly to the six states of self-stress implied by the scalar

count of −6. Experimentation with the physical model confirms that no

mechanism has been missed out in this case. An explanation of ‘why’ the

states of self-stress representation has the particular form A1+E+T2 follows

from detailed considerations about the symmetries of cubic polyhedra (see

Section 4).

Analogous reasoning for the icosahedrally symmetric small rhombicosi-

dodecahedron [6] (which has 60 vertices, 12 pentagonal faces, each to be

replaced by holes, 30 square and 20 triangular faces) gives a result that re-

veals a triply degenerate mechanism for the high-symmetry Ih structure:

Γ(m)− Γ(s) = T2u − Au − T1g −Hu. (11)

There are multiple distortive pathways that take the structure down five-fold,

three-fold and two-fold branches of the subgroup tree. These pathways have

featured in several of our studies of mechanisms and symmetry breaking in

icosahedral structures and packings [12, 17].

As this section has shown, arrangement of faces and holes on just three

polyhedral frameworks has already yielded systems with many, one and no

symmetry-detectable mechanisms, respectively. A more general model will

encompass all three types of behaviour and show that infinite families with
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each type of behaviour can be predicted.

4. A model for perforated structures based on cubic polyhedral

parents

4.1. Construction

A construction that includes all the examples discussed so far is based on a

general cubic polyhedron (a polyhedron whose skeleton is a cubic polyhedral

graph, hence a polyhedron with all vertices of degree three). The graph of the

starting n-vertex polyhedron P is decorated by addition of an extra vertex

of degree two at the midpoint of each edge of P i.e., by edge subdivision of

P . The new graph S(P ) is the skeleton of the contact polyhedron C for a

perforated structure H with an obvious embedding based on the embedding

of P . Figure 3 shows the contact graph common to the examples of W, R

and B discussed earlier; in these simple cases, the polyhedron P is the cube.

If P has n vertices, C has n degree-three and 3n/2 degree-two vertices,

representing 5n/2 bodies, and 3n edges representing joints. Each face of P

corresponds to a hole in H. In the most symmetrical realisation, the bodies

corresponding to vertices of P would be triangles and those corresponding

to edge-midpoints of P would be rectangles (see Figure 4).

4.2. Mobility formula

The general expression (3) for the mobility of the object H with contact

polyhedron C applies here, but it can also be reformulated in terms of the
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Figure 4: A construction of flexible polyhedra that generalises examples W, R and B. A
cubic polyhedron P (left) is subdivided to give the subdivision S(P ) (centre) as the contact
graph C of the structure (right) composed of triangular and rectangular rigid plates with
holes replacing the original faces of P (indicated by circles).

parent polyhedron P . As all vertices of C are either original vertices of P ,

or lie at edge centres of P (Figure 5, top line),

Γ(v, C) = Γ(v, P ) + Γ(e, P ). (12)

The edges of C can be taken in symmetric and antisymmetric combinations

aligned with the original edges of P , so (Figure 5, bottom line)

Γ(e, C) = Γ(e, P ) + Γ‖(e, P ), (13)

where Γ‖(e, P ) is the representation of a set of vectors along the edges of P .

Likewise, the vector representation Γ‖(e, C) is equal to the same sum,

Γ‖(e, C) = Γ(e, P ) + Γ‖(e, P ), (14)
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as no symmetry operation of P has the effect of reversing in place an arrow

on one of the derived edges in C.

+

+≡

≡
Figure 5: Relations between component symmetries in the contact graph C and its cubic
parent P : vertices (top); edges of C (bottom). Vertices common to both P and C are
shown as solid circles, vertices that belong to C alone are shown as open circles.

Substitution of (13) and(14) into (3) gives

Γ(m)−Γ(s) = (Γ(v, P )−Γ‖(e, P )−Γ0)×(ΓT+ΓR)+Γ(e, P )+Γ‖(e, P ), (15)

which could be interpreted as the mobility of an object that has P rather

than S(P ) as its contact polyhedron, but has an extra set of mechanisms

consisting of ‘slides’ along the edges of P .

We can go further by taking explicit account of the fact that P is a cubic

polyhedron. For a cubic polyhedron, the representation Γ(v, P )× ΓT , which

is the symmetry of orthoschemes of local vectors attached to the vertices of

P (i.e., the so-called mechanical representation of vibrational theory [32]) is

related to edge representations as

Γ(v, P )× ΓT = Γ(e, P ) + Γ‖(e, P ), (16)
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implying

Γ(v, P )× ΓR = Γ(e, P )× Γǫ + Γ⊥(e, P ). (17)

Equation (16) is the basis of a force-field model for the vibrations of cubic

polyhedral frameworks [2]. For such polyhedra, the freedoms of the vertices,

which encompass internal vibrations and rigid-body motions, span the same

symmetry as the complete set of edge stretches and edge slides, in contrast

to the vibrations of the dual deltahedral frameworks, which can be described

by a purely edge-stretching force field.

The edge terms in (15) can be simplified by using spherical-shell theo-

rems for the π representation [25, 26, 15] associated with the edges, i.e., the

symmetry of the set of tangential vectors along and across edges:

Γ(e, P )× ΓT = Γ(e, P ) + Γ‖(e, P ) + Γ⊥(e, P ), (18)

Γ(e, P )× ΓR = Γ(e, P )× Γǫ + Γ⊥(e, P ) + Γ‖(e, P ), (19)

and hence the terms needed for simplification of (15) are

Γ‖(e, P ) = Γ(v, P )× ΓT − Γ(e, P ) (20)
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and

Γ‖(e, P )× (ΓT + ΓR) = (Γ‖(e, P ) + Γ⊥(e, P ))× ΓT

= (Γ(e, P )× ΓT − Γ(e, P ))× ΓT

= Γ(e, P )× ΓT × ΓT − Γ(e, P )× ΓT . (21)

Collecting terms, (15) becomes

Γ(m)− Γ(s) = Γ(v, P )× ΓT − Γ(e, P )× Γ� − (ΓT + ΓR), (22)

or,

Γ(m)− Γ(s) + ΓT + ΓR = Γ(v, P )× ΓT − Γ(e, P )× Γ�, (23)

where edge-vector representations have been eliminated at the cost of intro-

ducing a new constant representation Γ� that depends on the group but not

on the particular polyhedron and is defined by,

Γ� = ΓT × ΓT − 2ΓT − Γǫ = (ΓT − Γ0)× (ΓT − Γ0)− (Γǫ + Γ0). (24)

4.3. Character computation

The advantage of the formulation set out in the preceding section is that

it reduces the calculation of mobility of the structure H with contact polyhe-

dron C to counting of the edge and vertex elements of P that are in special

positions. Specifically, the vertices of a cubic polyhedron can lie on, at most,

19



E, C3 and σ symmetry elements, and edges can be preserved by at most E,

C2 and σ. Now, ΓT has trace χT (Cφ) = 2 cosφ + 1, and hence χT (C3) = 0,

and for any reflection Γ� has trace χT (σ) = 0. Furthermore, as P is cubic,

the trace under the identity is

χRHS(E) = m− s+ 6 = 3n− 2(3n/2) = 0, (25)

which simply re-expresses the net overbracing by six states of self-stress. The

only terms on the RHS of (23) that survive under other operations give traces

χRHS(C2) = −2e2 (26)

and

χRHS(σ) = vσ, (27)

where e2 is the number of edges of P fixed by the given C2 axis (e2 = 2, 1,

or 0) and vσ is the number of vertices of P fixed by the given mirror plane.

The mobility of all perforated structures constructed according to the

recipe of subdivision of a cubic polyhedral parent can therefore be calculated

using a tabular calculation based on (23), but concentrating on C2 and σ

operations only, notionally filling out the reducible character with a zero

under all other operations, and then subtracting ΓT +ΓR, the representation

of the rigid-body motions. Hence for W, the calculation in Oh needs only

the reduced set of columns
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Reduced Oh 6C2 3σh 6σd

Γ(v, P )× ΓT 0 0 4
−Γ(e, P )× Γ� −4 0 0
Γ(m)− Γ(s) + ΓT + ΓR −4 0 4

(with zero χRHS(R) implied for all other operations R) which reduces to

−A1u +A2u + T1u − T1u, and after subtraction of ΓT +ΓR = T1u + T1g, gives

Γ(m)− Γ(s) = A2u − A1u − T1g − T2u,

exactly as calculated from (23) with the full character table.

The vertex/edge form (23) for the mobility criterion is well adapted to

treatments of infinite families of structures built from cubic polyhedra and

results are listed in the next section. These include calculation of the mobility

of structures derived from subdivision of polyhedra belonging to the families

of prisms (and their relatives, the wedges and barrels), multilayer prisms,

leapfrogs and quadruples, as shown in the following.

5. Examples

5.1. Prisms as parents P

The [N ]-prism has two faces of size N , and N faces of size 4. It is

convenient to treat odd and even prisms separately.

The odd prism has two distinguished faces of size N = (2p + 1), with

maximum point-group symmetry D(2p+1)h, which is a subgroup of the group
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of the centro-symmetric cylinder, D∞h. Calculations can be carried out in

the higher group retaining only C ′
2, σv and σh symmetry elements. Reflection

in the horizontal mirror plane shifts all vertices. An odd prism has vσ = 2

for the (2p+ 1) σv reflections, and e2 = 1 for the (2p+ 1) C ′
2 rotations.

The mobility representation for a system with contact graph C formed

by the subdivision is therefore

D∞h: Γ(m)− Γ(s) = −Σ+
u − Σ−

u − Πu − Πg, (28)

or, for finite p,

D(2p+1)h: Γ(m)− Γ(s) = −A′′
1 − A′

2 − E ′
1 − E ′′

1 . (29)

Symmetry has therefore detected six states of self-stress but no mechanism

for systems based on the odd prism.

On the other hand, the even prism has two distinguished faces of size

N = 2p, with maximum point-group symmetry D2ph (or exceptionally, for

p = 2, Oh). The even prisms do not extrapolate to the D∞h supergroup, as

for all finite p there are two classes of vertical mirror planes and two classes

of C2 axes perpendicular to the main axis. However, extrapolation along the

series D4h,D6h,D8h,D10h [? ] shows the appropriate limiting form of the

representations. An even prism has vσ = 4 for σd, and vσ = 0 for σv, e2 = 0

for C ′
2, and e2 = 2 for C ′′

2 operations and for the C2 operation associated with

the principal axis. Calculations must be carried out separately for N = 4q+2

and N = 4q. The mobility representation for a system with contact graph C

formed by the subdivision of the even prism is
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C

D2ph(W
′)

↓
Dpd(W

′)

C2pv(R
′)

↓
Cpv(R

′)

D2ph(B
′)

↓
Dpd(B

′)

Figure 6: Non-isomorphic flexible perforated polyhedra based on a single contact graph. C
is the contact graph formed by subdivision of the [2p]-prism. W′, R′ and B′ are symmetrical
realisations with 4p triangular and 6p rectangular bodies. All three have single mechanisms
giving initial descent to a halving point group, as indicated. For 2p = 4, W′ can achieve
the higher Oh symmetry, with initial descent to Td.
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D(4q+2)h: Γ(m)− Γ(s) = B1g − A1u − A2g − B2g − E1g − E1u; (30)

D(4q)h: Γ(m)− Γ(s) = B1u − A1u − A2g − B2u − E1g − E1u. (31)

Symmetry detects seven states of self-stress and a non-degenerate mechanism

for all even-prism parents. The B1g/B1u symmetry of the mechanism implies

a motion where alternate three-coordinate vertices of C move up and down

parallel to the main axis, with top and bottom rings moving in phase.

5.2. Wedges as parents P

Further results for two families related to prisms are straightforwardly

obtained. The first is the family of wedges. From any [N + 1]-prism it is

possible to construct a cubic polyhedron with n = 2N vertices that has

two faces of the maximum possible size, which is N + 1. This is done by

‘squeezing out’ one square face from between top and bottom faces of the

prism. More precisely, the [N ]-wedge polyhedron has two faces of size N that

share a common edge, which also links two triangular faces; the remaining

N − 3 faces are square. For N > 3, the point group symmetry of the wedge

polyhedron is C2v. Subdivision of the edges leads to the contact graph of a

perforated polyhedron which has no symmetry-detected mechanism, but six

states of self-stress that span representations −A1− 3A2−B1−B2 (odd N),

or −A1 − 2A2 − B1 − 2B2 (even N) in C2v. Hence, the symmetry approach

predicts all wedges to be rigid.
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5.3. Barrels as parents P

The second family derived from prisms comprises the barrels. The [N ]-

barrel is constructed by placing two N -gons as in a prism and replacing the

central cyclic strip of square faces by a cycle of 2N vertices joined alternately

to vertices in top and bottom faces. The resulting polyhedron has 2N pen-

tagonal faces, N in the corona of each N -gonal face. An example is shown

as a Schlegel diagram in Figure 5.3. The symmetry of the [N ]-barrel is DNd,

the point group of the [N ]-antiprism; for the special case of N = 5, there

is the possibility of achieving Ih symmetry when the [5]-barrel is equilateral

and coincides with the regular dodecahedron.

Figure 7: Schlegel diagram of the [N ]-barrel with N = 9.

The symmetry treatment of perforated polyhedra with DNd barrels as

parents predicts in every case a single mechanism, in spite of the obvious

overbracing of the construction. Each barrel has no edges on the principal

axis, two edges on each C ′
2 axis, and four vertices in each σd plane, and hence

by (26) and (27) has mobility representation B2 −A2 − 2B1 −E1 −EN−1 for
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even N , and A2u − 2A1u − A2g − E1g − E1u for odd N . The mechanism has

the symmetry of a translation along the principal axis.

Case of N = 5 in maximum Ih symmetry, is special. In the Ih group, the

symmetry approach detects a triply degenerate mechanism and nine states of

self-stress (see equation (11)). Descent in symmetry from Ih to D5d, a choice

consistent with restriction of equivalence to the 2N pentagonal faces around

the body of the barrel, gives T2u → A2u+E2u, T1g → A2g+E1g, Au → A1u and

Hu → A1u+E1u+E2u, and the triply degenerate mechanism breaks up into a

single mechanism of A2u symmetry and a pair of E2u symmetry. In the lower

symmetry group, the pair is equisymmetric with a pair of states of self-stress

and hence no longer gives rise to a mechanism that is detectable by symmetry.

The surviving A2u mechanism has the symmetry of a translation along the

principal axis, even though the T2u set of mechanisms in Ih corresponds to

a set of cubic harmonics, rather than to the cartesian triple {x, y, z}.

5.4. Families of non-isomorphic perforated polyhedra based on a common

contact graph

The objects W, R and B are examples of this type. All have the same

contact polyhedron (the subdivision of the cube), and essentially differ only

in the point-group symmetry imposed by the specifics of the various bodies

and hence the embedding of that contact graph in space. As noted in the in-

troduction, the three objects are related by rotations of layers of bodies with

respect to a C4 axis. A straightforward extension is to apply this rotation
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technique to the realisations of the contact polyhedron that arises from sub-

division of the [2p]-prism. (See Figure 6.) If the bodies are arranged in three

layers (top: an alternating cycle of 2p triangles and 2p rectangles; middle:

an alternating cycle of 2p squares and 2p holes; bottom: as top layer), we

can construct analogues W′, R′ and B′ of W, R and B.

It is easy to see that all three cases have the same representation Γ(m)−

Γ(s) as that calculated for the subdivision of the even prism (Section 5.1)

in the appropriate point group, and that all will share the same symmetry-

detected mechanism.

5.5. Inflated cubic polyhedra as parents P

Cubic polyhedra can be inflated to yield other cubic polyhedra using the

family of Goldberg-Coxeter transformations [7, 13]. Two transformations

of interest in applications to fullerenes for example are the leapfrog L and

quadrupling Q inflations [16]. Both preserve the point group symmetry of

the parent. Given an n-vertex parent P , L produces a cubic polyhedron with

3n vertices, and Q produces one with 4n vertices.

The various reducible representations for sets of structural components of

the polyhedra L(P ) and Q(P ) can be derived from those of P . These rela-

tions suggest some interesting questions about the effects of transformations

on perforated polyhedra.
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5.5.1. Leapfrog polyhedra as parents

The leapfrog operation can be described in several equivalent ways, one

of which is illustrated in Figure 8. Each face of P is replaced by a rotated

inset of itself, and all new vertices are joined by edges perpendicular to the

original edges of P ; vertices and edges of P are then discarded.

P L(P ) Q(P )

Figure 8: Transformation of faces of polyhedon P under leapfrog (L(P )) and quadrupling
(Q(P )) transformations.

For leapfrogs of cubic polyhedra [16],

Γ(v,L(P )) = Γ(v, P )× ΓR + Γ(e, P )− Γ(e, P )× Γǫ (32)

and

Γ(e,L(P )) = Γ(v, P )× ΓT + Γ(e, P ). (33)

Consider two perforated polyhedra. One is derived from P , i.e., it has

contact graph C = S(P ). The other is derived from L(P ) and has contact

graph S(L(P )). Mobilities of each can be calculated in G, the point group
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of both P and L(P ), using (23). We can ask the question: When is the

symmetry-predicted mobility Γ(m)−Γ(s) equal for the perforated polyhedra

based on a polyhedron P and its leapfrog?

Define the mobility difference ΓLP as the representation Γ(m) − Γ(s)

calculated with parent L(P ) minus Γ(m)−Γ(s) calculated with P as parent.

This representation is

ΓLP = Γ(v, P )× {ΓR − Γ0 − Γ�} × ΓT − Γ(e, P )× {ΓR − ΓT}. (34)

ΓLP has character zero under all but reflection operations, for which χLP (σ) =

2e‖ + 2e⊥ − 2vσ = 2(e⊥ − e‖), where e‖ and e⊥ are respectively the num-

bers of edges of P lying in and crossing the σ mirror plane, and vσ is the

number of vertices of P lying in that plane. The same result for χLP (σ)

could be derived by noting that leapfrogging affects e‖ and e⊥ as follows:

e‖(L(P )) = e⊥(P ) = 1
2
vσ(L(P )) and e⊥(L(P )) = 3e‖(P ).

By either route, various conditions applying to equality of Γ(m) − Γ(s)

for perforated polyhedra with C = S(L(P )) and C = S(P ) can be derived.

The two structures have the same Γ(m)− Γ(s) if P is chiral, i.e., belongs to

a pure rotational group Cn, Dn, T , O, I, or P is achiral but belongs to a

group that contains no reflection elements, i.e., Ci, S2n.

The smallest chiral cubic polyhedron has n = 10 vertices (see e.g., [14])

and is of C2 symmetry. All perforated polyhedra with C2 parents are with-

out symmetry-detectable mechanisms as Γ(m) − Γ(s) has χ(E) = −6 and
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χ(C2) = 2 = −e2, and so is −(2 + e2)A − (1 + e2)B. Similar reasoning

shows that all perforated polyhedra with D2 or DN (N odd) parents also

lack symmetry-detectable mechanisms. Symmetry-detectable mechanisms

are, however, possible for D4 and D6 parents P .

The two structures have different Γ(m)−Γ(s) if P is bipartite and belongs

to a group with a reflection plane, i.e., Cs, Cnh, Cnv, Dnh, Dnd, Td, Th, Oh,

Ih; this follows as a bipartite polyhedron has only even faces, and any mirror

plane cuts the polyhedron with either e‖ 6= 0 and e⊥ = 0 or e‖ = 0 and

e⊥ 6= 0.

When P is non-bipartite and belongs to a group with one or more mirror

planes, the two perforated polyhedra share mobility Γ(m)−Γ(s) if e‖ = e⊥ for

every mirror plane. Examples include those with P the tetrahedron (leapfrog

= truncated tetrahedron) and the dodecahedron (leapfrog = truncated icosa-

hedron, skeleton of the C60 molecule).

Double leapfrogging restores the orientation of those faces derived from

the original parent. From (32), (33)and (34) it follows that if structures with

C = S(P ), C = S(LP ), and C = S(L2P ) are all to share a common mobility

Γ(m) − Γ(s), it is necessary to have e‖(P ) = e⊥(P ) = vσ(P ) = 0 for every

reflection plane σ. This condition can be achieved if and only if parent P

has no reflection planes. In particular, all chiral parents P give an infinite

chain of perforated polyhedra based on C = S(Lq(P )), q = 0, 1, . . . that all

share the same mobility.
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5.5.2. Quadrupled cubic polyhedra as parents

In quadrupling, each face of P is replaced by an unrotated inset of it-

self and new vertices are joined by new edges to the corresponding original

vertices of P ; all original edges of P are discarded (see Figure 8).

For quadruples of cubic polyhedra,

Γ(v,Q(P )) = Γ(v, P ) + Γ(v, P )× ΓT (35)

and

Γ(e,Q(P )) = Γ(v, P )× ΓT + Γ(e, P ) + Γ⊥(e, P )

= Γ(v, P )× (ΓT + ΓR) + Γ(e, P )× (Γ0 − Γǫ), (36)

and hence from (23), the mobility of a structure whose parent is Q(P ), i.e.,

of a structure with contact graph C = S(Q(P )), can be written in terms of

the vertex and edge representations of the original polyhedron P as

Γ(m)− Γ(s) + ΓT + ΓR = Γ(v, P )× {Γ0 + ΓT − Γ� − Γǫ × Γ�} × ΓT

−Γ(e, P )× {Γ0 − Γǫ} × Γ�}. (37)

In this equation, the RHS has non-zero trace only for reflection planes σ,

where χ(σ) is 4e‖(P ). A simple consequence is that Γ(m) − Γ(s) for C =

S(Q(P )) includes no mechanism detectable by symmetry if P belongs to a

point group without mirror planes.
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Quadrupling can preserve the mobility Γ(m) − Γ(s) in other circum-

stances. Perforated polyhedra with C = S(P ) and C = S(Q(P )) can share

the same mobility, e.g., when vσ = 2e‖ = 0, as in a cylindrical polyhedron of

appropriate symmetry that has a belt of zig-zag hexagonal faces.

6. Connection with the Hobermann Switch-Pitch

The Hobermann Switch-Pitch is a toy that presents a tetrahedrally sym-

metric (T ) exterior, and exhibits a transformation from a symmetric cover-

ing of the sphere that switches between two visually different closed forms

when tossed in the air. This inside-out transformation is accomplished by

movement along a unique mechanism, as the structure passes through a high-

symmetry open configuration of O symmetry. The manufactured object has

special gearing to restrict the motion to a single mechanism that passes

through any potential multifurcation points with preservation of symmetry.

The lack of reflection symmetry at all points along the pathway is not in-

trinsic to the nature of the mechanism, but is caused by an aesthetic choice

of the shapes for the moving parts. These superficial differences disappear

at the level of the contact graph, C. As a graph, C is identical with that

derived from W , and, if we move up to the Oh supergroup and down to O,

the symmetry analysis [3] proceeds exactly as in section 3, with deletion of

all improper operations in the case of the Switch-Pitch. Thus, Γ(m)−Γ(s) is

exactly as in (4) after removal of g/u labels, and hence predicts a mechanism

that entails descent in symmetry from O to T .
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We note that this connection between the Switch-Pitch and the perforated

polyhedron W has also been observed by Walter Whiteley and communicated

to the present authors.

7. Conclusion

Symmetry extension of counting rules has been shown to explain obser-

vations of mobility in some heavily overconstrained systems and to suggest

several classes of generalised objects where flexibility also survives the over-

bracing. Necessary conditions for such mobility take the form of counts

applied under key elements of symmetry, and typically improve on the stan-

dard mobility count, which can be seen as counting under the identity element

alone.
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