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Abstract

In the field of aging research, family-based sampling study designs are

commonly used to study the lifespans of long-lived family members. However,

the specific sampling procedure should be carefully taken into account in order

to avoid biases. This work is motivated by the Leiden Longevity Study (LLS),

a family-based cohort of long-lived siblings. Families were invited to participate

in the study if at least two siblings were ‘long-lived’, where ‘long-lived’ meant

being older than 89 years for men or older than 91 years for women. As a result,

more than 400 families were included in the study and followed for around 10

years. For estimation of marker-specific survival probabilities and correlations

among life times of family members, delayed entry due to outcome-dependent

sampling mechanisms has to be taken into account. We consider shared frailty

models to model left-truncated correlated survival data. The treatment of left

truncation in shared frailty models is still an open issue and the literature on this

topic is scarce. We show that the current approaches provide, in general biased

estimates and we propose a new method to tackle this selection problem

by applying a correction on the likelihood estimation by means of inverse

probability weighting at the family level.
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1 Introduction

Family-based cohort studies are frequently used in epidemiology in order to investigate

traits which aggregate within families. In the field of aging research, human longevity

has shown to cluster within families (1–5) and this has motivated numerous family-

based sampling study designs based on the selection of long-lived (according to a set

of predefined criteria) family members (e.g. siblings) from a reference population of

interest. The study of their survival times provides insights into the factors affecting

survival in old individuals, marker-specific survival probabilities, and the level of

lifespan correlation within families. However, the specific sampling procedure should

be carefully taken into account in the statistical analysis of the resulting data in order

to avoid biases that may lead to wrong conclusions. In general, given that the selection

of participants is based on age criteria, left truncation by death plays an important role

when studying longevity or extreme survival. Challenges in this framework are to deal

with the delayed entry resulting from the sampling mechanism, to take into account

correlation between family members, and to deal with the interplay between them.

This work is motivated by the Leiden Longevity Study (6, 7), a family-based cohort

of long-lived siblings together with their offspring and the partners thereof. The goal of

the recruitment strategy was to enrich for genetic variants involved in aging. Families

were invited to participate in the study if at least two siblings were ‘long-lived’, where

1 Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, The

Netherlands.

2Department of Molecular Epidemiology, Leiden University Medical Center, The Netherlands

3Department of Statistics, University of Leeds, United Kingdom

Corresponding author:

Mar Rodrı́guez-Girondo. Department of Medical Statistics and Bioinformatics, Leiden University

Medical Center. Post Zone S5-P, PO Box 9600, 2300 RC Leiden, The Netherlands.

Email: M.Rodriguez Girondo@lumc.nl

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



Rodrı́guez-Girondo, Deelen, Slagboom and Houwing-Duistermaat 3

●

●

●

●

●

●

●

2002 2004 2006 2008 2010 2012 2014

9
0

9
2

9
4

9
6

9
8

1
0
0

1
0
2

Calendar time

a
g
e

Family 1
Family 2
Family 3

Figure 1. An example of three included families in the Leiden Longevity Study.

‘long-lived’ meant being older than 89 years for men or older than 91 years for women.

As a result, more than 400 families were included in the study between 2002 and 2006

and followed for around 10 years. Note that similar designs are also used by other

studies, such as the European study GEHA (Genetics of Healthy Aging, (8)) and the

international (U.S.and Denmark) LLFS (Long Life Family Study, (9)).

The Lexis diagram displayed in Figure 1 illustrates the selection procedure in the

Leiden Longevity Study (LLS). The aim of our data analysis is two fold. On the one

hand, we are interested in estimating the effect of (genetic) markers affecting survival

in the elderly and their corresponding marker-specific survival rates, by using the ‘long-

lived’ siblings of the LLS. On the other hand, we are interested in estimating the level

of familial correlation of lifespan in the subpopulation of long-lived.

We adopt a conditional approach by considering shared frailty models (10–12) to

model correlated survival data, using age as time scale. The frailty variance represents
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the within-family aggregation of the studied survival times (see, for example, Section

4.1. in (11)), and hence, its correct estimation is of primary interest in aging research

(1, 5, 13). Additionally, the prediction of marker-specific survival rates is a relevant

topic in the field of longevity (14). This can also be addressed from a frailty model

perspective, for which the unbiased estimation of both the marker effect and baseline

hazard is required.

Since the inclusion criterion relies on being alive at a certain enrollment period,

individuals are only observed if their age at death is greater than certain age at entry

(determined by the enrollment mechanism). This leads to the presence of left-truncated

survival times due to delayed entry.

The treatment of left truncation in shared frailty models is still an open issue and the

literature on this topic is scarce. Left truncation was already considered by Nielsen

et al. (15) in their seminal paper on frailty models. Namely, these authors studied

the correlation between the lifespans of parents, biological and adopted children. Left

truncation due to delayed entry is handled by adapting the at-risk indicators in this

example. Later, Jensen et al. (16) and Rondeau et al. (17) independently, proposed an

alternative approach which accounts for left truncation at the frailty distribution level.

Recently, van der Berg and Drepper (18) revisited the problem and proposed the same

likelihood as Jensen et al. (16), and Rondeau et al. (17) for the specific case where each

cluster contains two units and both are observed (but under delayed entry). Also, in the

field of recurrent events, both approaches have been discussed (20).

In this paper, we revisit the former approaches for dealing with left truncation in

family data in order to provide clear guidelines about their assumptions and their

appropriateness according to the data at hand. Specifically, we will discuss two

selection mechanisms, across and within families, which influence the configuration

of the observed sample. On the one hand, left-truncated cluster survival data can be

regarded as a problem of frailty-dependent (non-random) selection of families, as it has

been previously recognized (16, 20). On the other hand, the presence of left -truncation

due to delayed entry induces a within-family selection phenomenon which has been

less studied so far. We illustrate the different impact of both selection mechanisms

according to the size of the family and different selection criteria and we show that

the current approaches provide, in general biased estimates due to the assumption of

non-informative selection of individuals within families. We propose a new method to
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tackle this selection problem by proposing a correction on the likelihood estimation by

means of inverse probability weighting at the family level.

The rest of the paper is organized as follows. In Section 2, we introduce notation

and we establish a general framework for different sampling schemes resulting on left-

truncated clustered survival data. Shared frailty models are revisited in Section 3. In

Section 4, we present existing and new methods for dealing with left-truncation in

shared frailty models. An intensive simulation study is presented in Section 5, while in

Section 6 the methods are applied to the LLS. Main conclusions and a final discussion

follow in Section 7.

2 Notation and problem description

Let the observations be given by (Bij , Vij , Tij , δij ,xij), where i = 1, . . . , n index all

the studied families, j = 1, . . . ,mi the observed siblings from the i-th family, Bij is the

date of birth, Vij is the date of enrollment in the study, Tij is the date of death or end of

follow-up, δij is the non-censoring indicator and xij = (x1ij , . . . , xqij)
′ a vector of q

individual-specific covariates which may affect survival. We focus on tij = Tij −Bij ,

the potentially right-censored survival time given in age scale. Since the survival times

and covariates of the included individuals are only observed if they are alive at certain

specific date Vij determined by the enrollment process, individuals are observed only

if their age at death (tij) is greater than certain age at enrollment in the study, defined

as t0ij = Vij −Bij .

This type of data is the result of outcome-dependent sampling schemes and hence,

the specific sampling mechanism can not be neglected in the models (see (19, 20) and

references therein). Denote by Ai = I
{[∑ni

j I(tij > t0ij ≥ c0)
]
≥ K

}
the inclusion

indicator for family i according to the pre-defined study design (c0, K and ni

deterministic). Ai = 1 if family i is included in the study, i.e. Ai = 1 if at least K

alive siblings were older than a predefined value c0 ≥ 0 by the recruitment period. In

general, c0 represents the age at the origin of the follow-up time and may be common

for all the individuals, as in the GEHA project (c0 = 90) or covariate-specific, as it

is the case in the Leiden Longevity Study, where gender-specific entry criteria were

considered (c0 = 89 for men, c0 = 91 for women). ni is the size of the family i

(including those siblings not included due to death previous to recruitment but with
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tij ≥ c0). Note that ni is known because the genealogical information regarding birth

and death dates is available for the complete family, i.e. also for those members

deceased before recruitment started, and for which none of the covariates x are

available. Finally, denote by Mi the random variable referring to the number of

included individuals from family i, Mi = mi, and define the sampling event for family

as Ωi = {ti1 ≥ t0i1, . . . , timi
≥ t0imi

,Mi = mi, ni}.

In the LLS, the members of a given family are selected at the same timepoint

(Vij = Vi, j = 1, . . . ,mi) but at different ages (due to their different birth dates),

which provokes different entry ages in the sample across individuals. Specifically, let

us consider the recruitment period given in chronological time by a discrete process

of dates [τ1, . . . τQ] and suppose that an arbitrary family i is invited to participate at

time τq given that it verifies [Ai = 1|τq, c0]. This means that those members who are

too young to be included at τq are not recovered in a posterior sampling time point and

that Vij = Vi = τq , i = 1, . . . , ni. Under such sampling scheme, t0ij = τq −Bij ≥ c0,

where Bij is the date of birth of sibling j from family i.

Note that the former general definition of Ai covers a large number of outcome-

dependent sampling scenes, all affected by delayed entry, for example, when

considering age as time scale. On the one hand, one may consider the selection of

a given family only if all its members are observed, we refer to this situation as

‘fully observed’ families, where mi = ni by design. This means that a family is

included if and only if all its eligible members (i.e., those ni with tij > c0) are alive

at the recruitment timepoint Vij , so that we can follow them all, even if their entry

times differ. Such sampling schemes are typically used in twin studies (1, 5) and

imply that Mi is deterministic. On the other hand, less restrictive selection schemes,

where families are partially observed (Mi is random and mi ≤ ni), are common in

epidemiological studies. Family-based studies relying on arbitrary number of siblings,

as it is the case of the LLS, select siblings if at least two of the total number of

the sibship are alive at the recruitment period (K = 2). Also, the dynamic sampling

framework considered in Jensen et al. (16) to study family aggregation of childhood

mortality implies different number of selected individuals per family, without fixing

any minimum number of individuals per cluster, i.e. K = 1.

Given that the inclusion of families under left-truncation is driven through the

inclusion of (some of) their members, we can treat the unobserved family members
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as missing data. Set Rij = I {tij > t0ij ≥ c0} = 1 if the member j of family i is

included and 0 otherwise, i.e., Rij = 0 if t0ij > tij ≥ c0. Let Ri = (Ri1, . . . , Rini
)

be the vector of non-missingness indicator of family i. Ri is always observed as long

as ni (the family size at sampling time) is known. Consequently, we can redefine the

number of observed siblings of family i as Mi =
∑ni

j=1 Rij .

In the next Section, we provide a general methodological overview to deal with left-

truncated frailty models, paying special attention to the impact in the inference of the

different selection procedures according to the specific choices of K and the resulting

patterns of Ri.

3 Shared frailty models revisited

We consider shared frailty proportional hazard models for the analysis of clustered

survival data (10–12):

λij(t) = uiλ0(t,γ) exp(βxij), i = 1, . . . n, j = 1, . . . , ni, (1)

where λ0(t,γ) refers to the baseline hazard, β are the regression coefficients

corresponding to the vector of covariates x and the term u > 0 refers to an unobserved

random effect (frailty) shared by the members of the same family. The baseline

hazard λ0(t,γ) is specified in terms of the vector of parameters γ. If γ is infinitive,

the baseline hazard is completely unspecified and it corresponds to a frailty Cox

model, otherwise, when γ is a finite-dimensional vector, we refer to parametric frailty

models. The unobserved heterogeneity shared within families accounts for genetic or

(early life) environmental factors common to members of a given sample and it is

assumed to follow certain parametric distribution G in the population. In this paper,

we assume that u follows a gamma distribution. Gamma frailties have been broadly

used because of their attractive mathematical properties, given that the dependence

induced by the frailty can be expressed in terms of their Laplace transforms, which

allows the derivation of closed-form likelihoods when assuming a parametric baseline

hazard λ0, i.e. when γ is a finite-dimensional vector. Otherwise, if γ is infinite-

dimensional, EM algorithms (15) or penalized likelihood approaches (17) have been

proposed to fit model (1). See Duchateau and Janssen (11) for a recent review on

frailty distributions and discussion on existing estimation procedures for frailty models.
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Due to identifiability reasons, we assume that u ∼ Γ(1/θ, 1/θ), which ensures that

E(u) = 1 and var(u) = θ.

Inference of gamma shared frailty models has received a lot of attention in past

decades and it is well established (see Cortiñas et al. (21) for a review). In general,

without left truncation, and assuming that conditional on u, right-censoring is non-

informative, the marginal likelihood contribution of family i is given by:

Li = Eu[fc(t1, . . . , tni
|xi, ui)] =

∫

u

ni∏

j=1

[uλ0(tij , γ) exp(βxij)]
δij exp[−uΛij(tij)]dG(u),

(2)

where fc refers to the conditional probability density function, and Λij(t) =

Λ0(t) exp(βxij), Λ0(t) =
∫ t

0
λ0(s,γ)ds is the cumulative hazard.

Recalling the Laplace transform derivatives of u as L(r)(s) =

(−1)rEu [u
r exp(−us)], and denoting by Di the number of uncensored observations

of family i, we can rewrite the likelihood contribution of a family i as:

Li =

ni∏

j=1

[λ0(tij , γ) exp(βxij)]
δij (−1)DiL(Di)

[∑ni
j=1

Λ(tij)
]

(3)

and the parameters of interest (γ,β, θ) are estimated by maximizing the log-likelihood

obtained from equation (3), namely solving:

max
γ,β,θ

ℓ(γ, β, θ) = max
γ,β,θ

n∑

i=1

ℓi(γ, β, θ) = max
γ,β,θ

n∑

i=1

logLi(γ, β, θ) (4)

4 Shared frailty models with delayed entry

So far, the inference of left-truncated gamma frailty models has been approached from

two different points of view. The fundamental difference among them relies on the

specification of the frailty distribution when constructing the marginal likelihood.

Note that the frailty distribution G corresponds to the distribution of the frailty

values at the population level, which corresponds with the origin time c0 of the

study. However, given that frailer individuals die first, the outcome-dependent selection

related to left-truncated provokes that families with larger values of ui are less likely

to be observed. As a result, the frailty distribution in the population of survivors at a

given time t > c0 differs from the original one given by G. Specifically, the mean of

the frailty distribution becomes smaller as the stronger individuals remain (those with
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smaller values of u). At the same time, the variance also becomes smaller since the

remaining individuals at risk are more alike. A nice property of the gamma distribution

is that the conditional frailty density at time t > c0 is still a gamma density (this

property is commonly referred as updating).

Following the notation in Jensen et al. (16), we refer to the two existing approaches

as ‘naı̈ve’ (15) and ‘updated’ (16–18, 20, 22).

4.1 ‘Naı̈ve’ approach

The first approximation to adapt the likelihood expression given by equation (2) to

the presence of delayed entry relies on the same rationale which is standard in the

context of survival analysis for left-truncated independent observations. Specifically,

delayed entry is handled by adapting the risk sets at the level of the likelihood

contribution of a given individual, i.e. replacing I (s ≤ tij) by I (t0ij < s ≤ tij)

in the definition of the cumulative hazard. Consequently, to account for delayed

entry, Λ0(tij) =
∫ tij
0

λ0(s,γ)ds =
∫∞

0
I(s ≤ tij)λ(s,γ)ds is replaced by Λ0(tij) =∫ tij

t0ij
λ(s,γ)ds =

∫∞

0
I(t0ij < s ≤ tij)λ(s,γ)ds in equations (2) and (3). As a result,

provided that truncation is independent from survival of each unit, the resulting

likelihood contribution of family i with mi observed individuals is given by:

LN
i = Eu[fc(ti1, . . . , timi

|ti1 > t0i1, . . . , timi
> t0imi

,xi, ui)] =
∫ ∞

0

mi∏

j=1

fc(tij |xij , ui)

Sc(t0ij |xij , ui)
dG(ui) =

∫

u

mi∏

j=1

[uλ0(tij , γ) exp(βxij)]
δij exp {−u [Λij(tij)− Λij(t0ij)]} dG(u)

(5)

where fc and Sc refer to the conditional probability density and survival functions,

respectively. The second equality in expression (5) implies that the frailty distribution

is not affected by the selection process induced by the delayed entry of the individuals

within families, i.e. expression (5) assumes that G(ui) = G(ui|ti1 > t0i1, . . . , timi
>

t0imi
), as it has been pointed out by Jensen et al. (16) and van den Berg and Drepper

(18). However, such an assumption is unrealistic, since, as mentioned, in general,

lower values of u will be over-represented when increasing age at entry, as a direct

consequence of the fact that frailer individuals (those with higher values of u) die first
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and hence, the probability of surviving until their corresponding entry time is lower for

them. Hence, the estimates (γ̂, β̂, θ̂) resulting from expression (5) will be, in general,

inconsistent. However, the size of the bias differs according to the level of discrepancy

between G(ui) and G(ui|ti1 > t0i1, . . . , timi
> t0imi

) in the data at hand. In general,

under common frailty distribution and random truncation patterns, one would expect

that the level of bias depends on the size of the families in the underlying population.

This is due to the fact that even if the size of the family is non-informative with regard

to the survival, it affects the distribution of the frailty term in the selected families

(23, 24). To illustrate this, suppose that the members of a given family i share a

fixed truncation point t0, then the conditional selection probabilities at the family level

can be written as P (Ai = 1|ni, t0, ui) =
∑ni

j=K

(
ni

j

)
Sj(t0)

j [1− Sj(t0)]
ni−j

, where

Sj(t0) = S(t0|ui) is the conditional survival at the entry time t0 for a given member

j of family i (free of the particular value of ni). Note that among families with similar

frailty term ui, larger families are more likely to be included. Moreover, the under-

represented higher values of the frailty distribution are more likely to be observed

under delayed-entry when belonging to larger families, which potentially would entail

G(u) ≈ G(u|t > t0). The practical impact of this issue is empirically evaluated by

means of Simulations in the next Section.

4.2 ‘Updated’ approach

An alternative strategy for dealing with left-truncation in the shared-gamma frailty

model relies on writing the likelihood as follows (17, 22):

LUP
i =

Eu[fc(ti1, . . . , timi
|xi, ui)]

Eu[Sc(t0i1, . . . , t0imi
|xi, ui)]

(6)

By using the gamma distribution properties, the numerator can be expressed in terms

of Di- derivative of the Laplace transform of u, taking the form of equation (3), while

the denominator can be written as Eu[Sc(t0i1, . . . , t0imi
|xi, ui)] = L

[∑mi

j=1 Λ(t0ij)
]

The former equation (6) can be rewritten as:

LUP
i =

Eu[fc(ti1, . . . , timi
|xi, ui)]

Eu[Sc(t0i1, . . . , t0imi
|xi, ui)]

=

∫∞

0

∏mi

j=1 f(tij |tij > t0ij , xij , ui)P (tij > t0ij |xij , ui)dG(ui)∫∞

0

∏mi

j=1 P (tij > t0ij |xij , ui)dG(ui)

(7)
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Note that by applying Bayes’s theorem, we obtain

G(ui|ti1 > t0i1, . . . , timi
> t0imi

) =

∏mi

j=1 P (tij > t0ij |xij , ui)G(ui)∫∞

0

∏mi

j=1 P (tij > t0ij |xij , ui)dG(ui)
(8)

and hence, equation (7) is equivalent to:

LUP
i =

∫ ∞

0

mi∏

j=1

fc(tij |tij > t0ij , xij , ui)dG(ui|ti1 > t0i1, . . . , timi
> t0imi

) (9)

Equation (9) explicitly shows the updating nature of this approach. In contrast to

the ‘naı̈ve’ approach, the conditional density of the observed units within a family is

averaged over the conditional frailty distribution given the entry times of the family

members. This allows to tackle the first selection process (across families) mentioned

introduced in Section 1, by adapting the level of dependency within the observed

families to the informative selection process. Instead of assuming mean one frailties

to all the selected families (as in the naı̈ve approach), in the updated approach the

mean of the frailty depends on the number and timing of the observed events for each

family.

This approach is the state of art method for dealing with left-truncated correlated

survival data in frailty models, however, it still relies on a strong assumption in

order to provide valid estimates, namely that mi = ni fixed. This can be observed by

rewriting the likelihood contribution of family i in terms of the random variable Mi and

considering the whole sampling event Ωi = {ti1 ≥ t0i1, . . . , ti1 ≥ t0i1,Mi = mi, ni}:

Li =

∫

u

fc(ti1, . . . , timi
|xi, ui,Ωi)dG(ui|Ωi) =

∫∞

0

∏mi

j=1 f(tij |tij ≥ t0ij , xij , ui)P (tij ≥ t0ij |xij , ui)P (Mi = mi|ui, ni)dG(ui)∫∞

0

∏mi

j=1 P (tij ≥ t0ij |xij , ui)P (Mi = mi|ui, ni)dG(ui)

(10)

Note that equation (10) reduces to equation (7) if and only if P (Mi = mi|ui, ni) is

assumed to be independent of ui. In that case, the term P (Mi = mi) can be moved

outside the integrals in both numerator and denominator of equation (10) and it cancels

out. However, such assumption requires to consider Mi deterministic and reformulate
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the sampling event for family i as Ωi = {ti1 ≥ t0i1, . . . , timi
≥ t0imi

}. This holds in

the very special case in which mi = ni by design (‘all in/all out’ selection procedure)

and consequently equation (7) leads to correct estimates in that case.

However, the application of the updated approach in samples with partially observed

families (Ri contains at least one zero-entry) leads to biased results since the missing

data mechanism associated to the random variable Mi depends, in general, on the

frailty term ui. Under the common assumption of independence between the left-

truncation and survival times (the age at entry is independent of the lifetime) and

independence between covariates and the frailty term (the covariates are evenly

distributed across the population), the frailty term determines the level of within-family

selection. Specifically, given two arbitrary families of the same size ni with different

frailty terms and assuming that the recruitment ages of their members has common

support, the family with larger ui is likely to have smaller mi due to the effect of the

frailty on the lifetime of an individual.

We now propose a new method based on the correction of expression (7) which relies

on inverse probability weighting for dealing with missing data.

4.3 New proposal: ‘weighted’ approach

As previously discussed, the updated method is only valid for fully observed families.

However, in many applications, our sample consists of a mixture of both, fully and

partially observed families. One way to deal with this situation is to remove all partially

observed families from the sample, i.e. to consider only the families for which Ri = 1,

but this may lead to discarding a substantial part of the data at hand, with an evident

cost in efficiency.

Alternatively, we propose to correct the updated method proposed in the Subsection

4.2. accounting for the non-observed individuals in each family by means of inverse

probability weighting (IPW).

The general idea of IPW is to weigh the contributions of the observed units in

the estimation by the inverse of the probability of being observed. Denote such

probabilities by πi for an arbitrary unit i. If πi is consistently estimated then

the estimation relying on the pseudo-population resulting from weighing each i

observation with 1/πi provides consistent estimates (see (25–27) and references

therein).
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In our case, this principle may be applied at the family level to weigh the likelihood

contribution of family i given by equation (7), which is actually correctly specified

in absence of within-family missing data (i.e., it coincides with equation (10) when

mi = ni, i = 1, . . . , n).

The general idea of our method is to weigh each family i contributing with Mi = mi

observed individuals with the probability πi of having observed exactly mi members.

Recall the inclusion indicator for family i Ai = I
{[∑ni

j I(tij > t0ij ≥ c0)
]
≥ K

}

introduced in Section 2. We can use the more restrictive inclusion indicator of family i,

defined in terms of the mi observed members out of ni as A′
i = I(Ωi) = Ai × I(Mi =

mi, ni) and the maximization problem given by expression (4) can be reformulated in

terms of π = (π1, . . . , πn) as follows:

max
γ,β,θ

ℓ(γ, β, θ) = max
γ,β,θ

n∑

i=1

ℓi(γ, β, θ) = max
γ,β,θ

n∑

i=1

A′
i

πi
logLUP

i (γ, β, θ) (11)

In this way, the new pseudo-population resembles a sample of fully-observed

families and expression (11) provides consistent estimates under correct specification

of the vector of weights π = (π1, . . . , πn). Our approach is motivated by Molenberghs

et al. (28) who investigated inverse probability weighting in the context of partially

observed longitudinal data. The proof of consistency of the estimator derived from

expression (11) in Appendix B shows that their results still apply here.

Since LUP
i , the base of our proposed weighted estimating procedure given by

expression (11), is conditioned to Ai = 1, we consider an extra weight to account for

incomplete selection also conditioned to Ai = 1. Specifically, we define πi = P (Mi =

mi|Ai = 1, ni), i = 1, . . . , n.

Note that the impact of the unobserved frailty term ui on the selection of family i is

captured in LUP
i and the denominator in expressions (6) and (7) can be regarded as an

estimate of P (Ai = 1|ui), which ‘weighs’ the numerator to correct for the informative

selection of families induced by left-truncation.

Assume, without loss of generality, that the first mi family members are

observed while the remaining ni −mi are missing, (ti1, . . . , timi
, timi+1, . . . , tni

) =

(ti
obs, ti

miss). As stated before, the missing data mechanism is informative of the

family-specific frailty term u, but note that it is missing completely at random (MCAR)

given u, i.e., within families, provided usual assumptions such as independence
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between random left-truncation and survival times and that covariates are evenly

distributed across and within families. This implies that we can assume that the

individuals within a family are exchangeable, in the sense that the distribution of any

sub-vector of (ti1, . . . , tini
) is the same than that corresponding to any other sub-vector

of equal length, i.e. for a given family i, E(tmiss

i
|ui) = E(tobs

i
|ui).

In practice, given the conditional MCAR nature of the missingness mechanism

within each selected family, we propose to estimate πi = P (Mi = mi|Ai = 1, ni)

according to a completely at random selection of mi individuals from the total ni

members of the selected family i. Specifically, we propose the following IPW weights:

πi =

(
ni

mi

)(
1

ni

)mi
(
1−

1

ni

)ni−mi

.

4.4 Software implementation

For practical application of the presented methods, we created an user friendly R

function, LTfrailty which is available from the authors upon request. The function

requires the user to introduce clustered survival data set in their standard presentation

consisting of the observed survival times, censoring indicator, cluster identifier, and

vector of covariates. Additionally, for the weighted approach the cluster size must be

provided by the user. The updated approach is implemented in our function using the

parfmR package (29). The three implemented methods rely on a Weibull specification

for the baseline hazard and the same optimization algorithm is used in order to

maximize the log-likelihood. Namely, the optim() R function was employed, based

on a quasi-Newton method (option method="L-BFGS-B"). An alternative existing

implementation of the updated approach with gamma frailty is the frailtypack R

package by (30). Moreover, coxme uses the naı̈ve approach under a lognormal frailty

distribution specification (31, 32).

5 Simulation study

5.1 Simulation setup

A simulation study was conducted to assess the performance of the new method based

on weighted pseudo-likelihood and to compare it with the two existing approaches,

naı̈ve and updated, in different controlled scenarios intended to mimic relevant

Prepared using sagej.cls



Rodrı́guez-Girondo, Deelen, Slagboom and Houwing-Duistermaat 15

situations in practice. We generated 1000 Monte Carlo trials based on the following

theoretical model:

λij(t) = uiλ0 exp(1.5xij), i = 1, . . . n, j = 1, . . . , ni

where t is the observed survival time, λ0 = 1 represents the constant baseline hazard

and x is a binary risk factor (β = 1.5). The latent frailty term ui shared for the

ni members of a given family i is drawn from a gamma-distribution with mean 1

and variance θ (θ = 0.1, 0.5 and 2 were considered). In order to check the impact

of the cluster size on the performance of the three analyzed methods, we compare

the results corresponding to populations composed of ‘small’ clusters (ni = 2), large

‘clusters’ (ni = 8) and a mixture of both. Left-truncation times were drawn from a

uniform distribution with support [0,4] (C ∼ U [0, 4]). We assumed a 50% of truncated

observations and no right-censoring. In terms of sample size, we considered three

different situations (n = 400, 800 and 1600 clusters).

In our basic simulation setting observations were removed from the analysis if their

truncation time was larger than their survival time (K = 1 according to definition of

Ai of Section ). Additionally, we considered the selection criterion used in the LLS

(K = 2). Note that this corresponds with K = ni (complete families selection) when

considering families of size 2. The complete family selection based on populations

containing large families (ni = 8) is omitted. We considered a Weibull specification

for the baseline hazard (γ = (λ0, ρ0)) which enables to derive close-form expressions

for the maximum likelihood estimates for the three studied methods. The explicit

expressions for the naı̈ve approach (given by expression (5)), and updated (given

by expression (7)) corresponding to the Weibull hazard specification are given as

Supplemental material in Appendix A. Standard errors of the parameters were also

estimated. For the naı̈ve and updated methods, they were computed as the square roots

of the diagonal elements of the observed hessian matrix. For the weighted approach,

robust estimates of the standard errors were obtained using a sandwich estimator (see

Tsiatis (25) for technical details and Rondeau et al. (17) for application in frailty

models). Coverage rates of the 95% confidence intervals for each method are also

reported.
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5.2 Simulation results

For each of the studied scenarios we provide results on mean estimated relative bias

(defined as the difference between the simulated mean and true parameter value divided

by the true value), empirical standard deviation and mean square error (MSE) across the

1000 Monte Carlo trials of the variance parameter of the frailty term, θ, the covariate

effect, β, baseline parameter λ0 (ρ0 = 1 is efficiently estimated by the three methods,

data not shown), and resulting population survival estimates at t = 1. Population

hazards and survival probabilities can be estimated from conditional models such as

frailty models (11). Specifically, the population survival at time t derived from gamma-

frailty models may be expressed as Sp(t) = {1− θΛ(t)}
−1

θ .

In Tables 1-4 we report the performance of the three methods to fit frailty models

in presence of left-truncation. Specifically, for each of the simulated scenarios, the

estimated relative bias (reBias), standard deviation (SD) and mean square error (MSE)

of the variance parameter of the frailty term θ are summarized in Table 1, while the

same summary measures for the estimation of the baseline hazard λ0 are reported

in Table 2. Table 3 contains the results regarding the covariate effect β and Table 4

summarizes the performance of the three studied methods in the estimation of Sp(1).

Results for the basic selection setting (K = 1) are presented in the top part of the

tables and the bottom parts show results for K = 2 (families are included if at least 2

members are observed). Estimated standard errors and coverage probabilities are given

as supplemental material in Appendix C.

Roughly speaking, the overall difference of the naı̈ve and updated approaches mainly

depends on the size of the families (ni), and the level of familial correlation (θ).

According to the results presented in the top part of Table 1 (K = 1), we observe that

the updated method clearly underestimates the frailty variance, and the bias increases

with the size of the frailty variance and the size of the clusters, i.e. the bias tends to

become more severe in scenarios where the number of selected members by family is

variable and, in general, smaller than ni. This issue appears to be huge in the situation

in which the relying population is composed of large families (ni = 8) and θ = 2,

where the estimated relative bias of the updated method is larger than 50%. Still, when

the population of reference consists of families of small size (ni = 2) and θ = 2, the

relative bias is noticeable (around 14%). Note that the bias is systematic since it does
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Table 1. Relative bias (reBias), standard deviation (SD) and mean square error (MSE)

for θ̂ along 1000 trials for several family sizes (ni), selection schemes (K = k: family is

included if at least k members are observed) and number of families (n). 50% of

left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias SD MSE reBias SD MSE reBias SD MSE

400 8 0.1 -0.030 0.022 0.000 -0.082 0.018 0.000 -0.125 0.091 0.008

800 8 0.1 -0.040 0.016 0.000 -0.080 0.013 0.000 -0.093 0.069 0.005

1600 8 0.1 -0.040 0.011 0.000 -0.070 0.009 0.001 -0.035 0.049 0.002

400 8 0.5 -0.040 0.049 0.003 -0.314 0.028 0.025 -0.050 0.167 0.029

800 8 0.5 -0.040 0.033 0.002 -0.312 0.020 0.025 -0.018 0.113 0.013

1600 8 0.5 -0.034 0.025 0.001 -0.310 0.014 0.024 -0.012 0.079 0.006

400 8 2 -0.031 0.134 0.022 -0.508 0.067 1.038 -0.021 0.249 0.064

800 8 2 -0.029 0.093 0.012 -0.507 0.048 1.031 -0.012 0.178 0.032

1600 8 2 -0.027 0.069 0.008 -0.509 0.034 1.037 -0.010 0.123 0.015

K = 1 400 2 0.1 -0.131 0.060 0.004 -0.061 0.056 0.003 -0.056 0.057 0.003

800 2 0.1 -0.170 0.045 0.002 -0.032 0.041 0.002 -0.046 0.042 0.002

1600 2 0.1 -0.122 0.031 0.001 -0.024 0.029 0.001 -0.013 0.029 < 0.001

400 2 0.5 -0.132 0.093 0.013 -0.056 0.085 0.008 -0.041 0.094 0.009

800 2 0.5 -0.128 0.068 0.009 -0.064 0.060 0.005 -0.033 0.065 0.004

1600 2 0.5 -0.122 0.046 0.006 -0.062 0.041 0.003 -0.038 0.044 0.002

400 2 2 -0.135 0.200 0.113 -0.138 0.171 0.105 -0.078 0.195 0.062

800 2 2 -0.139 0.143 0.098 -0.143 0.119 0.096 -0.082 0.137 0.045

1600 2 2 -0.133 0.106 0.082 -0.140 0.085 0.086 -0.085 0.095 0.038

400 8 0.1 -0.052 0.022 0.004 -0.082 0.018 < 0.001 -0.127 0.095 0.009

800 8 0.1 -0.041 0.016 0.003 -0.083 0.012 < 0.001 -0.081 0.067 0.005

1600 8 0.1 -0.030 0.011 < 0.001 -0.073 0.008 < 0.001 -0.068 0.048 0.002

400 8 0.5 -0.034 0.049 0.003 -0.313 0.028 0.025 -0.062 0.166 0.029

800 8 0.5 -0.030 0.036 0.001 -0.312 0.020 0.025 -0.015 0.114 0.013

1600 8 0.5 -0.032 0.025 0.001 -0.311 0.014 0.024 -0.014 0.077 0.006

400 8 2 -0.023 0.137 0.021 -0.508 0.068 1.034 -0.017 0.255 0.066

800 8 2 -0.023 0.097 0.012 -0.507 0.048 1.030 -0.010 0.182 0.033

1600 8 2 -0.024 0.068 0.007 -0.508 0.034 1.033 -0.011 0.127 0.017

K = 2 400 2 0.1 -0.100 0.073 0.005 -0.022 0.068 0.005 -0.049 0.060 0.004

800 2 0.1 -0.100 0.053 0.003 -0.021 0.048 0.002 -0.005 0.044 0.002

1600 2 0.1 -0.092 0.039 0.002 -0.005 0.034 0.001 0.001 0.031 0.001

400 2 0.5 0.026 0.123 0.015 -0.004 0.105 0.011 -0.042 0.092 0.009

800 2 0.5 0.022 0.088 0.008 0.002 0.074 0.005 -0.039 0.061 0.004

1600 2 0.5 0.024 0.062 0.004 -0.006 0.051 0.003 -0.040 0.043 0.002

400 2 2 0.078 0.300 0.115 -0.007 0.226 0.051 0.012 0.182 0.034

800 2 2 0.070 0.210 0.064 < 0.001 0.162 0.026 0.003 0.163 0.026

1600 2 2 0.072 0.139 0.040 -0.003 0.114 0.013 -0.001 0.114 0.013

not vanish by increasing the sample size. As expected, this problem is solved when

considering complete family selection framework, where mi = ni, as reflected in the

bottom part of Table 1 for the situation with K = 2 and ni = 2, with values of relative

bias inferior to 5%.

In contrast, the naı̈ve method performs reasonably well regarding the estimation

of θ in the studied scenarios where ni = 8 (relative bias < 5%). The reason behind

this good performance of the naı̈ve method in such settings has been explained in
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Subsection 4.1., and comes from the fact that the wrong assumption of equal frailty

distribution at c0 = 0 and conditioned to the truncation times approximately holds if

the family is large enough. The performance of the naı̈ve method is worse for small

families (ni = 2), providing too low estimates of θ with relative bias of around 13%

for all the studied values of θ when K = 1 (note however, that its performance is still

similar to the updated approach). The bottom part of Table 1 reflects the limitations of

the naı̈ve method to deal with situations with highly-selected families (K = 2, ni = 2,

θ = 2), in which we observe a slight overestimate of the frailty variance. As for the

updated approach the observed bias does not vanish by increasing the sample size.

The results regarding the estimation of the constant baseline hazard λ0 = 1 for

the basic setting with K = 1 are displayed in the top part of Table 2. We observe

that the updated approach systematically overestimates the baseline hazard, while the

naı̈ve method underestimates it, consistently across all the considered sample sizes. In

both cases, the worst performance scenarios coincide with the worst results in terms

of estimation of θ. The updated approach presents relative biases greater than 100%

for large cluster size combined with large θ situations (reBias = 1.175 for ni = 8,

θ = 2, reBias = 0.339 for ni = 2, θ = 2), and in general the relative bias is grater

than 5% in all the studied situations. The naı̈ve approach presents the worst estimates

of the baseline hazard for ni = 2 and θ = 2, however the performance is in general

better than for the updated approach (maximum relative bias is smaller than 30%).

In terms of variance, the updated approach also provides worse results than the naı̈ve

method. Increasing the selection level (K = 2, bottom part of Table 2) does not affect

the performance of the updated method (no improvement in the estimation of λ0 is

observed), but the naı̈ve method clearly becomes worse, reaching relative bias levels

around 50% when applied to highly selected small families (K = 2, ni = 2, θ = 2).

The estimation of β (results shown in Table 3) with the updated method is

satisfactory, so it seems that even in the cases where the estimation of the baseline

hazard and frailty variance are biased, the relative difference among the two groups

defined by x is well estimated. In agreement with the results from Tables 1 and 2, the

naı̈ve method presents satisfactory results for the large family case (ni = 8). However,

its performance with small families is clearly unsatisfactory (the relative bias on the

estimate of β is around 10% with ni = 2, θ = 2, for both K = 1 and K = 2).
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Table 2. Relative bias (reBias), standard deviation (SD) and mean square error (MSE)

for λ̂0 along 1000 trials for several family sizes (ni), selection schemes (K = k: family

is included if at least k members are observed) and number of families (n). 50% of

left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias SD MSE reBias SD MSE reBias SD MSE

400 8 0.1 -0.010 0.039 0.002 0.052 0.046 0.005 0.030 0.378 0.144

800 8 0.1 -0.013 0.027 0.001 0.053 0.035 0.004 0.021 0.238 0.057

1600 8 0.1 -0.011 0.020 < 0.001 0.053 0.024 0.003 0.006 0.146 0.021

400 8 0.5 -0.030 0.051 0.004 0.274 0.077 0.081 0.089 0.667 0.452

800 8 0.5 -0.028 0.038 0.002 0.271 0.055 0.077 0.037 0.365 0.135

1600 8 0.5 -0.027 0.026 0.001 0.271 0.039 0.075 0.041 0.249 0.064

400 8 2 -0.039 0.084 0.009 1.183 0.211 1.444 0.472 2.083 4.561

800 8 2 -0.036 0.060 0.005 1.180 0.140 1.411 0.219 0.860 0.787

1600 8 2 -0.039 0.042 0.003 1.175 0.096 1.389 0.101 0.516 0.277

K = 1 400 2 0.1 -0.017 0.078 0.006 0.011 0.092 0.009 0.006 0.090 0.008

800 2 0.1 -0.017 0.057 0.004 0.011 0.061 0.004 0.002 0.064 0.004

1600 2 0.1 -0.019 0.038 0.002 0.009 0.044 0.002 0.008 0.046 0.002

400 2 0.5 -0.088 0.089 0.016 0.054 0.120 0.017 0.043 0.121 0.017

800 2 0.5 -0.084 0.058 0.010 0.058 0.081 0.010 0.041 0.084 0.009

1600 2 0.5 -0.082 0.044 0.009 0.058 0.058 0.007 0.037 0.059 0.005

400 2 2 -0.225 0.097 0.060 0.343 0.212 0.163 0.232 0.209 0.098

800 2 2 -0.225 0.068 0.055 0.340 0.149 0.138 0.225 0.148 0.072

1600 2 2 -0.229 0.048 0.055 0.339 0.108 0.126 0.215 0.102 0.057

400 8 0.1 -0.009 0.041 0.002 0.054 0.047 0.005 0.018 0.415 0.172

800 8 0.1 -0.011 0.029 0.001 0.052 0.034 0.004 0.022 0.231 0.054

1600 8 0.1 -0.012 0.019 0.001 0.054 0.023 0.003 < 0.001 0.151 0.023

400 8 0.5 -0.029 0.052 0.004 0.269 0.074 0.078 0.067 0.631 0.402

800 8 0.5 -0.028 0.036 0.002 0.273 0.055 0.077 0.033 0.362 0.132

1600 8 0.5 -0.030 0.026 0.002 0.271 0.037 0.075 0.029 0.231 0.054

400 8 2 -0.046 0.085 0.009 1.180 0.193 1.430 0.486 2.199 5.073

800 8 2 -0.047 0.060 0.006 1.183 0.138 1.417 0.167 0.851 0.752

1600 8 2 -0.047 0.041 0.004 1.183 0.097 1.409 0.147 0.577 0.353

K = 2 400 2 0.1 -0.029 0.102 0.011 0.008 0.089 0.008 0.008 0.092 0.008

800 2 0.1 -0.031 0.073 0.006 0.009 0.061 0.004 0.003 0.067 0.005

1600 2 0.1 -0.031 0.053 0.004 0.010 0.043 0.002 0.007 0.045 0.002

400 2 0.5 -0.153 0.105 0.034 0.056 0.119 0.017 0.040 0.119 0.016

800 2 0.5 -0.147 0.074 0.027 0.053 0.081 0.009 0.038 0.084 0.008

1600 2 0.5 -0.148 0.051 0.025 0.053 0.053 0.006 0.036 0.060 0.005

400 2 2 -0.461 0.093 0.222 0.029 0.219 0.049 0.013 0.209 0.044

800 2 2 -0.470 0.060 0.224 0.007 0.150 0.022 0.008 0.149 0.022

1600 2 2 -0.473 0.043 0.225 0.006 0.102 0.012 0.008 0.102 0.011

With regard to the new method based on weights, its performance is less affected

for the family size ni and K and it outperforms the existing methods in terms of

relative bias in the estimation of θ and λ0 in a number of situations. Moreover, for

K = 1, ni = 2 and θ = 2 the new method is the preferable strategy with regard to the

estimation of θ (minimum MSE for all the studied sample sizes). In general, provided

that the sample size is large enough the new method presents better results for the

estimation of the frailty variance θ than the existing methods (relative bias in the
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Table 3. Relative bias (reBias), standard deviation (SD) and mean square error (MSE)

for β̂ along 1000 trials for several family sizes (ni), selection schemes (K = k: family is

included if at least k members are observed) and number of families (n). 50% of

left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias SD MSE reBias SD MSE reBias SD MSE

400 8 0.1 -0.004 0.059 0.004 < 0.001 0.059 0.003 0.058 0.409 0.175

800 8 0.1 -0.002 0.042 0.002 < 0.001 0.0425 0.002 0.017 0.267 0.071

1600 8 0.1 -0.003 0.030 0.001 < 0.001 0.032 0.001 0.005 0.184 0.034

400 8 0.5 -0.009 0.063 0.004 0.003 0.060 0.004 0.015 0.263 0.070

800 8 0.5 -0.011 0.044 0.002 < 0.001 0.043 0.002 0.015 0.189 0.036

1600 8 0.5 -0.011 0.030 0.001 0.001 0.030 0.001 0.004 0.128 0.016

400 8 2 -0.017 0.056 0.004 0.009 0.056 0.003 0.007 0.114 0.013

800 8 2 -0.017 0.040 0.002 0.011 0.039 0.002 0.001 0.081 0.007

1600 8 2 -0.015 0.029 0.001 0.011 0.029 0.001 0.002 0.057 0.003

K = 1 400 2 0.1 -0.003 0.132 0.017 0.001 0.127 0.016 0.003 0.134 0.018

800 2 0.1 -0.009 0.091 0.009 -0.002 0.091 0.008 0.004 0.097 0.009

1600 2 0.1 -0.007 0.062 0.004 0.002 0.066 0.004 -0.002 0.070 0.005

400 2 0.5 -0.047 0.146 0.026 0.011 0.152 0.023 0.008 0.156 0.024

800 2 0.5 -0.046 0.102 0.015 0.003 0.103 0.011 0.004 0.108 0.012

1600 2 0.5 -0.048 0.069 0.010 0.001 0.076 0.006 0.002 0.081 0.007

400 2 2 -0.118 0.157 0.056 0.002 0.162 0.026 0.010 0.176 0.031

800 2 2 -0.118 0.103 0.042 0.009 0.115 0.013 0.009 0.117 0.014

1600 2 2 -0.119 0.079 0.038 0.007 0.085 0.007 0.003 0.088 0.007

400 8 0.1 -0.004 0.059 0.002 0.003 0.060 0.004 0.045 0.391 0.158

800 8 0.1 -0.004 0.042 0.001 -0.002 0.042 0.002 0.021 0.268 0.073

1600 8 0.1 -0.004 0.031 < 0.001 -0.000 0.030 0.001 0.007 0.179 0.032

400 8 0.5 -0.010 0.059 0.004 0.003 0.061 0.004 0.015 0.265 0.071

800 8 0.5 -0.013 0.041 0.002 0.002 0.044 0.002 0.012 0.176 0.031

1600 8 0.5 -0.012 0.031 0.001 < 0.001 0.031 0.001 0.009 0.125 0.016

400 8 2 -0.015 0.059 0.004 0.008 0.060 0.004 0.004 0.112 0.013

800 8 2 -0.015 0.043 0.002 0.008 0.042 0.002 0.003 0.080 0.006

1600 8 2 -0.017 0.030 0.002 0.006 0.029 0.001 0.002 0.058 0.003

K = 2 400 2 0.1 < 0.001 0.166 0.028 0.008 0.163 0.027 -0.004 0.137 0.019

800 2 0.1 -0.002 0.117 0.014 < 0.001 0.120 0.014 0.002 0.095 0.009

1600 2 0.1 -0.007 0.085 0.007 0.003 0.082 0.007 0.003 0.067 0.005

400 2 0.5 -0.027 0.183 0.035 0.004 0.179 0.032 0.004 0.154 0.024

800 2 0.5 -0.038 0.133 0.021 0.003 0.129 0.017 0.002 0.108 0.012

1600 2 0.5 -0.039 0.089 0.011 < 0.001 0.092 0.008 0.001 0.077 0.006

400 2 2 -0.101 0.176 0.054 0.005 0.185 0.034 0.012 0.182 0.034

800 2 2 -0.099 0.126 0.038 0.002 0.126 0.016 0.006 0.129 0.017

1600 2 2 -0.101 0.089 0.031 0.001 0.093 0.009 0.003 0.085 0.007

estimate of θ is lower than 10%). For small sample size (n = 400) and small frailty

variance (θ = 0.1), we detect a slight underestimation due to lack of information.

However, the performance of the new method improves with larger samples (this does

not happen with the existing methods for which the bias do not vanish by increasing

the sample size).

Similar results were obtained with regard to the estimation of λ0 and β with the

new method. In both cases, we observe a slight overestimation of the true parameters
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and large variance when n = 400. Even so, the relative bias in the estimate of β is

always lower than 10% with the new method and its performance clearly improves

when increasing the sample size. For the scenarios with ni = 2 and θ = 2, we observe

overestimation of the baseline hazard (even for n = 1600) with the new method, but it

still outperforms in terms of MSE both updated method (for both K = 1, K = 2) and

naı̈ve method (K = 2).

Table 4 shows the performance of the three methods in terms of marginal survival

estimates at time t = 1 (mean survival time). The estimation of the population

survival based on frailty models summarizes the interplay between frailty variance,

baseline hazard and covariate effect. We observe that both updated and new methods

underestimate the survival probability at t = 1 but the new method presents, in

general, lower relative bias and MSE than the updated method. The naı̈ve method

shows overestimation of the population survival (especially for ni = 2), comparable

in magnitude to the performance of the new method for K = 1, but it clearly performs

poorly for K = 2 and ni = 2. Overall, the new method provides the best results in

terms of estimation of Sp(1) across the studied scenarios.

With regard to the estimation of the standard errors (Tables S1-S3 in Appendix

C), in general terms, the mean estimates are close to the Monte Carlo estimates of

the standard deviation of the parameters of interest for the three approaches. As a

result, when the estimation is unbiased, the coverage probabilities are close to 0.95.

We find an exception in the estimation of β by the naı̈ve approach. The standard

errors are systematically overestimated and the resulting coverage probabilities are too

large. Finally, as one could expect due to the extra quantity estimated in the weighted

approach, the sandwich estimator standard errors tend to provide larger estimates than

those provided by the naı̈ve and updated approaches.
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Table 4. Relative bias (reBias), standard deviation (SD) and mean square error (MSE)

for absolute survival at time 1 along 1000 trials for several family sizes (ni), selection

schemes (K = k: family is included if at least k members are observed) and number of

families (n). 50% of left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias SD MSE reBias SD MSE reBias SD MSE

400 8 0.1 0.034 0.004 < 0.001 -0.185 0.003 < 0.001 0.085 0.024 < 0.001

800 8 0.1 0.031 0.003 < 0.001 -0.192 0.002 < 0.001 0.067 0.018 < 0.001

1600 8 0.1 0.029 0.002 < 0.001 -0.193 0.002 < 0.001 0.051 0.011 < 0.001

400 8 0.5 0.034 0.009 < 0.001 -0.552 0.005 0.003 0.149 0.064 0.004

800 8 0.5 0.031 0.007 < 0.001 -0.551 0.003 0.003 0.044 0.040 0.002

1600 8 0.5 0.035 0.005 < 0.001 -0.552 0.003 0.003 0.004 0.030 < 0.001

400 8 2 0.012 0.017 < 0.001 -0.716 0.010 0.052 0.070 0.123 0.016

800 8 2 0.011 0.012 < 0.001 -0.717 0.007 0.052 0.023 0.089 0.008

1600 8 2 0.012 0.009 < 0.001 -0.717 0.005 0.052 0.005 0.061 0.004

K = 1 400 2 0.1 0.017 0.007 < 0.001 -0.029 0.007 < 0.001 -0.024 0.007 < 0.001

800 2 0.1 0.030 0.005 < 0.001 -0.029 0.005 < 0.001 -0.028 0.005 < 0.001

1600 2 0.1 0.034 0.004 < 0.001 -0.026 0.003 < 0.001 -0.009 0.004 < 0.001

400 2 0.5 0.108 0.016 < 0.001 -0.132 0.013 < 0.001 -0.092 0.015 < 0.001

800 2 0.5 0.116 0.011 0.002 -0.133 0.009 0.002 -0.087 0.010 < 0.001

1600 2 0.5 0.119 0.008 < 0.001 -0.130 0.007 0.002 -0.084 0.008 < 0.001

400 2 2 0.118 0.023 0.002 -0.228 0.022 0.006 -0.146 0.023 0.003

800 2 2 0.118 0.016 0.002 -0.230 0.015 0.006 -0.149 0.016 0.003

1600 2 2 0.120 0.011 0.002 -0.230 0.011 0.005 -0.147 0.012 0.002

400 8 0.1 0.029 0.004 < 0.001 -0.196 0.003 < 0.001 0.158 0.025 0.001

800 8 0.1 0.029 0.003 < 0.001 -0.186 0.002 < 0.001 0.033 0.017 < 0.001

1600 8 0.1 0.036 0.002 < 0.001 -0.194 0.001 < 0.001 0.041 0.011 < 0.001

400 8 0.5 0.034 0.010 < 0.001 -0.550 0.005 0.003 0.145 0.066 0.004

800 8 0.5 0.038 0.007 < 0.001 -0.551 0.004 0.003 0.050 0.038 0.001

1600 8 0.5 0.036 0.005 < 0.001 -0.551 0.002 0.003 -0.008 0.027 0.001

400 8 2 0.016 0.017 < 0.001 -0.717 0.010 0.052 0.087 0.129 0.017

800 8 2 0.014 0.013 < 0.001 -0.718 0.007 0.052 0.041 0.089 0.008

1600 8 2 0.014 0.009 < 0.001 -0.718 0.005 0.052 -0.007 0.063 0.004

K = 2 400 2 0.1 0.085 0.010 < 0.001 -0.004 0.009 < 0.001 0.011 0.007 < 0.001

800 2 0.1 0.090 0.007 < 0.001 -0.008 0.005 < 0.001 -0.018 0.005 < 0.001

1600 2 0.1 0.099 0.005 < 0.001 -0.007 0.003 < 0.001 -0.025 0.003 < 0.001

400 2 0.5 0.357 0.024 0.002 -0.134 0.013 < 0.001 -0.082 0.015 < 0.001

800 2 0.5 0.374 0.016 0.002 -0.136 0.009 < 0.001 -0.084 0.010 < 0.001

1600 2 0.5 0.370 0.012 0.001 -0.134 0.006 < 0.001 -0.084 0.007 < 0.001

400 2 2 0.440 0.029 0.020 -0.231 0.021 0.006 -0.149 0.023 0.003

800 2 2 0.447 0.022 0.020 0.002 0.021 < 0.001 -0.143 0.016 0.002

1600 2 2 0.446 0.015 0.020 0.001 0.011 < 0.001 -0.149 0.012 0.002

6 Application to the Leiden Longevity Study

To illustrate the performance of the three methods introduced in Section 4, and

discussed in Section 5, we analyzed data from the LLS, introduced in Section 1.

The sample contained 404 families with at least two long-lived members , which

corresponded to 915 individuals. Most of the sample consisted of pairs of siblings

(309 families contributed with 2 members. i.e. 76% of the studied families), but 84

families (21 %) contributed with 3 members, 10 families contributed with 4 members,
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Figure 2. Left: Size of the families at age c0 (c0 = 89 for men; c0 = 91 for women), i.e.,

number of members of each family that reached c0 even if no included in the study.

Right: Observed size of the families, i.e., number of siblings with available covariate

information.

and 1 family contributed with 5 members. The median age at inclusion for men was

91 years (range: 89-102) and 94 for women (range: 91-103), resulting in a truncation

rate which was around 80% for both genders. 7% of the participants were alive by the

end of follow-up (February 2014), being the median age of death 95 years (range: 89-

106) for men and 98 years (range: 91-108) for women. The genealogical information,

i.e. the birth and deceased dates, of the complete sibship of the included families was

recovered and used for the calculation of the complete family size at the beginning of

follow-up (ni). As explained in Section 2, we considered the family members whose

lifespan was longer than the gender-specific minimum age of entry c0 (89 for men,

91 for women). Due to the retrospective nature of the sampling, for the siblings with

t > c0 but death before sampling it was not possible to determine any covariate, and

they were treated as missing data. Moreover, we excluded from the calculations of ni

all those family members too young to determine if their lifespan was longer than the

corresponding c0,i.e., all those family members with t < c0 and δij = 0 and all those

members died before c0, i.e., all those family members with t < c0 and δij = 1. The

size of the families before and after recruitment are presented in Figure 2.
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We considered three different models, each fitted with each of the three methods:

naı̈ve, updated and weighted. On the one hand, we, consider a null model, without

presence of covariates, to specifically focus on the level of familial correlation between

lifespans in elderly populations. On the other hand, we separately, evaluated the effect

of two binary genetic markers, the indicator of being a carrier of the APOE-ǫ2 and

APOE-ǫ4 allele, respectively. In a recent meta-analyses of GWAS studies, Deelen et

al. (33) reported a protective effect of APOE-ǫ2 allele in order to survive until old age

and evidence of APOE-ǫ4 as a risk factor, while other studies did not find significant

effects (34). Note that the design and size of the sample differs among studies, so the

quantification of the effect of these variants in terms of hazard ratios for the population

of extreme survivors is still not clear.

For six individuals (from six different included families), the information on APOE-

ǫ2 and APOE-ǫ4 was missing. We considered that this lack of information was

completely at random, i.e. independent of any observed and unobserved variables

related to the survival process. Therefore, we removed those cases from the sample

and the final effective sample size was 909 individuals, 20% of them were carrier of

the APOE-ǫ2 and 17% carried the APOE-ǫ4 allele.

As in the Simulation Study, we considered a Weibull specification for the baseline

hazard, and maximum likelihood estimates were derived in terms of the expressions

detailed in Appendix A. Estimates of the baseline hazard parameters γ = (λ0, ρ0), θ

and β and their respective standard errors are reported in Table 5. As in the Simulation

Study, standard errors for the naı̈ve and updated methods were computed as the square

roots of the diagonal elements of the observed hessian matrix while for the weighted

approach, robust estimates were obtained using a sandwich estimator. Frailty-based

estimates of the Kendall’s tau between lifespans of family members (τ = θ̂

θ̂+2
) are also

reported.

From the results in upper part of Table 5, referring to the null model, we observe that

the largest estimated frailty variance is provided by the weighted approach (θ̂ = 0.079),

followed by the naı̈ve method (θ̂ = 0.069), while the updated approach provides a

lower level of the within family aggregation (θ̂ = 0.060). On the other hand, while

the naı̈ve and updated approach provide similar estimates for the baseline hazard at

time t given by λ0t
ρ0 , the weighted approach provides slightly higher estimates for

the baseline hazard in the null model. However, the impact of theses differences is
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Table 5. Application to the Leiden Longevity Study (LLS). For each method and model

specification estimates of frailty variance (θ̂) and effect of each genetic marker (β̂) and

their standard errors are provided.

Model Naı̈ve Updated Weigthed

Null θ̂ (s.e.) 0.069 (0.041) 0.060 (0.036) 0.079 (0.053)

λ̂0 (s.e.) 0.040 (0.193) 0.041 (0.008) 0.070 (0.338)

ρ̂0 (s.e.) 1.722 (0.048) 1.742 (0.090) 1.496 (0.104)

θ̂ (s.e.) 0.065 (0.040) 0.056 (0.035) 0.075 (0.052)

APOE-ǫ2 β̂ (s.e.) -0.246 (0.094) -0.250 (0.097) -0.415 (0.185)

λ̂0 (s.e.) 0.041 (0.192) 0.042 (0.008) 0.075 (0.341)

ρ̂0 (s.e.) 1.735 (0.048) 1.750 (0.090) 1.506 (0.103)

θ̂ (s.e.) 0.063 (0.040) 0.055 (0.036) 0.061 (0.049)

APOE-ǫ4 β̂ (s.e.) 0.183 (0.097) 0.184 (0.099) 0.202 (0.209)

λ̂0 (s.e.) 0.039 (0.194) 0.040 (0.080) 0.067 (0.349)

ρ̂0 (s.e.) 1.721 (0.048) 1.738 (0.090) 1.483 (0.103)

small with regard to both the the estimation of population survival (e.g. Sp(5) ≈ 0.47

for the weighted approach while Sp(5) ≈ 0.52 for naı̈ve and updated approaches) and

the estimates of within-family lifetimes correlation. Specifically, the corresponding

estimated Kendall’s tau between the lifespans of members of the same family is

τ = 0.038 according to the weighted method, while the naı̈ve and updated methods

provide τ = 0.033 and τ = 0.029, respectively.

With regard to the model including the APOE-ǫ2 as covariate (middle part of Table

5), the findings with respect to the frailty variance remain the same than in the null

model with the weighted approach providing the largest within-family correlations

estimate and the updated approach the lowest. With regard to the estimates of the effect

of the APOE-ǫ2, the three methods provide a significant (at a 5% level) protective

effect in favor to extreme survival for the carriers of this allele. It is noteworthy that

the estimated effect and its corresponding standard deviation provided by the weighted

approach (β̂ = −0.415, s.e. = 0.185) is notably larger than those provided by the other

methods. This result resemble the simulated scenarios with 400 simulated families,

‘large’ families (ni = 8) and small frailty variance (θ = 0.1), which may suggest a
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slight overestimate of the effect of the APOE-ǫ2 by the weighted method, as we

observed in comparable simulated scenarios. On the other hand, the baseline hazard

estimated by the weighted approach is slightly larger than the estimation corresponding

to the naı̈ve and updated methods, both provide very close estimates of λ0 and ρ0. As in

the null cases, the difference in terms of marginal survival after five years of follow-up

are are very small (the three methods provide Sp(5) ≈ 0.58).

The results from the bottom part of Table 5 suggests that even if the three methods

identify the APOE-ǫ4 allele as inversely associated to extreme survival in the elderly.

However, its adverse effect is of less magnitude (and not statistically significant at 5%

level) than the protective effect of APOE-ǫ2.

According to these results, we conclude that level of familial correlation in the

population of long-lived seems to be low and that the allele APOE-ǫ2 presents a

protective effect for extreme survival. The identification of APOE-ǫ4 as a risk factor

acting against survival in our target population of long-lived remains unclear. As the

level of within-family correlation seems to be low, the differences among methods are,

overall, small. The sample size is a limitation of the Leiden Longevity Study, especially

for the application of the weighted approach which seems require larger sample sizes

to provide valid estimates when the frailty term is small and the sample consists of

clusters containing more than two members.

7 Discussion

In this paper, we have revisited the problem of inference of frailty models with left-

truncated and clustered survival data. Our methodological research was motivated by

epidemiological questions from the framework of aging research. Namely, we are

interested in the study of extreme survival based on family-based cohorts of siblings,

such as the GEHA (Genetics of Healthy Ageing) project, or in particular, the LLS. In

this context, dealing with left-truncation by death due to retrospective sampling may

play an important role.

The first of the analyzed methods to deal with these type of data, the naı̈ve

approach, handles left-truncation by adapting risk sets at individual level. However,

the outcome-dependent selection related to left-truncation provokes that families with

larger values of the frailty term are less likely to be observed. This issue is ignored
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by the naı̈ve approach. Alternatively, the second of the revisited methods, the updated

approach, takes into account delayed-entry at the frailty distribution level, and hence,

the frailty-dependent selection of families. However, it relies on a complete-family

observation assumption, i.e., all the members of each family are observed, even if not

from the origin of the follow-up time. To overcome the limitations of the existing

approximations, we have proposed an inverse probability correction based on the

updated method. Specifically, we have proposed family-based weights to account for

the within-family selection process, in such a way that the resulting weighted sample

satisfies the assumptions of the updated approach. The weights calculation relies on the

original family size (ni) and the assumption of completely at random missing data at

each family. The new method is interesting since it is conceptually simple and it can

be easily implemented. It only requires the computation of the weights for each family

and to conduct a weighted regression based on existing methods.

According to our results, the naı̈ve approach outperforms the updated approximation

when the underlying population is composed of large clusters, while the updated

approach seems to be appropriated in complete-family designs (e.g.: twin studies) or

in situations where the underlying target population is composed of small families.

Interestingly, the updated approach provides unbiased estimates of the regression

coefficient in all the studied situations, which indicates that it is an appropriated

method when the interest specifically relies on estimating the conditional effect of

a given marker. However, this is at the cost of introducing bias in the estimation of

the baseline hazard and the frailty variance, which may have a big impact in the

estimates of marker-specific survival, within-family correlation and risk prediction.

The new method may outperform the existing approaches, provided that the sample

size is large enough and, specially, when the level of within-family correlation is large.

As a limitation, we have observed that the new method provides biased estimates of

the covariate effects when the sample does not provide enough information to correctly

estimate the weights, i.e., when applied to relatively small samples (< 800 families)

in combination with low within-family correlation. This may be improved by using

external information based on population mortality tables. In Tsonaka et al. (35), a

penalty term based on the disease prevalence is introduced in the context of maximum

likelihood estimation in logistic regression with selected families. Following the same

idea in the context of frailty models, we could incorporate a penalty to guarantee a
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given value of overall survival. As mentioned in Subsection 5.2., from the frailty model,

we can estimate the population survival at a given time t as Sp(t) = {1− θΛ(t)}
−1

θ .

Since the population survival is often available in population-based registries, one

could introduce a penalization term over the difference between the estimated and the

registry-based values. This is left as future research.

Our application to the Leiden Longevity Study suggests an underestimate of the level

of within family correlation with the updated method, which appears to be corrected by

the new method based on weights, and to a lesser extent, by the naı̈ve method. Overall,

it seems that level of the within-family correlation is low in the LLS (∼ 0.08). The

three methods lead to similar conclusions with regard to the conditional effects of the

two studied genetic markers. However, the methods do not agree on the size of the

protective effect of the APOE-ǫ2 allele. A large sample size is required to get more

insights in this issue.

Both in our Simulation Study and the real data analysis, we have considered a

parametric formulation for the baseline hazard, mainly for mathematical convenience

which eases the practical implementation of the studied methods. The extension to

more flexible settings of the new approach is left as future research. Also beyond

the scope of this paper, the estimation of standard errors for the proposed weighted

approach needs further research. As noted by (27), the widely used sandwich

adjustment used here may be anti-conservative, given that the variability in the estimate

of the weights is ignored. Alternative approaches under the sandwich principle, as those

suggested by Seaman and White (27) should be investigated. Alternatively, a family-

based bootstrapping approach may be adopted, but it is not appropriated in the case of

the LLS, due to sample size limitations.

We have considered frailty models, which seems a natural choice in our context,

given that we are explicitly interested in the within-family correlation of lifespans.

Note that marginal approaches may be also of interest but they provide different

interpretations of the estimated parameters in survival analysis. Problems due to

informative selection discussed in this paper may also affect the results of marginal

approaches, so extensions of the current weighted approach in such direction are

currently under investigation.
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Finally, we would like to emphasize the importance of analyzing the sampling

mechanism that resulted in the left-truncated clustered survival data at hand, in order

to choose a proper method to deal with it.
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Appendix

A. Weibull gamma shared-frailty model

Recall the shared frailty proportional hazard model specification introduced in

expression (1) in Section 3:

λij(t) = uiλ0(t,γ) exp(βxij), i = 1, . . . n, j = 1, . . . , ni,

Assume a Weibull distribution for the baseline hazard with parameters γ = (λ0, ρ0),

λ0, ρ0 > 0:

λ0(t, λ0, ρ0) = λ0ρ0t
ρ0−1, Λ0(t, λ0, ρ0) = λ0t

ρ0

then, the likelihood contribution of cluster i under a Weibull shared-frailty

specification can be rewritten as:

Li =

ni∏

j=1

[λij(tij)]
δij (−1)DiL(Di)

[∑ni
j=1

Λ(tij)
]
=

ni∏

j=1

[
λ0ρ0t

ρ0−1
ij exp(βxij)

]δij
(−1)DiL(Di)

[∑ni
j=1

λ0t
ρ0
ij exp(βxij)

]

Assuming that the frailty term u follows a gamma distribution G with mean 1 and

variance θ (θ > 0) (u ∼ G = Γ(1/θ, 1/θ)), which density is given by:

g(u) =
θ−

1

θ u
1

θ
−1exp(−u/θ)

Γ(1/θ)
,

the corresponding Laplace transform derivatives are given by:
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L(r)(s) = (−1)rEu [u
r exp(−us)] = (−1)r (1 + θs)

−r

[
r−1∏

q=0

(1 + qθ)

]
(1 + θs)−1/θ

As a result, a Weibull gamma shared-frailty specification allows for the

following explicit expression of the log-likelihood for cluster i ℓi(λ0, ρ0,β, θ) =

logLi(λ0, ρ0,β, θ) for the no left-truncated case:

ℓi(λ0, ρ0,β, θ) =





ni∑

j=1

δij

[
log(λ0ρ0t

ρ0−1
ij ) + βxij

]




−

(
Di +

1

θ

)
log

{
1 + θ

[∑ni
j=1

λ0t
ρ0
ij exp(βxij)

]}
+

Di−1∑

q=0

log(1 + qθ)

The naı̈ve approach for left-truncated Weibull gamma shared-frailty presented in

Subsection 4.1. provides the following expression of the log-likelihood for cluster i

ℓNi (λ0, ρ0,β, θ) = logLN
i (λ0, ρ0,β, θ) :

ℓNi (λ0, ρ0,β, θ) =





ni∑

j=1

δij

[
log(λ0ρ0t

ρ0−1
ij ) + βxij

]




−

(
Di +

1

θ

)
log

{
1 + θ

[∑ni
j=1

λ0t
ρ0
ij exp(βxij)−

∑ni
j=1

λ0t
ρ0
0ijexp(βxij)

]}
+

Di−1∑

q=0

log(1 + qθ)

The updated approach for left-truncated Weibull gamma shared-frailty presented in

Subsection 4.2. provides the following expression of the log-likelihood for cluster i

ℓUP
i (λ0, ρ0,β, θ) = logLUP

i (λ0, ρ0,β, θ) :

ℓUP
i (λ0, ρ0,β, θ) =





ni∑

j=1

δij

[
log(λ0ρ0t

ρ0−1
ij ) + βxij

]




−

(
Di +

1

θ

)
log

{
1 + θ

[∑ni
j=1

λ0t
ρ0
ij exp(βxij)

]}
+

Di−1∑

q=0

log(1 + qθ) +
1

θ
log

{
1 + θ

[∑ni
j=1

λ0t
ρ0
0ijexp(βxij)

]}
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B. Robustness of the weighted approach

Theorem:

If π = (π1, . . . , πn) are correctly specified, then max
γ,β,θ

n∑
i=1

A′

i

πi
logLUP

i (γ, β, θ)

produces consistent estimates of (γ,β, θ).

Proof:

Recall the indicator A′
i = I(Ωi) = Ai × I(Mi = mi, ni) and the maximization prob-

lem resulting from considering the updated approach for dealing with left-truncated

gamma-frailty models, introduced in Subsection 4.2. If (and only if) the assumption of

complete families holds (mi = ni, A
′
i = Ai), solving max

γ,β,θ
ℓUP (γ, β, θ) =

max
γ,β,θ

∑n
i=1 Aiℓ

UP
i (γ, β, θ) = max

γ,β,θ

∑n
i=1 Ai logL

UP
i (γ, β, θ) provides consistent es-

timates of (γ,β, θ).

Consider the score vector of the first derivative of the log-likelihood given by LUP in

expression (7), U =
n∑

i=1

AiUi(λ0, ρ0,β, θ|t0i, ti,xi, δi,Mi = ni) =
n∑

i=1

AiUi(ti) =

n∑
i=1

AiUi(ti1, . . . , tini
); Ui(t) =

∂
∂(λ0,ρ0,β,θ) logL

UP
i (γ, β, θ). Under mi = ni (Mi

non-random):

Et

[
n∑

i=1

AiUi(ti)

]
= 0 (S1)

Consider now the general situation with Mi random (in general, mi < ni) and recall

the division of the vector of complete survival times of family i in terms of an observed

and a missing subvectors: ti = (tobs
i

, tmiss

i
). Note that ti is a member of the sampling

event Ωi. Since the missing data procedure is MCAR within clusters, E(tij) =

E(tmiss
ij ) and Etmiss

i
|tobsi

[Ui(ti)] = Ui(t
obs

i
). Assume that the inverse probability

weights π = (π1, . . . , πn) are correctly specified (i.e. P (Mi = mi|ni, Ai = 1) = πi)

and that they are bounded away from zero. Consider the weighted score vector

I(Mi=mi,ni)
πi

AiUi(t
obs

i
). Consistency of the new method follows from its expectation

being 0:
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Et

{
n∑

i=1

I(Mi = mi, ni)

πi
AiUi(t

obs

i )

}
= Et

{
n∑

i=1

EMi|ti

[
I(Mi = mi, ni)

πi
AiEtmiss

i
|tiobsUi(ti)

]}
=

Et

{
n∑

i=1

[
EMi|ti(I(Mi = mi, ni))

πi
AiEtmiss

i
|tobsi

Ui(ti)

]}
=

Et

{
n∑

i=1

[
P (Mi = mi|ni, Ai = 1)

πi
AiEtmiss

i
|tobsi

Ui(ti)

]}
=

n∑

i=1

AiEti

{
Etmiss

i
|tobsi

[Ui(ti)]
}
= Et

[
n∑

i=1

AiUi(ti)

]
= 0,

where the last equality follows from expression (S1).
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C. Simulation study. Standard errors and coverage probabilities

Table S1. Relative bias (reBias), mean standard error (s.e.) and coverage probabilities

(Coverage) for θ̂ along 1000 trials for several family sizes (ni), selection schemes

(K = k: family is included if at least k members are observed) and number of families

(n). 50% of left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias s.e. Coverage reBias s.e. Coverage reBias s.e. Coverage

400 8 0.1 -0.040 0.022 0.942 -0.082 0.012 0.904 -0.125 0.060 0.639

800 8 0.1 -0.040 0.016 0.939 -0.080 0.012 0.887 -0.093 0.053 0.789

1600 8 0.1 -0.040 0.011 0.929 -0.070 0.009 0.849 -0.035 0.043 0.863

400 8 0.5 -0.040 0.048 0.905 -0.314 0.028 0.000 -0.050 0.133 0.818

800 8 0.5 -0.040 0.034 0.902 -0.312 0.020 0.000 -0.018 0.101 0.886

1600 8 0.5 -0.034 0.024 0.877 -0.310 0.014 0.000 -0.012 0.074 0.935

400 8 2 -0.031 0.135 0.906 -0.508 0.057 0.000 -0.021 0.251 0.929

800 8 2 -0.029 0.096 0.898 -0.507 0.040 0.000 -0.012 0.176 0.929

K = 1 1600 8 2 -0.027 0.068 0.875 -0.509 0.028 0.000 -0.010 0.125 0.923

400 2 0.1 -0.131 0.060 0.899 -0.061 0.057 0.933 -0.056 0.054 0.931

800 2 0.1 -0.170 0.043 0.904 -0.032 0.002 0.940 -0.046 0.041 0.926

1600 2 0.1 -0.122 0.031 0.916 -0.024 0.029 0.943 -0.013 0.029 0.939

400 2 0.5 -0.132 0.091 0.842 -0.056 0.084 0.905 -0.041 0.088 0.919

800 2 0.5 -0.128 0.064 0.791 -0.064 0.059 0.913 -0.033 0.063 0.918

1600 2 0.5 -0.122 0.045 0.720 -0.062 0.042 0.863 -0.038 0.044 0.920

400 2 2 -0.135 0.198 0.667 -0.138 0.171 0.607 -0.078 0.193 0.838

800 2 2 -0.139 0.140 0.509 -0.143 0.120 0.343 -0.082 0.136 0.746

1600 2 2 -0.133 0.099 0.221 -0.140 0.085 0.103 -0.085 0.096 0.600

400 8 0.1 -0.052 0.022 0.931 -0.082 0.018 0.908 -0.127 0.060 0.636

800 8 0.1 -0.041 0.016 0.936 -0.083 0.013 0.873 -0.081 0.056 0.813

1600 8 0.1 -0.030 0.011 0.936 -0.073 0.009 0.868 -0.068 0.043 0.861

400 8 0.5 -0.034 0.048 0.919 -0.313 0.028 0.001 -0.062 0.134 0.822

800 8 0.5 -0.030 0.034 0.907 -0.312 0.020 0.000 -0.015 0.101 0.914

1600 8 0.5 -0.032 0.024 0.866 -0.311 0.014 0.000 -0.014 0.074 0.915

400 8 2 -0.023 0.136 0.926 -0.508 0.057 0.000 -0.017 0.247 0.935

800 8 2 -0.023 0.096 0.885 -0.507 0.040 0.000 -0.010 0.176 0.932

1600 8 2 -0.024 0.068 0.887 -0.508 0.028 0.000 -0.011 0.124 0.947

400 2 0.1 -0.100 0.071 0.840 -0.022 0.067 0.910 -0.049 0.060 0.931

800 2 0.1 -0.100 0.052 0.926 -0.021 0.048 0.922 -0.005 0.046 0.925

K = 2 1600 2 0.1 -0.092 0.037 0.933 -0.005 0.034 0.950 0.001 0.033 0.940

400 2 0.5 0.026 0.123 0.936 -0.004 0.103 0.941 -0.042 0.102 0.921

800 2 0.5 0.022 0.087 0.962 0.002 0.073 0.948 -0.039 0.072 0.914

1600 2 0.5 0.024 0.062 0.948 -0.006 0.052 0.942 -0.040 0.051 0.918

400 2 2 0.078 0.287 0.928 -0.007 0.231 0.937 0.012 0.183 0.949

800 2 2 0.070 0.201 0.919 < 0.001 0.162 0.947 0.003 0.162 0.950

1600 2 2 0.072 0.142 0.846 -0.003 0.114 0.946 -0.001 0.114 0.942
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Table S2. Relative bias (reBias), mean standard error (s.e.) and coverage probabilities

(Coverage) for λ̂0 along 1000 trials for several family sizes (ni), selection schemes

(K = k: family is included if at least k members are observed) and number of families

(n). 50% of left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias s.e. Coverage reBias s.e. Coverage reBias s.e. Coverage

400 8 0.1 -0.010 0.040 0.943 0.052 0.047 0.817 0.030 0.250 0.816

800 8 0.1 -0.013 0.028 0.948 0.053 0.033 0.621 0.017 0.195 0.900

1600 8 0.1 -0.011 0.020 0.926 0.053 0.023 0.372 0.006 0.143 0.916

400 8 0.5 -0.030 0.053 0.932 0.274 0.077 0.029 0.089 0.375 0.853

800 8 0.5 -0.028 0.038 0.902 0.271 0.054 0.000 0.037 0.290 0.898

1600 8 0.5 -0.027 0.027 0.798 0.271 0.038 0.000 0.041 0.212 0.928

400 8 2 -0.039 0.087 0.928 1.183 0.218 0.000 0.472 0.637 0.812

800 8 2 -0.036 0.062 0.907 1.180 0.154 0.000 0.219 0.503 0.855

K = 1 1600 8 2 -0.039 0.043 0.851 1.175 0.109 0.000 0.101 0.402 0.911

400 2 0.1 -0.017 0.080 0.951 0.011 0.088 0.953 0.006 0.090 0.944

800 2 0.1 -0.017 0.057 0.942 0.011 0.061 0.949 0.002 0.064 0.937

1600 2 0.1 -0.019 0.040 0.909 0.009 0.044 0.948 0.008 0.045 0.942

400 2 0.5 -0.088 0.095 0.885 0.054 0.115 0.947 0.043 0.114 0.930

800 2 0.5 -0.084 0.067 0.773 0.058 0.081 0.931 0.041 0.080 0.918

1600 2 0.5 -0.082 0.047 0.551 0.058 0.057 0.879 0.037 0.057 0.906

400 2 2 -0.225 0.129 0.552 0.343 0.220 0.740 0.232 0.169 0.712

800 2 2 -0.225 0.091 0.250 0.340 0.153 0.387 0.225 0.119 0.566

1600 2 2 -0.229 0.064 0.019 0.339 0.108 0.064 0.215 0.084 0.294

400 8 0.1 -0.009 0.040 0.944 0.054 0.047 0.796 0.018 0.255 0.815

800 8 0.1 -0.011 0.028 0.935 0.052 0.033 0.640 0.022 0.201 0.906

1600 8 0.1 -0.012 0.020 0.919 0.054 0.023 0.367 < 0.001 0.144 0.938

400 8 0.5 -0.029 0.054 0.930 0.269 0.077 0.024 0.067 0.387 0.865

800 8 0.5 -0.028 0.038 0.890 0.273 0.054 0.000 0.033 0.296 0.889

1600 8 0.5 -0.030 0.027 0.816 0.271 0.038 0.000 0.029 0.214 0.949

400 8 2 -0.046 0.087 0.927 1.180 0.220 0.000 0.489 0.631 0.824

800 8 2 -0.047 0.062 0.880 1.183 0.155 0.000 0.167 0.521 0.841

K = 2 1600 8 2 -0.047 0.044 0.827 1.183 0.109 0.000 0.147 0.398 0.887

400 2 0.1 -0.029 0.103 0.951 0.008 0.113 0.935 0.008 0.112 0.941

800 2 0.1 -0.031 0.073 0.936 0.009 0.080 0.938 0.003 0.079 0.949

1600 2 0.1 -0.031 0.052 0.909 0.010 0.056 0.943 0.007 0.056 0.952

400 2 0.5 -0.153 0.124 0.804 0.056 0.140 0.949 0.040 0.139 0.939

800 2 0.5 -0.147 0.087 0.628 0.053 0.099 0.943 0.038 0.098 0.911

1600 2 0.5 -0.148 0.062 0.303 0.053 0.070 0.945 0.036 0.069 0.888

400 2 2 -0.461 0.161 0.070 0.029 0.216 0.942 0.013 0.208 0.954

800 2 2 -0.470 0.113 0.000 0.007 0.148 0.937 0.008 0.147 0.956

1600 2 2 -0.473 0.080 0.000 0.006 0.103 0.939 0.008 0.103 0.949
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Table S3. Relative bias (reBias), mean standard error (s.e.) and coverage probabilities

(Coverage) for β̂ along 1000 trials for several family sizes (ni), selection schemes

(K = k: cluster is included if at least k members are observed) and sample sizes (n).

50% of left-truncated observations.

Selection n ni θ Naı̈ve Updated Weighted

K reBias s.e. Coverage reBias s.e. Coverage reBias s.e. Coverage

400 8 0.1 -0.004 0.242 1.000 < 0.001 0.060 0.953 0.058 0.302 0.812

800 8 0.1 -0.002 0.165 1.000 < 0.001 0.042 0.944 0.017 0.232 0.910

1600 8 0.1 -0.003 0.115 1.000 < 0.001 0.030 0.949 0.005 0.170 0.936

400 8 0.5 -0.009 0.101 0.998 0.003 0.061 0.942 0.015 0.239 0.899

800 8 0.5 -0.011 0.071 0.996 < 0.001 0.043 0.947 0.015 0.172 0.931

1600 8 0.5 -0.011 0.050 0.996 0.001 0.030 0.946 0.004 0.123 0.948

400 8 2 -0.017 0.070 0.973 0.009 0.059 0.952 0.007 0.112 0.942

800 8 2 -0.017 0.049 0.969 0.011 0.041 0.934 0.001 0.080 0.949

K = 1 1600 8 2 -0.015 0.035 0.945 0.011 0.029 0.901 0.002 0.056 0.958

400 2 0.1 -0.003 4.089 0.958 0.001 0.129 0.951 0.003 0.134 0.936

800 2 0.1 -0.009 1.131 0.984 -0.002 0.092 0.949 0.004 0.096 0.941

1600 2 0.1 -0.007 0.562 1.000 0.002 0.065 0.947 -0.002 0.068 0.945

400 2 0.5 -0.047 0.217 0.996 0.011 0.149 0.953 0.008 0.156 0.951

800 2 0.5 -0.046 0.149 0.989 0.003 0.105 0.951 0.004 0.109 0.949

1600 2 0.5 -0.048 0.104 0.989 0.001 0.074 0.943 0.002 0.077 0.947

400 2 2 -0.118 0.115 0.622 0.002 0.164 0.945 0.010 0.170 0.957

800 2 2 -0.118 0.081 0.437 0.009 0.116 0.951 0.009 0.119 0.962

1600 2 2 -0.119 0.057 0.196 0.007 0.082 0.952 0.003 0.085 0.952

400 8 0.1 -0.004 0.240 1.000 0.003 0.060 0.940 0.045 0.301 0.801

800 8 0.1 -0.004 0.164 1.000 -0.002 0.042 0.953 0.021 0.231 0.903

1600 8 0.1 -0.004 0.115 1.000 0.001 0.030 0.949 0.007 0.171 0.919

400 8 0.5 -0.010 0.101 0.999 0.003 0.061 0.960 0.015 0.240 0.908

800 8 0.5 -0.013 0.071 0.996 0.002 0.002 0.954 0.012 0.173 0.936

1600 8 0.5 -0.012 0.050 0.993 < 0.001 0.030 0.930 0.009 0.124 0.915

400 8 2 -0.015 0.070 0.972 0.008 0.058 0.946 0.004 0.112 0.955

800 8 2 -0.015 0.049 0.958 0.008 0.041 0.927 0.003 0.080 0.938

1600 8 2 -0.017 0.035 0.952 0.006 0.029 0.923 0.002 0.056 0.951

400 2 0.1 < 0.001 4.092 0.944 0.008 0.166 0.945 -0.004 0.166 0.947

800 2 0.1 -0.002 2.014 0.982 < 0.001 0.118 0.952 0.004 0.118 0.946

K = 2 1600 2 0.1 -0.007 0.661 0.997 0.003 0.083 0.947 0.003 0.083 0.947

400 2 0.5 -0.027 0.253 0.992 0.004 0.182 0.944 0.004 0.183 0.957

800 2 0.5 -0.038 0.175 0.988 0.003 0.129 0.940 0.002 0.129 0.948

1600 2 0.5 -0.039 0.121 0.987 < 0.001 0.091 0.951 0.001 0.091 0.948

400 2 2 -0.101 0.133 0.745 0.005 0.182 0.964 0.012 0.183 0.949

800 2 2 -0.099 0.094 0.609 0.002 0.128 0.960 0.006 0.128 0.954

1600 2 2 -0.101 0.066 0.401 0.001 0.090 0.951 0.003 0.090 0.949
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