
I
m

E
a

b

c

a

A
R
R
1
A

K
W
B
F
F
A
D
R
H

1

t
i
c
i
2

h
0

Ecological Engineering 91 (2016) 515–528

Contents lists available at ScienceDirect

Ecological  Engineering

jo ur nal home p age: www.elsev ier .com/ locate /eco leng

mportance  of  partial  barriers  and  temporal  variation  in  flow  when
odelling  connectivity  in  fragmented  river  systems

dward  A.  Shawa,∗,  Eckart  Langeb,  James  D.  Shucksmithc, David  N.  Lernera

Catchment Science Centre, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
Department of Landscape, University of Sheffield, Arts Tower, Western Bank, Sheffield S10 2TN, UK
Department of Civil and Structural Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 24 March 2015
eceived in revised form
0 November 2015
ccepted 26 January 2016

eywords:
eirs

arriers
ish passage
ishway
quatic connectivity
endritic ecological networks
iver networks
abitat fragmentation

a  b  s  t  r  a  c  t

(1)  The  potential  for catchment-scale  connectivity  modelling  to  help  plan the  restoration  of  connectivity
in fragmented  river  systems  is  not  yet  well  understood.  In the  present  study  the  importance  of two
interrelated  aspects  of  such  modelling  in  determining  predictions  of  connectivity  are  explored:  (1)
uncertainty  in  the  passability  of  partial  barriers  (such  as  fish  passes)  and how  the  passabilities  of  series
of partial  barriers  combine,  and  (2)  temporal  variation  in connectivity  due  to  flow.

(2)  Connectivity  for  Atlantic  salmon  (Salmo  salar  L.) and European  perch  (Perca  fluviatilis  L.)  are modelled
under  alternative  restoration  strategies  in the  heavily  impounded  Don  Catchment  UK  using  two  dif-
ferent  methods  for simulating  the  combined  passability  of series  of  partial  barriers.  Catchment-scale
hydraulic and  connectivity  modelling  were  integrated  using  a novel  method  to  account  for  the  effect
of  flow  on  connectivity,  achieved  by consideration  of flow-fish  pass  efficiency  relationships  and  the
treatment  of  gaps  between  habitat  patches  as  partial  barrier.

(3)  Modelled  connectivity  is  very  sensitive  to uncertainty  in  barrier  passability  and  the  method  used  to
simulate  the  combined  passability  of  series  of  partial  barriers.  Flow  also  has  a  strong  and  complex  effect
on  connectivity,  with  predicted  temporal  patterns  being  particularly  dependent  on  how  the  combined
impact  of series  of  barriers  is  modelled.  The  sensitivity  of  the  modelling  constrains  its  capacity  to  predict
the  outcome  of  alternative  connectivity  restoration  strategies.  Nevertheless  it does  serve  as  a  tool  to
think  critically  about  connectivity  restoration.  If applied  thoughtfully  in  full  awareness  of  its  limitations
it  can  still  be used  assist  in the  planning  and  appraisal  of  alternative  restoration  options.

(4)  The  modelling  also provides  a number  of  important  practical  insights.  It  shows  that  series  of fish  passes
may  be  ineffective  unless  they  operate  at very  high  efficiencies.  Small  changes  to  flow-fish  pass  effi-

ciency relationships  can  have a large  effect  on  temporal  patterns  in  connectivity.  Overall  fish  pass
efficiency  is comprised  of attraction  and  passage  efficiencies  which  may  differ  in  the  extent  to  which
they  are  determined  by  random  processes.  This  likely  has significant  implications  for  the  nature  of the
combined  passability  of  series  of fish  passes.
. Introduction

River systems are prone to habitat fragmentation, with connec-
ivity through these dendritic networks easily severed by common
nfrastructure such as dams and culverts (Fullerton et al., 2010). By

onstraining movement such barriers inhibit the feeding, breed-
ng, sheltering and dispersal of riverine biota (Jungwirth et al.,
000). Populations isolated in habitat fragments become more
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vulnerable to random perturbations, are at risk of inbreeding
depression, and are less likely to re-establish should they be extir-
pated (Morita and Yamamoto, 2002; Wiens, 2008). In extreme but
not uncommon circumstances river barriers have caused signif-
icant population declines and even extinctions (Watters, 1996;
Mallen-Cooper, 1999; Sheer and Steel, 2006).

As a consequence, river restoration often focuses on re-
establishing river connectivity through barrier modifications such

as fish pass installation, dam removal and deculverting. While
these measures can bring about the dramatic recovery of impacted
species (Meadows, 2001), numbers of barriers in river networks
often far exceed the resources available for remediation. Decision
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akers must therefore prioritise the modification of barriers that
ill bring the most benefit (Bourne et al., 2011; Neeson et al., 2015;
’Hanley, 2011).

One approach to prioritising barriers for modification is
he scoring-and-ranking method which scores the benefits (e.g.
roportion of catchment upstream of barrier) and costs (e.g. finan-
ial outlay) associated with modification to individual barriers.
owever these approaches can be inefficient as they neglect

mportant interdependencies between multiple barriers (O’Hanley
nd Tomberlin, 2005; Kemp and O’Hanley, 2010). Moreover their
sefulness is limited as they provide little insight into the conse-
uences of connectivity restoration (e.g. how interventions change
abitat accessibility). As a result more sophisticated methods have
een developed that account for barrier interdependencies at the
atchment-scale by analysing river systems as spatial networks,
alculating overall connectivity as a function of the connectedness
f the river stretches that comprise the fragmented river network
Paulsen and Wernstedt, 1995; Kuby et al., 2005; O’Hanley and
omberlin, 2005; Cote et al., 2009; Zheng et al., 2009; O’Hanley,
011; McKay et al., 2013; Branco et al., 2014).

Although it is widely accepted that interactions between bar-
iers should be accounted for when planning river connectivity
mprovements (Cote et al., 2009; Kemp and O’Hanley, 2010; Bourne
t al., 2011; Segurado et al., 2013; Branco et al., 2014), doing so is
ar from simple. For pragmatic reasons a number of simplifications
nd assumptions are typically made, such as the treatment of the
ntire river network as having uniform habitat value, or the disre-
ard of the dynamic nature of connectivity which varies temporally
ith flow as well as across species (Bourne et al., 2011; Branco

t al., 2014). How such simplifications and assumptions deter-
ine the capacity of connectivity modelling to aid the planning

f connectivity restoration is still poorly understood. In this paper
e investigate the importance of two under-explored aspects of

onnectivity modelling at the catchment-scale: uncertainty in the
assability of partial barriers and the interaction between them to
etermine catchment-scale connectivity, and how catchment-scale
onnectivity varies over time.

Many river barriers such as weirs and culverts are partial as a
roportion of those individuals attempting to pass are successful.

ust how passable partial barriers are, even with highly engineered
onnectivity enhancements such as fish passes, is often very uncer-
ain (Bourne et al., 2011; Bunt et al., 2012; Noonan et al., 2012).
ccordingly it is usually only possible to use rough estimates of par-

ial barrier passability in connectivity modelling (e.g. McKay et al.,
013). There is also a lack of knowledge on how the passabilities of

ndividual partial barriers combine to determine the total passabil-
ty of a series of barriers (as might be traversed during migrations
ver longer distances), and how this should be represented in
odelling (Kemp and O’Hanley, 2010). Commonly, this combined

assability is calculated as the product of the individual barrier
robabilities (e.g. Cote et al., 2009; Neeson et al., 2015; O’Hanley
nd Tomberlin, 2005; Padgham and Webb, 2010), and is an
pproach we term the ‘cumulative method’ (as the impact accumu-
ates). However, Kemp and O’Hanley (2010) point out an alternative

ethod could be to take the minimum barrier passability in a series
f barriers, thereby assuming that all fish able to pass the most dif-
cult barrier will have the swimming capability required to pass all
ubsequent barriers (termed the ‘bottleneck method’ in this paper).

Complicating matters further is the temporal dimension to con-
ectivity (Bourne et al., 2011; Fullerton et al., 2010; Grantham,
013). While this temporal variation has been neglected, especially
t the catchment-scale, it is considered a significant research pri-

rity (Anderson et al., 2006; Fullerton et al., 2010; McKay et al.,
013; Stalnaker et al., 1996). Temporal variation in connectivity

s often driven by flow (Fullerton et al., 2010; Grantham, 2013),
hich determines the distribution of habitat within river networks
eering 91 (2016) 515–528

(Anderson et al., 2006), and also the passability of partial barriers
such as weirs and fish passes (Armstrong et al., 2010; Ovidio and
Philippart, 2002). Accounting for these relationships in connectiv-
ity modelling will help equip catchment managers with the ability
to understand the consequences of different barrier modifications,
flow manipulations and climate change.

The first objective of this paper is to investigate the significance
of uncertainty in barrier passability and the use of the cumulative
and bottleneck methods for modelling connectivity. Our second
objective is to explore the importance of temporal variation in con-
nectivity by making a novel modification to dendritic connectivity
indices so that catchment-scale hydraulic modelling can be inte-
grated with connectivity modelling. This enables us to examine
flow mediated changes in connectivity and to consider the impor-
tance of doing so. Finally we discuss a number of important practical
implications the modelling has for restoring connectivity in frag-
mented river networks.

2. Method

2.1. Case study catchment

The Don Catchment, north-east England, UK (Fig. 1) serves as the
case study, in which we consider connectivity for Atlantic salmon
(Salmo salar L.), an anadromous species; and European perch (Perca
fluviatilis L.), a species which exhibits a degree of potamodromy
(Lucas and Baras, 2008). The catchment covers about 1700 km2, and
includes the uplands of the Pennines in the west and lowlands in the
east. At the downstream end the River Don flows into the River Ouse
shortly before it discharges into the North Sea through the Humber
Estuary. As the catchment is relatively small, daily rainfall variable,
bedrock mainly sandstone, and rivers predominantly runoff fed,
river flow can be quite flashy. The region’s historical importance
as a centre of metal working has resulted in the impoundment
of the rivers by over 200 weirs (run-of-the-river low-head dams)
which were mainly built to divert river water to water mills (Shaw,
2012). These structures are typically 1–3 m tall, with the incline of
the downstream facing slope ranging from vertical to moderately
steep (Shaw et al., 2016). By the 18th century impoundments
and severe water pollution caused the extirpation of the formerly
abundant salmon population (Firth, 1997). At the time of writing
small numbers of adult salmon annually stray into the Don Catch-
ment while attempting to return to their natal catchments, but
are prevented by the weirs from completing spawning runs and
potentially colonising the catchment. As water quality is now much
improved, there is considerable interest in restoring connectivity
in the catchment to facilitate the re-establishment of salmon and
to increase the stability, abundance and distribution of populations
of fish currently resident, such as perch. As is the case in many
British catchments, weir removal is often not possible as those
most downstream maintain water levels for river and canal navi-
gation, and even redundant weirs retain heritage and other types
of cultural value (for example some weirs are officially recognised
as being of historical importance and are afforded protection from
demolition (e.g. Historic England, 1985)). Furthermore removal is
perceived as risking the disturbance of contaminated sediments
and river bank collapse due to the loss of hydrostatic pressure that
a reduction in river depth would bring. For these reasons the instal-
lation of fish passes is the preferred way  to restore connectivity,
with several passes already built on weirs and more planned.

2.2. Connectivity modelling
2.2.1. Overview
In common with a number of recent studies (e.g. Cote et al.,

2009; McKay et al., 2013; Branco et al., 2014) we  model the
rivers in the Don Catchment as a dendritic ecological network
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Fig. 1. Map  of the Don Catchment showing the Rive

DEN). Weirs, reservoirs, and culverts dissect the DEN into multiple
ubnetworks and pose complete or partial barriers to the move-
ent of fish. The connectivity of the DEN is assessed through the

alculation of two species-specific indices based on the mutual con-
ectedness of these subnetworks for salmon and perch (Section
.2.2). These subnetworks do not have equal habitat value so habi-
at is quantified using one-dimensional (1D) hydraulic modelling
o map  river area with potentially suitable flow conditions (Section
.2.3). Barriers (including those with fish passes) are often partial as

 proportion of fish attempting to pass fail due to intraspecific vari-
tion in swimming capability, heightened predation and competi-
ion at barriers, or the random chance that the best route to traverse

 barrier happens to be taken (de Leaniz, 2008; Kemp and O’Hanley,
010; Bourne et al., 2011). Hence barrier passability is repre-
ented as value between 0 (totally impassable) and 1 (all fish can
ass) (Section 2.2.4). Connectedness of nonadjacent subnetworks

s dependent on the combined passability of the series of barriers
hat separate them. This combined passability is modelled using the
umulative and bottleneck methods (Section 2.2.5). The connectiv-
ty indices are applied in a novel way to account for flow-mediated
emporal variation in connectivity by relating river flow to barrier
assability and the distribution of patches of habitat (Section 2.2.6).

nsight is sought by exploring the modelling through alternative
arrier modification scenarios in the Don Catchment (Section 2.2.7).
.2.2. Connectivity indices
We define a salmon connectivity index that represents the pro-

ortion of the total spawning habitat in the Don Catchment that a
, the city of Sheffield, and the distribution of weirs.

migrating population of Atlantic salmon can access from the ocean
(or indeed habitat accessibility in any dendritic network where
access originates from a single point) as

 ̋ =
∑n

i=1cihi∑n
i=1hi

× 100 (1)

where i (1 to n) is the identifier of the subnetwork and of its
bounding barrier immediately downstream, n is the number of sub-
networks, hi is the quantity of habitat within the subnetwork (and
can be any measure as long as it is consistent), and ci is the com-
bined passability of barriers downstream of the subnetwork. The
index produces a value between 0 and 100, which signifies the sum
of all the habitat in the river network weighted by its accessibility,
given as a proportion of the unweighted sum of all habitat, so that
0 and 100 indicate no and all habitat is accessible respectively. The
equation is similar to the diadromous application of the Dendritic
Connectivity Index (DCId) developed by Cote et al. (2009).

The little information that exists on the movement of perch
through river systems suggests that the species exhibits a degree
of migratory behaviour (Lucas and Baras, 2008). It is more difficult
to assess the impact of barriers on sedentary and potamodromous
fish, as often their connectivity requirements are less demanding
and more flexible than diadromous fish. Consequently, rather than

obviously preventing migration, the impact of habitat fragmenta-
tion can be more insidious; curtailing feeding, breeding, sheltering
and dispersal, and increasing inbreeding (Jungwirth et al., 2000;
Morita and Yamamoto, 2002). In such circumstances it is therefore
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Fig. 3. (a) Reported flow conditions used by salmon for spawning (bold) and by adult
perch (underlined) (Armstrong et al., 2003). (b) Width of a river cross section with
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ppropriate to use a general metric of river connectivity. To
ssess connectivity in the Don Catchment for perch we  use the
otamodromous application of the Dendritic Connectivity Index
DCIp) (Cote et al., 2009), which is a function of the connectedness
f every potential pairing of the river subnetworks i and j:

CIp =
n∑

i

n∑

j

cij
hi

H

hj

H
× 100 (4)

here H is the habitat weighted length of the river network, and cij
s the combined passability of the barriers between subnetworks

 and j.

.2.3. Quantity of habitat (qi)
Atlantic salmon spawn exclusively in high energy rivers

Fleming, 1997), while perch prefer to live in slower flowing rivers
nd lakes (Lucas and Baras, 2008). Potential habitat was mapped for
pawning salmon and fully grown perch using a one-dimensional
1D) hydraulic–habitat model. While two-dimensional models can
roduce more detailed habitat maps, they require high resolution
opographical data and longer run times which typically restricts
heir application to river reaches of only a few km in length (Jowett
nd Duncan, 2012), making their use infeasible at catchment-
cales.

Habitat mapping followed the same principles applied in PHAB-
IM (Waddle, 2001). Validated 1D hydrodynamic models employed
y the Environment Agency of England and Wales (EA) for flood
odelling in the Don Catchment were run in the software HEC-RAS

Brunner et al., 2001) to produce estimates of velocity and depth
t channel cross sections. These were typically spaced approxi-
ately 100 m apart, an adequate resolution as reach lengths of

00 m appear to be sufficient to map  the spatial distribution of river
abitat (Rivas Casado, 2006). The models consisted of 1388 river

ross sections and covered the main rivers in the Don Catchment
see Fig. 2).

The 1D velocity and water level output of HEC-RAS were con-
erted to depth and velocity profiles using the channel geometry

ig. 2. Coverage of hydraulic models and expected distribution of unsuitable sub-
trate for spawning.
flow conditions within the range salmon have been observed to utilise for spawning
(in  green). (For interpretation of the references to color in figure legend, the reader
is  referred to the web  version of the article.)

and Manning’s equation (Waddle, 2001). The width of river cross
section with a velocity and depth of flow spawning salmon and
adult perch have been observed to utilise (Fig. 3a; Bullock et al.,
1991; Armstrong et al., 2003) could then be estimated (Fig. 3b).
Habitat quantity (h) at each river reach was  calculated as the mean
width of habitat at the bounding cross sections multiplied by the
reach length.

Q10, Q20. . . to Q50 flows (the 10th, 20th. . . to 50th flow per-
centiles) were used to map  salmon spawning habitat as spawning
has been recorded to occur within this range of flows (Gibbins
et al., 2002; Webb et al., 2001). Adult perch are found in rivers year
round so habitat was  mapped for Q10, Q20. . . to Q90  flows. Flow
values were obtained from the CEH National River Flow Archive
(http://www.ceh.ac.uk/data/nrfa/index.html) for five flow gauges
in the Don Catchment. The two smallest rivers had no flow gauges
and so flow was  estimated using the ratios of spate flows between
rivers calculated using Flood Estimation Handbook methods (JBA,
2007).

Further steps were taken to refine the mapping of potential
salmon spawning habitat. Suitable flow conditions for spawn-
ing dissected by unsuitable mid-channel flow were discounted as
salmon construct redds mid-channel (de Gaudemar et al., 2000).
We  also ruled out reaches where we had a high degree of certainty
that the dominant substrate was unsuitable for salmon spawn-
ing (i.e. sand, silt or clay (Fig. 2)), as gravel beds are required for
spawning (Armstrong et al., 2003; Hendry et al., 2003).

2.2.4. Barrier passability (z)
Before the recent installation of a fish pass the most down-

stream weir on the Don was known to be largely impassable to
salmon as they were observed to congregate below the structure.
At ∼2 m the height of this weir is similar to many others in the Don
Catchment and to those that were found to be largely impassable
to salmonids by Ovidio and Philippart (2002) in tributaries of the
Meuse River. Yet large salmonids can on occasion pass weirs of a
similar height (Ovidio and Philippart, 2002) and there have been the
odd anecdotal report of salmon being seen upstream of this barrier.
It is impossible to assign an accurate passability value to all weirs
without fish passes, but to acknowledge there is a small degree of

permeability we  treat weirs without fish passes as preventing all
but 10% of migrating fish from passing.

The degree to which the installation of a fish pass will increase
barrier passability is not well known (Bunt et al., 2012; Noonan



 Engin

e
b
c
t
i
b
r
i
p
r
a
w
w

2

r
i
b
w
i
r
e
d
p
v
c

c

w
w
a
b
c
a
n
p
t
p
d
b
p

c

2

t
s

T
F

E.A. Shaw et al. / Ecological

t al., 2012). The mean of published efficiencies for fish passes used
y salmonids in an upstream direction is 62%, but fish pass efficien-
ies can range from 0 to 100% (Noonan et al., 2012). Sensitivity of
he connectivity modelling to uncertainty in fish pass efficiency was
nvestigated for both the salmon and perch connectivity indices
y assigning a range of passabilities from 10 to 100%. These are
epresented in the connectivity modelling by the term z, which
s the species-specific passability score of each barrier, where the
assability is rescaled to a value between 0 and 1. The perch DCIp
equires z values for the negotiation of barriers in both an upstream
nd downstream direction. While in reality these passabilities may
ell be very different, for the purpose of investigating sensitivity
e assume symmetry.

.2.5. Combined impact of consecutive barriers (ci)
Atlantic salmon will need to traverse consecutive partial bar-

iers during migration, and the combined effect of these barriers
s represented in the modelling by the term ci. How consecutive
arriers combine to impact on migrating fish is unknown, and so
e test the cumulative and bottleneck methods discussed in the

ntroduction. The cumulative method treats each consecutive bar-
ier as removing a proportion of the remaining population thereby
xpressing the chance some fish will fail to ascend a barrier (e.g.
ue to the random processes such as the chance that a fish hap-
ens to find the entrance to a fish pass) and not factors linked to
ariation amongst individual fish (e.g. maximum swimming speed,
ondition), so that:

i =
n∏

i=1

zi (2)

here zi is the species-specific passability score of each barrier
hich represents with a number between 0 and 1 the proportion of

ll fish attempting to traverse a barrier that succeed. Consecutive
arriers have been treated this way by Cote et al. (2009) to calculate
ij for the DCIp and by a number of other researchers (e.g. O’Hanley
nd Tomberlin, 2005; Nunn and Cowx, 2012). In contrast the bottle-
eck method represents intraspecific variation in ability of fish to
ass a barrier (e.g. differences in maximum swim speed). It assumes
hat all fish capable of traversing a barrier of a certain difficulty to
ass will be capable of passing all subsequent barriers of the same
ifficulty or less. Therefore the combined passability of a series of
arriers is equal to the passability of the barrier most difficult to
ass, so that (Cote et al., 2009; Kemp and O’Hanley, 2010):

i = min (zi) (3)
.2.6. Temporal variation
To explore the importance of accounting for temporal varia-

ion we modelled flow-mediated changes in daily connectivity for
almon and perch. Connectivity is dependent on flow as not only is

able 1
low-passability relationship used to specify passabilities of weirs.

Flow Weir passability (zi)

Salmon 

Without fish pass Conventional fish pass High-flow fish pass 

Q10 0.9 0.9 0.98 

Q20  0.5 0.9 0.95 

Q30  0 0.9 0.9 

Q40  0 0.7 0.3 

Q50  0 0.6 0 

Q60  0 0.5 0 

Q70  0 0.3 0 

Q80  0 0.3 0 

Q90  0 0.3 0 
eering 91 (2016) 515–528 519

it an important determinant of the distribution of habitat patches
within a river network (and so the distance between them), but it is
also a factor regulating the passability of weirs and the efficiencies
of fish passes. As flow increases the head of a weir decreases as it
‘drowns out’, and the depth of water flowing over the face and at
the foot of the weir increases, all of which can improve the ability
of fish to pass (Keller, 2010; Ovidio and Philippart, 2002).

In the Don Catchment local opinion is that the larger weirs
become passable to salmon during river spates, but not perch,
which are slower swimmers (Webb, 1975). Table 1 presents a rela-
tionship we  created to broadly represent how flow affects weir
passability for salmon and perch. We  include the impact of pro-
vision of fish pass, as pass efficiency also varies across flow. Though
flow-fish pass efficiency relationships are currently something that
cannot be accurately predicted (Noonan et al., 2012), fish passes can
be designed to operate most effectively over certain flow conditions
(Beach, 1984; Office of Technology Assessment, 1995). We  created
generalised flow-efficiency relationships for two hypothetical fish
pass types: ‘conventional’ and ‘high-flow’ types. These relation-
ships are approximations chosen to illustrate how potential fish
pass designs can influence the effectiveness of different restoration
strategies, as well as to explore how the flow-efficiency relation-
ships determine temporal variation in connectivity.

The conventional type represents fish pass types such as Denil
passes, where adequate flow is required to provide sufficient in-
pass depth and velocity (Office of Technology Assessment, 1995).
However, as flow increases so does velocity, which can overcome
the swimming capacity of fish attempting to ascend the pass (Beach,
1984). For salmon the efficiency of the conventional fish pass is
assumed to increase with flow between the Q90 and Q10 flows
(which covers the EA recommended fish pass operational flows for
salmon (Armstrong et al., 2010)) and converges with the weir pass-
ability when the fish pass is treated as drowning out. Efficiency also
increases with flow for perch, but drops under higher flows due to
the lower swim speeds of perch. To offer a contrast to the conven-
tional type we  include the high flow fish pass which increases the
passability of a weir only above the Q30 flow (it could for example
be positioned at a higher elevation so that it is wetted only during
high flows). While these flow passability relationships are concep-
tual they allow us to show how fish pass design considerations
affect temporal patterns in connectivity.

Accessibility of salmon spawning habitat and the perch DCIp
were calculated across a hydrograph of daily flows from 1976 to
1977 (years chosen to include a wide variation in flows). We  used
full annual hydrographs as salmon are known to enter many British
river systems (e.g. the Tay and the Tweed) year round (Shearer,
1992). Accessibility of spawning habitat for salmon was calculated

using both the cumulative and bottleneck methods. The status quo
scenario represents the current situation, to which the Don scenario
is contrasted using the conventional and high flow fish pass types.
No other weir modification scenarios were examined as each will

Perch

Without fish pass Conventional fish pass High-flow fish pass

0 0.1 0.3
0 0.4 0.6
0 0.6 0.1
0 0.8 0
0 0.7 0
0 0.6 0
0 0.5 0
0 0.4 0
0 0.3 0
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ent to when weirs alone are treated as barriers (Fig. 9c). Indeed
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roduce the same temporal patterns in connectivity as all share the
ame flow-fish pass efficiency relationships.

We made two applications of the perch DCIp: the ‘weir appli-
ation’ where the status quo scenario was compared to the Don
cenario using conventional and high flow fish passes, and the

habitat gaps application’ where discontinuities in flow conditions
tilised by perch served as partial barriers (i.e. lengths of river
here flow conditions occur outside the depth and velocity ranges
sually utilised as habitat by perch pose partial barriers to move-
ent). The latter application includes a DCIp calculated by treating

nly habitat gaps as barriers, and a DCIp that counts habitat gaps
nd weirs as barriers. These applications illustrate how the effect
f flow-mediated discontinuities in habitat on connectivity may  be
odelled at the catchment-scale.
Little is known about how discontinuities in habitat affect

onnectivity, though perch may  be less inclined to travel large dis-
ances as there is some evidence that even natural habitat gaps
n apparently well connected freshwater ecosystems can inhibit

ovement (Gerlach et al., 2001; Bergek and Björklund, 2009). We
ssume that most gaps in habitat pose less significant obstacles
han weirs, and that passability declines gradually with gap length,

ore quickly at first and then more slowly. The following expres-
ion was chosen to reproduce these assumptions and assign a
assability score to each habitat gap:

 = 0.99gl/50 (6)

here gl is the length of the gap in meters. Other expressions can be
sed as research reveals how fish respond to habitat discontinuities.

.2.7. Scenarios
To investigate whether uncertainty in barrier passability and

he nature of the interaction between multiple barriers can affect
he relative attractiveness of alternative management options,
our scenarios to restore connectivity in the Don Catchment were
ompared. Rather than seeking to identify a specific barrier priori-
isation strategy (which we would do if we were trying to find the

ost efficient approach to restoring connectivity), scenarios were
hosen to correspond with local interest in restoration strategies
e.g. Don Catchment Rivers Trust, 2013), to fall within the area cov-
red by the hydraulic modelling, and to offer contrasting numbers
nd location of barriers modified. In addition to the status quo sce-
ario (Fig. 4a), which includes 13 fish passes already in existence,
hree other scenarios were analysed. The first was  the installation
f eight fish passes; two on weirs on the Don and six on the Rother
the Rother scenario; Fig. 4b), the second 19 fish passes on weirs up
he Don and then on the Loxley (the Loxley scenario; Fig. 4c), and the
hird 30 fish passes on weirs on the Don (the Don scenario; Fig. 4d).

. Results

.1. Distributions of habitats

The hydraulic habitat assessment indicated that the majority of
he potentially suitable spawning habitat for salmon is scattered
round the upper reaches of the catchment, especially those drain-
ng uplands in the west (Fig. 5a). Potential habitat for adult perch
Fig. 5b) was also found to be widely spread, though the majority
s located in the downstream half of the catchment.

.2. Sensitivity to barrier passability
The output of the salmon connectivity modelling for the Don
atchment connectivity enhancement scenarios was found to be
ery sensitive to fish pass efficiency (Fig. 6), with the best result
or the Don scenario being 29 times greater than the worst result.
eering 91 (2016) 515–528

Furthermore sensitivity was  greatest when the combined effect of
the fish passes was  treated as being cumulative, particularly when
fish pass efficiencies were between 80% and 100%. Sensitivity is also
dependent on the scenario, with the Don scenario greatly out per-
forming all other scenarios when efficiencies are greater than 90%,
but performing marginally worse than other scenarios under low
efficiencies. In contrast, when the combined effect of fish passes are
treated as being bottleneck then the Don scenario always performs
the best regardless of pass efficiency.

The perch DCIp is also sensitive to variation in fish pass effi-
ciency, but to a lesser degree, with the best result for the Don
scenario being twice as large as the worst result (Fig. 7). Again sensi-
tivity was greater at higher fish pass efficiencies. While the Don and
Status quo scenarios were consistently the best and worst respec-
tively, differential sensitivity amongst the scenarios resulted in the
Loxley scenario appearing the second best under high efficiencies
and second worst under low efficiencies.

Fig. 8 shows the incremental gains in spawning habitat accessi-
bility for each additional fish pass installed on the Don, starting at
the downstream end and working up the river. It makes clear the
strong effect multiple partial barriers can have if their combined
impact is cumulative. When fish pass efficiency is 50% then there is
almost no gain in habitat accessibility irrespective of the number of
fish passes installed, while a fish pass efficiency of 90% brings good
but diminishing returns, and 100% results in increasing returns. The
use of the bottleneck method generates increasing returns for all
fish pass efficiencies.

3.3. Temporal variability in connectivity

The accessibility of salmon spawning habitat varies greatly with
flow (see Fig. 9). For both the status quo and the Don scenarios there
are long periods of limited connectivity, interspersed with short
spells of high connectivity associated with high flows. However
the nature of the temporal variation is highly dependent on the
combined effect of the barriers and the fish pass type.

When the combined effect of the barriers is simulated with the
cumulative method and a conventional fish pass is used then there
is almost no difference between the performance of the status quo
scenario and the Don scenario. However the high-flow fish pass
provides far better results, but only during the periods of high flow
(see Fig. 9a).

A somewhat different result is produced when the combined
effect of the barriers is simulated with the bottleneck method.
The Don scenario performs marginally better than the status quo
when the high-flow fish pass is used, but the conventional fish pass
performs particularly well during low to intermediate flows (see
Fig. 9b).

The perch DCIp also varies greatly through time (see Fig. 9c). The
Don scenario yields an improvement in connectivity compared to
the status quo, but only when the conventional fish pass is used and
during intermediate flows. When the Don scenario is implemented
using the high flow fish pass (which involves treating existing fish
passes as the high flow type) then for the majority of time connec-
tivity is lower than the status quo scenario. There are however short
periods associated with high flows when connectivity is greater
than the other scenarios.

When the perch DCIp is calculated (with gaps between river
habitat with suitable flow conditions posing partial barriers) (see
red line, Fig. 9d), patterns in connectivity emerge that are differ-
the highest connectivity occurs during periods of low flow. When
habitat gaps and weirs are both treated as barriers (see blue line,
Fig. 9d) then an intermediate result is produced, though the pattern
is more similar to the weir only applications in Fig. 9c.
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ig. 4. The four weir modification scenarios used to explore the connectivity mode
on  scenario.

. Discussion

.1. River connectivity modelling as an aid for planning

onnectivity restoration

Restoring connectivity in fragmented river networks is chal-
enging. River barriers are often numerous and resources and
(a) The status quo scenario, (b) the Rother scenario, (c) the Loxley scenario, (d) the

options for mitigation limited. River connectivity modelling would
provide a valuable tool if it could be used to explore what inter-
ventions are required to re-establish extirpated migratory fish

alongside improving connectivity for resident species. However
this study has demonstrated that the output of such modelling
in the Don Catchment is very sensitive to uncertainty in barrier
passability and how the impact of barriers combine. Both these
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Fig. 5. Relative quantity of potential salmon spawning (a) and adult perch (b) habitat.
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ig. 6. Salmon connectivity index (˝) calculated for the four weir modification scen
mpact  of consecutive barriers is modelled using both the cumulative and bottlenec

odelling aspects are not understood well enough to be included
ith sufficient accuracy for us to confidently predict what barrier
odifications are required to allow the re-establishment of salmon.

n catchments like the Don that have series of partial barriers,
ven small changes to estimated barrier passability can determine
hich restoration strategy appears most attractive or whether the

e-establishment of an extirpated species seems feasible or not.
Model sensitivity to barrier passability is dependent on the

ature of the combined effect multiple partial barriers have on
onnectivity, with sensitivity being much greater when the com-

ined impact is cumulative. It seems reasonable however to argue
hat series of partial barriers may  in reality have an impact that
s somewhere between the impacts simulated by the bottleneck
nd cumulative methods. The maximum swim speed of a fish is
when fish pass efficiencies are 10, 30, 50, 70, 80, 90, 95, 99, and 100%. The combined
hods.

correlated with body length (Beach, 1984), and as there can be
considerable intraspecific variation in body length in a cohort of
migrating fish (Jonsson et al., 1991) so must there be in swim
speed. Ovidio and Philippart (2002) observed that in tributaries
of the Meuse River some barriers were only ascended by larger
individuals. Therefore certain partial barriers do appear to selec-
tively obstruct the weakest swimmers. Presumably the stronger
swimmers that pass will on some occasions be able to negotiate
subsequent barriers of a similar difficulty to pass. Yet some fish fail
to ascend barriers due to factors not linked to swimming ability

(e.g. whether a fish happens to find the entrance to a fish pass),
and exhaustion due to repeated expenditure of energy traversing
barriers. Both phenomena are known to occur during fish migra-
tions (Booth, 1998; Armstrong et al., 2010; Bunt et al., 2012). Unless
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Fig. 7. Perch DCIp calculated for the four weir modification scenarios when fish pass efficiencies are 10, 30, 50, 70, 80, 90, 95, 99, and 100%.

Fig. 8. Incremental increase in the salmon connectivity index (�) for each additional fish pass installed as part of the Don scenario, starting at the downstream end and
working upwards. The index is calculated using fish pass efficiencies of 50, 90 and 100%, and combined impact of consecutive barriers is modelled using both the cumulative
and  bottleneck methods.
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Fig. 9. Flow mediated temporal variation in the salmon connectivity index (�) and the perch dendritic connectivity index (DCIp) for the years 1976 to 1977. The top panel
shows  flow exceedance. (a & b) The salmon connectivity index calculated using the cumulative and bottleneck methods of modelling the combined effect of consecutive weirs.
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ach  shows the status quo scenario using the conventional fish pass and the Don sce
or  the status quo scenario using the conventional fish pass and the Don scenario us
tatus  quo scenario treating habitat gaps as barriers and weirs and habitat gaps as b

his cumulative component of the combined impact is slight it is
robable that any modelling of connectivity across series of partial
arriers will be sensitive to uncertainty in barrier passability.

The degree to which sensitivity to uncertainty in barrier pass-

bility curtails the usefulness of connectivity modelling depends
n context. The circumstances in which it can be used with con-
dence to plan the restoration of extirpated diadromous species

nclude catchments where the series of partial barriers that must
using both the conventional and high flow fish passes. (c) The perch DCIp calculated
th the conventional and high flow fish passes. (d) The perch DCIp calculated for the
s.

be traversed are short or do not have a significant cumulative
effect, or where barriers can be removed. Unfortunately when
more than a few partial barriers must be negotiated sensitivity
becomes an issue, something which cannot currently be offset

with the use of more accurate passability values for partial bar-
riers such as culverts, weirs, and fish passes, due to our inability
to accurately predict the passability of such structures (Ovidio and
Philippart, 2002; Bourne et al., 2011; Noonan et al., 2012). Thus the
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apacity of connectivity modelling to differentiate between the
alue of alternative intervention strategies or to assess the viability
f re-establishing extirpated species will often be limited.

The situation for potamodromous fish such as perch is some-
hat different to diadromous species as these can have more
exible migratory requirements and many are able to persist

n fragmented river networks. Some such as the European bull-
ead (Cottus gobio) are fairly sedentary, though even populations
f this species have mobile individuals (Knaepkens et al., 2005).
artial migration is now recognised as widespread amongst fish,
ith populations frequently being comprised of both resident and
igrant contingents (Chapman et al., 2012b). There appears to be

 number of causes of partial migration, including temporal het-
rogeneity in predation pressure and competition for resources
Chapman et al., 2012a) and it is increasingly clear that fish exhibit
iverse inter- and intraspecific connectivity needs (Chapman et al.,
012b). As a consequence both the fragmentation and restoration
f connectivity in river networks can have species-specific ramifi-
ations that are hard to predict or quantify, such as by increasing
ene flow or population stability. Given this complexity a simple
ndex such as the potamodromous application of the DCI (Cote et al.,
009) may  be an appropriate way to assess connectivity. Unlike the
almon connectivity index however, which is clearly linked to habi-
at accessibility, the DCIp is more difficult to interpret in terms of
hat implications changes to the index have for the target species.

his is apparent with the sensitivity of the DCIp to uncertainty in
arrier passability. While the sensitivity of the salmon connectiv-

ty index results in changes in the value of the index that clearly
ranslate into different degrees of habitat accessibility for salmon,
his is not the case for perch.

Numerous papers and guidance for fish passes have highlighted
he importance of temporal variation in connectivity (Armstrong
t al., 2010; Fullerton et al., 2010; Grantham, 2013). We  present
imple but novel applications of the connectivity indices to explore
he significance of flow-mediated variation in connectivity. This
as achieved by considering how the efficiency of fish passes and
assability of weirs change with flow, and by utilising catchment-
cale hydraulic modelling to identify gaps in habitat and treat
hem as partial barriers. Fish distributions are thought to be some-
imes structured as metapopulations (Dunham and Rieman, 1999;
chtickzelle and Quinn, 2007; Fullerton et al., 2010), where patches
f suitable river habitat can be colonised, and populations inhab-
ting patches can become extinct. Colonisation and extinction are
oth a function of patch size and its connectivity with other patches
Kareiva et al., 1990). Our approach offers a way by which these
ynamics can be accounted for in modelling and could be developed
urther to advance the understanding of fish metapopulations.

The temporal modelling also demonstrates that flow can have
omplicated and significant effects on connectivity that need
onsidering to help ensure connectivity restoration is effective.
ur results show temporary periods of high connectivity that are

trongly dependent on how barrier passability changes with flow.
owever, again our capacity to bring this temporal dimension into
onnectivity modelling is impaired by sensitivity to uncertainty in
arrier passability and how the passabilities of multiple barriers
ombine. The two fish pass types produce very different results con-
itional on whether the cumulative or bottleneck methods are used
o simulate the combined impact of the barriers. We  found very lit-
le in the literature regarding how fish pass efficiency responds
o flow, but this information is urgently required if catchment

anagers are to coordinate fish passes so that they provide simul-
aneous windows of high connectivity during periods of migration.
The different temporal patterns in connectivity that emerge
hen the perch DCIp is calculated by treating habitat gaps rather

han weirs as barriers shows how connectivity can be variable even
ithout the presence of physical obstructions, and these patterns
eering 91 (2016) 515–528 525

may  be dissimilar to those produced by impoundments. While
for the purposes of our modelling we  assumed that gaps in habi-
tat form a weak barrier to longitudinal movement through river
networks, there is little information about how fish respond to such
habitat discontinuities. Alternatively other flow attributes such
as minimum depth (e.g. as Grantham (2013) used for steelhead
trout (Oncorhynchus mykiss)), maximum flow velocity, or other
forms of barrier produced by water chemistry, temperature, noise,
illumination, or a lack of cover may  be more appropriate. Again
interpreting the significance of the variation in the perch DCIp is
difficult. More work is required to investigate how changes to such
connectivity indices reflect real changes to fish distributions and
population attributes. There is significant scope for the customisa-
tion of these indices to the connectivity needs of specific species or
even population contingents, based for example on the size of habi-
tat fragments, mobility of fish, or the degree of gene flow needed
to avoid inbreeding.

Due to an absence of relevant information and the need for
a pragmatic approach many simplifications must be made when
modelling connectivity. This is especially the case in this study,
where the objective was to investigate the importance of barrier
passability and temporal variation rather than produce accurate
predictions for the Don Catchment. Major simplifications include
the treatment of all barriers as equal, and barrier passabilities as
symmetrical in an upstream and downstream direction when cal-
culating the perch DCIp. The insensitivity of the modelling when
using the cumulative method to changes in barrier passability
below that are below 90% means that the assumption that weirs
without fish passes have a passability of 10% is not of consequence.
However, when the bottleneck method is used this assumption is
more important as it sets the minimum potential value of an index
(i.e. all DENs will have a value that is 10% or greater). The habi-
tat mapping is another simplistic element of the modelling, but it
served our purpose of producing a map  that was  approximately
representative of the true distribution of habitat for salmon and
perch. We believe we achieved this as the mapped habitat is con-
sistent with knowledge that salmon spawn in fast flowing rivers
(Armstrong et al., 2003) such as that in the poorly connected sub-
networks in the upper parts of the Don Catchment, whereas perch
prefer slower flows (Petts et al., 2016) such as those found in the
lower parts of the catchment. It was not possible to validate the
habitat maps as the salmon was extirpated hundreds of years ago
and there is a paucity of data recording the distribution of perch. If
decisions are to be made on the basis of connectivity modelling then
serious consideration must be given to additional factors that deter-
mine habitat quality such as water and sediment quality, especially
in a highly urbanised and formally industrial catchment like the
Don. Another factor not accounted for but which probably strongly
influences temporal variation in connectivity is water temperature,
as this has a major role in determining fish swimming ability (Beach,
1984).

4.2. Practical implications

The modelling in the present study has a number of impor-
tant implications for restoring connectivity in fragmented river
networks. As discussed it is likely that series of partial barriers
have to some degree a cumulative effect, and that unless very small
this will rapidly diminish populations of migrating fish. Therefore
programmes to restore connectivity for migrants that need to
negotiate series of barriers must ensure that this cumulative
impact is minimal. There is little scope for compromise. In the Don

Catchment for example, even when fish passes are 95% efficient, if
there is a cumulative impact where 5% of the migration is lost per
weir then the accessibility of spawning habitat is half that when
efficiency is 100%. When 10% or more of the population is lost per
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eir then results are very poor. Such a cumulative impact may
e why efforts to restore Atlantic salmon populations on the US
tlantic coast have not yielded self-sustaining populations despite
ignificant investment in fish passage (Brown et al., 2013). A review
y Noonan et al. (2012) found that mean fish pass efficiency for
almonids moving upstream was only 61.7% showing that ineffi-
ient fish passes are common. Yet Noonan also notes that passes
ith efficiencies of 100% did exist, meaning it may  be possible to

vert the threat posed by inefficient passes. Nonetheless, simply
emoving barriers should be preferred over fish pass installation
s this guarantees complete restoration of connectivity, though
he scope for this is limited in many British river networks.

The results also have implications for fish pass choice and design.
verall fish pass efficiency can be divided into attraction efficiency
nd passage efficiency (Kemp and O’Hanley, 2010). The former is
he percentage of fish that move close enough to a fish pass that
hey detect the entrance (Aarestrup et al., 2003), whereas pas-
age efficiency is the percentage of fish attempting to negotiate

 pass that succeed (Bunt et al., 2012). If, as we hypothesise, ran-
om chance rather than intraspecific variation in swimming ability
rives fish success in finding the entrance to a fish pass, series of
asses with attraction efficiencies less than 100% will have a cumu-

ative impact. The review of fish pass efficiencies by Bunt et al.
2012) found that attraction efficiency was usually below and often

uch lower than 100%, so poor attraction efficiencies could com-
only cause series of fish passes to have a cumulative impact. In

omparison passage efficiency is likely to not only be dependent
n random processes but also fish swimming ability, meaning effi-
iencies <100% could result in an impact intermediate between the
umulative and bottleneck impacts. This is because while some
sh can become disorientated within fish passes (Haro and Kynard,
997) (in which case successful negotiation may  be down to luck),

ntraspecific variability in swimming ability can also be important
Kemp and O’Hanley, 2010). Both attraction and passage efficien-
ies vary widely within and across fish pass types, and there may
ven be a trade-off between them (Bunt et al., 2012). For example
unt et al. (2012) noted that nature-like fish passes had high pas-
age efficiencies but lower attraction efficiencies, possibly due to
heir low gradients which mean they are easy to ascend but do
ot draw large flows. Therefore an overall measure of fish pass
fficiency can mask very important differences in attraction and
assage efficiencies. Fish pass selection and design should prioritise
he improvement of efficiency by attempting to minimise processes
hat cause passage failure at random, thereby reducing the poten-
ial for cumulative impacts. Catchment managers should also be
ware of the negative impact certain types of river infrastructure
e.g. hydroelectricity schemes, Larinier, 2008) have on attraction
fficiencies as the impact could be more detrimental than is cur-
ently recognised. Older fish passes often use less sophisticated
esigns and can have lower efficiencies (Larinier, 2008) and so it
ay  also be necessary to review and replace existing fish passage

acilities.
Another potential implication of the results regards the unas-

isted recolonisation by migratory species of rivers from which they
ave been extirpated. Every year the numbers of salmon that stray

nto the Don Catchment when attempting to return to their natal
atchment are small, though it is hoped that when connectivity is
estored such strays will spontaneously recolonise the catchment.
owever, if fish passes have more than a very small cumulative

mpact then it is possible that the population of immigrant fish will
e depleted before it can reach good quality spawning habitat. In
uch circumstances stocking may  be necessary to establish a viable

opulation.

Further insight is provided by the temporal modelling. In the
on high flows provide a window of opportunity during which

almon can exploit increased connectivity. As a consequence
eering 91 (2016) 515–528

decision makers must ensure that windows of high connectivity are
sufficiently long to allow migration to occur. To do this it is neces-
sary to consider how fish pass efficiency changes under low flows
when attraction efficiency and the shallow depth of water running
through a pass can become an issue, and also during spates when
flow velocity can exceed burst swimming speeds and passes can be
drowned out (Beach, 1984; Office of Technology Assessment, 1995).
The hypothetical ‘conventional’ and ‘high flow’ fish passes used in
this study demonstrate just how important the nature of the fish
pass efficiency-flow relationship is and how it can lead to counter-
intuitive outcomes. Despite the conventional fish pass increasing
weir passability by a greater amount over a wider range of flows,
it provides much less benefit than the high-flow fish pass when
series of passes are treated as having a cumulative impact. This
is simply because it does not improve passability over the crucial
range of 90–100% when connectivity switches from being almost
absent to present. In contrast, when the bottleneck method is used
it is the high-flow fish pass that provides little benefit relative to
the conventional pass. The reason for this is that the bottleneck
method translates any increase in barrier passability over the range
of 0–100% proportionally into an increase in overall connectivity as
long as no downstream barrier has a lower passability. Furthermore
the nature of the improvements to connectivity provided by the
conventional and high-flow passes differs. During the cumulative
method application the high flow pass greatly increases connec-
tivity, but only for short periods, amplifying connectivity which
was already boosted by high flows. On the other hand, the conven-
tional fish pass in the bottleneck application does not amplify the
high connectivity windows associated with high flows but rather
extends their duration. These results underscores the need for a
greater understanding of the combined passability of series of par-
tial barriers, as this information is essential to improving the design
of fish passes and planning the restoration of riverine connectivity.

5. Conclusions

At first glance it may  seem that it can be assumed that migratory
fish will inevitably return to impounded catchments if connectiv-
ity enhancements are made at every barrier. However our results
show there is a very real danger that efforts will fail unless serious
thought goes into the passage efficiencies of the enhancements,
how the impact of the barriers combine, and how all this varies
through time. Unfortunately the capacity of connectivity modelling
to aid the decision maker in this task and provide definitive pre-
dictions on the outcome of alternative restoration strategies is
currently restricted due to the high degree of sensitivity to uncer-
tainty in fish pass efficiencies and how the passability of series of
fish passes combines. Even small changes to fish pass efficiency
can make the difference between alternative restoration scenarios
appearing more attractive, or even whether the re-establishment of
species seems feasible. Dendritic connectivity indices for potamod-
romous fish are also sensitive to this uncertainty, but this measure
is designed for species with more flexible migratory needs and as
yet does not directly provide insight into how changes to connec-
tivity affect focus species. As a consequence the significance of this
sensitivity is less clear.

A novel application of a dendritic connectivity index allowed
us to explore how flow drove temporal variation in connectivity.
This was achieved by considering how flow determined fish pass
efficiency and caused transient gaps between habitat patches that
we treated as partial barriers. Connectivity varied greatly through

time, but the nature of the temporal patterns was highly dependent
on how the combined impact of series of barriers was modelled.
The variation in the potamodromous application of the connec-
tivity index was difficult to interpret and more work is needed to
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nderstand how such indices relate to actual population attributes.
he consideration of how flow determines discontinuities in habi-
at across river networks could be important in understanding fish

etapopulation dynamics.
A number of important practical implications can be drawn

rom the modelling. Overall fish pass connectivity is comprised of
ttraction and passage efficiencies, which differ in the extent to
hich they are determined by random processes. This likely has

amifications for whether series of fish passes have cumulative
r bottleneck impacts on migrating fish. Designers and catchment
anagers need to prioritise the reduction of the cumulative impact

s this is most detrimental. That two hypothetical fish pass types
ith different flow-efficiency relationships produced very different

emporal patterns in connectivity shows that the nature of the flow-
fficiency relationship is very important, and small modifications
an have a counter-intuitive impact.

While the limitations of connectivity modelling is very apparent
n this study, such modelling does serve as a tool to think critically
bout connectivity restoration, and provides important insight into
he nature of connectivity. If applied thoughtfully in full awareness
f its constraints it can still be used to plan and appraise alternative
estoration options.
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