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Abstract. Motivated by recent analytical and numerical work on two- and three-dimensional
convection with imposed spatial periodicity, we analyse three examples of bifurcations from a
continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential
equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of
earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria.
Two examples, two-dimensional PWs and three-dimensional alternating pulsating waves (APW),
have discrete spatio-temporal symmetries characterized by the cyclic groupsZn, n = 2 (PW)
and n = 4 (APW). These symmetries force the Poincaré return mapM to be thenth iterate
of a map G̃: M = G̃n. The group orbits of PW and APW are generated by translations
in the horizontal directions and correspond to a circle and a two-torus, respectively. An
instability of PWs can lead to solutions that drift along the group orbit, while bifurcations
with Floquet multiplier (FM)+1 of APWs do not lead to drifting solutions. The third example
we consider, alternating rolls, has the spatio-temporal symmetry of APWs as well as being
invariant under reflections in two vertical planes. This leads to the possibility of a doubling
of the marginal FM and of bifurcation to two distinct types of drifting solutions. We conclude
by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with
discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the
irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on
the normal form results of Lamb J S W (1996 Local bifurcations ink-symmetric dynamical
systemsNonlinearity 9 537–57). This general approach is relevant to other pattern formation
problems, and contributes to our understanding of the transition from ordered to disordered
behaviour in pattern-forming systems.

M This article features multimedia enhancements available from the abstract page in the online
journal; seehttp://www.iop.org.

AMS classification scheme numbers: 34A47, 35A99, 35B10, 76E30

1. Introduction

Techniques for analysing symmetry-breaking bifurcations ofŴ-invariant equilibria ofŴ-
equivariant differential equations are well developed in the case of compact Lie groupsŴ

(Golubitsky et al 1988). The motivation for developing these methods comes, in large
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part, from problems of pattern formation in fluid dynamics (see, for example, Crawford
and Knobloch 1991). In the simplest cases, the symmetry-breaking bifurcation corresponds
to a pattern-forming instability of a basic state that is both time independent and fully
symmetric, for example, a spatially uniform equilibrium solution of the governing equations.
A symmetry-breaking Hopf bifurcation of this spatially uniform state often leads to time-
periodic solutions that break the translation invariance of the governing equations and that
have spatio-temporal and spatial symmetries. In this paper we address bifurcations of such
periodic orbits, which have broken the translation invariance but have retained a discrete
group of spatio-temporal symmetries.

This work contributes an approach to analysing certain transitions from order towards
spatial disorder that occur as pattern-forming systems are driven harder. Here we analyse
symmetry-breaking bifurcations from nontrivial time-periodic solutions of pattern-forming
partial differential equations (PDEs). Since the exact form of these solutions may only be
known numerically, we will not in general be able to predict which bifurcations will occur at
what parameter values. However, the symmetry properties of the solutions may be known;
we exploit this qualitative information to determine the possibilities for bifurcation. This
knowledge should prove especially useful in interpreting the results of numerical simulations
or experiments.

We consider problems posed with periodic boundary conditions, for which there is anS1

symmetry associated with each direction of imposed periodicity. If this symmetry is broken
by an equilibrium solution, then the solution is not isolated; there is a continuous family
of equilibria related through the translations. An instability of this solution can excite
the neutral translation mode(s) and lead to new solutions that drift along the translation
group orbit. This is the case, for example, in the ‘parity-breaking bifurcation’: a reflection-
symmetric steady state undergoes a symmetry-breaking bifurcation to a uniformly translating
solution. Another example of a bifurcation leading to drift has been observed in two-
dimensional convection: when the vertical mirror plane of symmetry that separates steady
counter-rotating rolls is broken in a Hopf bifurcation, the resulting solution, called a
direction-reversing travelling wave or pulsating wave (PW), drifts to and fro (Landsberg and
Knobloch 1991, Matthewset al 1993). This periodic orbit is invariant under the combination
of advance of half the period in time with a reflection; any drift in one direction in the first
half of the oscillation is exactly balanced by a drift in the other direction in the second half,
so there is no net drift during the oscillation. Similarly in three-dimensional convection with
imposed spatial periodicity, a symmetry-breaking Hopf bifurcation from steady convection
in a square pattern can lead to alternating pulsating waves (APW), which are invariant under
the combination of advance of one quarter the period and rotation by 90◦ (Rucklidge 1997).
These solutions drift alternately along the two horizontal coordinate directions, but again
have no net drift over the whole period of the oscillation.

There have been a number of studies of bifurcations of compact group orbits of (relative)
equilibria. Iooss (1986) developed an approach based on centre manifold reduction to
investigate bifurcations of Taylor vortices in the Taylor–Couette problem. Specifically,
he analysed bifurcations in directions orthogonal to the tangent space to the group orbit
of equilibria, with the neutral translation mode incorporated explicitly in the bifurcation
problem. Krupa (1990) provided a general setting for investigating bifurcations of relative
equilibria that focuses on the local dynamics in directions orthogonal to the tangent space to
the group orbit. He showed that the resulting bifurcation problem is�-equivariant, where
� is the isotropy subgroup of symmetries of the relative equilibrium, and, building on work
of Field (1980), provided a group theoretic method for determining whether or not the
bifurcating solutions drift. Ashwin and Melbourne (1997) have recently generalized this to
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the case of noncompact Lie groups. Astonet al (1992), and Amdjadiet al (1997) develop a
technique for numerically investigating bifurcations of relative equilibria inO(2)-equivariant
partial differential equations, and apply their method to the Kuramoto–Sivashinsky equation.
Their approach isolates one solution on a group orbit, while still keeping track of any
constant drift along the group orbit.

In this paper we investigate bifurcations of time-periodic solutions that are not isolated
as they have broken the translation invariance, but that do possess a discrete group of
spatio-temporal symmetries. Our approach is similar to that of Iooss (1986). However, we
are interested in instabilities of periodic solutions, so we use centre manifold reduction for
Poincaŕe maps. We are particularly interested in determining whether the symmetries of
the basic state place any restrictions on the types of bifurcations that occur, and whether
the bifurcating solutions drift along the underlying group orbit or not. We consider three
examples that are motivated by numerical studies of convection with periodic boundary
conditions in the horizontal direction(s). First we investigate bifurcations of the PWs and
APWs described above. These solutions have discrete spatio-temporal symmetriesZ2 and
Z4, respectively. The group orbit of the PWs isS1, while the group orbit of the APWs is
a two-torus, due to imposed periodicity in two horizontal directions. The third example we
treat in this paper is alternating rolls (ARs), which have the same spatio-temporal symmetry
as APW but are also invariant under reflection in two orthogonal vertical planes (Silber
and Knobloch 1991). After considering these three examples, we discuss how to treat more
general problems.

TheZn (n = 2, 4) spatio-temporal symmetry of the basic state places restrictions on the
Poincaŕe return mapM; specifically,M is thenth iterate of a map̃G, which is determined
by the spatio-temporal symmetry. A direct consequence of this is that period-doubling
bifurcations are nongeneric (Swift and Wiesenfeld 1984). Throughout the paper we restrict
our analysis to bifurcation with Floquet multiplier (FM)+1; we do not consider Hopf
bifurcations. We also restrict attention to bifurcations that preserve the spatial periodicity
of the basic state.

Our paper is organized as follows. In the next section we lay the framework for our
analysis in the setting of a simple example, namely bifurcation of PWs. We show how
the spatio-temporal symmetry is manifest in the Poincaré return map. Section 3 considers
bifurcations of the three-dimensional analogue of PWs, namely APWs. Section 4 considers
bifurcations of ARs. For this problem we need to consider six different cases, which we
classify by the degree to which the spatial and spatio-temporal symmetries are broken. In
the case that the spatial reflection symmetries are fully broken by the marginal modes, the
FM +1 is forced to have multiplicity two, and more than one solution branch bifurcates
from the basic AR state. In one case we find a bifurcation of the AR state leading to two
distinct drifting solutions. We present an example of one of the drifting patterns, obtained by
numerically integrating the equations of three-dimensional compressible magnetoconvection.
In the course of the analysis of bifurcations of ARs, we make contact with the work on
k-symmetries of Lamb and Quispel (1994) and Lamb (1996, 1998). In section 5, we
outline a group-theoretic approach to the analysis of steady-state bifurcations of periodic
orbits with spatio-temporal symmetries, based on the equivariant branching lemma and the
irreducible representations of the spatio-temporal symmetry group that leaves the periodic
orbit invariant, making use of normal form results from Lamb (1996). Section 6 contains a
summary and indicates some directions for future work.
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2. Two dimensions: PWs

We write the PDEs for two-dimensional convection symbolically as

dU

dt
= F(U ; µ), (1)

where U represents velocity, temperature, density, etc as functions of the horizontal
coordinatex, the vertical coordinatez and timet ; µ represents a parameter of the problem;
andF is a nonlinear operator between suitably chosen function spaces. We assume periodic
boundary conditions, with spatial periodℓ, in thex-direction.

The symmetry group of the problem isO(2), which is the semidirect product ofZ2,
generated by a reflectionκx , and anSO(2) group of translationsτa, which act as

κx : x → −x, τa: x → x + a (mod ℓ), (2)

whereτℓ is the identity andτaκx = κxτ−a. The PDEs (1) are equivariant under the action
of these symmetry operators, soF(τaU ; µ) = τaF(U ; µ) and F(κxU ; µ) = κxF(U ; µ),
whereτa andκx act on the functions as follows:

τaU(x, z, t) ≡ U(x − a, z, t), κxU(x, z, t) ≡ Mκx
U(−x, z, t). (3)

HereMκx
is a matrix representingκx ; it reverses the sign of the horizontal component of

velocity and leaves all other fields inU unchanged.
Suppose that when the parameterµ = 0, there is a known PW solutionU0(x, z, t) of

(1) with temporal periodT and spatial periodλ = ℓ/N , whereN specifies the number of
PWs that fit into the periodic box. The symmetries ofU0 are summarized as follows:

U0(x, z, t) = κxU0(x, z, t + 1
2T ) = U0(x, z, t + T ) = τλU0(x, z, t). (4)

There is a continuous group orbit of PWs generated by translations:Ua = τaU0. We are
interested in bifurcations from this group orbit. Following the approach developed by Iooss
(1986) and Chossat and Iooss (1994) for studying instabilities of continuous group orbits
of steady solutions, we expand about the group orbit of periodic solutions as follows:

U(x, z, t) = τc(t)(U0(x, z, t) + A(x, z, t)). (5)

Here translation along the group orbit is given byτc(t), wherec is a coordinate parametrizing
the group orbit. Small perturbations, orthogonal to the tangent direction of the group orbit,
are specified byA(x, z, t). The expansion (5) is substituted into the PDEs (1) and, after
suitable projection that separates translations along the group orbit from the evolution of
the perturbation orthogonal to it, we obtain equations of the form (see Chossat and Iooss
1994):

dA

dt
= G(A, U0; µ),

dc

dt
= h(A, U0; µ), (6)

whereG and h satisfy G(0, U0; 0) = 0 andh(0, U0; 0) = 0. An important consequence
of the translation invariance of the original PDEs is thatG and h do not depend on the
positionc along the group orbit; the equation for the driftc is decoupled from the equation
for the amplitude of the perturbationA. Here we find it convenient to keep track of the
explicit time dependence ofG andh, which enters through their dependence on the basic
stateU0, by listing U0 as one of the arguments ofG andh. We determine how the spatio-
temporal reflection symmetry ofU0 is manifest in the equations forc andA by noting that
if τc(t)(U0(x, z, t) + A(x, z, t)) is a solution of the PDEs (1), then so is

κxτc(t)(U0(x, z, t) + A(x, z, t)) = τ−c(t)(κxU0(x, z, t) + κxA(x, z, t)). (7)
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Figure 1. Illustration of κxMt
0 = M

T/2+t

T /2 κx . In this example, the reflectionκx changes the
sign of the horizontal coordinate. The PW periodic solution is shown as a dotted curve. (a) A
perturbation att = 0 is advanced in time by an amountt (the full curve, which stays close to the
broken curve on the periodic orbit), then the system is reflected. (b) We arrive at the same final
position if we reflect (so now the perturbation is about the PW att = 1

2T ) and then advance in
time by the same amount.

Hence

G(κxA, κxU0; µ) = κxG(A, U0; µ),

h(κxA, κxU0; µ) = −h(A, U0; µ).
(8)

Since our basic stateU0 is T -periodic, we seek a map that gives the perturbationA(T )

at time t = T given a perturbationA(0) at some initial timet = 0. Specifically, we
define a time advance mapMt

0 acting on the perturbationA(0) by A(t) = Mt
0(A(0)). We

adopt the approach of Swift and Wiesenfeld (1984) and split the time interval from 0 to
T into two stages using the symmetry property of the underlying PWs. Specifically, since
κxA(t) satisfiesd(κxA)

dt
= G(κxA, κxU0; µ) and κxU0(x, z, t) = U0(x, z, t + T

2 ), we have

κxA(t) = M
t+T/2
T/2 (κxA(0)); hence

κxM
t
0 = M

T/2+t

T /2 κx . (9)

Advancing the perturbation by a timet starting from time 0 and then reflecting the whole
system is equivalent to reflecting the whole system then advancing by a timet starting from
time 1

2T (see figure 1). It follows immediately that the full period mapMT
0 can be written

as the second iterate of a mapG̃:

MT
0 = MT

T/2κ
2
xM

T/2
0 = (κxM

T/2
0 )2 ≡ G̃2. (10)

Rather than consider the full period mapMT
0 , we will consider the mapG̃ ≡ κxM

T/2
0 .

The mapG̃ has no special property under reflections, but it commutes with translationsτλ,
which leave the underlying PWs invariant:̃Gτλ = τλG̃. The underlying PW periodic orbit
is a fixed point ofG̃ as a consequence of its spatio-temporal symmetry.

The dynamics of the perturbation is now given by the mapG̃: An+1 = G̃(An; µ), where
each iterate corresponds to advancing in time by1

2T and reflecting; thusA( 1
2T ) = κxA1,

starting fromA0 at time 0. In order to compute the driftc1 of the solution at time1
2T ,
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we integrate the dc/dt equation (6) for a time1
2T , starting at a positionc0 and with initial

perturbationA(0) = A0:

c1 = c0 +
∫ T/2

0
h(Mt

0(A0), U0(t); µ) dt ≡ c0 + h̃(A0; µ). (11)

Then, after a second half-period,

c2 = c1 +
∫ T

T/2
h(Mt

T /2(A( 1
2T )), U0(t); µ) dt = c1 +

∫ T

T/2
h(Mt

T /2(κxA1), U0(t); µ) dt

= c1 +
∫ T

T/2
h(κxM

t−T/2
0 (A1), κxU0(t − T/2); µ) dt

= c1 −
∫ T/2

0
h(Mt ′

0(A1), U0(t
′); µ) dt ′ = c1 − h̃(A1; µ). (12)

Thus the combined dynamics of the perturbation and translation can be written as

An+1 = G̃(An; µ), cn+1 = cn + (−1)nh̃(An; µ). (13)

Since the unperturbed PW is a nondrifting solution of the problem atµ = 0 we have
G̃(0; 0) = 0 andh̃(0; 0) = 0. Moreover, the spatial periodicity ofU0 places some symmetry
restrictions onG̃ and h̃; specifically,G̃(τλA; µ) = τλG̃(A; µ) and h̃(τλA; µ) = h̃(A; µ).

We turn now to the codimension-one bifurcations of the PW, which are the trivial fixed
pointsA = 0, c = c0 of (13) whenµ = 0. The map (13) always has one FM equal to one
because of the translation invariance of thec part of the map. Bifurcations occur when a
FM of the linearization ofG̃ crosses the unit circle: either a FM= 1, or a FM= −1, or
there is a pair of complex conjugate FMs with unit modulus (we do not consider the last
case in this paper). Because we have assumed periodic boundary conditions in the original
PDEs, we expect the spectrum of the linearization to be discrete and the centre manifold
theorem for maps to apply. (See Chossat and Iooss (1994) for a discussion of the centre
manifold reduction in the similar problem of bifurcations from Taylor vortices.) Letζ be
the eigenfunction associated with the critical FM, so that on the centre manifold, we can
write

An = anζ + 	(an), (14)

where	 is the graph of the centre manifold. The unfolded dynamics takes the form

an+1 = ĝ(an; µ), cn+1 = cn + (−1)nĥ(an; µ), (15)

where ĝ and ĥ are the mapsG̃ and h̃ reduced to the centre manifold;ĝ and ĥ share the
same symmetry properties asG̃ and h̃.

In this paper, we only consider the case whereτλ acts trivially. We therefore expect
only generic bifurcations in the map̂g: saddle-node when FM= 1, period-doubling when
FM = −1 and Hopf when there are a pair of complex FMs. The FMs for the full period
mapMT

0 , which are the squares of the FMs ofĝ, will generically be either one or come
in complex conjugate pairs. In particular, we do not expectMT

0 to have a FM= −1;
this mechanism for suppressing period-doubling bifurcations was discussed by Swift and
Wiesenfeld (1984).

Here we consider only the cases whereĝ has a FM= +1 or −1. The normal form in
the case FM= 1 is

an+1 = µ + an − a2
n, cn+1 = cn + (−1)nĥ(an; µ), (16)
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to within a rescaling and a change of sign. The parameterµ is zero at the bifurcation point,
and the fixed points of thea part of the map area = ±√

µ whenµ is positive. The spatial
translations are

c0, c1 = c0 + ĥ(a; µ), c2 = c0, . . . . (17)

We therefore have ac0-parametrized family of solutions that vanish, in pairs, asµ is
decreased throughµ = 0. We interpret this bifurcation by considering the solutions with
c0 = − 1

2ĥ(a; µ), a = ±√
µ. In this case, we have a pair of PW solutions, translated with

respect to the original PW by12ĥ(±√
µ; µ), which collide in a saddle-node bifurcation at

µ = 0. The remainder of the family of solutions is obtained by translating this pair.
The case FM= −1 is more interesting. The normal form in the supercritical case is

an+1 = (−1 + µ)an − a3
n, cn+1 = cn + (−1)nĥ(an; µ), (18)

with a fixed pointa = 0 and a period-two orbitan = (−1)n
√

µ. The dynamics of the
spatial translations are

c0, c1 = c0 + ĥ(a0; µ), c2 = c0 + ĥ(a0; µ) − ĥ(−a0; µ),

c3 = c0 + 2ĥ(a0; µ) − ĥ(−a0; µ), . . . .
(19)

Sinceĥ(0; 0) = 0, and generically∂ĥ
∂a

(0; 0) 	= 0, ĥ(a0; µ) andĥ(−a0; µ) have opposite sign
for small µ; this represents a symmetry-breaking bifurcation that leads to a solution that
drifts along the group orbit of the PW.

The main points of interest in this section are the approach that we have taken in
analysing the instabilities of the group orbit of the spatio-temporally symmetric periodic
orbit, and the observation that an instability of the PW with FM= 1 in the full-period
map can lead to drifting solutions or not. Whether solutions drift can only be determined
by examining the half-period map. In the next two sections, we apply our method to
three-dimensional APWs and to ARs, the latter having spatial as well as spatio-temporal
symmetries.

3. Three dimensions: APWs

APWs are the simplest three-dimensional analogue of the PWs discussed in the previous
section. These periodic oscillations have been observed in numerical simulations of three-
dimensional compressible magnetoconvection with periodic boundary conditions in the two
horizontal directions (Matthewset al 1995). They appear either after a series of global
bifurcations (Rucklidge and Matthews 1995, Matthewset al 1996) or in a Hopf bifurcation
from convection in a square pattern (Rucklidge 1997), and are invariant under the combined
operation of advancing one quarter period in time and rotating 90◦ in space.

The full symmetry group of the problem is the semidirect product of theD4 symmetry
group of the square lattice and a two-torusT 2 of translations in the two horizontal directions,
x andy. D4 is generated by a reflectionκx and a clockwise rotation by 90◦ ρ:

κx : (x, y) → (−x, y), ρ: (x, y) → (y, −x),

τa,b: (x, y) → (x + a (mod ℓ), y + b (mod ℓ)),
(20)

whereρτa,b = τb,−aρ.
As before, we assume that atµ = 0, we have a known APW solutionU0,0(x, y, z, t)

with spatial periodλ in each direction and temporal periodT ; thenU0,0 satisfies

U0,0(x, y, z, t) = ρU0,0(x, y, z, t + 1
4T ) = U0,0(x, y, z, t + T ) = τλ,0U0,0(x, y, z, t)

= τ0,λU0,0(x, y, z, t). (21)
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We consider only the case whereτλ,0 and τ0,λ act trivially. There is a two-parameter
continuous group orbit of APWs generated by translations:Ua,b = τa,bU0,0. We expand
about this group orbit:

U(x, y, z, t) = τcx (t),cy (t)(U0,0(x, y, z, t) + A(x, y, z, t)), (22)

where (cx, cy) is a time-dependent translation around the group orbit andA is the
perturbation orthogonal to the tangent plane to the group orbit. As before, we separate
the evolution of the translations from that of the perturbation:

dA

dt
= G(A, U0,0; µ),

dcx

dt
= hx(A, U0,0; µ),

dcy

dt
= hy(A, U0,0; µ), (23)

where we keep track of the explicit time dependence ofG, hx , andhy through the argument
U0,0. The spatio-temporal symmetry of the basic stateU0,0 is manifest inG, hx andhy as
follows:

G(ρA, ρU0,0; µ) = ρG(A, U0,0; µ),

hx(ρA, ρU0,0; µ) = hy(A, U0,0; µ),

hy(ρA, ρU0,0; µ) = −hx(A, U0,0; µ),

(24)

where ρU0,0(t + 1
4T ) = U0,0(t). It is convenient to introduce a complex translation

c ≡ cx + icy and a correspondingh ≡ hx + ihy , soρτc = τ−icρ.
As before, we define a time advance map acting on the perturbation soA(t) =

Mt
0(A(0)); this has the property

Mt
0ρ = ρM

T/4+t

T /4 , Mt
0ρ

2 = ρ2M
T/2+t

T /2 , Mt
0ρ

3 = ρ3M
3T/4+t

3T/4 (25)

because of the underlying spatio-temporal symmetry of the APW. The full period mapMT
0

is then the fourth iterate of a map̃G:

MT
0 = ρ4MT

3T/4M
3T/4
0 = ρM

T/4
0 ρ3M

3T/4
0 = (ρM

T/4
0 )4 ≡ G̃4. (26)

Instead ofMT
0 , we considerG̃ ≡ ρM

T/4
0 , which has no special properties under reflections

and rotations.
The dynamics of the perturbation is given byAn+1 = G̃(An), whereA( 1

4T ) = ρ3A1,
etc. Then the position of the pattern at time1

4T is

c1 = c0 +
∫ T/4

0
h(Mt

0(A0), U0,0(t); µ) dt ≡ c0 + h̃(A0; µ), (27)

where the map̃h = h̃x + ih̃y . After the next quarter period, we find

c2 = c1 +
∫ T/2

T/4
h(Mt

T /4(A( 1
4T )), U0,0(t); µ) dt

= c1 +
∫ T/2

T/4
h(Mt

T /4(ρ
3A1), U0,0(t); µ) dt

= c1 +
∫ T/2

T/4
h(ρ3M

t−T/4
0 (A1), ρ

3U0,0(t − T/4); µ) dt

= c1 + ih̃(A1; µ). (28)

So the combined dynamics of the perturbation and the translation can be written as

An+1 = G̃(An; µ), cn+1 = cn + inh̃(An; µ), (29)

whereG̃(0; 0) = h̃(0; 0) = 0.
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Note that, as in the case of PWs, the generic bifurcations of APWs are either steady-
state (FM= +1) or Hopf, sinceMT

0 = G̃4. We consider bifurcations with FM= +1 of
MT

0 only; generically, these occur when the linearization ofG̃ has a FM of+1 or −1.
Near a bifurcation point we reduce the dynamics onto the centre manifold

an+1 = ĝ(an; µ), cn+1 = cn + inĥ(an; µ). (30)

When a FM= 1, once again we have a saddle-node bifurcation, this time involving pairs
of APWs that are translated relative to each other. If a FM is−1, we havean = (−1)n

√
µ,

and the spatial translations are:

c0, c1 = c0 + ĥ(a0; µ), c2 = c0 + ĥ(a0; µ) + iĥ(−a0; µ),

c3 = c0 + iĥ(−a0; µ), c4 = c0, . . . .
(31)

This solution has no net drift (unlike in the two-dimensional problem), but travels back and
forth different amounts in the two horizontal directions since, generically,ĥx(a0; µ) 	=
ĥy(a0; µ). The solution remains invariant under advance of half its period in time
combined with a rotation of 180◦. To see this, we construct the solutionU(x, y, z, t)

at t = 0 and t = 1
2T using the solution in thec0-parametrized family that satisfies

c0 = −c2. Specifically, we insert the centre manifold solutionA(0) = A0 = a0ζ + 	(a0),
A( 1

2T ) = ρ2A2 = ρ2(a0ζ + 	(a0)) in (22). We obtain

U(0) = τc0(U0,0(0) + a0ζ + 	(a0))

U( 1
2T ) = τ−c0(U0,0(

1
2T ) + ρ2a0ζ + ρ2	(a0)) = τ−c0ρ

2(U0,0(0) + a0ζ + 	(a0))

= ρ2U(0)

(32)

where we have suppressed the(x, y, z)-dependence ofU , retaining only itst-dependence.
Thus, in the simple case of APW, we cannot get drifting solutions in a bifurcation with

FM = 1 for the time-T return map. We next consider the same bifurcation for the more
complicated example of ARs. This solution has the same spatio-temporal symmetry as
APW but has extra spatial reflection symmetries. We shall see that in this case a particular
symmetry-breaking bifurcation leads to two distinct types of drifting solutions.

4. Additional spatial symmetries: ARs

ARs are created in a primary Hopf bifurcation from aD4 ⋉ T 2 invariant trivial solution
(Silber and Knobloch 1991). Like APWs, ARs are invariant under the spatio-temporal
symmetry of advancing one-quarter period in time and rotating 90◦ in space, but have the
additional property of being invariant under reflections in two orthogonal vertical planes.
ARs have been observed to be stable near the initial Hopf bifurcation over a wide range of
parameter values in three-dimensional incompressible and compressible magnetoconvection
(Clune and Knobloch 1994, Matthewset al 1995).

For convenience in this section, we defineρ̃ to be the combined advance of one quarter
period in time followed by a 90◦ clockwise rotation about the line(x, y) = (0, 0). Reflecting
in the planesx = 1

4λ or y = 1
4λ leaves ARs unchanged at all times, so the 16-element

spatio-temporal symmetry group that leaves the AR invariant is generated byκ ′
x , κ ′

y and ρ̃,
where

κ ′
x : (x, y, z, t) → ( 1

2λ − x, y, z, t),

κ ′
y : (x, y, z, t) → (x, 1

2λ − y, z, t),

ρ̃: (x, y, z, t) → (y, −x, z, t + 1
4T ).

(33)
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Table 1. Summary of six types of bifurcations of ARs, distinguished by the action ofκ ′
x and

κ ′
y on the critical modes, and by the critical FMs ofG̃. Generators of isotropy subgroups (up

to conjugacy) of the bifurcating solution branches are indicated; in cases B+ and B−, there are
two distinct solution branches.

Action of κ ′
x , κ ′

y on Floquet Bifurcation Isotropy
Case marginal modes multiplier(s) (drift or not) subgroup

A+(+1) κ ′
xκ ′

yζ = ζ FM = +1 Saddle-node 〈κ ′
x , κ ′

y , ρ̃〉
κ ′
xζ = κ ′

yζ = ζ (no drift)
A+(−1) as A+(+1) FM = −1 Symmetry-breaking 〈κ ′

x , κ ′
y , ρ̃2〉

(no drift)
A−(+1) κ ′

xκ ′
yζ = ζ FM = +1 Symmetry-breaking 〈κ ′

xκ ′
y , ρ̃〉

κ ′
xζ = κ ′

yζ = −ζ (no drift)
A−(−1) as A−(+1) FM = −1 Symmetry-breaking 〈κ ′

xκ ′
y , κ ′

x ρ̃〉
(no drift)

B+ κ ′
xκ ′

yζ± = −ζ± FM = ±1 Symmetry-breaking 〈κ ′
x , ρ̃2〉

ζ− = κ ′
xζ+ = −κ ′

yζ+ (no net drift) 〈ρ̃〉
B− as B+ FM = ±i Symmetry-breaking 〈κ ′

y , τc0−c2κ
′
xκ ′

y ρ̃2〉
(drift) 〈τc0−ic∗

1
κ ′
y ρ̃〉

The basic AR solutionU0,0(x, y, z, t) exists atµ = 0 and satisfies

U0,0(x, y, z, t) = ρU0,0(x, y, z, t + 1
4T ) = U0,0(x, y, z, t + T ) = κ ′

xU0,0(x, y, z, t)

= κ ′
yU0,0(x, y, z, t) = τλ,0U0,0(x, y, z, t) = τ0,λU0,0(x, y, z, t). (34)

As in section 3, we expand about this basic solution and recover the map (29). The presence
of extra reflection symmetries of the underlying solution manifests itself in the following
way:

G̃(κ ′
xA) = κ ′

y G̃(A), G̃(κ ′
yA) = κ ′

x G̃(A),

h̃x(κ
′
xA) = −h̃x(A), h̃x(κ

′
yA) = h̃x(A),

h̃y(κ
′
xA) = h̃y(A), h̃y(κ

′
yA) = −h̃y(A).

(35)

The first of these equations deserves some explanation:G̃(κ ′
xA) = ρM

T/4
0 κ ′

xA =
ρκ ′

xM
T/4
0 A, sinceκ ′

x commutes with the time advance map, as the underlying periodic
orbit is invariant underκ ′

x . Now ρκ ′
x = κ ′

yρ, so ρκ ′
xM

T/4
0 A = κ ′

yρM
T/4
0 A = κ ′

y G̃(A).

Note that it is the rotation in the definition of̃G (26) that implies that reflecting withκ ′
x then

applying G̃ is equivalent to applying̃G then reflecting withκ ′
y—not κ ′

x . In the terminology

of Lamb and Quispel (1994),κ ′
x andκ ′

y are 2-symmetries of̃G, that is,G̃2(κ ′
xA) = κ ′

x G̃
2(A).

In general,k-symmetries arise when the spatial part of the spatio-temporal symmetry of a
time-periodic solution does not commute with its purely spatial symmetries (Lamb 1998).
We discuss this point in more detail in section 5.

The remainder of this section is devoted to the discussion of the codimension-one steady-
state bifurcations of this problem. We do not consider bifurcations that break the spatial
periodicity, soτλ,0 andτ0,λ act trivially, nor do we consider Hopf bifurcations. The results
are summarized in table 1.

We begin by noting thatG̃(κ ′
xκ

′
yA) = κ ′

xκ
′
y G̃(A), so κ ′

xκ
′
y commutes with the

linearization L̃ of G̃, whereasκ ′
xL̃ = L̃κ ′

y . The eigenspaces of̃L are invariant under
the rotationκ ′

xκ
′
y . We assume the generic situation of one-dimensional eigenspaces; then

each eigenfunctionζ must be either even or odd under the rotationκ ′
xκ

′
y , i.e. κ ′

xκ
′
yζ = ζ
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(case A) orκ ′
xκ

′
yζ = −ζ (case B), since(κ ′

xκ
′
y)

2 is the identity. In case A, ifζ = κ ′
xκ

′
yζ is

an eigenfunction ofL̃ with FM = s, thenκ ′
xζ = κ ′

yζ has the same FM:

L̃κ ′
xζ = κ ′

yL̃ζ = sκ ′
yζ = sκ ′

xζ. (36)

Sinceκ ′
x

2 is the identity, it follows thatζ and κ ′
xζ are linearly dependent and that either

κ ′
xζ = ζ (case A+) or κ ′

xζ = −ζ (case A−). Finally, these two cases are subdivided
according to the value of the critical FM of̃L (either+1 or −1) at the bifurcation point.

Case B is rather different. Here we haveκ ′
xζ = −κ ′

yζ , so

L̃κ ′
xζ = κ ′

yL̃ζ = sκ ′
yζ = −sκ ′

xζ. (37)

Thusκ ′
xζ has FM= −s and is linearly independent ofζ , which has FM= s. We defineζ+

to be the eigenfunction ofs andζ− to be the eigenfunction of−s, with ζ− = κ ′
xζ+ = −κ ′

yζ+.
There are two ways in which two FMss and−s can cross the unit circle: either at+1 and−1
(case B+) or at+i and−i (case B−). Note that in the absence of the reflection symmetries
these bifurcations would be codimension-two; here they occur as generic bifurcations. Since
the FMs of the time-T map MT

0 are the fourth power of the FMs of̃G, the effect of the
symmetry in case B is to force a repeated FM= +1 in the mapMT

0 .
In case A, we write

An = anζ + 	(an), (38)

near the bifurcation point, where	 is the graph of the centre manifold. On the centre
manifold we haveA = κ ′

xκ
′
yA, so

h̃x(A) = h̃x(κ
′
xκ

′
yA) = −h̃x(κ

′
yA) = −h̃x(A) = 0, (39)

where we have used (35). Thus in case A,h̃x andh̃y are identically zero, and no bifurcation
will lead to drift along the group orbit of ARs.

The reflectionsκ ′
x andκ ′

y act trivially in case A+. A FM = +1 leads to a saddle-node
bifurcation of ARs. The normal form in the case FM= −1 givesan = (−1)na0, from
which the bifurcating solutionU(t) can be reconstructed. Choosing the initial translation
c0 to be zero, and suppressing the(x, y, z)-dependence ofU , we have

U(0) = U0,0(0) + a0ζ + 	(a0), U( 1
4T ) = ρ3(U0,0(0) − a0ζ + 	(−a0)),

U( 1
2T ) = ρ2(U0,0(0) + a0ζ + 	(a0)), U( 3

4T ) = ρ(U0,0(0) − a0ζ + 	(−a0)).
(40)

Here it should be recalled thatU0,0(
1
4T ) = ρ3U0,0(0), and that on the centre manifold

A( 1
4T ) = ρ3A1 = ρ3(a1ζ + 	(a1)) = ρ3(−a0ζ + 	(−a0)). (41)

This solution satisfies

U(t) = κ ′
xU(t) = κ ′

yU(t) = ρ2U(t + 1
2T ), (42)

and thus has the same symmetries as ‘standing cross-rolls’, described by Silber and Knobloch
(1991).

In case A−, κ ′
x and κ ′

y act nontrivially, so the behaviour on the centre manifold is
governed by a pitchfork normal form (an = a0) when the FM= +1 and by a period-
doubling normal form (an = (−1)na0) when the FM= −1. At leading order ina0, the
bifurcating solutionsU(t) in the two cases are

U(0) = U0,0(0) + a0ζ, U( 1
4T ) = ρ3(U0,0(0) ± a0ζ ),

U( 1
2T ) = ρ2(U0,0(0) + a0ζ ), U( 3

4T ) = ρ(U0,0(0) ± a0ζ ).
(43)
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These solutions are not invariant underκ ′
x or κ ′

y (since these change the sign ofζ ), but are
invariant under the productκ ′

xκ
′
y . In addition,U(t) = ρU(t + 1

4T ) in the case FM= +1
andU(t) = κ ′

xρU(t + 1
4T ) in the case FM= −1.

Case B is more interesting. On the two-dimensional centre manifold, we write

An = (−an + bn)ζ+ + (an + bn)ζ− + 	(an, bn); (44)

the form of this expression is chosen for later convenience. The map (29) reduces to

(an+1, bn+1) = ĝ(an, bn; µ), cn+1 = cn + in(ĥx(an, bn; µ) + iĥy(an, bn; µ)). (45)

Sinceζ− = κ ′
xζ+ = −κ ′

yζ+, we have

κ ′
xAn = (an + bn)ζ+ + (−an + bn)ζ− + κ ′

x	(an, bn),

κ ′
yAn = (−an − bn)ζ+ + (an − bn)ζ− + κ ′

y	(an, bn);
(46)

thus

κ ′
x(an, bn) = (−an, bn), κ ′

y(an, bn) = (an, −bn). (47)

From this and from (35), we deduce that on the centre manifold

ĥx(an, bn) = −ĥx(−an, bn) = ĥx(an, −bn),

ĥy(an, bn) = −ĥy(an, −bn) = ĥy(−an, bn),
(48)

implying that ĥx(0, b; µ) = 0 and ĥy(a, 0; µ) = 0. Moreover,ĝ inherits the symmetries
(35) of G̃:

κ ′
y ĝ(an, bn) = ĝ(κ ′

x(an, bn)), κ ′
x ĝ(an, bn) = ĝ(κ ′

y(an, bn)). (49)

Thus the linearizationL̂ of ĝ satisfies
(

1 0
0 −1

)

L̂ = L̂

(

−1 0
0 1

)

, (50)

which forcesL̂ to be of the form

L̂ =
(

0 α

β 0

)

, (51)

wherean, bn can be scaled so thatα = |β|. There is a bifurcation whenβ = +1 or β = −1,
yielding FMs±1 (case B+) or ±i (case B−), respectively.

In order to analyse the dynamics near the bifurcation point, we compute the normal
form of the bifurcation problems, expandingĝ as a Taylor series ina andb. The symmetry
κ ′

xκ
′
y prohibits quadratic terms, and all but two of the cubic terms can be removed by

near-identity transformations. For reasons to be explained in section 5, we choose the
transformation so that the normal form commutes with the linearization of the map (51) at
the bifurcation point. (That this can be done follows from general results on normal forms;
see, for example, Crawford (1991) or Lamb (1996).) We thus have the unfolded normal
form, truncated at cubic order, in the two cases B+ and B−:

an+1 = (1 + µ + Pa2
n + Qb2

n)bn,

bn+1 = ±(1 + µ + Pb2
n + Qa2

n)an,

cn+1 = cn + in(ĥx(an, bn; µ) + iĥy(an, bn; µ)),

(52)
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whereµ = 0 at the bifurcation point andP andQ are constants. In case B+ the second
iterate is

an+2 = (1 + 2µ + 2Qa2
n + 2Pb2

n)an,

bn+2 = (1 + 2µ + 2Pa2
n + 2Qb2

n)bn,
(53)

while in case B− the fourth iterate is

an+4 = (1 + 4µ + 4Qa2
n + 4Pb2

n)an,

bn+4 = (1 + 4µ + 4Pa2
n + 4Qb2

n)bn.
(54)

The maps (53) and (54) have the same form as the genericD4-equivariant steady-state
bifurcation problem (see, for example, Silber and Knobloch (1989)). There are two group
orbits of solution branches; one associated with solutions on thea andb coordinate axes,
and the other associated with solutions on the diagonal linesa = ±b. We now interpret
these in terms of period-one, -two and -four solutions of the original map (52). We note
that our results are the same as those of Lamb (1996) who analysed a different normal form
for this bifurcation problem.

In case B+, there are two distinct types of orbits created. The first is a period-two orbit
(a0, 0) ↔ (0, a0), with 0 = µ + Qa2

0. From this and the symmetries (48) ofĥ, we deduce
the drift of the solution at each iterate:

c0, c1 = c0 + ĥx(a0, 0; µ), c2 = c0 + ĥx(a0, 0; µ) − ĥy(0, a0; µ),

c3 = c0 − ĥy(0, a0; µ), c4 = c0, . . . .
(55)

There is no net drift along the group orbit in this case. Moreover, thec0-parametrized
family of solutions drift to and fro in thex-direction only sincecn − c0 is real. Consider
c0 = 1

2(−ĥx(a0, 0; µ) + ĥy(0, a0; µ)) = −c2, where c0 is real and thus corresponds to
a translation in thex-direction. The reconstructed solutionU(t), at leading order ina0,
satisfies

U(0) = τc0(U0,0(0) − a0ζ+ + a0ζ−),

U( 1
4T ) = τc1ρ

3(U0,0(0) + a0ζ+ + a0ζ−),

U( 1
2T ) = τ−c0ρ

2(U0,0(0) − a0ζ+ + a0ζ−),

U( 3
4T ) = τ−c1ρ(U0,0(0) + a0ζ+ + a0ζ−),

(56)

so we haveU(t) = κ ′
yU(t) = ρ2U(t + 1

2T ). The conjugate orbit,(0, a0) ↔ (a0, 0), has
symmetry〈κ ′

x, ρ̃
2〉 and does not drift at all in thex-direction. This orbit bifurcates stably if

P < Q < 0 in (52).
The second type of orbit created in case B+ is a period-one orbit(a0, a0), with

0 = µ + (P + Q)a2
0. The translations at each iterate are

c0, c1 = c0 + ĥ(a0, a0; µ), c2 = c0 + ĥ(a0, a0; µ) + iĥ(a0, a0; µ),

c3 = c0 + iĥ(a0, a0; µ), c4 = c0, . . . .
(57)

This orbit also has no net drift, and by choosingc0 = − 1
2(1 + i)ĥ(a0, a0; µ), we have

c1 = ic0. The reconstructed solutionU(t), at leading order ina0, satisfies

U(0) = τc0(U0,0(0) + 2a0ζ−), U( 1
4T ) = τic0ρ

3(U0,0(0) + 2a0ζ−),

U( 1
2T ) = τ−c0ρ

2(U0,0(0) + 2a0ζ−), U( 3
4T ) = τ−ic0ρ(U0,0(0) + 2a0ζ−),

(58)

so U(t) = ρU(t + 1
4T ), and the isotropy subgroup is〈ρ̃〉. This solution has the same

symmetries as the APWs described in section 3, so APWs may be created in a symmetry-
breaking bifurcation of ARs. There is also a period-two orbit(a0, −a0) ↔ (−a0, a0) that
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has the conjugate isotropy subgroup〈κ ′
xκ

′
y ρ̃〉. These solution branches are stable provided

Q < −|P | in (52).
Finally, we turn to case B−. Here, there are two types of periodic orbit created in

the bifurcation atµ = 0, and in this case they are both of period four. The first orbit is
(a0, 0) → (0, −a0) → (−a0, 0) → (0, a0), with 0 = −µ + Qa2

0 in (52). Again, this orbit
is stable ifP < Q < 0. The translations are

c0,

c1 = c0 + ĥx(a0, 0; µ),

c2 = c0 + ĥx(a0, 0; µ) + ĥy(0, a0; µ),

c3 = c0 + 2ĥx(a0, 0; µ) + ĥy(0, a0; µ),

c4 = c0 + 2ĥx(a0, 0; µ) + 2ĥy(0, a0; µ), . . . .

(59)

Note thatcn − c0 is real so there is no drift at all in they direction, but there is a systematic
drift in the x-direction. The reconstructed solutionU(t) satisfies

U(0) = τc0(U0,0(0) − a0ζ+ + a0ζ−),

U( 1
4T ) = τc1ρ

3(U0,0(0) − a0ζ+ − a0ζ−),

U( 1
2T ) = τc2ρ

2(U0,0(0) + a0ζ+ − a0ζ−),

U( 3
4T ) = τc3ρ(U0,0(0) + a0ζ+ + a0ζ−),

(60)

so we have

U(t) = κ ′
yU(t) = τc0−c2κ

′
xκ

′
yρ

2U(t + 1
2T ). (61)

The isotropy subgroup of this solution is〈κ ′
y, τc0−c2κ

′
xκ

′
y ρ̃

2〉, which is homomorphic (modulo
translations) toD2. A conjugate orbit, started a quarter period later, has isotropy subgroup
〈κ ′

x, τc0−c2κ
′
xκ

′
y ρ̃

2〉 and drifts systematically in they-direction.
The second type of orbit created in case B− is (a0, a0) → (a0, −a0) → (−a0, −a0) →

(−a0, a0), with 0 = −µ + (P + Q)a2
0. It is stable providedQ < −|P | in (52). The

translations are

c0,

c1 = c0 + ĥx(a0, a0; µ) + iĥy(a0, a0; µ),

c2 = c0 + (1 + i)(ĥx(a0, a0; µ) + ĥy(a0, a0; µ)),

c3 = c0 + (2 + i)ĥx(a0, a0; µ) + (1 + 2i)ĥy(a0, a0; µ),

c4 = c0 + (2 + 2i)(ĥx(a0, a0; µ) + ĥy(a0, a0; µ)), . . . .

(62)

This corresponds to a solution that drifts along the diagonal, with a wobble from side to
side as it goes. At leading order ina0, the reconstructed solutionU(t) satisfies

U(0) = τc0(U0,0(0) + 2a0ζ−), U( 1
4T ) = τc1ρ

3(U0,0(0) − 2a0ζ+),

U( 1
2T ) = τc2ρ

2(U0,0(0) − 2a0ζ−), U( 3
4T ) = τc3ρ(U0,0(0) + 2a0ζ+),

(63)

which has fully broken the spatial symmetries. This solution has the spatio-temporal
symmetry

U(t) = τc0−ic∗
1
κ ′

yρU(t + 1
4T ), (64)

which generates the isotropy subgroup〈τc0−ic∗
1
κ ′

y ρ̃〉, homomorphic (modulo translations)
to Z4.



Bifurcations of periodic orbits with spatio-temporal symmetries 1449

(a)

     

0

 

y

 

λ
(b)

     

0

 

y

 

λ

(c)

0  x  λ

0

 

y

 

λ
(d)

0  x  λ

0

 

y

 

λ

Figure 2. ARs in three-dimensional compressible magnetoconvection, starting with parameter
values from Matthewset al (1995). The four frames are (approximately) at times (a) t = 0,
(b) t = 1

4T , (c) t = 1
2T and (d) t = 3

4T . The frames show contours of the vertical velocity in
a horizontal plane in the middle of the layer: full curves denote fluid travelling upwards, broken
curves denote fluid travelling downwards, and the dotted curves denote zero vertical velocity.
The spatial symmetriesκ ′

x andκ ′
y are manifest, as is the spatio-temporal symmetry of advancing

a quarter period in time followed by a 90◦ rotation (counter-clockwise in this example). The
dimensionless parameters are: the mid-layer Rayleigh number (proportional to the temperature
difference across the layer)R = 2324; the Chandrasekhar number (proportional to the square
of the imposed magnetic field)Q = 1033; the Prandtl numberσ = 0.1; the mid-layer magnetic
diffusivity ratio ζ = 0.1; the adiabatic exponentγ = 5

3 ; the polytropic indexm = 1
4 ; the thermal

stratificationθ = 6; the mid-layer plasma betaβ = 32; and the horizontal wavelengthsλ = 2
in units of the layer depth.

M An MPEG movie of this figure is available from the article’s abstract page in the online
journal; seehttp://www.iop.org.

In summary, we have examined the six different cases in which ARs undergo a
bifurcation with FM = +1 in the full period map. All six bifurcations preserve the
underlying spatial periodicity of the ARs, but may break the spatial and spatio-temporal
symmetries. The 2-symmetry present in the B cases forces two FMs to cross the unit
circle together, and we find two branches of bifurcating solutions, with distinct symmetry
properties. In these cases, we find that if both solution branches bifurcate supercritically,
then one and only one of the two solutions will be stable. It is only in case B−, with FMs
±i in the mapG̃, that the bifurcation leads to systematically drifting solutions: one solution
drifts along a coordinate axis, while the other drifts along a diagonal.

We finish this section by presenting examples of ARs and drifting ARs, which we
interpret as an instance of a B− bifurcation. We have solved the PDEs for three-dimensional
compressible magnetoconvection in a periodic 2×2×1 box, using the code of Matthewset al
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Figure 3. After a bifurcation of type B−, the ARs begin to drift. The parameter values are
as in figure 2, but with a higher thermal forcing:R = 3000 andQ = 1333. The frames are
(approximately) at times (a) t = 0, (b) t = 1

4T , (c) t = 1
2T , (d) t = 3

4T , (e) t = T and
(f ) t = 2T . Note how all spatial and spatio-temporal symmetries have been broken, with the
exception ofκ ′

y , a reflection in the planey = 1
4λ (modulo a slight shift in the periodic box).

The slow leftward drift of the pattern can be seen by comparing frames (a), (e) and (f ), In
addition, a drift symmetryκ ′

xκ ′
y ρ̃2τc0−c2 , conjugate to (61), can be seen by comparing frames

(a) and (c) or (b) and (d).

M An MPEG movie of this figure is available from the article’s abstract page in the online
journal; seehttp://www.iop.org.

(1995). The PDEs and description of the parameters and numerical method can be found
in that paper. Figure 2 shows an example of an AR at times approximately 0,1

4T , 1
2T

and 3
4T ; the two reflection symmetriesκ ′

x and κ ′
y in planesx = 1

4λ and y = 1
4λ and

the spatio-temporal symmetry of advancing a quarter period in time followed by a 90◦

rotation about the centre of the box are manifest. Increasing the controlling parameter, the
temperature difference across the layer, leads to the solution in figure 3: the data are shown
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at times 0,14T , 1
2T , 3

4T , T and 2T . The only spatial symmetry remaining is the invariance
underκ ′

y , and the spatio-temporal symmetry has been broken. By comparing frames (a),
(e) and (f ) at times 0,T and 2T , it can be seen that the solution is drifting slowly leftwards
along thex-axis. Moveover, a drift symmetryκ ′

xκ
′
y ρ̃

2τc0−c2 conjugate to (61) can be seen by
comparing frames (a) and (c). This evidence points to there being a bifurcation of type B−
at an intermediate parameter value. Closer inspection reveals that for the chosen values of
the other parameters, the first instability of ARs as the temperature difference is increased
is in fact a Hopf bifurcation leading to patterns that drift in an oscillatory fashion, with no
net drift, on a timescale that is much longer than the timescale of the ARs (so it is not a
bifurcation of type B+). Subsequently, stability is transferred to the drifting solution shown
in figure 3, which we conjecture was created in a bifurcation of type B− from ARs, after
their Hopf bifurcation. This scenario, of a Hopf bifurcation to oscillations followed closely
by bifurcation to steady solutions, with a transfer of stability between the two branches,
is familiar from studies of the Takens–Bogdanov bifurcation (Guckenheimer and Holmes
1983, Rucklidge 1994), but further investigation is beyond the scope of this paper.

5. Remarks on a group theoretic approach

In our analysis of the AR example above, we made use of the observation thatκ ′
xκ

′
y is a

symmetry ofG̃; the fact that(κ ′
xκ

′
y)

2 = identity, which implies thatκ ′
xκ

′
y acts either as+1

or as−1 on marginal eigenfunctions, enabled us to compute all the different bifurcations
that are possible. We do not expect that all problems can be tackled in this way, so a more
general and systematic approach is desirable. Here we outline such an approach based
on the irreducible representations of the spatio-temporal symmetry group that leaves the
periodic orbit invariant.

SupposeŴ̃ is the compact group of spatial and spatio-temporal symmetries that leave
a time-periodic solution of the PDEs invariant: for example, in the case of ARs,Ŵ̃ is
generated by the spatial reflectionsκ ′

x andκ ′
y and by the spatio-temporal symmetryρ̃, and

|Ŵ̃| = 16. (Here we call a symmetry ‘spatio-temporal’ if it involves a nontrivial time-
advance along the periodic orbit; otherwise we refer to it as ‘spatial’.) In the more general
case considered here, we assume thatŴ̃ can be generated by spatial symmetries and by a
single spatio-temporal symmetry group elementγ̃t ∈ Ŵ̃. In particular, we assume thatŴ̃

is the (semi)direct product of the spatial symmetry group and the cyclic spatio-temporal
groupZp generated by the elementγ̃t . Let γt 	∈ Ŵ̃ denote the spatial part of̃γt and letp be
the smallest positive integer withγ p

t = identity.
The aim is to answer the question: given a periodic orbit with spatio-temporal symmetry

group Ŵ̃, what steady-state bifurcations are possible, and what are the symmetries of the
bifurcating solutions? We will find that different irreducible representations ofŴ̃ lead
to different normal forms for the weakly nonlinear behaviour near the bifurcation point,
with the number of marginally stable FMs equal to the dimension of the representation.
Some but not all of these maps will havek-symmetries (k > 1), as in cases B described
above. The bifurcation problem can be formulated in terms of a normal form that
is equivariant with respect to the irreducible representation under consideration. Our
approach is complementary to that of Lamb (1998), who starts fromk-symmetric maps and
demonstrates that these may appear as normal forms for bifurcations from spatio-temporally
symmetric periodic orbits.

The full-period mapMT
0 will factorize as in the previous examples (Lamb 1998):

MT
0 = (γtM

T/p

0 )p ≡ G̃p, (65)
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where G̃, defined asγtM
T/p

0 , acts on perturbationsAn of the underlying periodic orbit,
with time measured in units ofT/p. Due to its spatio-temporal symmetry, the underlying
periodic orbit is a fixed-point of the map̃G. Similarly, cn, now regarded as a vector whose
two components give the position of the pattern, evolves as

cn+1 = cn + {M−1
γt

}nh̃(An; µ), (66)

whereMγ is the two by two real matrix that represents the standard action of the symmetry
γ on the plane. In the AR example, we hadγt = ρ andMγt

=
[ 0

−1
1
0

]

, or equivalently−i
whencn is regarded as a complex coordinate, soM−1

γt
= i.

Spatial symmetries do not necessarily commute withG̃, but we do have

G̃(γsA) = γtM
T/p

0 γsA = γtγsM
T/p

0 A = γtγsγ
−1
t G̃(A), (67)

whereγtγsγ
−1
t is a spatial symmetry of the underlying periodic orbit. (However, the spatial

symmetries do commute with̃Gp.) Lamb’s (1996) approach is based on the purely spatial
symmetry group and the mapping fromγs to γtγsγ

−1
t , while we use the full spatio-temporal

symmetry groupŴ̃, which includes these relations.
Similarly, the rate of drift ofγsA can be given in terms of the rate of drift ofA:

h̃(γsA) = Mγs
h̃(A). (68)

The relations (67) and (68) are the generalizations of (35).
Now suppose there is a bifurcation atµ = 0, and assume that there are finitely many

linearly independent, marginally stable eigenfunctionsζ1, ζ2, . . . , ζm of the linearizationL̃
of G̃ with FMs s1, s2, . . . , sm, soL̃ζi = siζi with |si | = 1. On the centre manifold, we write

A =
m

∑

i=1

aiζi + 	(a1, a2, . . . , am). (69)

The spatial symmetriesγs take the subspace spanned by these eigenfunctions to itself, which
implies that the spatial symmetries act linearly on the mode amplitudes:γs(a) = Rγs

a,
where eachRγs

is an m × m matrix, anda = (a1, a2, . . . , am). Similarly, the action
of advancing the linearized flow in time byT/p and operating withγt takes the centre
eigenspace to itself; this operation takesa to L̂a, where L̂ is L̃ restricted to the centre
eigenspace. We consider only the case of steady-state bifurcations withL̂p being the
identity, for which there arem FMs of the full-period map equal to one. From this it
follows that the matricesRγs

andL̂ form a representation of the groupŴ̃: the purely spatial
symmetries are represented by theRγs

matrices; theZp spatio-temporal symmetry group
generated bỹγt is represented bŷL and its powers; and we observe that ifγ̃tγ

′
s = γs γ̃t , then

L̂Rγ ′
s
= Rγs

L̂ (cf (50) and (67)). Thus every elementγ ∈ Ŵ̃ is represented by a matrixRγ ,
with γ (a) = Rγ a. There is a basis in which the matricesRγ are orthogonal (Miller 1972).

On the centre manifold, the unfolded dynamics is given by the normal form

an+1 = ĝ(an; µ), cn+1 = cn + {M−1
γt

}nĥ(an; µ). (70)

SinceRγ̃t
is an orthogonal matrix, the normal form̂g can be constructed to commute with

its linearization at the bifurcation point (which isRγ̃t
) at any order (Crawford 1991, Lamb

1996). Moreover, the spatial symmetries transformĝ in the same way that they transform
G̃ (67). Thus we have

ĝ(Rγs
a; µ) = Rγ̃t

Rγs
R−1

γ̃t
ĝ(a; µ), ĝ(Rγ̃t

a; µ) = Rγ̃t
ĝ(a; µ), (71)

for the symmetry properties of̂g. With the translations we can only say that

ĥ(Rγs
a; µ) = Mγs

ĥ(a; µ), (72)
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where the matricesRγs
and Mγs

represent the action of the spatial symmetryγs on the
spaces of perturbationsa and translationsc, respectively.

At the bifurcation pointµ = 0, the linearization of the normal form isRγ̃t
; unfolding the

normal form leads to linear terms that also obey the relations (71), and with the assumption
that the representation is absolutely irreducible, we have

ĝ(a; µ) = (1 + µ)Rγ̃t
a + O(a2). (73)

Small-amplitude bifurcating branches can be found by seeking solutions of

ĝ(a; µ) = Rγ̃t
a, (74)

which will be periodic points of the map with periodq, whereq is the smallest positive
integer such thatRq

γ̃t
is the identity. Such periodic points are zeros of the functionf (a; µ)

defined by (cf Lamb 1996)

f (a; µ) = R−1
γ̃t

ĝ(a; µ) − a. (75)

We note that since we have chosen the normal formĝ to commute withRγ̃t
, f (a; µ)

is equivariant under the full spatio-temporal symmetry groupŴ̃ as represented by the
matricesRγ : f (Rγ a; µ) = Rγ f (a; µ) for all γ ∈ Ŵ̃. With this, we can apply the
equivariant branching lemma (see Golubitskyet al 1988), which implies that, under certain
nondegeneracy conditions, we are guaranteed a unique branch of bifurcating solutions for
all isotropy subgroups of̃Ŵ with one-dimensional fixed point subspaces. These isotropy
subgroups characterize the spatio-temporal symmetries of the bifurcating periodic points
of ĝ (Lamb 1998).

Finally, we use the approach described above to verify the results of the previous
section on ARs. Here the 16 element spatio-temporal symmetry groupŴ̃ has 10 irreducible
representations, of which four are one-dimensional and real (corresponding to the four
cases A in table 1), four are one-dimensional and complex (and so are not absolutely
irreducible: these will not arise in the steady-state bifurcations we are considering here)
and two are two-dimensional and real (corresponding to the two cases B). In these last two
representations, we haveRκ ′

x
=

[−1
0

0
1

]

, Rκ ′
y

=
[ 1

0
0

−1

]

and eitherRρ̃ =
[ 0

1
1
0

]

(case B+)

or Rρ̃ =
[ 0

−1
1
0

]

(case B−). With q = 2 in B+ and q = 4 in B−, we recover the two
bifurcating branches in each case, together with their respective isotropy subgroups (modulo
translations), as given in table 1.

In this way, the problem of determining which steady-state bifurcations from a given
periodic orbit are possible reduces to determining the absolutely irreducible representations
of the spatio-temporal symmetry group that leaves the periodic orbit invariant, and then
applying the equivariant branching lemma with an appropriate interpretation. This general
approach complements the specific calculations we have performed for ARs, and is the
natural way to progress to more complicated situations. Thek-symmetries that arose in
the cases B are now seen as a natural consequence of the structure of the two-dimensional
representations of̃Ŵ.

6. Conclusion

We have developed a technique for investigating the possible steady-state instabilities from
continuous group orbits of spatio-temporally symmetric time-periodic solutions of partial
differential equations in periodic domains. Our approach is based on centre manifold
reduction and symmetry arguments. It is in the spirit of earlier work by Iooss (1986) on
bifurcations from continuous group orbits of spatially symmetric steady solutions of partial
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differential equations. We have treated three examples that arise in convection problems:
PWs in two dimensions, and APWs and ARs in three dimensions. A simple bifurcation
can lead to drifting solutions in the case of PWs but not APWs. The additional spatial
symmetries of ARs can force two FMs to cross the unit circle together; this degeneracy can
lead to drifting solutions, as in the numerical example presented in the section 4. We have
related our work to the theory ofk-symmetries developed by Lamb and Quispel (1994). The
relevance that our work has for convection (and other pattern-forming) problems lies not
only in the analysis of the specific examples we have considered; rather, it is the possibility
of treating bifurcations of a wide variety of symmetric time-dependent patterns that is most
interesting and will be most useful in interpreting the results of numerical simulations and
experiments.

We have outlined an approach to the steady-state bifurcation problem, based on
computing the absolutely irreducible representations of the spatio-temporal symmetry group
that leaves a periodic solution of the PDEs invariant. This approach can readily be applied
to other problems. A more general group-theoretic approach, which can also treat period-
doubling and Hopf bifurcations of spatio-temporally symmetric periodic orbits, is being
developed by Lamb and Melbourne (1998).

In the future, we plan to tackle spatial period doubling and multiplying, where theτλ

symmetries do not act trivially; such instabilities are relevant to simulations of convection
carried out in larger boxes (Weisset al 1996), and will be related to the study of the
long-wavelength instabilities of ARs (Hoyle 1994). We also plan to examine the case of
the hexagonal lattice: a Hopf bifurcation on a hexagonal lattice leads to a wide variety of
periodic orbits with different spatio-temporal symmetries (Robertset al 1986). Moreover,
in recent experiments on parametrically excited surface waves (Kudrolliet al 1998), a
transition from a hexagonal standing wave to a state possessing discrete spatio-temporal
symmetries has been observed. This transition is also accompanied by a change in the spatial
periodicity of the pattern. Finally, we plan to investigate the effect of including the extra
Z2 mid-layer reflection symmetry that arises when making the Boussinesq approximation
for incompressible fluids.
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