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Abstract 

Background: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. 

It is unclear, however, whether this association is due to shared genetic factors.  

Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D 

susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 

62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression 

models were used to derive adjusted odds ratios (OR) and 95% confidence intervals (CI) to measure the 

association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were 

conducted to obtain summary ORs across all studies. 

Results:  The T2D GRS was not found to be associated with breast cancer risk, overall, for pre- or post- 

menopausal, or for estrogen receptor positive or negative breast cancer. At individual SNP level, three T2D 

associated risk variants were associated with breast cancer risk after adjustment for multiple comparisons 

using Bonferroni method (at P < 0.001), rs9939609 (FTO) (ORര=ര0.94, 95% CIര=ര0.92 � 0.95, P൶=ര4.13E-13), 

rs7903146 (TCF7L2) (ORര=ര1.04, 95% CIര=ര1.02 � 1.06, P൶=ര1.26E-05), and rs8042680 (PRC1) (ORര=ര0.97, 95% 

CIര=ര0.95 � 0.99, P൶=ര8.05E-04).  

Conclusion: Overall genetic susceptibility to T2D may not be related to breast cancer risk and the previously 

reported association between T2D and breast cancer risk may be mediated mostly through shared lifestyle risk 

factors.  

Impact: Lifestyle modification might be an effective prevention strategy to reduce the risk of both T2D and 

breast cancer. 
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Introduction 

Globally, approximately 382 million people currently live with diabetes and this number may rise to 

592 million by 2035 (1). Type 2 diabetes (T2D), accounts for over 90% of all diabetes cases (2). Breast cancer is 

the most common cancer among women in many countries, including the United States (3). Many 

epidemiological studies have linked T2D to increased breast cancer risk (4-9). Recent meta-analyses have 

shown a more than 20% increase in risk of breast cancer among women with T2D compared to women 

without the disease (10-13). T2D and breast cancer share some risk factors, including obesity in 

postmenopausal women and physical inactivity (14). Elevated levels of circulating C-peptide and insulin-like 

growth factor-1, biomarkers related to insulin resistance, have also been associated with increased breast 

cancer risk (15, 16). It remains unclear, however, if the link between these two diseases is due to shared 

lifestyle risk factors or intrinsic etiology such as genetic susceptibility. Understanding how genetic variants 

related to T2D risk influence breast cancer risk may provide insights into the nature of the T2D-breast cancer 

relationship. 

Recent genome-wide association studies (GWAS) have identified approximately 50 genetic variants 

associated with T2D risk. Some of these reported T2D-related genetic variants have been studied in relation to 

the risk of several cancers, including cancers of the pancreas (17), colon/rectum (18, 19) and prostate (20). The 

influence of these variants on breast cancer risk, however, has not been adequately studied. To date, only two 

studies have evaluated the association of a subset of these T2D-related genetic variants with breast cancer risk 

(21, 22). Both studies reported a null association, which may be due to small study size and low study power.  

In this analysis, using data from two consortia including 62,328 breast cancer cases and 83,817 controls 

of women of European ancestry, we evaluated T2D-related genetic variants reported to date in relation to 

breast cancer risk. By constructing a T2D-related genetic risk score (T2D GRS) and evaluating its association 

with breast cancer risk, we tested the hypothesis that, overall, the alleles that increase T2D risk may also 
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increase breast cancer risk. We also tested the hypothesis that certain T2D-related genetic variants may be 

associated with breast cancer risk.  

Methods 

Study population  

Included in this analysis were 62,328 breast cancer cases and 83,817 controls of women of European 

ancestry recruited either in the 39 studies (Appendix Table 1) that participated in the Breast Cancer 

Association Consortium (BCAC), a part of the Collaborative Oncological Gene-Environment Study (COGS), or in 

the eleven studies (Appendix Table 2) that are included in the Discovery, Biology, and Risk of Inherited 

Variants in Breast Cancer (DRIVE) project of Genetic Associations and Mechanism in Oncology (GAME-ON). 

From the BCAC, we included individual-level data for 46,325 breast cancer cases and 42,482 controls. The 

DRIVE project included 16,003 breast cases and 41,335 controls; however, only summary statistics for the 

association between T2D-related risk variants and breast cancer risk were available, and thus these summary 

statistics were used in our study. The study samples and participant data, including demographics and the 

traditional risk factors for breast cancer, were collected in each contributing study. 

Single nucleotide polymorphism (SNP) selection 

We searched for all reported genetic risk variants associated with T2D in European ancestry 

populations at a genome-wide significance level (P൶<ര5 × 10-8 , trait �Type 2 diabetes� or �Type 2 diabetes and 

other traits�) using the US National Human Genome Resource Institute (NHGRI) Catalog of Published Genome-

Wide Association Studies (GWAS Catalog, accessed November 19, 2012, at 

http://www.genome.gov/gwastudies). Fifty SNPs representing 33 independent loci (linkage disequilibrium (LD) 

R
2 < 0.1) were identified (Figure 1). 

Genetic risk score construction 
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At each of the 33 independent loci, we selected the SNP with the lowest P-value for association with 

T2D reported in the original GWAS to represent the locus in constructing the T2D GRS. Using these 33 SNPs, a 

weighted T2D GRS was constructed as a measure of the overall association of genetic risk variants with T2D. In 

the BCAC, eleven SNPs were directly genotyped and 22 were imputed with imputation quality threshold of 

R
2ര>ര0.5. The T2D GRS was created as σ ܵܰݓ ܲଷଷ  , where ݓ is the logarithm of the odds ratio (OR) of the ith 

SNP with T2D, as reported in the original GWAS, and ܵܰ ܲ is the number of risk alleles carried by a given 

subject on the ith SNP. We hypothesized that the risk allele for T2D would be associated with increased risk of 

breast cancer. The 33 individual T2D risk variants identified from the NHGRI GWAS catalog are presented in 

Appendix Table 3. 

Genotyping 

In the BCAC, genotype data were obtained either from direct genotyping with a custom Illumina iSelect 

genotyping array (iCOGS) that contains 211,155 SNPs (23) or from imputation with the 1000 Genomes Project 

Phase I integrated variant set (version 3, March 2012 release) as the reference (24), using the program 

IMPUTE2 (25). Details of the studies that participated in the BCAC, and the methodology used by the BCAC 

and iCOGS have been published elsewhere (23) and can also be found on the iCOGS website 

(http://ccge.medschl.cam.ac.uk/research/consortia/icogs/). 

In the DRIVE project, genotype data were obtained either from direct genotyping using Illumina or 

Affymetrix arrays (Appendix Table 2) or from imputation with the HapMap version 2 CEU panel (Utah 

residents of Northern and Western European ancestry) as a reference, using the program MACH v1.0 or 

IMPUTE (25). Details of the studies that participated in DRIVE were described in previously published papers 

(23, 26-29) or on the GAME-ON website (http://gameon.dfci.harvard.edu). 

Statistical analysis 
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We evaluated the association between the T2D GRS and breast cancer risk using individual-level data 

of 46,325 breast cancer cases and 42,482 controls of European ancestry subjects who participated in BCAC 

studies. Demographic characteristics and known breast cancer risk factors were summarized by case-control 

status using mean and standard deviation (SD) for continuous variables or frequency with percentage for 

categorical variables. Differences between cases and controls were compared using the Wilcoxon rank sum 

test (continuous variables) or the ʖ2 test (categorical variables). To assess the association between the T2D 

GRS and breast cancer risk factors, we used control data and calculated the mean and SD of the T2D GRS by 

comparison groups for each categorical variable; the difference was tested by the Wilcoxon rank sum test. For 

continuous variables, the Pearson�s correlations were measured. To account for potential population 

stratification within our study population, genetic ancestry was estimated by principal component (PC) 

analysis using EIGENSTRAT software (30) on 37,000 uncorrelated SNPs (including those selected as ancestry 

informative markers) on the chip. The mean value of the genomic inflation factor (ʄ) was 1.01 for the 

participating studies when PCs were included in the regression models, indicating little evidence of population 

stratification (23). For all analyses, the top eight PCs were included in all regression models. For the LMBC 

study, the study-specific principal component was further adjusted. To assess the association between the 

T2D GRS and breast cancer risk, we first fitted unconditional logistic regression models adjusting for age and 

PCs within each of the 39 contributing studies individually and recorded the ɴ coefficients with standard errors 

for T2D GRS quintiles (relative to the first quintile). We then conducted a meta-analysis on the results from 

these 39 studies using a fixed effect model. The odds ratios (ORs) with 95% confidence intervals (CI) from the 

fixed effects model are reported in Table 1, as are further analyses by estrogen receptor (ER) status, 

menopausal status, age group (<50 vs. ш50 years), and body mass index (BMI, <25 vs. ш25 kg/m2).  

We also used the SNP-set Kernel Association Test (SKAT) to evaluate whether any SNP in the T2D-

associated SNP set may be related to breast cancer risk while making no assumption on the direction of the 
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association (31). To evaluate the association of each individual SNP (per copy of risk allele) with breast cancer 

risk, we used individual-level data from the BCAC (46,325 cases and 42,482 controls) and summary results 

data from DRIVE (16,003 cases and 41,335 controls). We first estimated allelic OR for each SNP for each BCAC 

study with adjustment similar to that in the analyses for the association of T2D GRS with breast cancer risk 

described above and then combined the results across all BCAC studies with results from DRIVE using the 

inverse-variance meta-analysis with a fixed-effect model. Both consortium-specific results and combined 

results are reported in Table 2. For individual SNP analyses, statistical significance was considered after 

adjusting for multiple comparisons using the Bonferroni method. For all other analyses, statistical significance 

was considered at a two-sided 5% level unless stated otherwise. All analyses were conducted using R version 

3.0.3 (32). 

Results 

Among the 88,807 BCAC participants studied, on average, cases were slightly older than controls (57.8 

vs. 54.9 years, P൶<ര0.001) and entered menopause at a younger age (48.5 vs. 48.7 years, P൶<ര0.01), as shown in 

Appendix Table 4. More cases than controls were postmenopausal (69.3% vs. 68.1%, P < 0.01) or had a first-

degree family history of breast cancer (27.7% vs. 11.2%, P൶<ര0.01). Among postmenopausal women, cases and 

controls had comparable BMI (P = 0.62). Among controls, the T2D GRS was positively correlated with BMI 

(postmenopausal women, Pearson rര=ര0.018, P൶൶=ര0.03), and inversely correlated with age at menarche 

(Pearson rര= -0.021, P൶<ര0.01). For other categorical variables examined, the mean T2D GRS values were 

virtually identical across different statuses (Appendix Table 4, right columns).  

Overall, the T2D GRS was not found to be associated with breast cancer risk (P for trendര=ര0.69, Table 

1). No significant results were observed in analyses stratified by ER status (P for trendര=ര0.74 and 0.47 for ER+ 

and ER- breast cancer, respectively), menopausal status (P for trendര=ര0.74 and 0.93 for premenopausal and 

postmenopausal women, respectively), age group (P for trendര=ര0.74 and 0.62 for age<50 and ageш50 years, 
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respectively), or BMI group (P for trendര=ര0.64 and 0.64 for BMI<25 and BMIш25, respectively). In a sensitivity 

analysis, which included only the eleven directly genotyped SNPs and 14 imputed SNPs with imputation R2 > 

0.9, similar results were observed (Appendix Table 5).  

Using SKAT tests and making no assumption on the direction of the association between T2D-related 

SNPs and breast cancer risk, we found evidence for potential association for some of the T2D-related SNPs 

with breast cancer risk (P = 3.95E-10). Of the 33 independent SNPs investigated, seven were nominally 

associated with breast cancer risk using BCAC data alone (Table 2). Of these, the risk allele for T2D in four 

SNPs was associated with a reduced risk of breast cancer. After adjusting for multiple comparisons, the 

association for two SNPs, rs7903146 (TCF7L2, ORര=ര1.04, 95% CIര=ര1.02 � 1.07, P൶=ര1.20E-04) and rs9939609 

(FTO, ORര=ര0.93, 95% CIര=ര0.91 � 0.95, P൶=ര3.63E-12), remained statistically significant, and both associations 

were replicated in DRIVE. SNP rs8042680 (PRC1) was related to breast cancer risk in the BCAC at P൶=ര0.02 and 

in DRIVE at P൶=ര6.18E-3; meta-analyses of these data yielded a significant association after adjusting for 

multiple comparisons (ORര=ര0.97, 95% CIര=ര0.99 � 0.99, P = 8.05E-4). 

Discussion  

In this large study, we investigated the association of 33 independent T2D related genetic variants with 

breast cancer risk individually and in combination (through the use of our GRS). Generally, we found no 

association between T2D GRS and risk of breast cancer overall or by ER status. Of the 33 T2D-associated SNPs 

investigated in this study, three showed a significant association with breast cancer risk after adjusting for 

multiple comparisons: rs9939609 (FTO), rs7903146 (TCF7L2), and rs8042680 (PRC1). Although this study does 

not provide any evidence for an overall association of T2D susceptibility and breast cancer risk, it does show 

that some T2D-associated SNPs may be related to breast cancer risk. 
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It has been hypothesized that the association between T2D and breast cancer may be mediated 

through insulin resistance and hyperinsulinaemia (33). T2D and breast cancer share some lifestyle risk factors, 

including obesity in postmenopausal women and physical inactivity. Indeed, it has been shown previously that  

the observed association between these two diseases may be, in part, due to residual confounding by BMI 

(34). With a very large sample size, our study showed that overall T2D genetic susceptibility was not related to 

breast cancer risk, indicating that the previously observed association between T2D and breast cancer risk may 

be largely due to shared lifestyle risk factors. Our finding for a null association between T2D GRS and breast 

cancer risk is supported by two previous studies that investigated this association. In one of these studies, 

Chen et al. investigated 18 T2D-related SNPs among 503 European ancestry cases and 633 controls from the 

multiethnic cohort and PAGE studies (21). In the other study, Hou et al. pooled data for 25 genotyped and 15 

imputed T2D-related SNPs from seven studies and investigated this association among 1,142 European 

ancestry cases and 1,137 European ancestry controls (22). Neither study reported a significant association 

between T2D GRS and overall breast cancer risk. However, these two studies had evaluated a smaller set of 

T2D risk variants than the current study and the sample size in both studies was substantially smaller than the 

current study, which may not have adequate statistical power to evaluate the association of T2D GRS with 

breast cancer risk.  

The sample size for our study was very large. When comparing subjects in T2D GRS Q5 to those in Q1, 

our study has 80% power to detect an OR for breast cancer risk as low as 1.06 (or 0.94) at 5% type I error rate. 

However, the statistical power for a study like ours depends on the strength of the association between the 

GRS and the phenotype of interest (T2D in our study) and the association between the phenotype and disease 

risk (breast cancer in our study). We analyzed the statistical power of our study based on the ܱܴீோௌ ்ଶ  for the 

association of T2D risk with GRS Q5 compared with GRS Q1 and the ்ܱܴଶ  for the association of a prior history 

of T2D with breast cancer risk, detailed in Appendix Note 1. We showed that the expected OR for breast 
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cancer risk associated with T2D GRS (Q5 versus Q1) would be 1.063 when the ܱܴீோௌ ்ଶ  and ்ܱܴଶ   are 5.5 and 

1.5, respectively. However, we did not have data in this study population to estimate the ܱܴீோௌ ்ଶ  and ்ܱܴଶ  . 

Nevertheless our study showed that the association between T2D GRS and breast cancer risk should be very 

small, if it exists.  

We identified three T2D risk variants that were associated with breast cancer risk. SNPs in strong 

correlation with each of these three variants have recently been identified in GWAS to be associated with 

breast cancer risk. SNP rs9939609 (FTO) located in region 16q12.2, and rs7903146 (TCFL2) located in region 

10q25.2 are in perfect LD (R2 = 1) with rs17817449 (FTO) and rs7904519 (TCFL2), respectively, which were 

identified in relation to breast cancer risk in a GWAS conducted using BCAC data (23). SNP rs8042680 (PRC1) is 

in strong LD with rs2290203 (R2ര=ര0.59, 9,270bp apart) that was recently identified as a risk variant for breast 

cancer in a GWAS conducted in East Asian women (35). Further studying these genes may uncover additional 

insights into the biology and genetics that link the risk of breast cancer and T2D. 

There are other limitations of our study. First, data on T2D diagnosis and treatment were not available 

for the study, preventing us from conducting an in-depth evaluation of the potential influence of T2D 

treatment on the association of T2D risk variants with breast cancer risk. Second, two-thirds of the SNPs used 

to construct the T2D GRS were not directly genotyped. We imputed these SNPs using 1000 Genomes Project 

data as the reference. The imputation quality was high. In a sensitivity analysis, we constructed an alternate 

T2D GRS using only the 11 directly genotyped SNPs and the 14 imputed SNPs which had almost perfect quality 

(R2ര>ര0.9). This T2D GRS is highly correlated with the T2D GRS used in our primary analysis (Pearson�s r = 0.93) 

and using the alternate T2D GRS did not change the results appreciably. Finally, all participants in this study 

are of European ancestry, possibility affecting the generalizability of our study findings to other populations.  

In conclusion, our study suggests that there is no apparent association between a polygenetic score 

constructed using the known T2D risk variants identified to date in GWAS and breast cancer risk among 
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women of European ancestry, indicating that the previously reported association between these two diseases 

is likely due to shared lifestyle risk factors for T2D and breast cancer, providing support for lifestyle 

modification as an effective prevention strategy to reduce the risk of both T2D and breast cancer. Our finding 

of significant associations of three T2D risk variants with breast cancer suggests a potential link of certain 

shared genetic and biological pathways for these common diseases. 
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FIGURE LEGENDS 

Figure 1: Overview of the T2D genetic risk score construction  
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Table 1: The associations between T2D genetic risk score and breast cancer risk in Breast Cancer Association 

Consortium  

 T2D GRS by Quintiles  

 Q1 (low) Q2 Q3 Q4 Q5 Linear Trend 

Overall Breast Cancer 

    Ncases/Ncontrols 9148/8497 9519/8496 9175/8496 9227/8496 9256/8497
    OR

1 [95% CI] 1 (reference) 1.03 (0.98,1.08) 1.00 (0.95,1.04) 1.00 (0.96,1.05) 1.00 (0.96,1.05)
    P-Value

1  0.21 0.91 0.90 0.84 0.69
 

ER+ Breast Cancer 

    Ncases/Ncontrols 5473/8497 5616/8496 5259/8496 5351/8496 5375/8497
    OR

1 [95% CI] 1 (reference) 1.03 (0.98,1.09) 0.98 (0.93,1.03) 1.00 (0.95,1.05) 1.01 (0.96,1.06)
    P-Value

1  0.24 0.43 1.00 0.76 0.74
 

ER- Breast Cancer 

    Ncases/Ncontrols 1402/8497 1490/8496 1451/8496 1451/8496 1494/8497
    OR

1 [95% CI] 1 (reference) 1.03 (0.95,1.12) 1.00 (0.92,1.10) 0.97 (0.89,1.06) 0.99 (0.91,1.08)
    P-Value

1  0.49 0.92 0.57 0.80 0.47
 

Among Pre-menopausal Women 

    Ncases/Ncontrols 1971/1881 2152/1770 2023/1796 2018/1824 2045/1782
    OR

1 [95% CI] 1 (reference) 1.11 (1.00,1.24) 1.06 (0.95,1.18) 1.06 (0.95,1.17) 1.05 (0.94,1.17)
    P-Value

1  0.05 0.29 0.30 0.36 0.74
 

Among Post-menopausal Women 

    Ncases/Ncontrols 4751/3909 4817/3874 4514/3909 4455/3821 4532/3842
    OR

1 [95% CI] 1 (reference) 1.03 (0.97,1.10) 0.99 (0.93,1.06) 0.98 (0.92,1.05) 1.02 (0.96,1.09)
    P-Value

1  0.35 0.79 0.56 0.54 0.93

 

Among Age<50 Women 

    Ncases/Ncontrols 1757/2389 1941/2375 1919/2372 1843/2363 1926/2393
    OR

1 [95% CI] 1 (reference) 1.07 (0.97,1.18) 1.07 (0.97,1.19) 1.04 (0.94,1.15) 1.04 (0.94,1.15)
    P-Value

1  0.19 0.17 0.46 0.46 0.74

 

Among Ageш50 Women 

    Ncases/Ncontrols 7391/6108 7578/6121 7256/6124 7384/6133 7330/6104
    OR

1 [95% CI] 1 (reference) 1.01 (0.96,1.07) 0.98 (0.93,1.03) 1.00 (0.95,1.05) 1.00 (0.95,1.05)
    P-Value

1  0.58 0.43 0.88 0.9 0.62

 

Among BMI<25 Women 

    Ncases/Ncontrols 2420/2150 2526/2103 2418/2146 2321/2187 2485/2168
    OR

1 [95% CI] 1 (reference) 1.05 (0.96,1.15) 0.99 (0.90,1.09) 0.94 (0.86,1.03) 1.04 (0.95,1.14)
    P-Value

1  0.28 0.85 0.19 0.43 0.64

 

Among BMIш25 Women 

    Ncases/Ncontrols 2499/2154 2652/2308 2552/2282 2611/2229 2651/2359
    OR

1 [95% CI] 1 (reference) 1.00 (0.92,1.09) 0.97 (0.89,1.06) 1.03 (0.94,1.12) 0.96 (0.88,1.05)
    P-Value

1  0.97 0.53 0.54 0.41 0.64

T2D GRS: Weighted type 2 diabetes related genetic variants risk score
1: All associations were assessed individually by each study and then combined by fixed-effect inverse-variance weighted meta-analysis. All 
models adjusted for age and top eight principal components for population stratification. Study specific principal component was further 
adjusted for LMBC study. 
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Table 2: Selected T2D risk variants associated with breast cancer risk in BCAC at P < 0.05 and their associations in 

GAME-ON DRIVE project 

BCAC 

(Cases N=46325/ Controls N=42482)  

GAME-ON DRIVE 

(Cases N=16003/ Controls N=41335)

SNPs Chr Position
1
 Gene

2
 Alleles

3
 R-square

4
 RAF

5
 OR

6
 95% CI

6
 P-Value

6
 RAF OR 95% CI P-Valu

rs243021 2 60584819 BCL11A A/G - 0.46 1.02 (1.00,1.04) 0.03 0.46 1.01 (0.98,1.05) 0.

rs4402960 3 185511687 IGF2BP2 T/G - 0.31 0.98 (0.96,1.00) 0.05 0.32 0.97 (0.94,1.01) 0.

rs13292136 9 81952128 CHCHD9 C/T 0.926 0.92 1.05 (1.01,1.09) 0.02 0.94 0.98 (0.92,1.05) 0.

rs7903146 10 114758349 TCF7L2 T/C - 0.28 1.04 (1.02,1.07) 1.20E-4 0.30 1.04 (1.00,1.08) 0.

rs7961581 12 71663102 TSPAN8,LGR5 C/T 0.981 0.28 0.97 (0.94,0.99) 2.48E-3 0.26 1.00 (0.96,1.04) 0.

rs8042680 15 91521337 PRC1 A/C - 0.31 0.98 (0.95,1.00) 0.02 0.30 0.95 (0.92,0.99) 6.18E

rs9939609 16 53820527 FTO A/T 1.000   0.40 0.93 (0.91,0.95) 3.63E-12   0.38 0.96 (0.93,0.99) 0.

SNP: single nucleotide polymorphism; Chr: Chromosome; BCAC: Breast Cancer Association Consortium; GAME-ON: Genetic Associations and Mechanisms in Oncology; DRIVE: Di
Variants in Breast Cancer; RAF: risk allele frequency; OR: odds ratio; CI: confidence interval;  
1
: The chromosome physical position is based on the National Center for Biotechnology Information (NCBI) database, Build 36.3.  

2
: The closest gene.  

3
: Risk/reference alleles. The risk allele is the allele that associated with increased risk of type 2 diabetes. 

4
: Imputation quality in BCAC; - indicates directly genotyped SNPs. 

5
: Among controls. 

6: 
All associations were assessed individually by each study and then combined by a fixed-effects inverse-variance weighted meta-analysis. All models adjusted for first eight prin

stratification. Study specific principal component was further adjusted for LMBC study. 
6: 

Combined BCAC and GAME-ON DRIVE results by fixed-effects inverse-variance weighted meta-analysis. 
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