
This is a repository copy of Optimization of Adaptation - A Multi-objective Approach for
Optimizing Changes to Design Parameters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98439/

Version: Accepted Version

Proceedings Paper:
Salomon, S., Avigad, G., Fleming, P.J. orcid.org/0000-0001-9837-8404 et al. (1 more
author) (2013) Optimization of Adaptation - A Multi-objective Approach for Optimizing
Changes to Design Parameters. In: Evolutionary Multi-Criterion Optimization. 7th
International Conference, EMO 2013, March 19-22, 2013, Sheffield, UK. Lecture Notes in
Computer Science, 7811 . Springer Berlin Heidelberg , pp. 21-35. ISBN
978-3-642-37139-4

https://doi.org/10.1007/978-3-642-37140-0_6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Optimization of Adaptation - a Multi-Objective

Approach for Optimizing Changes to Design

Parameters

Shaul Salomon1, Gideon Avigad2, Peter J. Fleming1, and Robin C. Purshouse1

1 Department of Automatic Control and Systems Engineering
University of Sheffield

Mappin Street, Sheffield S1 3JD, UK
{s.salomon,p.fleming,r.purshouse}@sheffield.ac.uk

2 Department of Mechanical Engineering
ORT Braude College of Engineering, Karmiel, Israel

gideona@braude.ac.il

Abstract. Dynamic optimization problems require constant tracking of
the optimum. A solution for such a problem has to be adjustable in order
to remain optimal as the optimum changes. The manner of changing de-
sign parameters to predefined values is dealt with in the field of control.
Common control approaches do not consider the optimality of the design,
in terms of the objective function, while adjusting to the new solution.
This study highlights the issue of the optimality of adaptation, and de-
fines a new optimization problem – ”Optimization of Adaptation”. It is
a multiobjective problem that considers the cost of the adaptation and
the optimality while the adaptation takes place. An evolutionary algo-
rithm is proposed in order to solve this problem, and it is demonstrated,
first, with an academic example, and then with a real life application of
a robotic arm control.

Keywords: dynamic optimization, adaptation, optimal control

1 Introduction

The competency of living creatures to adapt to a changing environment is a
crucial virtue. Adaptation is the evolutionary process that allows species to
survive. The properties of a species gradually changes to meet the demands
of the changing environment. It is a slow mechanism, and it may take hundreds
of generations for a trait to establish among the population [1]. Adaptation is
also related to the ability of a specimen to change some of its physical properties
during its lifetime. These changes are not genetic changes, and they are not
passed on to any offspring. Nevertheless, the ability to adapt is inherent within
the species’ genotype. Examples of fast adaptation are the changing colours of
a chameleon [2], the expansion and contraction of the pupil as light changes [3],
and the increasing number of red blood cells as a reaction to low percentage of
oxygen in the air in high altitude [4].

The necessity for adaptation may be also related to engineering (e.g., a prod-
uct should be adapted to changes in market demands), companies (e.g., change
of personnel or facilities, as costs change), politics, and many other fields of in-
terest. In engineering design, adaptation may be ensured by including tunable
parameters that can be altered when changes are required.

In the context of single objective optimization, an initial design might lose its
optimality as time passes due to changes that influence the objective function,
or it might become infeasible with the changing of constraints. A tunable design
may be able to adapt in order to maintain satisfactory performance, or to remain
feasible, when such changes occur. This virtue avoids the need for producing a
totally new design whenever an environmental change occurs, and it enables
prolonging the lifetime of a product.

These kinds of optimization problems, where the optimal solution changes
with time, are known as dynamic optimization problems (DOPs). Mathemati-
cally, a dynamic single objective optimization problem is formulated as follows:

Definition 1. Dynamic single objective optimization problem:

max
x∈Q

f (x, t)

s.t. gi (x, t) ≥ 0 , (i = 1, . . . , I)

hj (x, t) = 0 , (j = 1, . . . , J)

where Q ⊂ R
M is the search domain, f is the objective function, and g and

h are the inequality and equality constraints, respectively. Since the objective
function and the constraints are time dependent, the optimal solution x̃ also
changes with time: x̃ ⇒ x̃(t).

Many methods, including evolutionary algorithms, have been developed in
order to solve DOPs, and to determine what changes should be performed in
order to achieve optimal or satisfactory performance over time [5]. In many cases,
the required changes in design over time are continuous and relatively small. In
other cases, the optimum might ”jump” to a different region of the design space.
This can happen when a totally different solution becomes the optimum, or when
the current optimal solution becomes infeasible. The former case is illustrated in
Figure 1. The dynamic function f(x, t) = 2sin(x+ 2t) + tsin(3x− t) + cos(3xt)
is presented at several time instants. In Figure 1(a) the optimal solution changes
slightly between t = 0.04 and t = 0.12. On the other hand, in Figure 1(b), a
new optimal solution is developed in the region of x = 7, and a ”jump” of the
optimum occurs between the time instants t = 0.54 and t = 0.58. Since the
required changes in design at times of an optimum ”jump” are significant, some
issues regarding the manner of performing these changes should be considered.

When the required change is a mechanical change (as opposed to tuning an
electric signal, for example, which is rapid), the adaptation time might be non-
negligible. During that time, the function value of the system changes according
to the change in design. Considering the example of Figure 1(b), the function val-
ues between the old optimum and the new one are much lower than the optimal
value. If the change is continuous (i.e., x goes through all the values in between

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

x

f(x,t)

f(t=0.04)
f(t=0.12)
f
max

(t=0.04)

f
max

(t=0.12)

(a) The optimum changes slightly
within the same region.

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

x

f(x,t)

f(t=0.54)
f(t=0.58)
f
max

(t=0.54)

f
max

(t=0.58)

(b) The optimum ”jumps” to a different
region.

Fig. 1. A dynamic function at four time instants. The optimum changes from the grey
square to the black star.

the old and the new solutions), the function values during the adaptation are
not optimal.

Although existing research has addressed finding efficient ways to track the
moving optimum, no research known to the authors has addressed the optimality
during the change itself. This study comes to shed some light on this issue. The
aim here is not to suggest a new method for solving DOPs, but to optimize the
adaptation of a solution when it requires significant changes. It is assumed here
that the DOP is already solved, and the new location of the optimum is known.
The aim is at designing a trajectory in phase plane (high level control design),
according to its related performances in objective space. This is in contrast to
the common approach in control theory, where the optimization is based on the
trajectories in phase plane (e.g., minimizing the states’ deviation from the new
set-point).

Figure 2 depicts two possible trajectories to trace the moving optimum of a
single objective DOP with two design variables. Different trajectories in design
space are possible in the example, since it consists of two variables. The values
of the objective function are illustrated by contour lines. The location of the old
optimum x0 is marked with a square, and the location of the new optimum xf is
marked with a star. In this example, Trajectory 1 (marked with triangles) is along
a straight line and passes through a region with very low function values, while
Trajectory 2 (marked with diamonds) bypasses this region, and passes through
regions with high function values. The trajectories of the objective function over
time, for the same example, are shown in Figure 3. Note that the function values
along Trajectory 1 are lower than those along Trajectory 2. Therefore, assuming
the function is static during the traverse, it can be stated that the optimality
of Trajectory 2 is better than the optimality of Trajectory 1 in terms of the
function values.

In many cases, changing a system’s design has a cost, in terms of money,
energy or other resources. The way parameters are changed, especially when
more than one parameter is to be adjusted, may affect the cost of the change. The
possible conflict between the optimality of the performance during the change,
and the cost of the adaptation defines a new optimization problem which is
termed here as- Optimization of Adaptation. It is a multi-objective optimization
problem (MOP) by its nature, since the function value during the adaptation
process, and the cost of the change are to be optimized at the same time.

x
1

x
2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6 f
x

0
x

f
Traj

1
Traj

2

Fig. 2. Two possible trajectories to adapt from x0 to xf . Brighter contour lines repre-
sent higher function values.

0 0.05 0.1

−1.5

−1

−0.5

0

0.5

1

t

f

(a)

0 0.05 0.1

−1.5

−1

−0.5

0

0.5

1

t

f

(b)

Fig. 3. The trajectories f(t) for the two trajectories of Figure 2. Figure 3(a) refers to
trajectory 1, and Figure 3(b) refers to trajectory 2.

The remainder of this paper is organized as follows. In Section 2 the Opti-
mization of Adaptation Problem is defined, and a method to assess the objective
functions is suggested. In Section 3 an evolutionary algorithm is suggested to
solve the problem. In section 4, an academic example and a real-world appli-
cation for the proposed optimization method are presented. Finally, the paper
ends with a discussion in Section 5.

2 Methodology

2.1 Problem Definition

In order to optimize the adaptation of a system at a time instant tjump, when a
significant change in design is required, the following assumptions are made:

1. The change takes place over a time interval [t0, tf] which is significantly
shorter than the time constant of the DOP. Hence, the function value and
the constraints can be considered as static for the duration of the change:
f(x, tjump) = f(x)
gi(x, tjump) = gi(x)
hj(x, tjump) = hj(x)

2. The state of the design parameters prior to the change is x(t0) = x0.

3. The state of the design parameters at the end of the change is the new op-
timal solution of the DOP: x(tf) = xf , f (xf) = max f (x) (assuming
maximization).

4. The system is at a steady state at the beginning and at the end of the
adaptation.

Considering the above assumptions, the new optimization problem is defined
as follows:

Definition 2. Optimal adaptation problem (OAP):

min
x(t)∈Q

{Error (x(t)) , Cost (x(t))} , t ∈ [t0, tf] (1)

s.t. x(t0) = x0 , x(tf) = xf (2)

dx

dt

∣

∣

∣

∣

t0

=
dx

dt

∣

∣

∣

∣

tf

= 0 (3)

gi (x(t)) ≥ 0 , (i = 1, . . . , I) (4)

hj (x(t)) = 0 , (j = 1, . . . , J) (5)

where x(t) is a trajectory in the design space for the entire time interval,
Error(x(t)) is the difference between the function value at time t and the optimal
function value f(xf): Error(x(t)) = f(xf)− f(x(t)), and Cost(x(t)) represents
the invested resources for changing x from x0 to xf . The constraints of the
original DOP (Eq. (4) and (5)) must be met at all times.

Note that in spite of the fact that the original DOP is a single objective
problem, the new proposed OAP is inherently a MOP. In order to maintain high
function values along the trajectory, one might need to invest more energy to
the adaptation process. For that reason, the two objectives of the OAP may be
conflicting, and the solution of the OAP might be a set of optimal trajectories
known as the Pareto optimal set (POS).

2.2 Assessment of the Objective Functions

Each solution for the proposed problem is a trajectory, and its resulting perfor-
mances in the objective space (Error, Cost), as defined previously, are trajec-
tories as well. Some research exists on the optimization of trajectories (e.g. [6]),
but the common approach is to represent each trajectory by an auxiliary func-
tion (e.g. [7],[8]). In this paper we adopt this approach, and assess the objective
functions by using a common concept from optimal control theory:

– The error function Error (x(t)) is represented by its integral absolute (IAE),
which is a well known measure of optimality in control theory:

IAE =

tf
∫

t0

|f(xf)− f (x(t))| dt

Recalling the trajectories in Figure 3, the IAE of each trajectory is equal to
the area in between the function value and the optimal value marked with
the dashed line. It is clear that the IAE of the trajectory in Figure 3(b) is
smaller than the IAE of the trajectory in Figure 3(a).

– The cost function Cost (x(t)) is represented by the overall cost of the control
forces required to follow the trajectory x(t). It is assumed here that the

design variables are controlled by a vector of control forces u = [u1, . . . , up]
T
,

where each design variable is controlled by one or more control variables.
Every control force has its cost, and the total cost C is calculated as follows:

C =

tf
∫

t0

∣

∣wTu(t)
∣

∣ dt

where w is a cost vector with wi represents the cost of ui. Each control force
variable ui has its related saturation values, which define the domain of the
control forces.

The OAP may now be reformulated by changing the objectives at Eq. 1 in
Definition 2, and by considering the saturation values as additional constraints.
Because the objective functions are evaluated based on utility functions, the
reformulated problem is presented here as:

Definition 3. Utility based Optimal Adaptation Problem (UOAP):

min
x(t)∈Q

{IAE,C} , t ∈ [t0, tf] (6)

s.t. x(t0) = x0 , x(tf) = xf (7)

dx

dt

∣

∣

∣

∣

t0

=
dx

dt

∣

∣

∣

∣

tf

= 0 (8)

umin ≤ u(t) ≤ umax (9)

gi (x(t)) ≥ 0 , (i = 1, . . . , I) (10)

hj (x(t)) = 0 , (j = 1, . . . , J) (11)

where x(t) = f(u(t)).

As is common in control, IAE and C are in conflict with one another. There-
fore, the optimal solution for the UOAP, as is the case with the OAP, is expected
to be a set rather than a single solution. Note that other reformulations for the
OAP are possible.

3 Solving the Problem with an Evolutionary Algorithm

In this section, an evolutionary algorithm (EA) is presented for solving the
UOAP, defined in Definition 3.

3.1 The Genotype

For a better visualisation of the problem, the value of the design variables are
considered here as their positions. The first and second derivatives in time of the
variables are considered as their velocity v(t) and acceleration a(t), respectively.
Although the solution of the UOAP is the trajectory x(t), it is coded by a(t).

The time interval is defined at K time instants- t = [t1, . . . , tk, . . . , tK], where
t1 = t0 and tK = tf . Each solution is defined by a matrix A of size M ×K of
real coded variables. Amk represents the acceleration of the mth design variable
at the kth time sample.

Considering the constraints in Eq. (7) and (8), the speed vm(t) and position
xm(t) can be derived as follows:

vm(t) =

t
∫

t0

am(t) dt (12)

xm(t) = x0m +

t
∫

t0

vm(t) dt (13)

Of course, the integrals are evaluated by a discrete approximation method such
as the trapezoidal rule, for example.

3.2 Constraint Satisfaction: Repair Method

In order to satisfy the constraints regarding tf in Eq. (7) and (8), two modifica-
tions of the acceleration trajectory are made. The first results in an intermediate
acceleration trajectory a(t)∗∗ which satisfies Eq. (8), and the second results in
the repaired acceleration trajectory a(t) which satisfies Eq. (7) as well.

Let a pre-repair acceleration trajectory be a∗(t). It is clear from Eq. (12)
that in order to force the final speed vm(tf) = 0, the mean acceleration has
to be zero. This can be realized by subtracting from a∗(t) its mean value ā∗.
The resulting intermediate acceleration trajectory is a∗∗(t) = a∗(t) − ā∗. The

intermediate velocity trajectory v∗∗(t), using Eq. (12), satisfies the constraint of
Eq. (8). Then the intermediate final position of the trajectory x∗∗(tf) according
to Eq. (13) is:

x∗∗(tf) = x0 +

tf
∫

t0

v∗∗(t) dt

At the second stage, in order to satisfy Eq. (7), a∗∗(t) is scaled by a scaling
vector l:

l = [l1, . . . , lm, . . . , lM]T , lm =
xfm − x0m

x∗∗
m (tf)− x0m

The repaired final acceleration variable that satisfies both constraints is
a(t) = a∗∗(t) · l.

Although the suggested gene manipulation may result in violation of the
constraint in Eq. (9), it speeds up the evolutionary process since it eliminates
the two equality constraints in Eq. (7) and (8).

3.3 The Evolutionary Algorithm

All of the problems of Section 4 are solved using NSGA-II with constraint domi-
nation [9]. The genetic operators used are the simulated binary crossover (SBX)
operator and polynomial mutation [10], with distribution indexes of ηc = 15 and
ηm = 20 respectively. A cross-over probability of pc = 1 and a mutation proba-
bility of pm = 1/MK are used. The stopping criterion is a maximal number of
generations. A schema of the EA is presented in Algorithm 1.

Algorithm 1 The evolutionary algorithm for solving the UOAP

1: R∗

1 ← generate a random set of solutions of size 2N
2: R1 ← modify R∗

1 according to the procedure in Section 3.2
3: g ← 1
4: while g ≤ number of generations do
5: evaluate Rg

6: Pg+1 ← select N solutions from Rg

7: Q∗

g+1 ← evolve from Pg+1 (cross-over and mutation)
8: Qg+1 ← modify Q∗

g+1 according to the procedure in Section 3.2
9: Rg+1 ← Pg+1 ∪Qg+1

10: g ← g + 1
11: end while

4 Test Cases

4.1 Academic Example

Consider the following unconstrained DOP:

max
x

f (x, t) =
sin (x1 + x2 + t/20)

x2
2 + 1

−
cos

(

x1 − x2 + (t/10000)2 + 4
)

x2
2 + 1

+
x1

2

80

xi ∈ [−2π, 2π] , i = {1, 2} .

When t = 98, the optimum ”jumps” from x = x0 = [3.24,−0.16]T to x = xf =
[−3.24,−0.12]T . The contour of the function at t = 98, and the old and new
optima were previously depicted in Figure 2. The UOAP for the adaptation in
that time instant is solved by the EA described in Algorithm 1. The adaptation’s
time interval is set to 0.1, and it is defined for K = 30 time instants. The
population consists of 250 members, and it is evolved over 300 generations.

For this example, the design variables are considered as simple mechani-
cal components that react to the control force according to Newton’s 2nd law:
um(t) = imam(t), where im is a constant number representing the inertia of the
mth design variable. Here i1 = 20 and i2 = 10.

The set of non-dominated solutions in the final population is shown in Fig-
ure 4. In Figure 4(a), the trajectories of all the non-dominated solutions are
illustrated with gray lines. Three different trajectories from this set are marked
with diamonds, triangles and circles. The trajectory marked with diamonds does
not require investment of much control force, since it is aimed at the new op-
timum with minimal changes possible. As a result, its cost is the lowest from
all solutions. Since it runs through a region with very low function values, its
ISE is very high. The trajectory marked with circles passes along the highest
function values on the way to the new optimum. As a result, it has a low ISE
value. In order to pass through these local optima, a significant force is required
to be applied. Therefore, this solution has a high C value. The trajectory marked
with diamonds is a compromise between the two objectives. Its path is shorter
than the one of the circles, but it passes through only one local optimum. These
insights can be depicted from the Pareto front shown in Figure 4(b). All of
the non-dominated solutions are marked with gray dots, and the above three
solutions are marked with black markers.

The control forces, positions and function values over time of these three
solutions are shown in Figure 5. As mentioned in Section 2.2, the area under the
control force function indicates the cost of the adaptation, and the area between
the function value in time and the optimal function value indicates the ISE.
The trade-off between optimality over time and the cost of the adaptation can
be seen here. A larger area of the control force is associated with a smaller area
of the error, and vice versa.

In order to evaluate the consistency of the algorithm in finding similar ap-
proximated sets, the UOAP was simulated for 100 times using the above genetic

settings. For three of the 100 simulations the algorithm failed to find the tra-
jectories with the lowest ISE values, such as the triangle associated solution in
Figure 4. The lowest ISE value in these cases was 0.04.

x
1

x
2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6 f
x

0
x

f

(a)

0.04 0.06 0.08 0.1

3

3.5

4

4.5

5

5.5

6

ISE

C

(b)

Fig. 4. The final approximated set of the UOAP. Three different trajectories are marked
in Figure 4(a), and their associated objective values are marked in Figure 4(b).

4.2 Real World Example

To demonstrate the scope of the proposed optimization approach, the following
engineering problem is introduced. A planar robot with three rotating links of
equal lengths has to carry a load of mass M over a specific route. The angles
of the joints are controlled by the user with servo motors that are free to rotate
at any angle. The mass of each motor is m. The robot and related parameters
are depicted in Figure 6. The desired location of the load, i.e., the end of the
robot’s third link, is progressing very slowly. Since it has three degrees of freedom,
the robot can keep the load at the desired location with an infinite number of
configurations. The optimization goal is to follow the path while minimizing the
robot’s dimensions, i.e., keeping it as folded into itself as possible. This dynamic
optimization problem can be formulated as follows:

min
θ(t)∈R3

φ (θ(t)) (14)

s.t. re = P(t) (15)

where φ is the stretch of the robot: φ = d1 + d2 + d3, θ = [θ1, θ2, θ3]
T
, re is the

location of the manipulator’s end, and P(t) is the desired location of the load
at time t. The constraint in Eq. (15) has to be satisfied at all times, other than
short periods when the robot has to change a configuration for the reason below.

At some time instants there is a single optimal configuration, while at others,
the minimal value of φ can be achieved by two different configurations. Figure 7

0 0.05 0.1

−1

0

1

t

f

0 0.05 0.1

−2

0

2

t

x
1

0 0.05 0.1
−5

0

5

t

u
1

0 0.05 0.1

−4

−2

0

2

t

x
2

0 0.05 0.1

−4

−2

0

2

4

t

u
2

(a) First solution – a high error and low cost.

0 0.05 0.1

−1

0

1

t

f

0 0.05 0.1

−2

0

2

t

x
1

0 0.05 0.1
−5

0

5

t

u
1

0 0.05 0.1

−4

−2

0

2

t

x
2

0 0.05 0.1

−4

−2

0

2

4

t

u
2

(b) Second solution – a low error and high cost.

0 0.05 0.1

−1

0

1

t

f

0 0.05 0.1

−2

0

2

t

x
1

0 0.05 0.1
−5

0

5

t

u
1

0 0.05 0.1

−4

−2

0

2

t

x
2

0 0.05 0.1

−4

−2

0

2

4

t

u
2

(c) Third solution – a compromise between error and cost.

Fig. 5. The control forces, positions and function values over time for the solutions
highlighted in Figure 4.

Fig. 6. The robotic manipulator and related parameters.

depicts the solution of the above DOP. The required path of the load P(t)
is marked with arrows, and the optimal configuration is shown for five time in-
stants. When the robot’s end is located far from the base, such as in Figures 7(a)
and 7(b), the configuration with minimal dimensions has a ”Z” shape. When it is
closer to the base, such as in Figures 7(c) and 7(d), the optimal configuration has
an ”N” shape. For the example given, when t = 1000s the robot has to change
its configuration from ”Z” to ”N”. The duration of the change is 4 seconds. The
question of how to perform that change is considered as the following utility
optimal adaptation problem. The UOAP follows the main optimization goal, i.e.
minimizing the dimensions of the robot, and it also seeks to minimize the power
applied to the motors:

min
θ(t)∈R3

{E,C} , t ∈ [t0, tf]

s.t. θ(t0) = θ0 , θ(tf) = θf

dθ

dt

∣

∣

∣

∣

t0

=
dθ

dt

∣

∣

∣

∣

tf

= 0

− τ sat ≤ τ (t) ≤ τ sat

where τ (t) = [τ1(t), τ2(t), τ3(t)]
T is a vector with the required torques in the

joints to follow the trajectory θ(t), τ sat are the saturation values of the motors,
E is the integral of φ(t), and C is the total applied torque over time:

E =

tf
∫

t0

φ(t) dt , C =

tf
∫

t0

(

∑3
i=1 |τi(t)|

)

dt.

θ0 and θf are the configurations at Figure 7(b) and 7(c), respectively. u(t) is
calculated by the iterative Newton-Euler dynamic formulation (for more infor-
mation, see [11]).

−1 −0.5 0 0.5

−1

−0.5

0

0.5

t=0s

(a)
−1 −0.5 0 0.5

−1

−0.5

0

0.5

t=960s

(b)
−1 −0.5 0 0.5

−1

−0.5

0

0.5

t=1000s

(c)
−1 −0.5 0 0.5

−1

−0.5

0

0.5

t=3560s

(d)
−1 −0.5 0 0.5

−1

−0.5

0

0.5

t=7560s

(e)

Fig. 7. The configurations with minimal dimensions for five positions of the load. The
manipulator’s base is marked with a square, and the load is marked with a triangle. The
initial configuration of the OAP is the one at Figure 7(b), and the the final configuration
is the one at Figure 7(c).

The solutions of the above UOAP are the trajectories of the links and the
torques applied by the motors. A controller can be synthesized to follow these

trajectories. Note that the above UOAP is different from the common approach
arising from using optimal control theory for designing optimal controllers. A
controller designed according to optimal control theory considers the final state
θf as an optimization goal, and tries to minimize the control force and the error
from θf . In contrast, here, the optimization goal is the original goal of the DOP,
i.e., minimizing the dimensions of the robot.

3 3.05 3.1 3.15

60

65

70

75

80

85

90

95

Total Extent [m*s]

T
ot

al
 T

or
qu

e
[N

*m
*s

]

Fig. 8. The approximated set of Pareto optimal solutions for the UOAP, found by the
EA.

The UOAP was solved by the EA described in Algorithm 1, using the same
configuration parameters as in the academic example from the previous section.
The final approximated set is depicted in Figure 8. The two extreme solutions,
marked with a larger circle and diamond, are shown in Figures 9 and 10. The
trajectories of the torques, the joint angles and the extent are shown in Figure 9,
and the dynamic behavior of the robot is shown in Figure 10. Note that in
order to fold more quickly, under the limits of the saturation torque values,
the solution marked with a circle rotates around its base. The solution marked
with a diamond balances vertically until it needs to stretch again in the other
configuration.

5 Conclusions and Future Work

In this paper, a new optimization problem was introduced:Optimization of Adap-
tation Problem. The problem deals with situations when a change in design is
required in order to remain optimal in a changing environment. The required
change is found by solving a DOP prior to the formulation of the OAP. The is-
sues of optimality during the adaptation process and the cost of the adaptation
were discussed, and the OAP was defined as a MOP for minimizing the cost and
maximizing the function value during the adaptation. A relaxed version of the
OAP was defined as a Utility based Optimization of Adaptation Problem, and an

0 2 4

0.5

1

1.5

t

Φ

0 2 4

2

4

6

8

t

θ
1

0 2 4
−40

−20

0

20

t

M
1

0 2 4

2.5

3

3.5

4

t

θ
2

0 2 4
−15

−10

−5

0

5

t

M
2

0 2 4

2.5

3

3.5

4

t

θ
3

0 2 4

−20

−10

0

10

t

M
3

(a) One alternative – small dimensions and high cost. Note that the final θ1 is 2π larger
than the desired final value. That means the manipulator performs a full turn around
its base.

0 2 4

0.5

1

1.5

t

Φ

0 2 4

2

4

6

8

t

θ
1

0 2 4
−40

−20

0

20

t

M
1

0 2 4

2.5

3

3.5

4

t

θ
2

0 2 4
−15

−10

−5

0

5

t

M
2

0 2 4

2.5

3

3.5

4

t

θ
3

0 2 4

−20

−10

0

10

t

M
3

(b) Second alternative – larger dimensions and smaller cost.

Fig. 9. Trajectories of the joint torques and angles and the extent of the robot in time.

−1 0 1
−1

0

1
t=0.4s

−1 0 1
−1

0

1
t=1s

−1 0 1
−1

0

1
t=2s

−1 0 1
−1

0

1
t=3s

−1 0 1
−1

0

1
t=4s

(a) One alternative – small dimensions and high cost.

−1 0 1
−1

0

1
t=0.4s

−1 0 1
−1

0

1
t=1s

−1 0 1
−1

0

1
t=2s

−1 0 1
−1

0

1
t=3s

−1 0 1
−1

0

1
t=4s

(b) Second alternative – larger dimensions and smaller cost.

Fig. 10. Positions of two Pareto optimal solutions at different time samples. The lighter
configuration is 0.4s prior to the black one.

EA was proposed in order to solve it. The EA was tested on two examples: a
theoretic mathematical function and a problem of robotic arm control. For both
examples, the EA was able to find a set of trade off solutions that enable the de-
cision maker to choose whether to adapt in a minimum cost manner or to invest
more resources in order to maintain high function values along the adaptation.

As future work, the new approach should be integrated and tested on more
real life applications. This paper dealt with a single objective DOPs. The issue
of optimal adaptation for multiobjective DOPs should be studied as well. The
method should be also extended to deal with cases where the future function
values and costs are subject to uncertainties.

Acknowledgements This research was supported by a Marie Curie Interna-
tional Research Staff Exchange Scheme Fellowship within the 7th European Com-
munity Framework Programme.

References

1. Rose, M., Lauder, G.: Adaptation. Academic Press, San Diego, CA (1996)
2. Ferguson, G., Murphy, J., Ramanamanjato, J., Raselimanana, A., et al.: The pan-

ther chameleon: color variation, natural history, conservation, and captive man-
agement. Krieger Publishing Company (2004)

3. Ruseckaite, R., Lamb, T., Pianta, M., Cameron, A.: Human scotopic dark adap-
tation: Comparison of recoveries of psychophysical threshold and erg b-wave sen-
sitivity. Journal of Vision 11(8) (2011)

4. Jacobs, R., Lundby, C., Robach, P., Gassmann, M.: Red blood cell volume and the
capacity for exercise at moderate to high altitude. Sports Medicine 42(8) (2012)
643–663

5. Branke, J.: Evolutionary approaches to dynamic optimization problems-updated
survey. In: GECCO Workshop on evolutionary algorithms for dynamic optimiza-
tion problems. (2001) 27–30

6. Avigad, G., Eisenstadt, E., Goldvard, A., Salomon, S.: Transient responses opti-
mization by means of set-based multi-objective evolution. Engineering Optimiza-
tion 44(4) (2011) 407–426

7. Réne, M., J.J.S., Ole, S.: Topology optimization for transient response of photonic
crystal structures. Optical Society of America. Journal B: Optical Physics 27(10)
(2010) 2040–2050

8. Toscano, R.: A simple robust pi/pid controller design via numerical optimization
approach. Journal of Process Control 15(1) (2005) 81 – 88

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2)
(2002) 182–197

10. Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space.
Complex systems 9(2) (1995) 115–148

11. Craig, J.: Introduction to Robotics. Pearson Education, Inc. (2005)

