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Abstract. Motivated by recent analytical and numerical work on two- and three-dimensional
convection with imposed spatial periodicity, we analyse three examples of bifurcations from a
continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential
equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of
earlier work by looss (1986) on bifurcations of group orbits of spatially symmetric equilibria.
Two examples, two-dimensional PWs and three-dimensional alternating pulsating waves (APW),
have discrete spatio-temporal symmetries characterized by the cyclic gfgups= 2 (PW)

andn = 4 (APW). These symmetries force the Poircaeturn mapM to be thenth iterate

of a mapG: M = G". The group orbits of PW and APW are generated by translations
in the horizontal directions and correspond to a circle and a two-torus, respectively. An
instability of PWs can lead to solutions that drift along the group orbit, while bifurcations
with Floquet multiplier (FM)+1 of APWSs do not lead to drifting solutions. The third example

we consider, alternating rolls, has the spatio-temporal symmetry of APWs as well as being
invariant under reflections in two vertical planes. This leads to the possibility of a doubling
of the marginal FM and of bifurcation to two distinct types of drifting solutions. We conclude
by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with
discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the
irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on
the normal form results of Lamb J S W (1996 Local bifurcationscisymmetric dynamical
systemsNonlinearity 9 537-57). This general approach is relevant to other pattern formation
problems, and contributes to our understanding of the transition from ordered to disordered
behaviour in pattern-forming systems.

This article features multimedia enhancements available from the abstract page in the online
journal; seenttp://www.iop.org.

AMS classification scheme numbers: 34A47, 35A99, 35B10, 76E30

1. Introduction

Techniques for analysing symmetry-breaking bifurcationd é@fivariant equilibria ofI"-
equivariant differential equations are well developed in the case of compact Lie droups
(Golubitsky et al 1988). The motivation for developing these methods comes, in large
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part, from problems of pattern formation in fluid dynamics (see, for example, Crawford
and Knobloch 1991). In the simplest cases, the symmetry-breaking bifurcation corresponds
to a pattern-forming instability of a basic state that is both time independent and fully
symmetric, for example, a spatially uniform equilibrium solution of the governing equations.

A symmetry-breaking Hopf bifurcation of this spatially uniform state often leads to time-
periodic solutions that break the translation invariance of the governing equations and that
have spatio-temporal and spatial symmetries. In this paper we address bifurcations of such
periodic orbits, which have broken the translation invariance but have retained a discrete
group of spatio-temporal symmetries.

This work contributes an approach to analysing certain transitions from order towards
spatial disorder that occur as pattern-forming systems are driven harder. Here we analyse
symmetry-breaking bifurcations from nontrivial time-periodic solutions of pattern-forming
partial differential equations (PDEs). Since the exact form of these solutions may only be
known numerically, we will not in general be able to predict which bifurcations will occur at
what parameter values. However, the symmetry properties of the solutions may be known;
we exploit this qualitative information to determine the possibilities for bifurcation. This
knowledge should prove especially useful in interpreting the results of numerical simulations
or experiments.

We consider problems posed with periodic boundary conditions, for which theresis an
symmetry associated with each direction of imposed periodicity. If this symmetry is broken
by an equilibrium solution, then the solution is not isolated; there is a continuous family
of equilibria related through the translations. An instability of this solution can excite
the neutral translation mode(s) and lead to new solutions that drift along the translation
group orbit. This is the case, for example, in the ‘parity-breaking bifurcation’: a reflection-
symmetric steady state undergoes a symmetry-breaking bifurcation to a uniformly translating
solution. Another example of a bifurcation leading to drift has been observed in two-
dimensional convection: when the vertical mirror plane of symmetry that separates steady
counter-rotating rolls is broken in a Hopf bifurcation, the resulting solution, called a
direction-reversing travelling wave or pulsating wave (PW), drifts to and fro (Landsberg and
Knobloch 1991, Matthewst al 1993). This periodic orbit is invariant under the combination
of advance of half the period in time with a reflection; any drift in one direction in the first
half of the oscillation is exactly balanced by a drift in the other direction in the second half,
so there is no net drift during the oscillation. Similarly in three-dimensional convection with
imposed spatial periodicity, a symmetry-breaking Hopf bifurcation from steady convection
in a square pattern can lead to alternating pulsating waves (APW), which are invariant under
the combination of advance of one quarter the period and rotation ‘bgRa@klidge 1997).
These solutions drift alternately along the two horizontal coordinate directions, but again
have no net drift over the whole period of the oscillation.

There have been a number of studies of bifurcations of compact group orbits of (relative)
equilibria. looss (1986) developed an approach based on centre manifold reduction to
investigate bifurcations of Taylor vortices in the Taylor—Couette problem. Specifically,
he analysed bifurcations in directions orthogonal to the tangent space to the group orbit
of equilibria, with the neutral translation mode incorporated explicitly in the bifurcation
problem. Krupa (1990) provided a general setting for investigating bifurcations of relative
equilibria that focuses on the local dynamics in directions orthogonal to the tangent space to
the group orbit. He showed that the resulting bifurcation problem-isquivariant, where
% is the isotropy subgroup of symmetries of the relative equilibrium, and, building on work
of Field (1980), provided a group theoretic method for determining whether or not the
bifurcating solutions drift. Ashwin and Melbourne (1997) have recently generalized this to
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the case of noncompact Lie groups. Astdral (1992), and Amdjadét al (1997) develop a
technique for numerically investigating bifurcations of relative equilibri@{2)-equivariant
partial differential equations, and apply their method to the Kuramoto—Sivashinsky equation.
Their approach isolates one solution on a group orbit, while still keeping track of any
constant drift along the group orbit.

In this paper we investigate bifurcations of time-periodic solutions that are not isolated
as they have broken the translation invariance, but that do possess a discrete group of
spatio-temporal symmetries. Our approach is similar to that of looss (1986). However, we
are interested in instabilities of periodic solutions, so we use centre manifold reduction for
Poincaé maps. We are particularly interested in determining whether the symmetries of
the basic state place any restrictions on the types of bifurcations that occur, and whether
the bifurcating solutions drift along the underlying group orbit or not. We consider three
examples that are motivated by numerical studies of convection with periodic boundary
conditions in the horizontal direction(s). First we investigate bifurcations of the PWs and
APWs described above. These solutions have discrete spatio-temporal symifigizied
Z4, respectively. The group orbit of the PWsS8, while the group orbit of the APWs is
a two-torus, due to imposed periodicity in two horizontal directions. The third example we
treat in this paper is alternating rolls (ARs), which have the same spatio-temporal symmetry
as APW but are also invariant under reflection in two orthogonal vertical planes (Silber
and Knobloch 1991). After considering these three examples, we discuss how to treat more
general problems.

The Z, (n = 2, 4) spatio-temporal symmetry of the basic state places restrictions on the
Poincaé return mapM; specifically, M is thenth iterate of a mag, which is determined
by the spatio-temporal symmetry. A direct consequence of this is that period-doubling
bifurcations are nongeneric (Swift and Wiesenfeld 1984). Throughout the paper we restrict
our analysis to bifurcation with Floquet multiplier (FM}1; we do not consider Hopf
bifurcations. We also restrict attention to bifurcations that preserve the spatial periodicity
of the basic state.

Our paper is organized as follows. In the next section we lay the framework for our
analysis in the setting of a simple example, namely bifurcation of PWs. We show how
the spatio-temporal symmetry is manifest in the Poiagaturn map. Section 3 considers
bifurcations of the three-dimensional analogue of PWs, namely APWSs. Section 4 considers
bifurcations of ARs. For this problem we need to consider six different cases, which we
classify by the degree to which the spatial and spatio-temporal symmetries are broken. In
the case that the spatial reflection symmetries are fully broken by the marginal modes, the
FM +1 is forced to have multiplicity two, and more than one solution branch bifurcates
from the basic AR state. In one case we find a bifurcation of the AR state leading to two
distinct drifting solutions. We present an example of one of the drifting patterns, obtained by
numerically integrating the equations of three-dimensional compressible magnetoconvection.
In the course of the analysis of bifurcations of ARs, we make contact with the work on
k-symmetries of Lamb and Quispel (1994) and Lamb (1996, 1998). In section 5, we
outline a group-theoretic approach to the analysis of steady-state bifurcations of periodic
orbits with spatio-temporal symmetries, based on the equivariant branching lemma and the
irreducible representations of the spatio-temporal symmetry group that leaves the periodic
orbit invariant, making use of normal form results from Lamb (1996). Section 6 contains a
summary and indicates some directions for future work.
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2. Two dimensions: PWs

We write the PDEs for two-dimensional convection symbolically as

du
where U represents velocity, temperature, density, etc as functions of the horizontal
coordinatex, the vertical coordinate and timer; u represents a parameter of the problem;
and.F is a nonlinear operator between suitably chosen function spaces. We assume periodic
boundary conditions, with spatial periddin the x-direction.
The symmetry group of the problem @(2), which is the semidirect product o5,
generated by a reflection,, and anSO(2) group of translations,, which act as

KyiX = —X, T, x — x+a (mod¥), (2)

wheret, is the identity andr,x, = x,7_,. The PDEs (1) are equivariant under the action
of these symmetry operators, $a(z,U; u) = t,F(U; p) and F(x, U; u) = k. F(U; ),
wheret, andk, act on the functions as follows:

t,Ux,z,) =Ux —a,z,t), keUx,z,t) =M, U(—x,z,1). 3)

Here M, is a matrix representing,; it reverses the sign of the horizontal component of
velocity and leaves all other fields i unchanged.

Suppose that when the parametee= 0, there is a known PW solutiobip(x, z, #) of
(1) with temporal period’ and spatial period = ¢/N, whereN specifies the number of
PWs that fit into the periodic box. The symmetrieslaf are summarized as follows:

Uo(x, 2, 1) = ke Uo(x, 2, 1 + 5T) = Uo(x, 2, 1 + T) = 1 Uo(x, 2, 1). 4

There is a continuous group orbit of PWs generated by translatiops= t,Uy. We are
interested in bifurcations from this group orbit. Following the approach developed by looss
(1986) and Chossat and looss (1994) for studying instabilities of continuous group orbits
of steady solutions, we expand about the group orbit of periodic solutions as follows:

Ux,z,t) = te(ry(Uo(x, z, 1) + A(x, 2, 1)). (%)

Here translation along the group orbit is givendy,, wherec is a coordinate parametrizing
the group orbit. Small perturbations, orthogonal to the tangent direction of the group orbit,
are specified byA(x, z, 7). The expansion (5) is substituted into the PDEs (1) and, after
suitable projection that separates translations along the group orbit from the evolution of
the perturbation orthogonal to it, we obtain equations of the form (see Chossat and looss
1994):

dA

de
E :g(A7U07 I’L)ﬂ E :h(A1U07 I'L)7 (6)

whereG and h satisfy G(0, Up; 0) = 0 andh(0, Up; 0) = 0. An important consequence
of the translation invariance of the original PDEs is tiaand z do not depend on the
positionc along the group orbit; the equation for the drifts decoupled from the equation
for the amplitude of the perturbation. Here we find it convenient to keep track of the
explicit time dependence @ and#, which enters through their dependence on the basic
stateUy, by listing Uy as one of the arguments gfandi. We determine how the spatio-
temporal reflection symmetry df, is manifest in the equations ferand A by noting that

if 7o¢)(Uo(x, z, 1) + A(x, z,t)) is a solution of the PDEs (1), then so is

KXTC(t)(UO(xa s t) + A()C, 2, t)) = rfC(l)(KxUO(xv 2, t) + KXA(-X1 <5 t)) (7)
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Figure 1. lllustration of x, M, = M;ﬁ*’/cx. In this example, the reflection, changes the

sign of the horizontal coordinate. The PW periodic solution is shown as a dotted cajv&. (
perturbation at = 0 is advanced in time by an amoun(the full curve, which stays close to the
broken curve on the periodic orbit), then the system is reflectgdWe arrive at the same final
position if we reflect (so now the perturbation is about the P\/I\/ﬂt% T) and then advance in
time by the same amount.

Hence

g(KxA’ KXUO; M) = Kxg(A7 UO; :u')’
h(kx A, kxUo; ) = —h(A, Ug; ).

Since our basic statly is T-periodic, we seek a map that gives the perturbad¢®)
at time+ = T given a perturbatiorA(0) at some initial timer = 0. Specifically, we
define a time advance mapt; acting on the perturbation (0) by A(r) = M(A(0)). We
adopt the approach of Swift and Wiesenfeld (1984) and split the time interval from 0 to
T into two stagg(s g)sing the symmetry property of the underlying PWs. Specifically, since

Kk A(t) satisfies=43= = Gk, A, k,Uo; u) and k,Uo(x, z,1) = Up(x, z,t + %), we have

Ko A(l) = M’;/g/z(/ch(O)); hence

8

T/2
e Mg = MT;Z-HKX. )

Advancing the perturbation by a timestarting from time 0 and then reflecting the whole
system is equivalent to reflecting the whole system then advancing by a stading from
time %T (see figure 1). It follows immediately that the full period ma} can be written

as the second iterate of a mgp

Mg = M7t Mo'? = (e Mg'%)? = G (10)
Rather than consider the full period ma@, we will consider the mag = «, M{/%.
The mapG has no special property under reflections, but it commutes with translations
which leave the underlying PWs invariarz, = 7,G. The underlying PW periodic orbit
is a fixed point ofG as a consequence of its spatio-temporal symmetry.
The dynamics of the perturbation is now given by the rfap4,+1 = G(A,; ), where
each iterate corresponds to advancing in time%ﬂyand reflecting; thu%(%T) = KAz,
starting from.Ag at time 0. In order to compute the drift of the solution at time%T,
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we integrate the ¢dr equation (6) for a tim%T, starting at a positiomg and with initial
perturbationA (0) = Ap:

T/2 ~
c=cot /O M (Ao). Uot): ) dir = co+ (Ao 1), (11)

Then, after a second half-period,
a T

=it [ O AAGT. ol dr = it [ BOMY i A o0 )
T/2 T/2

T
=c1+ / h(e My "2 (Ay), k. Uo(t — T/2); ) de
T/2

T/2 .
=c1— / h(My (A1), Uo(t); w) dt’ = c1 — h(Ax; w). (12)
0
Thus the combined dynamics of the perturbation and translation can be written as

An+l = g~(./4,1; I'L): Chn+1l = Cp + (_1)11]:l(~/4n; M) (13)

Since the unperturbed PW is a nondrifting solution of the problenx at 0 we have
G(0; 0) = 0 andh(0; 0) = 0. Moreover, the spatial periodicity @fy places some symmetry
restrictions onG and i; specifically,G (1, A; 1) = 1,G(A; w) andh(r A; w) = h(A; w).

We turn now to the codimension-one bifurcations of the PW, which are the trivial fixed
points A = 0, ¢ = ¢p of (13) whenu = 0. The map (13) always has one FM equal to one
because of the translation invariance of thpart of the map. Bifurcations occur when a
FM of the linearization ofg crosses the unit circle: either a FM 1, or a FM= —1, or
there is a pair of complex conjugate FMs with unit modulus (we do not consider the last
case in this paper). Because we have assumed periodic boundary conditions in the original
PDEs, we expect the spectrum of the linearization to be discrete and the centre manifold
theorem for maps to apply. (See Chossat and looss (1994) for a discussion of the centre
manifold reduction in the similar problem of bifurcations from Taylor vortices.) ¢ dte
the eigenfunction associated with the critical FM, so that on the centre manifold, we can
write

A, = ap¢ + ®(ay), (14)
where® is the graph of the centre manifold. The unfolded dynamics takes the form
@1 = 8@ 1), a1 =G+ (=D)"h(a; ), (15)

where 2 and i are the maps; and/ reduced to the centre manifold; and & share the
same symmetry properties gsand .

In this paper, we only consider the case whereacts trivially. We therefore expect
only generic bifurcations in the map saddle-node when FM: 1, period-doubling when
FM = —1 and Hopf when there are a pair of complex FMs. The FMs for the full period
map M7, which are the squares of the FMs @f will generically be either one or come
in complex conjugate pairs. In particular, we do not exp&¢f to have a FM= —1;
this mechanism for suppressing period-doubling bifurcations was discussed by Swift and
Wiesenfeld (1984).

Here we consider only the cases whérbas a FM= +1 or —1. The normal form in
the case FM=1is

apy1 = U +a, — a;fv Cnt1l = Cp + (_1)}1};(61;1; [,L), (16)
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to within a rescaling and a change of sign. The parametsrzero at the bifurcation point,
and the fixed points of the part of the map are = &,/ wheny is positive. The spatial
translations are

co, 01=c0+fl(a;,u), cr=co,.... a7
We therefore have ag-parametrized family of solutions that vanish, in pairs, ;ads
decreased through = 0. We interpret this bifurcation by considering the solutions with
co = —%fl(a; ), a = £,/;. In this case, we have a pair of PW solutions, translated with
respect to the original PW b%fz(i\/ﬁ; 1), which collide in a saddle-node bifurcation at

u = 0. The remainder of the family of solutions is obtained by translating this pair.
The case FM= —1 is more interesting. The normal form in the supercritical case is

ane1 = (=14 pa, — a,?v Cntl = Cp + (_1)n};(an; ), (18)
with a fixed pointa = 0 and a period-two orbit;, = (-1)",/i. The dynamics of the
spatial translations are

co, 1= co+ hlag; p), 2 = co+ h(ag; 1) — h(—ag; p),

. . (19)
c3 = co + 2h(ao; ) — h(—ao; 1), . . ..

Sinceh(0; 0) = 0, and generically?” (0; 0) # 0, /i(ao; 1) and/(—ao; ;1) have opposite sign
for small u; this represents a symmetry-breaking bifurcation that leads to a solution that
drifts along the group orbit of the PW.

The main points of interest in this section are the approach that we have taken in
analysing the instabilities of the group orbit of the spatio-temporally symmetric periodic
orbit, and the observation that an instability of the PW with EM1 in the full-period
map can lead to drifting solutions or not. Whether solutions drift can only be determined
by examining the half-period map. In the next two sections, we apply our method to
three-dimensional APWs and to ARs, the latter having spatial as well as spatio-temporal
symmetries.

3. Three dimensions; APWs

APWs are the simplest three-dimensional analogue of the PWs discussed in the previous
section. These periodic oscillations have been observed in numerical simulations of three-
dimensional compressible magnetoconvection with periodic boundary conditions in the two
horizontal directions (Matthewst al 1995). They appear either after a series of global
bifurcations (Rucklidge and Matthews 1995, Matthestsl 1996) or in a Hopf bifurcation
from convection in a square pattern (Rucklidge 1997), and are invariant under the combined
operation of advancing one quarter period in time and rotatirgir®8pace.

The full symmetry group of the problem is the semidirect product ofilgesymmetry
group of the square lattice and a two-tofi5of translations in the two horizontal directions,
x andy. D4 is generated by a reflection, and a clockwise rotation by 9(p:

Kkxi(x,y) = (—=x,), pi(x,y) = (y, —x),
Tapt(x,y) = (x +a (mod¢), y+b (modé)),
wherept, , = 7 _4p-
As before, we assume that at= 0, we have a known APW solutiobip o(x, y, z, t)
with spatial period: in each direction and temporal peri@d then Uy o satisfies

(20)

Uoo(x, y,2,1) = pUo(x, y, 2.t + 5T) = Uoo(x, y. 2.t + T) = 15 0Uo0(x, y, 2, 1)
= 10Uo0(x, y, z, ). (21)



1442 A M Rucklidge and M Silber

We consider only the case whetg, and 1p; act trivially. There is a two-parameter
continuous group orbit of APWs generated by translatiobis; = t,,Uoo. We expand
about this group orbit:

U(x’ y’ Zv t) = TC)(Z‘),C)-(I)(UO,O(-X9 y7 Z’ t) + A(xa y’ Zv t))v (22)

where (¢, c,) is a time-dependent translation around the group orbit ands the
perturbation orthogonal to the tangent plane to the group orbit. As before, we separate
the evolution of the translations from that of the perturbation:

dA dc dc

— =G(A, Upo; 1), = = h,(A, Ugo; 1), — = hy(A, Ugo; i), 23
» G(A, Uo0; 1) o (A, Uoo; 1) o y(A, Uoo; 1) (23)
where we keep track of the explicit time dependencg ofi,, andh, through the argument
Up,o. The spatio-temporal symmetry of the basic st is manifest inG, h, andh, as

follows:

G(pA, pUgo; ) = pG(A, Upo; 1),
h(pA, pUoo; n) = hy(A, Ugo; 1), (24)
hy(pA, pUgo; ) = —hx(A, Ugo; 1),
where pUpo(r + %T) = Upo(t). It is convenient to introduce a complex translation
¢ =c, +icy and a corresponding = h, +ihy, SO pT. = T_jcp.
As before, we define a time advance map acting on the perturbatioA(so =
5(A(0)); this has the property

T/4 T/2 31/4
0P = ,OMT;H[’ 6/02 = PzMT?zJH’ 6'03 = p3M3T§4H (25)

because of the underlying spatio-temporal symmetry of the APW. The full period\vtfap
is then the fourth iterate of a map
Mg = p*MiraMo " = p Mo PP MG = (oMo = G (26)
Instead of M, we consideG = ngf“, which has no special properties under reflections
and rotations. ~
The dynamics of the perturbation is given Bly,,1 = G(A,), where A(AT) = p3A;,
etc. Then the position of the pattern at tir%ﬂﬁ is

T/4 N
cr=cot [ BOMb(AD). U0 1) 6 = co -+ s ), (27)
0
where the magh = i, + ih,. After the next quarter period, we find

/2
=t [ My AGT). Voo i
T/4

/2
—cit / BMY (03 A, Uolt); ) c
/4

/2
—et / h(pPMTA (A, p*Uoolt — T/8): i
T

/4
=c1+ih(Ag; p). (28)
So the combined dynamics of the perturbation and the translation can be written as
-ArH—l = Q(An; I'L), Cp+1 = Cp + inﬁ(An; /vl/)v (29)

whereG(0; 0) = 7(0; 0) = 0.
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Note that, as in the case of PWSs, the generic bifurcations of APWs are either steady-
state (FM= +1) or Hopf, sinceM{ = G*. We consider bifurcations with FM= +1 of
M only; generically, these occur when the linearizatiorgdfias a FM of+1 or —1.

Near a bifurcation point we reduce the dynamics onto the centre manifold

apy1 = g(an; l/L)’ Cnyl = Cp + in;l(an; /’L) (30)

When a FM= 1, once again we have a saddle-node bifurcation, this time involving pairs
of APWs that are translated relative to each other. If a FM1s we haves, = (-1)" /1,
and the spatial translations are:

co, c1=co+ sz(ao; ), 2 = co + h(ag; p) + ih(—ao; 1), (31)
c3=co+ih(—ao; n), ca=co,....

This solution has no net drift (unlike in the two-dimensional problem), but travels back and
forth different amounts in the two horizontal directions since, genericallyao; 1) #
fzy(ao; w). The solution remains invariant under advance of half its period in time
combined with a rotation of 180 To see this, we construct the soluti@n(x, y, z, t)

att = 0 andr = %T using the solution in theg-parametrized family that satisfies

co = —cp. Specifically, we insert the centre manifold solutiaf0) = Ay = ap¢ + P (aop),
AGT) = p?Az = p?(aot + ®(ap)) in (22). We obtain

U(0) = 1,(Uo,0(0) + aot + ®(ap))
UGT) = 1_¢(Uo0(GT) + p?aot + p*®(a0)) = 7_c,p*Uo,0(0) + aot + P(ag)) (32)
= p’U(0)

where we have suppressed the y, z)-dependence of/, retaining only itsz-dependence.

Thus, in the simple case of APW, we cannot get drifting solutions in a bifurcation with
FM = 1 for the time? return map. We next consider the same bifurcation for the more
complicated example of ARs. This solution has the same spatio-temporal symmetry as
APW but has extra spatial reflection symmetries. We shall see that in this case a particular
symmetry-breaking bifurcation leads to two distinct types of drifting solutions.

4. Additional spatial symmetries: ARs

ARs are created in a primary Hopf bifurcation fromg x T2 invariant trivial solution
(Silber and Knobloch 1991). Like APWSs, ARs are invariant under the spatio-temporal
symmetry of advancing one-quarter period in time and rotatirfgi®@pace, but have the
additional property of being invariant under reflections in two orthogonal vertical planes.
ARs have been observed to be stable near the initial Hopf bifurcation over a wide range of
parameter values in three-dimensional incompressible and compressible magnetoconvection
(Clune and Knobloch 1994, Mattheves al 1995).

For convenience in this section, we defihi¢o be the combined advance of one quarter
period in time followed by a 90clockwise rotation about the ling, y) = (0, 0). Reflecting
in the planesx = %A ory = %k leaves ARs unchanged at all times, so the 16-element
spatio-temporal symmetry group that leaves the AR invariant is generated by and s,
where

K (X, y, 2.0 > (GA—X,y.2.1),
K (3,2, 1) = (8, 3=y, 2,0), (33)
;5:(-x7 }%Z,f) - (y’ _x’ Z7t+ Z]iT)
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Table 1. Summary of six types of bifurcations of ARs, distinguished by the actior;oénd
«}, on the critical modes, and by the critical FMs ©f Generators of isotropy subgroups (up
to conjugacy) of the bifurcating solution branches are indicated; in caseanl B—, there are
two distinct solution branches.

Action of k}, ¥, on  Floquet Bifurcation Isotropy
Case marginal modes multiplier(s)  (drift or not) subgroup
A+(+1) kit =¢ FM = +1 Saddle-node (K, k5, P)
Kl =K,0=¢ (no drift)
A+(=1) as Ar(+1) FM= -1  Symmetry-breaking («.,«}, 5°)
(no drift) '
A—=(+1) xkyE=¢ FM = +1 Symmetry-breaking (x\«y, £)
KL= K;,g =—¢ (no drift)
A—(-1) as A-(+1) FM=-1 Symmetry-breaking (k.«}, k. /)
(no drift) )
B+ Kpkhle = —it FM =41 Symmetry-breaking («.., 52)
—=klly = -kt (no net drift) (B)
B— as B+ ’ FM = i Symmetry-breaking (k. ze—c 4k} 52)
(arift) (Teg-ic; €4 )

The basic AR solutiorUyo(x, y, z, t) exists atu = 0 and satisfies
Uoo(x,y,z,t) = pUoo(x, y, 2z, + %T) = Upo(x,y,z,t +T) =k, Ugo(x,y, z,1)
= K)/,U(),O(x, y, 2, t) = IX,OUO,O(-x9 v, 2, l) = TO,)\.UO,O(‘X7 v, Z, t) (34)

As in section 3, we expand about this basic solution and recover the map (29). The presence
of extra reflection symmetries of the underlying solution manifests itself in the following
way:

G, A) = k,G(A), G, A) = K, G(A),
ho(l A) = —he(A),  he(c)A) = hy(A), (35)
hy (kL A) = 1y (A), hy(k) A) = —hy(A).

The first of these equations deserves some explanatigae, A) = pM{ il A =

px;Mg/“A, sincex;, commutes with the time advance map, as the underlying periodic
orbit is invariant undet;. Now pk; = «p, SO pK;MgMA = K;,ng/“A = K;,Q(.A).

Note that it is the rotation in the definition 6f (26) that implies that reflecting witk then
applyingG is equivalent to applying then reflecting withe;—not «. In the terminology

of Lamb and Quispel (1994}, andx/, are 2-symmetries o, that is,G?(x.A) = k,G2(A).

In general k-symmetries arise when the spatial part of the spatio-temporal symmetry of a
time-periodic solution does not commute with its purely spatial symmetries (Lamb 1998).
We discuss this point in more detail in section 5.

The remainder of this section is devoted to the discussion of the codimension-one steady-
state bifurcations of this problem. We do not consider bifurcations that break the spatial
periodicity, sot, o and g, act trivially, nor do we consider Hopf bifurcations. The results
are summarized in table 1.

We begin by noting thatG(x/k,A) = kk,G(A), SO kk, commutes with the
linearization £ of G, whereas«,L = Lx|. The eigenspaces of are invariant under
the rotationk «/,. We assume the generic situation of one-dimensional eigenspaces; then

X

each eigenfunctiog must be either even or odd under the rotatigr, i.e. Kk ¢ = ¢
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(case A) ork k¢ = —¢ (case B), since/c;/c;)z is the identity. In case A, it =k k¢ is

X

an eigenfunction off with FM = s, thenk ¢ = k¢ has the same FM:
EK;C = K}/,[:C = sx;g = sKk,C. (36)

Since;c)’c2 is the identity, it follows that and«,¢ are linearly dependent and that either

k., = ¢ (case Af) or k.. = —¢ (case A-). Finally, these two cases are subdivided

according to the value of the critical FM df (either+1 or —1) at the bifurcation point.
Case B is rather different. Here we hawgg = —« ¢, so

Ll = K;ﬁg = sk,{ = —sk, L. (37)

Thusk.¢ has FM= —s and is linearly independent gf which has FM= s. We definez
to be the eigenfunction afand¢_ to be the eigenfunction ofs, with ¢ =« ¢y = —k[ ¢y
There are two ways in which two FMsand—s can cross the unit circle: either-&fl and—1
(case Br) or at+i and —i (case B-). Note that in the absence of the reflection symmetries
these bifurcations would be codimension-two; here they occur as generic bifurcations. Since
the FMs of the timeF map M are the fourth power of the FMs @, the effect of the
symmetry in case B is to force a repeated EM+1 in the mapM{.

In case A, we write

An =a,¢ + d(ay), (38)

near the bifurcation point, wheré is the graph of the centre manifold. On the centre
manifold we haved = kx| A, so

he(A) = he(ciey A) = —hi (i, A) = —h(A) =0, (39)

where we have used (35). Thus in casesz;:mdfzy are identically zero, and no bifurcation
will lead to drift along the group orbit of ARs.

The reflectionsc, and«/, act trivially in case A-. A FM = +1 leads to a saddle-node
bifurcation of ARs. The normal form in the case FM —1 givesa, = (—1)"ao, from
which the bifurcating solutiorU (+) can be reconstructed. Choosing the initial translation
co to be zero, and suppressing the y, z)-dependence of/, we have

U(0) = Uo,0(0) + ao¢ + ®(a), UGT) = p°(Uoo(0) — aol + P(—ao)), (40)
UGT) = p*(Uo0(0) + ao¢ + ®(ao)), UGT) = p(Uoo(0) — ao + ®(—ao)).
Here it should be recalled thaxo,o(%T) = p3Us0(0), and that on the centre manifold
AGT) = p° A1 = pP(a1g + @(a1)) = p*(—aol + P (—ao)). (41)
This solution satisfies
Ut) =k, U@) =k, U) = p°U(t + 3T), (42)

and thus has the same symmetries as ‘standing cross-rolls’, described by Silber and Knobloch
(1991).

In case A-, x, and«; act nontrivially, so the behaviour on the centre manifold is
governed by a pitchfork normal fornu( = ap) when the FM= +1 and by a period-
doubling normal form 4, = (—1)"ap) when the FM= —1. At leading order inag, the
bifurcating solutiond/ (¢) in the two cases are

U(0) = Uo,0(0) + aot, UGT) = p*(Uoo(0) + ao?),

1 2 3 (43)
UGT) = p=(Uoo(0) + ao?), UGT) = p(Uo,0(0) % agt).
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These solutions are not invariant unagror «;, (since these change the signgf but are

invariant under the produ /K}/,. In addition,U (t) = pU (t + %T) in the case FM= +1

andU(t) = k,pU(t + 3T) in the case FM= —1.
Case B is more interesting. On the two-dimensional centre manifold, we write

Ay = (=an +bp) ¢y + (@ + by + P(ay, by); (44)
the form of this expression is chosen for later convenience. The map (29) reduces to
(@ns1, bay1) = §(an, by 1), €1 = Gy + " (h(n, bas ) +ihy(an, by ). (45)
Sinces_ = k¢ = —k ¢+, We have

K,;-An = (an + bn)§+ + (_an + bn)é‘f + K;/(q)(an’ bn)s

46
K;An = (—a, — bn)§+ + (a, — bn)é‘— + K_::q)(an’ b,); ( )
thus
K,;(ana bn) = (_ana bn)a K;(ana bn) = (an’ _bn)- (47)
From this and from (35), we deduce that on the centre manifold
ﬁ ay, bn == _ilx —dy, bn == ]:\lx ap, _bn s
x( ) ( ) ( ) (48)

hy(@n, by) = —hy(an, —by) = hy(—an, by),

implying that/, (0, b; 1) = 0 andﬁy(a, 0; u) = 0. Moreover,g inherits the symmetries
(35) of G:

K;é(an» bn) = g(K)/; (anv bn))v K;g(ans bn) = g(’(;(ana bn))- (49)

Thus the linearizatior’ of g satisfies

1 0\, (-1 0
(o —1)£:£<o 1)’ (50)

which forces’ to be of the form

(3 %)

wherea,, b, can be scaled so that= |8|. There is a bifurcation whef = +1 org = —1,
yielding FMs+1 (case B-) or +i (case B-), respectively.

In order to analyse the dynamics near the bifurcation point, we compute the normal
form of the bifurcation problems, expandiggas a Taylor series in andb. The symmetry
K.k, prohibits quadratic terms, and all but two of the cubic terms can be removed by
near-identity transformations. For reasons to be explained in section 5, we choose the
transformation so that the normal form commutes with the linearization of the map (51) at
the bifurcation point. (That this can be done follows from general results on normal forms;
see, for example, Crawford (1991) or Lamb (1996).) We thus have the unfolded normal
form, truncated at cubic order, in the two cases Bnd B-:

ans1 = (L + pu + Pa?+ Qb?)b,,
bup1 =1+ p+ Pb} + Qal)ay,. (52)
Cntl =Cp + in(l:;x(an’ by; w) + ii/;y(an’ by; M))7



Bifurcations of periodic orbits with spatio-temporal symmetries 1447

where = 0 at the bifurcation point an& and Q are constants. In casetBthe second
iterate is

ant2 = (L4 2+ 2Qa? + 2Pb})ay,

5 ) (53)
bn+2 =1+ 2“ + 2Pan + Zan)bnv
while in case B- the fourth iterate is
dnia = (14 4 + 4Qa> + 4Pb?)a,,
+4=( w+ 40 ) (54)

buya = (1 + 4 + 4Pa? + 4Qb?)b,.
The maps (53) and (54) have the same form as the geiigriequivariant steady-state
bifurcation problem (see, for example, Silber and Knobloch (1989)). There are two group
orbits of solution branches; one associated with solutions o taed » coordinate axes,
and the other associated with solutions on the diagonal lines+b. We now interpret
these in terms of period-one, -two and -four solutions of the original map (52). We note
that our results are the same as those of Lamb (1996) who analysed a different normal form
for this bifurcation problem.
In case Br, there are two distinct types of orbits created. The first is a period-two orbit
(ao, 0) <> (0, ag), with 0= + Qag. From this and the symmetries (48) of we deduce
the drift of the solution at each iterate:
co, c1 = co + hy(ao, 0; ), c2 = co + hy(ao, 0; ) — hy (0, ag; w), (55)
c3 = co — hy (0, ag; ), ca=co,....
There is no net drift along the group orbit in this case. Moreover,ctiparametrized
family of solutions drift to and fro in thec-direction only sincec, — ¢g is real. Consider
co = 3(—hy(ao, 0; w) + h,(0, ap; w)) = —co, Whereco is real and thus corresponds to
a translation in thec-direction. The reconstructed solutidn(z), at leading order irug,
satisfies

U(0) = 74, (Uo,0(0) — aoly + aol-),
U(GT) = 76,0°(Uo0(0) + aot + aot-),
UGT) = T_¢p°(Uo0(0) — a0ty + aot-),
UGT) =t ¢,p(Uo0(0) + aoly + aot-),
so we havel (1) = K;U(t) = p2U(t + %T). The conjugate orbit(0, ag) < (ao, 0), has
symmetry(x’, 5%) and does not drift at all in the-direction. This orbit bifurcates stably if
P < Q <0in (52).
The second type of orbit created in case- Bs a period-one orbit(ag, ag), with
O=u+(P+ Q)ag. The translations at each iterate are

(56)

co. c1=co+ ﬁA(aO’ ao; W), c2 = co + h(ao, ao; 1) + ih(ao, ap; p), 57)
c3 = co + ih(ag, ag; 1), ca=cg,....

This orbit also has no net drift, and by choosiag = —%(1 + i)ﬁ(ao,ao; w), we have

¢1 = icg. The reconstructed solutioti(z), at leading order i, satisfies

U(0) = 7¢,(Uo0(0) + 2a0¢-), U(5T) = Ticep*(Uo,0(0) + 2a0¢-), (58)

UGT) = t_p*(Uoo(0) + 2a0t), UGT) = T_i¢,p(Uo,0(0) + 2a0¢-),

soU(t) = pU(t + %T), and the isotropy subgroup i®). This solution has the same
symmetries as the APWs described in section 3, so APWs may be created in a symmetry-
breaking bifurcation of ARs. There is also a period-two okby, —ag) <> (—ao, ag) that
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has the conjugate isotropy subgroj«; o). These solution branches are stable provided
Q < —|P|in (52).

Finally, we turn to case B. Here, there are two types of periodic orbit created in
the bifurcation atu = 0, and in this case they are both of period four. The first orbit is
(ao, 0) — (0, —ag) — (—ag, 0) — (0, ag), with 0 = — + Qag in (52). Again, this orbit
is stable if P < Q < 0. The translations are

Co,
1= co+ hy(ao, 0; ),
2 = co+ hy(ao, 0; ) + hy (0, ag; ), (59)

3 = co + 2h.(ao, O; 1) + i, (0, ag; ),
ca = co+ 2h,(ag, 0; j0) + 2h,(0, ag; p), . . ..

Note thatc, — ¢g is real so there is no drift at all in thedirection, but there is a systematic
drift in the x-direction. The reconstructed solutidn(r) satisfies

U(0) = 7.y(Uo,0(0) — aoty + aot-),
UGET) = 7,p°(Uo0(0) — aot+ — aol-),

1 2 (60)
UGGT) = 1,0°(Uo,0(0) + ao+ — aos-),
UGT) = 1,0 (Uo0(0) + aol + aol-).
so we have
U(t) = kyU (1) = Tepck i, p°U (1 + 3T). (61)

The isotropy subgroup of this solution s, rL.O_L.ZK;K;ﬁZ), which is homomorphic (modulo

translations) taD,. A conjugate orbit, started a quarter period later, has isotropy subgroup
(K, rCO_CZK’/c’ﬁZ) and drifts systematically in the-direction.

xTy

The second type of orbit created in case B (ag, ag) — (ag, —ag) — (—aog, —ag) —
(—ao, ag), With 0 = —p + (P + Q)ad. It is stable providedQ < —|P| in (52). The
translations are

Co,

1= co + hy(ao, ag; ) + iﬁy(ao’ ao; 14),

c2 = co+ (L+ ) (s (ao. ao: ) + hy (o, ao: ). (62)
c3 = co+ 2+ )h(ao, ao; ) + (L + 20)h, (ao, ao; 1),

ca = co+ 2+ 2)(h(ao, ao; ) + hy(ag, ag; 1)), . . ..

This corresponds to a solution that drifts along the diagonal, with a wobble from side to
side as it goes. At leading order di, the reconstructed solutioki(z) satisfies

U(0) = 7,(Uo,0(0) + 2ao¢_), U(3T) = 7,0°(Uo0(0) — 2a0s.),
UGT) = 1¢,0*(Uo0(0) — 2a0s-), UGT) = 1,0 (Uo,0(0) + 2a0z).

which has fully broken the spatial symmetries. This solution has the spatio-temporal
symmetry

(63)

U(t) = TegicskypU (1 + 3T), (64)

which generates the isotropy subgrop,;.;«;6), homomorphic (modulo translations)
to Z4.
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Figure 2. ARs in three-dimensional compressible magnetoconvection, starting with parameter
values from Matthewst al (1995). The four frames are (approximately) at timay { = O,
(b)r=32T,(c)t= 3T and ¢) r = 3T. The frames show contours of the vertical velocity in

a horizontal plane in the middle of the layer: full curves denote fluid travelling upwards, broken
curves denote fluid travelling downwards, and the dotted curves denote zero vertical velocity.
The spatial symmetries, andx; are manifest, as is the spatio-temporal symmetry of advancing
a quarter period in time followed by a 90otation (counter-clockwise in this example). The
dimensionless parameters are: the mid-layer Rayleigh number (proportional to the temperature
difference across the layeR = 2324; the Chandrasekhar number (proportional to the square
of the imposed magnetic field) = 1033; the Prandtl number = 0.1; the mid-layer magnetic
diffusivity ratio ¢ = 0.1; the adiabatic exponept= g; the polytropic indexn = %; the thermal
stratificationd = 6; the mid-layer plasma befg = 32; and the horizontal wavelengths= 2

in units of the layer depth.

An MPEG movie of this figure is available from the article’s abstract page in the online
journal; seenttp://www.iop.org.

In summary, we have examined the six different cases in which ARs undergo a
bifurcation with FM = +1 in the full period map. All six bifurcations preserve the
underlying spatial periodicity of the ARs, but may break the spatial and spatio-temporal
symmetries. The 2-symmetry present in the B cases forces two FMs to cross the unit
circle together, and we find two branches of bifurcating solutions, with distinct symmetry
properties. In these cases, we find that if both solution branches bifurcate supercritically,
then one and only one of the two solutions will be stable. It is only in casevith FMs
+i in the mapg, that the bifurcation leads to systematically drifting solutions: one solution
drifts along a coordinate axis, while the other drifts along a diagonal.

We finish this section by presenting examples of ARs and drifting ARs, which we
interpret as an instance of a-Bbifurcation. We have solved the PDEs for three-dimensional
compressible magnetoconvection in a periodi2x 1 box, using the code of Matthewesal
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Figure 3. After a bifurcation of type B-, the ARs begin to drift. The parameter values are
as in figure 2, but with a higher thermal forcingg = 3000 andQ = 1333. The frames are
(approximately) at timesa) ¢t = 0, (0) t = 37, (¢) t = 37, (d) ¢t = 3T, (€) t = T and

(f) + = 2T. Note how all spatial and spatio-temporal symmetries have been broken, with the
exception ofiy, a reflection in the plang = %x (modulo a slight shift in the periodic box).
The slow leftward drift of the pattern can be seen by comparing framgs(€) and ), In
addition, a drift symmetryd:c:.ﬁzr(o_q, conjugate to (61), can be seen by comparing frames
(@) and €) or (b) and ¢).

An MPEG movie of this figure is available from the article’s abstract page in the online
journal; seenttp://www.iop.org.

(1995). The PDEs and description of the parameters and numerical method can be found
in that paper. Figure 2 shows an example of an AR at times approximate}y,O%T

and 37; the two reflection symmetries, and «/ in planesx = ;1 andy = ;i and

the spatio-temporal symmetry of advancing a quarter period in time followed by a 90
rotation about the centre of the box are manifest. Increasing the controlling parameter, the
temperature difference across the layer, leads to the solution in figure 3: the data are shown
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at times O,%T, %T, 37, T and 2I'. The only spatial symmetry remaining is the invariance
underk;, and the spatio-temporal symmetry has been broken. By comparing frajpes (

(e) and €) at times 0,7 and 2T, it can be seen that the solution is drifting slowly leftwards
along thex-axis. Moveover, a drift symmetry,« p°7._c, CONjugate to (61) can be seen by
comparing framesa) and €). This evidence points to there being a bifurcation of type B

at an intermediate parameter value. Closer inspection reveals that for the chosen values of
the other parameters, the first instability of ARs as the temperature difference is increased
is in fact a Hopf bifurcation leading to patterns that drift in an oscillatory fashion, with no
net drift, on a timescale that is much longer than the timescale of the ARs (so it is not a
bifurcation of type Br). Subsequently, stability is transferred to the drifting solution shown

in figure 3, which we conjecture was created in a bifurcation of typefi&dm ARs, after

their Hopf bifurcation. This scenario, of a Hopf bifurcation to oscillations followed closely
by bifurcation to steady solutions, with a transfer of stability between the two branches,
is familiar from studies of the Takens—Bogdanov bifurcation (Guckenheimer and Holmes
1983, Rucklidge 1994), but further investigation is beyond the scope of this paper.

5. Remarks on a group theoretic approach

In our analysis of the AR example above, we made use of the observation; iats a

symmetry ofG; the fact that(/c;/c",)z = identity, which implies thak | acts either as-1
or as—1 on marginal eigenfunctions, enabled us to compute all the different bifurcations
that are possible. We do not expect that all problems can be tackled in this way, so a more
general and systematic approach is desirable. Here we outline such an approach based
on the irreducible representations of the spatio-temporal symmetry group that leaves the
periodic orbit invariant.

Supposd is the compact group of spatial and spatio-temporal symmetries that leave
a time-periodic solution of the PDEs invariant: for example, in the case of ARE
generated by the spatial reflectiofisand«; and by the spatio-temporal symmetsy and

IT| = 16. (Here we call a symmetry ‘spatio-temporal’ if it involves a nontrivial time-
advance along the periodic orbit; otherwise we refer to it as ‘spatial’.) In the more general
case considered here, we assume tha@n be generated by spatial symmetries and by a
single spatio-temporal symmetry group eleménte I". In particular, we assume that

is the (semi)direct product of the spatial symmetry group and the cyclic spatio-temporal
group Z, generated by the elemefit Lety, ¢ I" denote the spatial part §f and letp be

the smallest positive integer with’ = identity.

The aim is to answer the question: given a periodic orbit with spatio-temporal symmetry
group ", what steady-state bifurcations are possible, and what are the symmetries of the
bifurcating solutions? We will find that different irreducible representationd” dead
to different normal forms for the weakly nonlinear behaviour near the bifurcation point,
with the number of marginally stable FMs equal to the dimension of the representation.
Some but not all of these maps will hakesymmetries ¥ > 1), as in cases B described
above. The bifurcation problem can be formulated in terms of a normal form that
is equivariant with respect to the irreducible representation under consideration. Our
approach is complementary to that of Lamb (1998), who starts fr@ymmetric maps and
demonstrates that these may appear as normal forms for bifurcations from spatio-temporally
symmetric periodic orbits.

The full-period mapM{ will factorize as in the previous examples (Lamb 1998):

M = (M"Y =GP, (65)
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where G, defined aa/,/\/lg/”, acts on perturbationgl, of the underlying periodic orbit,
with time measured in units df /p. Due to its spatio-temporal symmetry, the underlying
periodic orbit is a fixed-point of the ma@. Similarly, ¢,, now regarded as a vector whose
two components give the position of the pattern, evolves as

Cntl = Cp + {szl}n]:l(An; M)v (66)
whereM,, is the two by two real matrix that represents the standard action of the symmetry
y on the plane. In the AR example, we had= p andM,, = [fl é] or equivalently—i
whenc, is regarded as a complex coordinate,Mgl =1

Spatial symmetries do not necessarily commute Wittbut we do have
G A) = My Py A= vy, Mo"" A = vy, HG(A), (67)
wherey,y,y,~! is a spatial symmetry of the underlying periodic orbit. (However, the spatial
symmetries do commute witd”.) Lamb’s (1996) approach is based on the purely spatial
symmetry group and the mapping framto y,y,,~%, while we use the full spatio-temporal
symmetry groud’, which includes these relations.
Similarly, the rate of drift ofy,.A can be given in terms of the rate of drift gf:
h(ys A) = My, h(A). (68)

The relations (67) and (68) are the generalizations of (35).
Now suppose there is a bifurcation at= 0, and assume that there are finitely many

Ilnearly independent, marglnally stable eigenfunctignsy, ..., ¢, of the linearizationC
of G with FMs s1, 52, . . ., S, soﬁ;, = s;¢; with |s;| = 1. On the centre manifold, we write
A:Za,{i + d(ar, az, ..., am). (69)

i=1

The spatial symmetrieg take the subspace spanned by these eigenfunctions to itself, which
implies that the spatial symmetries act linearly on the mode amplituggs) = R, a,
where eachrR,, is anm x m matrix, anda = (ay, az, ..., a,). Similarly, the action
of advancing the linearized flow in time b/p and operating withy, takes the centre
eigenspace to itself; this operation takeso £a, where L is £ restricted to the centre
eigenspace. We consider only the case of steady-state blfurcatlonsﬁwnbemg the
identity, for which there aren FMs of the full-period map equal to one. From this it
follows that the matrice®,, andZ form a representation of the groiip the purely spatial
symmetries are represented by tRg matrices; theZ, spatio-temporal symmetry group
generated by, is represented bxi and its powers; and we observe thafif, = y,y, then
ﬁRyv/ = R%ﬁ (cf (50) and (67)). Thus every elemente I is represented by a matri,, ,
with y (@) = R, a. There is a basis in which the matricRg are orthogonal (Miller 1972).

On the centre manifold, the unfolded dynamics is given by the normal form

ani1 = 8(ay; p), Cnp1 = + (M han: ). (70)

SinceRj, is an orthogonal matrix, the normal forgncan be constructed to commute with
its linearization at the bifurcation point (which #;,) at any order (Crawford 1991, Lamb
1996). Moreover, the spatial symmetries transfginm the same way that they transform
G (67). Thus we have

8(R,,a; 1) = Ry, R, R; ¢ (a; ), 2(Rja; ) = Ry8(a; ), (71)
for the symmetry properties @f. With the translations we can only say that
h(R,,a; p) = My h(a; ), (72)
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where the matrice,, and M,, represent the action of the spatial symmeggyon the
spaces of perturbations and translations, respectively.

At the bifurcation poiniw = 0, the linearization of the normal form &;,; unfolding the
normal form leads to linear terms that also obey the relations (71), and with the assumption
that the representation is absolutely irreducible, we have

g(a; ) = 1+ )Ry a + O(d?). (73)
Small-amplitude bifurcating branches can be found by seeking solutions of
g(a; n) = Rya, (74)

which will be periodic points of the map with periagl whereq is the smallest positive
integer such thaR‘!t is the identity. Such periodic points are zeros of the funcii@a; )
defined by (cf Lamb 1996)

fla; ) = R;*3(a; p) — a. (75)
We note that since we have chosen the normal f@rto commute withR;,, f(a; )
is equivariant under the full spatio-temporal symmetry grdums represented by the
matricesR,: f(R,a;un) = R, f(a;p) for all y € I'. With this, we can apply the
equivariant branching lemma (see Golubitgkyal 1988), which implies that, under certain
nondegeneracy conditions, we are guaranteed a unique branch of bifurcating solutions for
all isotropy subgroups of with one-dimensional fixed point subspaces. These isotropy
subgroups characterize the spatio-temporal symmetries of the bifurcating periodic points
of g (Lamb 1998).

Finally, we use the approach described above to verify the results of the previous
section on ARs. Here the 16 element spatio-temporal symmetry dgrdwgs 10 irreducible
representations, of which four are one-dimensional and real (corresponding to the four
cases A in table 1), four are one-dimensional and complex (and so are not absolutely
irreducible: these will not arise in the steady-state bifurcations we are considering here)
and two are two-dimensional and real (corresponding to the two cases B). In these last two

representations, we havg, = [ 1], Ry =[5 °] and eitherr; = [? ;] (case Br)

or R; = [ % 3] (case B-). With ¢ = 2 in B+ andg = 4 in B—, we recover the two
bifurcating branches in each case, together with their respective isotropy subgroups (modulo
translations), as given in table 1.

In this way, the problem of determining which steady-state bifurcations from a given
periodic orbit are possible reduces to determining the absolutely irreducible representations
of the spatio-temporal symmetry group that leaves the periodic orbit invariant, and then
applying the equivariant branching lemma with an appropriate interpretation. This general
approach complements the specific calculations we have performed for ARs, and is the
natural way to progress to more complicated situations. Fsgmmetries that arose in
the cases B are now seen as a natural consequence of the structure of the two-dimensional
representations df.

6. Conclusion

We have developed a technique for investigating the possible steady-state instabilities from
continuous group orbits of spatio-temporally symmetric time-periodic solutions of partial
differential equations in periodic domains. Our approach is based on centre manifold
reduction and symmetry arguments. It is in the spirit of earlier work by looss (1986) on
bifurcations from continuous group orbits of spatially symmetric steady solutions of partial
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differential equations. We have treated three examples that arise in convection problems:
PWs in two dimensions, and APWs and ARs in three dimensions. A simple bifurcation
can lead to drifting solutions in the case of PWs but not APWs. The additional spatial
symmetries of ARs can force two FMs to cross the unit circle together; this degeneracy can
lead to drifting solutions, as in the numerical example presented in the section 4. We have
related our work to the theory éfsymmetries developed by Lamb and Quispel (1994). The
relevance that our work has for convection (and other pattern-forming) problems lies not
only in the analysis of the specific examples we have considered; rather, it is the possibility
of treating bifurcations of a wide variety of symmetric time-dependent patterns that is most
interesting and will be most useful in interpreting the results of numerical simulations and
experiments.

We have outlined an approach to the steady-state bifurcation problem, based on
computing the absolutely irreducible representations of the spatio-temporal symmetry group
that leaves a periodic solution of the PDEs invariant. This approach can readily be applied
to other problems. A more general group-theoretic approach, which can also treat period-
doubling and Hopf bifurcations of spatio-temporally symmetric periodic orbits, is being
developed by Lamb and Melbourne (1998).

In the future, we plan to tackle spatial period doubling and multiplying, wherer;the
symmetries do not act trivially; such instabilities are relevant to simulations of convection
carried out in larger boxes (Weist al 1996), and will be related to the study of the
long-wavelength instabilities of ARs (Hoyle 1994). We also plan to examine the case of
the hexagonal lattice: a Hopf bifurcation on a hexagonal lattice leads to a wide variety of
periodic orbits with different spatio-temporal symmetries (Robettal 1986). Moreover,
in recent experiments on parametrically excited surface waves (Kueoli 1998), a
transition from a hexagonal standing wave to a state possessing discrete spatio-temporal
symmetries has been observed. This transition is also accompanied by a change in the spatial
periodicity of the pattern. Finally, we plan to investigate the effect of including the extra
Z, mid-layer reflection symmetry that arises when making the Boussinesq approximation
for incompressible fluids.
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