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PSA based Multi Objective
Evolutionary Algorithms

Shaul Salomon1, Christian Domı́nguez-Medina2, Gideon Avigad3, Alan
Freitas4, Alex Goldvard3, Günter Rudolph5, Oliver Schütze6, and Heike
Trautmann7

Abstract It has generally been acknowledged that both proximity to the
Pareto front and a certain diversity along the front, should be targeted when
using evolutionary multiobjective optimization. Recently, a new partitioning
mechanism, the Part and Select Algorithm (PSA), has been introduced. It
was shown that this partitioning allows for the selection of a well-diversified
set out of an arbitrary given set, while maintaining low computational cost.
When embedded into an evolutionary search (NSGA-II), the PSA has sig-
nificantly enhanced the exploitation of diversity. In this paper, the ability
of the PSA to enhance evolutionary multiobjective algorithms (EMOAs) is
further investigated. Two research directions are explored here. The first one
deals with the integration of the PSA within an EMOA with a novel strategy.
Contrary to most EMOAs, that give a higher priority to proximity over diver-
sity, this new strategy promotes the balance between the two. The suggested
algorithm allows some dominated solutions to survive, if they contribute to
diversity. It is shown that such an approach substantially reduces the risk
of the algorithm to fail in finding the Pareto front. The second research di-
rection explores the use of the PSA as an archiving selection mechanism, to
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improve the averaged Hausdorff distance obtained by existing EMOAs. It is
shown that the integration of the PSA into NSGA-II-I and ∆p-EMOA as an
archiving mechanism leads to algorithms that are superior to base EMOAS
on problems with disconnected Pareto fronts.

1 Introduction

In many real-world applications, several objectives must be optimized at the
same time, leading to a multi-objective optimization problem (MOP). Math-
ematically, a MOP can be stated as follows:

min
x∈Q

F(x) (1)

where Q ⊂ R
d is a domain in d-dimensional real space, F(x) is defined as the

vector of the k objective functions:

F(x) = [f1(x), . . . , fk(x)]
T

where each objective function fi(x), i = 1, . . . k, maps the vector x ∈ R
d to R.

The set of optimal solutions of the problem (1) is usually called the Pareto set
P . The task of many set-oriented search procedures is to find a suitable finite
sized approximation of the Pareto front F(P) (i.e., the image of the Pareto
set), since this front represents the set of optimal compromises measured in
objective space, which usually is of primary interest. Out of the set-oriented
search procedures for the numerical treatment of MOPs, EMOAs are widely
used due to their global and universal approach and their high robustness
[1, 2]. Most EMOAs simultaneously attempt to account for both proximity
of the approximation set to the Pareto front and its diversity [3]. It has been
indicated in [3] that both proximity and diversity should be explored and
exploited during the evolutionary search. Exploration of diversity and prox-
imity may be related to the selection of the next generation’s parents and/or
the control of crossover/mutation rates [4], [5], [6]. For example, in [4] the
authors suggested an adaptive variation operator that exploits the chromoso-
mal structure (binary representation) and controls crossover/mutation rates
during the evolution in order maximize the information gain and to prevent
information flow disruption between the different chromosomal structures.
Within the exploration phase, the authors in [7] suggested to iteratively ex-
plore for good children through iterative density estimation of different op-
tional children combinations. In that work good candidate parents have been
searched for through clustering of their related performances in the objective
space. It should be noted that this procedure is applied only to non-dominated
candidate solutions.
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On the other hand, exploitation of proximity and diversity is related to the
selection of the solutions that will be saved for the next generation (through
elitism or archiving) and will take place in reproduction. Domination is the
predominant approach used to exploit proximity to the true Pareto front.
Diversity is exploited by different approaches that can be classified into three
main categories. The first treats diversity as a property of a set and evolves
sets with a good diversity. The diversity can be measured according to the
accumulated distances between the members of the set [8], [9], or indirectly
by the hypervolume measure [10] or the averaged Hausdorff distance ∆p [11].
Algorithms in the second category treat diversity as a property of each indi-
vidual according to the density of solutions surrounding it. Fitness sharing
of NPGA [12], crowding distance of NSGA-II [13], the diversity metric based
on entropy [14] and the density estimation technique used in SPEA2 [15] are
examples of this category. Algorithms of the third category decompose the
multi-objective problem into a number of single objective problems (scalar-
ization). Each of these problems ideally aims for a different zone on the Pareto
front such that the set of solutions to the auxiliary problems form a diverse
set of optimal solutions. MOEA/D [16] is probably the most famous method
within this category. A recent method from this category [17] combines Pareto
dominance with Chebyshev decomposition for the selection process.

When selection takes place for the sake of exploiting proximity and di-
versity, proper selection criteria must be formulated, in order to achieve a
balance among these two inspirations. Such a balance is not easy to achieve
because it has been shown that these motivations are contradicting [18]. An
improvement in one usually involves regression in the other. A balance be-
tween proximity and diversity within the exploitation phase has been targeted
in various ways. One way is to select the elite population by pure truncation
selection. In truncation selection, the algorithm sorts all individuals based on
their domination level and includes the first individuals as the elite popula-
tion. Truncation selection is exploited in many EMOAs, such as NSGA-II [13]
and SPEA2 [15]. In those algorithms the exploitation of proximity takes over
that of diversity as the solutions are primarily chosen based on domination
relations. Some efforts to overcome this drawback have been made e.g., using
the Balanced Truncation Selection (BTS) [7] within MIDEA (Multi-objective
Mixture based Iterated Density Estimation Evolutionary Algorithm). In that
algorithm, the exploitation of diversity can be improved by a tuned trunca-
tion threshold. The idea is to include in the elite population more diverse
solutions by allowing higher truncation threshold values at the beginning of
the search. It is noted that also in this algorithm, the non-dominated solu-
tions will be preferred over dominated solutions. In other words, a solution
dominated by most of the population will not be selected even though it is
most isolated.

Another way to allow for a better balance between proximity and diversity
is to change the dominance relation among the solutions by changing the
area considered as dominated by a solution. Laumanns and Ocenasek [19]
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proposed to use the concept of ε-dominance [20] which is a modification of
the original Pareto dominance. The underlying principle of ε-dominance is
that two solutions are not allowed to be non-dominated to each other, if
the difference between them is less than a properly chosen value. Extensions
based on this idea are the CDAS [21], where the user can control the size of
a solution’s dominated area and the cone ε-dominance [18], where the shape
of the dominated area is a cone.

Recently, the Part and Select Algorithm (PSA) was introduced to select
a diverse subset from a given set of points [22]. This mechanism has a low
computational complexity, and it is capable to select a diverse subset, of any
size, even if the original set is poorly distributed. These properties make PSA
suitable as a selection mechanism within EMOAs. It has been shown in [22]
that the integration of the PSA into NSGA-II improves its ability to find
a diverse approximated set. In [23] a niching mechanism based on the PSA
was used to find a set of different cross sections for a topology optimization
problem.

In this paper, the ability of the PSA to improve EMOAs is further inves-
tigated. Two research directions are explored here. The first one deals with
embedding the PSA within a novel genetic algorithm. The algorithm adjusts
the balance between proximity and diversity by allowing some dominated so-
lutions to survive if they improve the diversity. The second one explores the
use of the PSA as an archiving selection mechanism, to improve the averaged
Hausdorff distance ∆p obtained by existing EMOAs.

The remainder of this paper is organized as follows. The PSA is described
in Section 2, and its previous utilization within an EA is briefly surveyed. In
Section 3 a novel PSA based EMOA with an adjustable parameter to control
the trade-off between proximity and diversity is introduced. The effect of
this parameter is studied, and a comparison with NSGA-II-PSA is conducted
in Section 4 to highlight the algorithm’s advantage in dealing with a poor
initial population. The implementation of PSA as an archiving mechanism
integrated into NSGA-II-I and ∆p-EMOA is presented in Section 5. The
performance of these PSA based algorithms is compared with the original
EMOAs. Finally, conclusions are drawn in Section 6.

2 PSA – Part and Select Algorithm

The Part and Select Algorithm (PSA) has been recently introduced in [22]
as an algorithm for selecting m well-spread points from a set of n points. It
has a low computational complexity (O(nmk), where k is the dimensionality
of the points), and can be used for many applications. The procedure has
two steps: First, the set is partitioned into subsets so that similar members
are grouped in the same subset. Next, a diverse subset is formed by selecting
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one member from each generated subset. The following description of the
algorithm is borrowed from [22].

2.1 Partitioning a Set

The core of the PSA is the algorithm of partitioning a given set of points
in the objective space into smaller subsets. In order to partition a set into
m subsets, PSA performs m− 1 divisions of one single set into two subsets.
At each step, the set with the greatest dissimilarity among its members is
divided. This is repeated until the desired stopping criterion is met. The cri-
terion can be either a predefined number of subsets (i.e., the value of m) or
a maximal dissimilarity among each of the subsets. The dissimilarity of a set
A is defined by the measure �A as follows:
Let A := {f1 = [f11, . . . , f1k]

T
, . . . , fn = [fn1, . . . , fnk]

T } ⊂ R
k (i.e., n objec-

tive vectors fi = F(xi) for vectors xi ∈ Q), and denote

aj := min
i=1,...n

fij , bj := max
i=1,...n

fij , ∆j := bj − aj , j = 1, . . . , k (2)

�A := max
j=1,...k

∆j (3)

In fact, �A is the diameter of the set A in the Chebyshev metric. The size of
�A is a measure of the dissimilarity among the members of A, with a large
�A indicating a large dissimilarity among the members of A.
The pseudocode of PSA for a fixed value of m is shown in Algorithm 1. At
every iteration the algorithm finds the subset with the largest diameter, and
parts it into two subsets.

Algorithm 1 Partitioning a set A into m subsets
A1 ← A
Evaluate �A1 according to Eq. (3) and store �A1 in an archive.
i← 2
while i < m do

Find Aj and coordinate pj such that �Aj = ∆pj = max
l=1,...i−1

�Al

Part Aj to subsets Aj1 , Aj2 :

Aj1 ←
{

f =
[

f1, . . . , fpj , . . . , fk
]T
∈ Aj , fpj ≤ apj + �Aj/2

}

Aj2 ←
{

f =
[

f1, . . . , fpj , . . . , fk
]T
∈ Aj , fpj > apj + �Aj/2

}

Evaluate �Aj1 and �Aj2 according to Eq. (3), and replace in the archive �Aj and
pj with the pairs �Aj1,�Aj2 and pj1,pj2 accordingly.
S ← {A1, . . . , Aj1 , Aj2 , . . . , Ai}
i← i+ 1
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Figure 1 demonstrates the steps of the algorithm and highlights the results
obtained by its use. Consider the set of 24 points in the bi-objective space
depicted in the top left panel of Figure 1. Suppose that the purpose is to
partition this set into m = 5 subsets. The gray rectangle represents the
region in the objective space that contains the solutions of the set. According
to Eq. (3), the diameter of the given set is the length of the horizontal side
of the rectangle. Therefore, the first partition is made by vertical incision
(indicated by the vertical line in the middle of the rectangle). The results of
this partition are depicted in the top right panel of Figure 1. The left subset
in this panel has the greatest diameter (in horizontal direction). Therefore,
the next partition is made on this subset by vertical incision. The results of
this partition are depicted in the middle left panel of Figure 1. The other two
panels of Figure 1 depict the results of the next two iterations of Algorithm 1.

Note that the results of the partitioning are different than the results of
using a common grid in the original space. With a common grid, an initial
interval in every dimension is divided into equal sections, resulting in the
division of the hyperbox into smaller hypberboxes of equal space. Since the
original set A does not necessarily ‘cover’ the entire space, each hyperbox
in the grid might or might not contain a member of A. Hence, there is no
way to predict which resulting grid will have the desired number of occupied
boxes. In addition, there are certain limitations on the number of hyperboxes
in the grid. For example, in a two-dimensional grid it is possible to create
m = {1, 2, 4, 6, 9, 12, . . .} boxes, while only a number of m = n2, when n is
a positive integer, will produce an even grid. With PSA, only the occupied
space (marked as the gray rectangles in Figure 1) is considered. When a set
Ai is partitioned into two subsets Ai1 and Ai2 , the space considered from
now on is given only by the two hyperboxes circumscribing Ai1 and Ai2 . The
rest of the space in Ai is discarded. Every partition increases the number of
subsets by one, and therefore any desired number of subsets can be created.

2.2 Selection of a Representative Subset

Once the set A has been partitioned into the m subsets A1, . . . , Am, the
‘most suitable’ element from each subset must then be chosen in order to
obtain a subset A(r) of A that contains m elements. This is of course problem
dependent. Since this study aims for high diversity of the chosen elements,
the following heuristic is suggested (denoted as center point selection): From
each set Ai choose the member which is closest (in Euclidean metric) to the
center of the hyperrectangle circumscribing Ai. If there exist more than one
member closest to the center, one of them is chosen randomly.
Figure 2 illustrates this rule. The original set of 24 elements (compare to
Figure 1) was partitioned by Algorithm 1 into five subsets. The centres of
the grey rectangles are marked with a cross. In each subset the member closest
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Fig. 1 Partitioning of 24 elements in bi-objective space into m = 5 subsets (indicated by
the gray boxes). (borrowed from [22])

to the center is circled (a random member is circled in the subset with only
two members). The representative set A(r) = {a1, a2, a3, a4, a5} is the set of
all circled points.

Figure 3 illustrates the performance of PSA in selecting a subset from
a randomly chosen (non-dominated) population in a three-objective space.
A set of 500 randomly distributed points is depicted in Figure 3(a). The
set is partitioned into 40 subsets, and the central member of each subset is
selected as a representative point to form the representative subset depicted in
Figure 3(f). According to Eq. (3), the diameter of the given set is the distance
over f2. Therefore, the first partition is made over f2. At the second partition,
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Fig. 2 Selection of a representative subset A(r) out of A using center point selection
(borrowed from [22])

the subset of the circles from Figure 3(b) has the largest dissimilarity and
therefore is partitioned (over f1). At the next partition the subset of gray
stars is partitioned over f1 to form the four subsets shown in Figure 3(d).
The final stage of Algorithm 1 is shown in Figure 3(e). The subset shown in
Figure 3(f) is obtained by selecting the point closest to the center of each of
the 40 subsets. Figure 3(a) clearly shows that the distribution of the points in
the original set is not uniform. Nevertheless, PSA managed to select a subset
of fairly evenly distributed points from it.

2.3 NSGA-II-PSA

NSGA-II-PSA was introduced in [22] as an improvement of the well-known
NSGA-II [13] by a straightforward integration of the PSA into it. The algo-
rithm differs from its base EMOA in the selection of the elite population, and
in the crowding measure assignment; both of which are conducted by using
the PSA. The approximated sets obtained by NSGA-II-PSA were better then
those obtained by NSGA-II in terms of both spread and convergence. Figure 4
depicts some of the comparative results between NSGA-II and NSGA-II-PSA,
conducted in [22].

3 A New EMOA with PSA as a Diversity Preservation

Operator

In this section, a new EMOA is suggested - Diversity Preservation Genetic
Algorithm (DPGA) - that aims simultaneously for proximity and diversity.
It is designed for MOPs that pose a special challenge to spread the candi-
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Fig. 3 Demonstration of PSA in a three-dimensional space: Selection of a representative
subset of 40 points from a randomly distributed set of 500 points. (borrowed from [22])
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Fig. 4 The final approximated set obtained by NSGA-II-PSA and NSGA-II after 25,000
function evaluations for two objectives and 75,000 for three objectives. (borrowed from [22])

date solutions along the Pareto front. The basic structure of DPGA is similar
to the structure of NSGA-II-PSA [22]. NSGA-II-PSA, as most EMOAs, in-
herently favors proximity over diversity. The reason for that is the selection
mechanism, that selects according to non-dominance, and diversity is related
as a second goal. In order to overcome this property, the selection in DPGA
is conducted with two parallel goals; some solutions are selected according
to their rank of non-dominance, while some solutions are selected by their
remoteness from other solutions in the objective space.
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In DPGA, two parent populations PP
t+1 and PD

t+1 are selected from the
current population Rt. P

P
t+1 is selected according to proximity, while PD

t+1 is
selected according to diversity. These two populations form the new parent
population: Pt+1 = PP

t+1 ∪PD
t+1. The proportion between the sizes of the two

sets is controlled by the proximity factor α in the following manner: |PP
t+1| =

αN , |PD
t+1| = (1 − α)N , where N = |Pt+1|. The tournament selection for

each population is also conducted according to its aim: Members from PP
t+1

are compared, as in NSGA-II-PSA, according to proximity and secondly,
as a tiebreaker, according to diversity. Members from PD

t+1 are compared
according to diversity, and secondly according to proximity. After selection,
the members of both sets are combined, and crossover and mutation are
applied to form the next offspring population Qt+1. This procedure might
produce offspring that are better both in proximity and in diversity.

By selecting according to remoteness, a highly dominated solution can
be graded with a high fitness. This approach is not intuitive, and indeed,
there are no methods known to the authors that give high priority to domi-
nated solutions. Therefore, a justification of that novel approach is given here
through an example. Consider the following MOP, which is a slight variation1

of DTLZ4 for two objectives [24]:

Minimize f1(x) = r(x) cos (θ(x))

Minimize f2(x) = r(x) sin (θ(x))

where x = [x1, . . . , x7]
T , 0 ≤ xi ≤ 1

θ(x) =
π

2
(1− 2|x1 − 0.5|)100

r(x) = 1 +

7
∑

i=2

(xi − 0.5)
2

(4)

Proximity to the true Pareto front is defined by the value of r(x), and the
location along the Pareto front is defined by the value of θ(x). The Pareto
optimal set corresponds to r = 1, i.e., xi = 0.5 for all i = 2, . . . , 7, and to all
the values of θ between 0 and π/2. The mapping from x1 to θ, as depicted
in Figure 5(b), results in θ values close to zero for 98% of the x1 values. All
other values of θ correspond to 0.49 < x1 < 0.51. Figure 5 depicts a random
population of 500 solutions. Only two solutions of this population have θ
value greater than 0.1 radian. Both of them are dominated by most of the
other solutions. An algorithm that favours non-dominated solutions will skip
these two solutions, and their genetic information (i.e., x1 close to 0.5), which
is important to spread the approximated set along the Pareto front, will be
lost.

1 The difference of the problem in Eq. (4) from DTLZ4 is that the peak of θ(x1) is at
x1 = 0.5 rather than at x1 = 1. It moves the area of interest away from the limits of the
design space, which is more likely to be sampled by many EAs, including NSGA-II-PSA
and DPGA.
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Fig. 5 A random initial population of 500 solutions for the MOP of Eq. 4.

The algorithm of DPGA is presented in Algorithm 2. A discussion about
the setting of α (Step 4) appears in Section 3.3. Steps 5–7 are explained in
Section 3.1. Steps 8–9 are explained in Section 3.2.

Algorithm 2 DPGA - Diversity Preservation Genetic Algorithm
1: R1 ← Generate a random set of solutions of size 2N
2: t← 1
3: while Stopping criteria not met do

4: Set α
5: PP

t+1 ← Preserve αN solutions from Rt based on non-dominance

6: R∗

t ← Rt\PP
t+1

7: PD
t+1 ← Preserve (1 − α)N solutions from R∗

t based on diversity.

8: QP
t+1 ← SP (PP

t+1)

9: QD
t+1 ← SD(PD

t+1)

10: Q∗

t+1 ← QP
t+1 ∪QD

t+1
11: Q∗∗

t+1 ← CrossOver(Q∗

t+1)
12: Qt+1 ←Mutation(Q∗∗

t+1)

13: Rt+1 ← PP
t+1 ∪ PD

t+1 ∪Qt+1

14: t← t+ 1

3.1 Elite Preservation in DPGA

At each generation DPGA preserves N members in the elite (parent) popu-
lation Pt+1, from the current population Rt of size 2N . This is done in two
stages: First, αN members are selected from Rt to form PP

t+1 according to the
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elite preservation procedure of NSGA-II-PSA [22]. Next, (1− α)N members
are selected from the remaining members in Rt to form PD

t+1. This second
selection is done by partitioning the remaining members of Rt to 1−α subsets
using the PSA, and including one member of each subset in PD

t+1. During the
elite preservation stage every member i in Pt+1 is given a proximity mea-
sure irank and a diversity measure idiversity . The criteria for these measures
are different for the members of PP

t+1 and PD
t+1. The exact procedure of the

elite preservation and the fitness assignment is described in Algorithm 3. The
procedure is illustrated in Figure 6.

Algorithm 3 Elite Preservation in DPGA

PP
t+1 ← Preserve αN solutions from Rt according to NSGA-II-PSA

assign proximity and diversity measures to the solutions in PP
t+1 according to

NSGA-II-PSA.
R∗

t ← Rt\PP
t+1

Partition R∗

t with PSA to (1− α)N subsets D =
{

D1, . . . , D(1−α)N

}

PD
t+1 ← ∅

for each Di ∈ D do

Di,nd = nondominated solutions of Di

di ← center point selection from Di,nd

Assign a diversity measure to di equal to |Di,nd|
PD
t+1 ←

{

PD
t+1,di

}

Sort PD
t+1 to ranks of non-dominance, and assign a proximity measure to each member

according to its rank
Pt+1 ← PP

t+1 ∪ PD
t+1

3.2 Selection in DPGA

As NSGA-II, DPGA also uses a binary tournament selection from Pt+1 to
form the children population Qt+1. The comparison between two candidate
parents is done according to the proximity and diversity measures assigned to
each member in Pt+1. The difference from NSGA-II is that two tournaments
are done in parallel; one for the population of PP

t+1, and another for PD
t+1.

The diversity oriented selection operator SD, applied on PD
t+1, is described

in Algorithm 4. The proximity oriented selection operator SP , which is in
fact the crowded comparison operator ≺n of NSGA-II, is the same as SD,
except for Condition 4, that in the case of SP gives the first priority to the
rank of non-dominance and the second to diversity.
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Fig. 6 Elite selection in DPGA. The 12 members preserved for proximity from the 30
members of the previous generation’s population are marked with squares in (a). Preserva-
tion of 3 additional members for diversity is demonstarted in (b). The remaining members
are divided into 3 sets D1, D2 and D3. The non dominated members of each set Di,nd

are marked with small diamonds. The central members of each Di,nd, marked with large
diamonds, are preserved in PD

t+1

Algorithm 4 SD - Diversity Oriented Selection Operator

1: QD
t+1 ← ∅

2: for k = 1 to (1 − α)N do

3: Randomly select members i and j from PD
t+1

4: if (idiversity < jdiversity) or ((idiversity = jdiversity) and (irank < jrank)) then

5: QD
t+1 ← QD

t+1 ∪ {i}
6: else

7: QD
t+1 ← QD

t+1 ∪ {j}

3.3 Sensitivity to Parameters

The performance of DPGA is highly affected by the proximity factor α. Set-
ting α too low will hold back the algorithm from converging towards the
Pareto front, since the computational power is wasted on too many domi-
nated solutions. On the other hand, a too high value of α may lead to prema-
ture convergence, and to loss of important genetic information that may lead
to undiscovered non-dominated regions. There is a stage in the evolutionary
progress, when it does not make sense anymore to maintain dominated solu-
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tions, since they lack the time to reach the first front. Hence, the value of α
should not be fixed for the entire run of the algorithm.

One possible way for the setting of α is suggested here. In this heuristic,
DPGA consists of two stages; at the first stage a constant value of α ∈
(0, 1) is set; at the second stage the selection is done as in NSGA-II-PSA
(it can be conducted by simply set α to one). This heuristic requires two
a-priory decisions – the value of α at the first stage, and when to switch
from the first to the second stage. The second decision can be described
through a parameter µ – the portion of the generations in which the selection
is done according to DPGA. The proper values of α and µ are problem
dependent, and it is out of the authors’ ability at the moment to suggest a
generic way to determine them. An analysis of the performance of DPGA
for one benchmark, with different values of these parameters, is given in
Section 4. The conclusions on the parameters setting for this benchmark can
be implemented as a starting point for other problems.

Other heuristics, such as a gradual increase of α, or setting α as a func-
tion of the generation count, can lead to better performance, but may be
associated with more parameters. Probably, the proper way is to change α
according to the progress of the global search. Meaning, to decrease it when
the elite population loses its diversity, and to increase it otherwise. This
should be done automatically within the evolutionary algorithm.

4 Simulations for DPGA

In this section, the proposed DPGA is evaluated and the sensitivity of the
parameters α and µ is studied. The algorithm is analyzed on the DTLZ4
benchmark with 3 objectives. This benchmark is used, since it poses a spe-
cial challenge in spreading the approximated set. This is exactly the kind of
problems the DPGA should be used for. The conclusions on the parameters
setting for this problem can be implemented as a starting point for other
problems. The approximated sets are evaluated by the hypervolume measure
(HV) [10].

First, the algorithm is tested for different values of α and µ. The values of
α = {0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1} and µ = {0, 0.1, 0.2, 0.3, 0.4, 0.5} were
examined for all possible combinations. Fifty independent runs were carried
out for each setting. For the sake of proper comparison, all combinations of
parameter setting ran on the same fifty initial populations. The parameter
setting of α = 1 or µ = 0 is the NSGA-II-PSA algorithm without the modi-
fications of DPGA. Therefore, these settings are evaluated only once on the
test set, and the corresponding results are referred to as ”NSGA-II-PSA”.

According to the results of this analysis, another comparison is made to
check the ability of DPGA to handle a poor initial population. DPGA with
the best combination of α and µ, is compared with NSGA-II-PSA as a ref-
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erence in this test. Each algorithm solves the problem for 100 times with
the same initial population which caused in the worst performances in the
previous simulations.

4.1 Experimental Setup

Both algorithms are given real-valued decision variables. They use the sim-
ulated binary crossover (SBX) operator and polynomial mutation [25], with
distribution indices of ηc = 20 and ηm = 20 respectively. A crossover prob-
ability of pc = 1 and a mutation probability of pm = 1/3 are used. The
population size is set to 300, and the number of generations to 250.

4.2 Results of DPGA with Various Parameter Settings

The HV values of the final results in all the tests varied between 7.325 and
7.435. Approximated sets with values larger than 7.4 include at least some
solutions on the surface of the sphere of the Pareto front. Sets with lower
HV values consist of solutions on the f1 − f2 plane and f1 − f3 plane only.
Results of that kind are considered as a failure of the algorithm to spread
the approximated set along the Pareto front. Figure 7 depicts a boxplot of
the statistic results of the NSGA-II-PSA (α = 1, µ = 0) and one parameter
setting (α = 0.15, µ = 0.4), as well as three approximated fronts and their
HV values. The results in Figure 7(b) are considered as a failure. Those in
Figure 7(c) are quite poor, and the results in Figure 7(d) are considered as
good results. The boxplot of NSGA-II-PSA in Figure 7(a) shows the failures
of the algorithm as outliers. The boxplots in Figure 7(a) indicate that there
is no statistically significant difference in location of the HV values of NSGA-
II-PSA and DPGA. On the other hand, DPGA with the above parameter
setting is much more consistent regarding to different initial populations,
and has no failures in spreading the approximated front. NSGA-II-PSA has
11 failures out of 50.

The results of the statistic evaluation of all the combinations of α and
µ values are depicted in Figure 8. Four statistical qualities are concerned
here: Figure 8(a) depicts the best HV of 50 tests; Figure 8(b) depicts the
median HV; Figure 8(c) depicts the mean HV; and Figure 8(d) depicts the
percentage of failures. Note that all the values of µ converge to the same
point when α = 1, since the results do not depend on µ in that case, and
the algorithm is simply NSGA-II-PSA. The same statement holds for µ = 0
as it is the same for all values of α (the blue line labeled ”NSGA-II-PSA”).
Three clear observations can be made from the results shown in Figure 8: (a)
the best results from 50 trials are obtained with NSGA-II-PSA; (b) DPGA



PSA based Multi Objective Evolutionary Algorithms 17

7.32

7.34

7.36

7.38

7.4

7.42

7.44

NSGA−II−PSA DPGA

H
V

(a) Boxplots for NSGA-II-PSA and for
DPGA with α = 0.15 and µ = 0.4

0

0.5

1

1.5

0
0.5

1
1.5

0

0.5

1

1.5

f1
f2

f3

(b) HV = 7.3254

0

0.5

1

1.5

0
0.5

1
1.5

0

0.5

1

1.5

f1
f2

f3

(c) HV = 7.4103

0

0.5

1

1.5

0
0.5

1
1.5

0

0.5

1

1.5

f1
f2

f3

(d) HV = 7.4348

Fig. 7 HV values of 50 tests for NSGA-II-PSA and DPGA, and examples for the HV
measure associated with three approximated Pareto fronts. HV values that are less than
7.4 are considered as a failure to spread the approximated set along the Pareto front (e.g.,
the outliers of NSGA-II-PSA, marked as red crosses, and the results in Figure 7(b)).

reduces the chance of a failure for most parameter settings (especially for
α < 0.5 and µ ≥ 0.2); (c) for this benchmark, the mean performance is more
affected from the number of failures, and therefore, DPGA has a better mean
HV than NSGA-II-PSA for most of the parameter settings.

These results corroborate the hypothesis that dominated solutions might
contain crucial information, and the preservation of some diversified dom-
inated solutions at the beginning of the evolutionary process can prevent
premature convergence. It is worth reminding that NSGA-II-PSA is already
an improvement of NSGA-II, and by recalling Figure 6(b) in [22], all of the
approximated sets found with NSGA-II for DTLZ4 with 3 objectives have
HV lower than 7.4.
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Fig. 8 Statistic results of 50 tests for NSGA-II-PSA and for DPGA with different values
of α and µ.

To choose the best parameter setting of DPGA for the DTLZ4 benchmark
according to these results, the main objective should be the reduction of
failures. In general, the percentage of failures decreases with the increase of
µ and the decrease of α. Both µ = 0.4 and µ = 0.5 satisfy this demand. Due
to the inevitable tradeoff between proximity and diversity, the performance
should be considered as well, reflected by the mean, median and best HV.
Considering all the above, the best parameter setting for this benchmark is
α = 0.15, µ = 0.4. It had no failures, and has the best performance over all
the other settings with no failures.

4.3 Poor Initial Population

Here, a comparison between NSGA-II-PSA and DPGA is conducted in order
to examine the ability of the algorithms to handle a very poor initial popu-
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lation. The initial population which produced the largest amount of failures
in Section 4.2 was used as a benchmark. In this simulation, the worst initial
population is given as an input to DPGA with the best combination of α and
µ, and to NSGA-II-PSA, and is solved by each algorithm for 100 times.
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Fig. 9 Results of 100 tests with a poor initial population. For clarity, the results are sorted
according to performance.

The HV values of the obtained approximated fronts are depicted in Fig-
ure 9. The advantage of DPGA over NSGA-II-PSA is clear. While NSGA-
II-PSA has failed 45 times in finding solutions on the surface of the sphere,
DPGA has only failed 3 times. The HV of the successful results are quite the
same for both algorithms.

5 Using PSA for Hausdorff Approximations of the

Pareto Front

In this section, a first attempt is made to show that PSA can be used suc-
cessfully within EMOAs to compute Hausdorff approximations of the Pareto
front. The Hausdorff distance dH (e.g., [26]) prefers, roughly speaking, ap-
proximations A ⊂ Rn such that its images are located equally spaced along
the Pareto front. Hence, dH can be viewed as a performance indicator that
is closely related to the terms spread and convergence as used in the EMO
community. PSA is integrated into NSGAII-I [27] to produce two new al-
gorithms: NSGA-II-I-PSA and NSGAII-I-∆p-PSA. Both algorithms use an
external archive in addition to the procedures of NSGAII-I. In all the tests
conducted in this study NSGA-II-I-PSA achieved better Hausdorff approxi-
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mations2 than its base EMOA, and NSGAII-I-∆p-PSA improved the perfor-
mance in most cases. On models where the Pareto front is connected, both
of the new methods cannot compete with ∆p-EMOA [28], which is a special-
ized algorithm to produce good Hausdorff approximations. NSGA-II-I-PSA,
however, is advantageous in cases where the Pareto front is disconnected.
We conjecture that this is the merit of PSA that is independent from the
geometry of the underlying model. First results for bi-objective problems
(i.e., k = 2) are presented here, and considerations of k > 2 and further
improvements of the hybrid are kept for future research.

The performance indicator considered in this section, ∆p, is defined as
follows.

Definition 1 (averaged Hausdorff distance ∆p [11]). Let p ∈ N,
A = {a1, . . . , ar} ⊂ Rd be a candidate set and Y = {y1, . . . , yr} ⊂ Rk be its
image, i.e., yi = F (ai), i = 1, . . . , r. Further, let P := {p1, . . . , pm} ⊂ Rk be
a discretization of the Pareto front. Then it is

∆p(Y, P ) = max





(

1

r

r
∑

i=1

dist(yi, P )p

)1/p

,

(

1

m

m
∑

i=1

dist(pi, Y )p

)1/p


 ,

(5)
where dist(x,B) := infb∈B ‖x − b‖ denotes the distance between a point x
and a set B.

∆p is a combination of slight variations of the well-known Generational

Distance (GD, see [29]) and the Inverted Generational Distance (IGD, see
[30]). For p = ∞ the indicator coincides with the Hausdorff distance (i.e.,
∆∞ = dH), and hence, ∆p can be viewed as an averaged Hausdorff distance.

The NSGA-II-I is a variant of the classical NSGA-II and is based on the
conjecture that a sequential update of the crowding distances leads to a more
homogeneous distribution of the population than the single determination of
the crowding distances of the original NSGA-II. This algorithm is used here
as a base EMOA for the new algorithms, that include an additional external
archive strategy as indicated in the Figure 10. PSA is being used here for the
update of the archive in two variants: (i) it is used as a tool to select the best
individuals to be stored in the external archive (NSGA-II-I-PSA), and (ii)
PSA is integrated into the procedure of ∆p-EMOA [28] that selects the best
individuals to the external archive according to an approximated reference
set (NSGAII-I-∆p-PSA). Here, PSA is used as a tool to obtain the reference
set required to compute the distance to the set of interest. The procedure
of the external archive strategy using PSA as the tool to select the best
individuals in each generation (for NSGA-II-I-PSA) is detailed in Algorithm
6. The procedure where PSA is used to generate the reference set that ∆p

2 In fact, we will use the averaged Hausdorff distance in order to avoid punishments of
single outliers that can occur when using stochastic search methods such as evolutionary
algorithms [11].
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needs to be computed (NSGAII-I-∆p-PSA) is given in Algorithm 7. In this
algorithm, first the set ND is computed that consists of all nondominated
solutions of the current population Pi, the new offpsring set Oi and the
current archive Ai. If the magnitude of ND is greater than the size of the
external archive NA, then PSA is applied on ND to obtain a reference front
R of magnitude NA. This set is further on used to update the archive Ai by
Oi according to the best ∆p values with respect to R. Hereby, ∆p-Update
denotes the archiver used in [28] which is given in Algorithm 5, where h(a)
is the ∆p value of the set of solutions ND without the solution a.

Algorithm 5 ∆p-Update

Require: new solution oi, archive Ai, reference front R, archive size NA

Ensure: new archive Ai+1

ND = nondominated solutions of Ai ∪ oi
if |ND| < NA then

for all a ∈ ND do

h(a) = ∆p(ND\{a}, R)

a∗ = argmin{h(a) : a ∈ ND}
Ai+1 = ND\{a∗}

Fig. 10 General NSGAII-I procedure with an external archive. PSA-Update is being used
at NSGA-II-I-PSA, and ∆p-PSA-Update is used for NSGAII-I-∆p-PSA.
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Algorithm 6 PSA-Update
Require: population Pi, offspring Oi, archive Ai, archive size NA

Ensure: new archive Ai+1

ND = nondominated solutions of Pi ∪Oi ∪Ai

if |ND| < NA then

Ai+1 = ND
else

Ai+1 = PSA(ND, NA)

Algorithm 7 ∆p-PSA-Update

Require: population Pi, offspring Oi, archive Ai, archive size NA

Ensure: new archive Ai+1

ND = nondominated solutions of Pi ∪Oi ∪Ai

if |ND| < NA then

Ai+1 = ND
else

R = PSA(ND, NA)
Ai+1 = ∅
for all o ∈ Oi do

Ai+1 = ∆p-Update(o, Ai, R)

To test the new algorithms, they are first evaluated on four test problems
with different characteristics: (i) the bi-objective sphere model [28] that has
a convex Pareto front, (ii) DTLZ3 [24] that has a concave Pareto front, (iii)
the Dent problem [31] that has a convex-concave front, and (iv) ZDT3 [32]
where the Pareto front is disconnected. The number of decision variables and
their ranges are specified as recommended in literature, for the bi-objective
sphere model 0 ≤ xi ≤ 1 (i = 1, 2), for the DTLZ3 0 ≤ xi ≤ 1 (i = 1, ..., 10),
for the Dent −1.5 ≤ xi ≤ 1.5 (i = 1, 2) and for the ZDT3 0 ≤ xi ≤ 1
(i = 1, ..., 20). Twenty independent test runs are made, each with a budget
of 50,000 function calls, a population size equal to 100 and an archive size
NA equal to 100. All algorithms have been implemented in jMetal [33]. The
simulated binary crossover operator is parameterized by a component-wise
probability equal to 0.9 and a distribution index equal to 20. Polynomial
mutation is applied using a mutation probability equal to 1/d (d = number
of decision variables) and the distribution index equal to 20. Table 1 shows
the obtained numerical results for the ∆p indicator where p = 1, and Figure
11 shows boxplots of the ∆p values at the final generation. The ∆p indicator
is calculated based on fixed reference fronts referred to as benchmark fronts in
the following. Ideal benchmark fronts are composed of the set of m solutions
with minimum ∆p value with respect to the true Pareto front, where m
denotes the population size of the EMOA. As the true Pareto fronts of the
test problems are known in this study, these fronts are composed by m well
distributed points along the true Pareto front (i.e. the set of m points with
optimal PL-metric as it is defined in [28]). It can be seen that the ∆p-EMOA
yields the best results for all models with connected Pareto front, but in the
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case of the disconnected front (ZDT3) NSGAII-I-PSA obtains better values.
This is also reflected in Figure 11 which shows the respective∆p-values at the
final EMOA generation. Additionally, statistical significance of the results is
confirmed by this means, regarding the comparison to the ∆p-EMOA.

Table 1 Averaged ∆1 values for test problems with different characteristics.

Sphere model DTLZ3 Dent ZDT3

NSGAII-I 0.00503875 0.00638702 0.01618773 0.00591195

NSGAII-I-PSA 0.00460146 0.00621689 0.01501212 0.00527150

NSGAII-I-∆p-PSA 0.00473097 0.00680468 0.01539346 0.00552639

∆p-EMOA 0.00003729 0.00495835 0.00067532 0.00777191

Fig. 11 Boxplots of ∆p-values at final generation.

In order to investigate the behavior of the PSA based algorithms on mod-
els with disconnected fronts, a further test is made using the MOPs ([1])
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Kursawe, Poloni, Schaffer, and ZDT3. The setting of the experiments is the
same as for the previous ones. The number of decision variables and their
ranges are as follows: For the Kursawe −5 ≤ xi ≤ 5 (i = 1, 2, 3), for the
Poloni (−1 ∗ π) ≤ xi ≤ π (i = 1, 2), for the Schaffer −5 ≤ xi ≤ 10 (i = 1)
and for the ZDT3 0 ≤ xi ≤ 1 (i = 1, ..., 20). Table 2 shows the obtained
results, and Figures 12 – 15 show the median distance to the Pareto front
in terms of ∆1 on the ordinate and the number of function evaluations on
the abscissa. NSGA-II-I-PSA wins the competition on all four models which
is most probably due to PSA that is independent of the geometry of the
problem. ∆p-EMOA prefers connected Pareto fronts since the reference front
needed for the ∆p archiver is built on the assumption that the Pareto front is
connected [28]. Such an assumption is not made in PSA. To take into account
the stochastic nature of the EMOA and to show the performance differences
are significant, Figure 16 shows boxplots of the ∆p-indicator at the final gen-
eration. The differences in location of the ∆p-values of the NSGAII-I-PSA
compared to the other EMOA are statistically significant, beside for Kursawe.
These results are encouraging, however, more investigations are required to
obtain a better EMOA aiming for Hausdorff approximations which we leave
for future work.

Table 2 Averaged ∆1 values for test problems with disconnected fronts.

Kursawe Poloni Schaffer ZDT3

NSGAII-I 0.03966693 0.06964843 0.02621266 0.00592310

NSGAII-I-PSA 0.03470179 0.05784069 0.02189886 0.00515468

NSGAII-I-∆p-PSA 0.03774589 0.06157774 0.02304279 0.00548551

∆p-EMOA 0.03489292 0.08614311 0.03160346 0.00778455

Fig. 12 Median distances to the Pareto front w.r.t. ∆p for Kursawe problem.
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Fig. 13 Median distances to the Pareto front w.r.t. ∆p for Poloni problem.

Fig. 14 Median distances to the Pareto front w.r.t. ∆p for Schaffer problem.

6 Conclusions and Future Work

In this study, the ability of the PSA (Part and Select Algorithm) as a selection
mechanism within EMOAs was examined. In one part of the study, PSA was
used for elite selection, and in the other it was used as an archiving tool. For
both cases, the results of the PSA based algorithms were satisfactory, and
they were found to have better performance than their non-PSA equivalents
for certain types of optimization problems.

A new evolutionary optimization approach was presented, that preserves
some dominated solutions from one generation to the next. This approach
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Fig. 15 Median distances to the Pareto front w.r.t. ∆p for ZDT3 problem.

Fig. 16 Boxplots of ∆p-values at final generation.
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was studied through a novel PSA based EMOA denoted as DPGA. The
algorithm has the capacity to control the trade-off between the exploitation
of proximity, to the exploitation of diversity. It was shown that by assigning
high fitness to solutions that are isolated in the objective space, even if they
are dominated, the chances for a failure in spreading the candidate solutions
along the Pareto front decrease. As future work the performance of DPGA
should be also evaluated for ”regular” optimization problems that do not
pose a special challenge to find a diverse set of candidate solutions. Some
more comparisons with state-of-the-art EMOAs should be conducted as well.
Finally, DPGA can be improved if its related parameter α could be adjusted
automatically. In order to do so, a measure to identify that proximity is over-
exploited on the account of diversity, is required. This measure can be used
during the progress of the algorithm to decide the appropriate value of α.

The PSA was found to be also an appropriate archiving tool for Hausdorff
approximations inspired EMOAs for special cases. The proposed algorithm
NSGAII-I-PSA could not compete with the specialized algorithm for Haus-
dorff approximations ∆p-EMOA on models where the Pareto front is con-
nected. However in cases where the Pareto front is disconnected, NSGAII-I-
PSA has outperformed the ∆p-EMOA, producing better Hausdorff approxi-
mations to the Pareto front according to the ∆p indicator for the four bench-
mark problems selected. The advantage of NSGAII-I-PSA is thanks to that
PSA is independent from the geometry of the underlying problem, so the
selection of the best solutions with respect to spread and convergence is not
affected by the gaps within the Pareto fronts of the problems. We conjec-
ture that the consideration of PSA will be particularly advantageous in cases
more than three objectives are under consideration. Hence, the extension of
the NSGA-II-I-PSA to higher-dimensional problems seems like a promising
research direction.
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