
This is a repository copy of Brokerage for Quality Assurance and Optimisation of Cloud
Services: An Analysis of Key Requirements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98333/

Version: Accepted Version

Proceedings Paper:
Kourtesis, D., Bratanis, K., Friesen, A. et al. (5 more authors) (2014) Brokerage for Quality
Assurance and Optimisation of Cloud Services: An Analysis of Key Requirements. In:
Service-Oriented Computing – ICSOC 2013 Workshops. CCSA, CSB, PASCEB, SWESE,
WESOA, and PhD Symposium, December 2-5, 2013, Berlin, Germany. Lecture Notes in
Computer Science, 8377 . Springer International Publishing , pp. 150-162. ISBN
978-3-319-06858-9

https://doi.org/10.1007/978-3-319-06859-6_14

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Brokerage for Quality Assurance and Optimisation of
Cloud Services: an Analysis of Key Requirements

Dimitrios Kourtesis1,2, Konstantinos Bratanis1,2, Andreas Friesen3, Yiannis
Verginadis4, Anthony J H Simons2, Alessandro Rossini5,

Antonia Schwichtenberg6 and Panagiotis Gouvas7,

1 South-East European Research Centre, International Faculty, The University of Sheffield,
24 Proxenou Koromila Street, Thessaloniki, 54622, Greece

{dkourtesis, kobratanis}@seerc.org

2 Department of Computer Science, The University of Sheffield,
Regent Court 211 Portobello Street, Sheffield, S1 4DP, United Kingdom

{d.kourtesis, k.bratanis, a.simons}@dcs.shef.ac.uk

3 SAP AG, Vincenz-Priessnitz-Strasse 1, Karlsruhe, 76131, Germany
andreas.friesen@sap.com

4 Institute of Communications and Computer Systems, National Technical University of

Athens, Zografou, Athens, 15780, Greece
jverg@mail.ntua.gr

5 SINTEF, P.O. Box 124 Blindern, 0314 Oslo, Norway

alessandro.rossini@sintef.no

6 CAS Software AG, Wilhelm-Schickard-Str. 10-12, 76131 Karlsruhe, Germany
Antonia.Schwichtenberg@cas.de

7 Singular Logic S.A., A. Panagouli & Siniosoglou Str., Nea Ionia, 14234 Athens, Greece

pgouvas@gmail.com

Abstract. As the number of cloud service providers grows and the
requirements of cloud service consumers become more complex, the latter will
come to depend more and more on the intermediation services of cloud service
brokers. Continuous quality assurance and optimisation of services is
becoming a mission-critical objective that many consumers will find difficult to
address without help from cloud service intermediaries. The Broker@Cloud
project envisages a software framework that will make it easier for cloud
service intermediaries to address this need, and this paper provides an analysis
of key requirements for this framework. We discuss the methodology that we
followed to capture these requirements, which involved defining a conceptual
service lifecycle model, carrying out a series of Design Thinking workshops,
and formalising requirements based on an agile requirements information
model. Then, we present the key requirements identified through this process
in the form of summarised results.

Keywords: Cloud Service Brokerage, Cloud Service Broker, Requirements
Analysis Methodology, Quality Assurance, Optimisation, Cloud Services

1 Introduction

As the number of cloud service providers grows and the requirements of cloud service
consumers become more complex, the need for third party entities to intermediate
between consumers and providers of cloud services is becoming stronger. A number
of cloud service intermediaries have already appeared on the market, helping
enterprises to find and to compare cloud services (e.g. service marketplaces), to
develop and to customise services (e.g. application Platform as a Service offerings),
to integrate services (e.g. integration Platform as a Service offerings), and more [1].
What all these intermediation services have in common is that they offer a form of
brokerage for cloud services. Cloud Service Brokerage (CSB)1 is becoming
increasingly recognised as a key component of the cloud computing value chain [2]
with market analysts predicting that it will soon be the fastest growing segment of the
cloud computing market [3].

Consumers of cloud services will come to depend more and more on the
intermediation services of cloud service brokers, and as the needs of consumers
evolve, so will the intermediation services offered by the brokers. A type of
intermediation service with high added value to consumers, especially to those who
rely on multiple external cloud service providers for their daily operations, will be
brokerage for continuous quality assurance and optimisation of cloud services.

Broker@Cloud [4] is an EU-sponsored collaborative research project that was set
up to investigate the challenges associated with introducing such capabilities into
cloud service brokers. The project will deliver an extensible software framework
allowing cloud service intermediaries to equip their platforms with advanced means
for continuous quality assurance and optimisation of cloud services. The framework
will comprise methods and mechanisms for platform-neutral description of enterprise
cloud services; cloud service governance and quality control; cloud service failure
prevention and recovery; and continuous optimisation of cloud services.

This paper reports on the methodology employed in the scope of Broker@Cloud to
capture the high-level requirements for the envisaged framework, and presents the
results obtained from this analysis. In Section 2 we set the context for this work by
motivating the need for continuous quality assurance and optimisation brokerage for
cloud services. In Section 3 we discuss the methodology that we followed to derive
key requirements for the software framework. The methodology section comprises
three parts: the cloud service lifecycle model that we used as conceptual framework to
guide our thinking about cloud service brokerage requirements, the Design Thinking
process that we followed to collect requirements, and the specification methodology
that we followed to formalise the requirements. To the best of our knowledge there
are not any similar requirements analysis efforts from the state-of-the-art that are
focusing specifically to brokerage for quality assurance and optimisation of cloud

1 There is an on-going debate on the definition of Cloud Service Brokerage, with

disagreement over the characteristics that an intermediary should have in order to qualify as a
Cloud Service Broker. The authors understand Cloud Service Brokerage as a business model,
and we use the term Cloud Service Broker to denote an (IT) role of a business entity that
creates value for consumers and providers of cloud services by acting as an intermediary.

services. In Section 4 we provide the actual requirements in the form of summarised
results. For a full description of the results we refer the reader to [5], which covers
the requirements analysis in full extent.

2 The Need for Cloud Service Brokers with Continuous Quality
Assurance and Optimisation Capabilities

We are already witnessing a growing number of cloud service intermediaries that
allow consumers to integrate, customise or aggregate cloud services [6]. In the future,
however, service consumers will require much more sophisticated brokerage services,
going far beyond the capabilities of today's cloud service brokers. One such type of
brokerage services will be continuous quality assurance and optimisation [7].

As users come to depend on more and more cloud services, it will become
increasingly more difficult to keep track of how these services evolve over time —
through changes to their terms of provision, to their APIs, or variations in service
performance and availability. Moreover, it will become increasingly more difficult to
stay on top of all the implications that a change to a service can have, such as whether
or not there is continuing compliance to different policies and regulations, continuing
conformance to normative technical specifications or Service Level Agreements, and
generally, continuous fulfilment of all the different kinds of functional and non-
functional requirements surrounding a particular service’s usage. The proliferation of
increasing numbers of cloud services with similar functionality and comparable terms
of provision will contribute to complexity, forcing users to invest more and more
effort in identifying alternatives to the cloud services they are using.

For all these reasons, continuous quality assurance and optimisation of cloud
services will become increasingly difficult for individual consumers to cope with by
themselves, creating opportunities for a market of cloud service intermediaries
addressing these needs. Brokerage services will step up to help consumers make sure
that the cloud services they rely on meet quality standards on a continuous basis, and
that they represent the optimal set of services to be using at any given time [1].

Much of the enabling technology that is needed to support continuous quality
assurance and optimisation brokerage is certainly not new. Recent years have seen a
proliferation of many relevant proprietary and open source tools that could provide
building blocks for the implementation of such capabilities in brokers. Examples
include tools for monitoring and managing applications, services and virtualised
infrastructures, or tools for integrating heterogeneous data, processes and applications
[1]. However, there exists no consolidated software design theory or set of best
practices on how to engineer brokerage capabilities of this kind, and there is lack of
dedicated software tools to build on [8].

Broker@Cloud aims to bridge this gap by delivering an extensible software
framework which will allow cloud service intermediaries to equip their platforms with
core capabilities for continuous quality assurance and optimisation of cloud services.

The framework will comprise methods and mechanisms for governance and quality
control of cloud services, prevention and recovery of failures, as well as continuous

optimisation, building on common means for platform-neutral description of cloud
services.

3 The Requirements Derivation Process

In this section we describe the process that was followed in the scope of
Broker@Cloud to derive the key requirements for the envisaged continuous quality
assurance and optimisation brokerage framework. In Section 3.1 we present an
abstract model of the cloud service lifecycle, the role of which was to frame our
thinking about cloud service brokerage requirements. Then, in Section 3.2 we outline
the Design Thinking process that was followed to organise the requirements analysis
effort. Finally, in Section 3.3 we present the requirements information model that we
adopted to formalise the requirements.

3.1 Service Lifecycle Model

To guide our requirements derivation process we started with defining a generic cloud
service lifecycle model. The motivation behind defining this model as the first step in
the requirements analysis process was to ensure that we have a consistent
conceptualisation of the context in which the sought software brokerage framework is
meant to operate. The model is generic as it covers phases and processes that are
relevant in a variety of settings, with no grounding to a specific type of cloud service
delivery platform or cloud service intermediary.

Our abstract lifecycle model comprises three plus one phases. The first three are
Service Engineering, Service Onboarding, and Service Operation. The fourth,
crosscutting phase is Service Evolution. The phases and processes under each phase
are illustrated in Figure 1.

By analogy with software engineering, the service lifecycle starts with the Service
Engineering phase. The Service Engineering phase consists of Design, Development
and Testing processes, carried out by the cloud service provider.

Once a cloud service has been successfully developed and tested, and a “go to
market” decision has been taken by the cloud service provider, the service enters the
Service Onboarding phase. Processes under this phase include Registration,
Certification/Assessment, and, once the service is successfully qualified, Enrolment,
to make the service visible to potential consumers and make it available for
subscription.

A service enters the Service Operation phase with the first Cloud Service
Consumer deciding to use the service. The tasks performed during this phase can
vary significantly from one setting to another, depending on the nature of the cloud
service (e.g. if integration is required) and the conditions of its usage as agreed
between the parties involved. Typical processes under this phase include Service
Management, Support and Assurance, to manage relationships and meet agreed usage
conditions.

Finally, there is a fourth, Service Evolution phase which cuts across the whole
lifespan of a service. The prominent process here is Change Management.
Ultimately, the service lifespan ends with the process of Deprovisioning the service.

Fig. 1. Service Lifecycle Model.

3.2 The Design Thinking Process for Deriving Requirements

To capture key requirements with respect to the framework developed by
Broker@Cloud we carried out a series of Design Thinking workshops [9] with two
companies that are active in the cloud computing market as cloud service providers
and cloud service intermediaries. Both companies see potential in introducing
capabilities for continuous quality assurance and optimisation into their cloud
platforms and are presently considering a technology roadmap towards this direction.

We note that the Design Thinking is a methodology for collaborative analysis of
the problem and solution space within a predefined timeframe. It takes into account
requirements from different users and guides the design thinking team through the
identification and prioritization of requirements profiles and corresponding solutions
associated to different identified user types (personas). The scope and the approach of
the Design Thinking methodology is very well fitting the challenge we are facing and
is proved to be very helpful for derivation of requirements in our case, since our
requirements analysis is based upon general state-of-the-art analysis and in-depth
analysis of two industrial cloud platforms in the PaaS/SaaS area. Furthermore, it takes
into consideration views of different stakeholders of the platform ecosystems.

Through Design Thinking workshops we gathered and analysed the requirements
for the Broker@Cloud framework by mapping the existing and planned activities of
the two pilot cloud platforms onto the phases and processes of our generic Service
Lifecycle Model.

A Design Thinking process could have up to seven stages: define, research, ideate,
prototype, choose, implement, and learn. Within these seven steps, problems can be
framed, the right questions can be asked, more ideas can be created, and the best

answers can be chosen. The steps are not linear; they can occur in parallel and can be
repeated. For our requirements analysis we chose to apply a four stage Design
Thinking process consisting of research, synthesis, ideation, and prototyping. The
additional synthesis step was introduced to combine the results of separate
investigations. In the research and synthesis steps we identified requirements. In the
ideation and prototyping phases we focused on identification and prototyping of
methods and mechanisms providing solutions to the chosen requirements.

For the research phase we relied on customer interviews. We developed a
questionnaire guiding interviewers and interviewees from each company through
different aspects of current and future usage of the cloud platform of each company,
asking which processes they could imagine handing off to intermediaries, what kinds
of optimisation they consider to be relevant, etc. The interviews were conducted with
a number of employees from each cloud platform company who work in different
positions and therefore have different perspectives on the theme of cloud service
brokerage. The interviews were collated and analysed to extract information relevant
to continuous quality assurance and optimisation. The information was classified and
clustered by topic, and the interviewees were asked to prioritise the requirements for
their usage scenarios. In the ideation phase we selected some requirements with high
priority to develop solution ideas. This was performed through subsequent steps of
brainstorming, clustering and selection. The selected solution ideas were taken into
the prototyping phase to develop conceptual paper-based prototypes, in order to
investigate the technical feasibility of the identified solutions and obtain feedback.

3.3 Requirements Specification Methodology

We used the results from the Design Thinking workshops as starting point for
identifying, clustering and analysing requirements for cloud service brokerage,
focusing on requirements for the continuous quality assurance and optimisation
capabilities outlined earlier.

To formalise these requirements, we followed a methodology inspired by the agile
requirements information model of Leffingwell and Aalto [10], who propose to think
of requirements in terms of Themes, Epics, Features and User Stories. According to
Leffingwell and Aalto, these four concepts represent different forms of expressing
user need and implied benefit, but at different levels of abstraction [10]. Variants of
this requirements analysis model have become very popular in agile software
development, especially in connection with agile methodologies such as Scrum and
Kanban [11]. Building on this information model, we organised requirements into
Themes, Epics, Capabilities and User Stories. The four concepts are explained below
and the logical relationships between them are illustrated in Figure 2.

Themes and Epics. A Theme is a strategic level objective of a software product. For
instance, one of the strategic Themes for our proposed brokerage framework is
‘Governance and Quality Control’. An Epic, on the other hand, is a high level
expression of a customer need. Derived from the portfolio of strategic product
Themes, Epics are units of software development work that are intended to deliver the
value of a Theme and need to be prioritised, estimated and planned as part of the

software development process [10]. In our methodology, every Epic is associated
with exactly one Theme, whilst a Theme is associated with many Epics. For instance,
one of the Epics for our software framework is ‘Service Certification’, and it maps to
the Theme of ‘Governance and Quality Control’. The Theme of ‘Governance and
Quality Control’ is mapped to four Epics in total: ‘Service Certification’, ‘SLA
Enforcement’, ‘Policy Enforcement’ and ‘Service Lifecycle Management’.

Capabilities. A Capability is analogous to a Feature in the requirements information
model of Leffingwell and Aalto. Capabilities can be understood as high level,
complex (and possibly composite) services to be provided by a software system to
fulfil a user need. As Leffingwell and Aalto put it, the purpose of this concept is to
“bridge the gap from the problem domain (understanding user needs) to the solution
domain (specific requirements intended to address the user needs)” [10]. In our
methodology, a Capability may be mapped to more than one Epic. For example,
‘Policy Evaluation’ represents a Capability associated with two Epics: ‘Service
Certification’ and ‘Service Lifecycle Management’.

User Stories. A User Story is a brief statement of intent describing something the
system needs to do for the user. A User Story often takes the following canonical
form: “As a <role>, I want <goal/desire> so that <benefit>”. User Stories should
comply with “INVEST” properties, which means that they should be "Independent,
Negotiable, Valuable, Estimatable, Small and Testable". In our methodology, each
User Story maps to exactly one Capability and to exactly one Epic. For example, one
User Story is the following: ‘As a <broker>, I want to <check service descriptions
against (broker's or consumers') policies> so that <I can recommend them with
confidence>’. This User Story is associated with the ‘Service Certification’ Epic, and
at the same time with the ‘Policy Evaluation’ Capability. The mapping of User
Stories to Epics helps to capture the context in which a certain Capability is put into
use, as exemplified by a User Story.

Fig. 2. Requirements information model adopted in Broker@Cloud.

4 Key Requirements for a Software Framework Enabling
Continuous Quality Assurance and Optimisation

In this section we summarise our requirements formalisation, by presenting the
Themes, Epics and Capabilities that we identified. The results of our requirements
analysis process include 4 Themes, 9 Epics, 15 Capabilities and 38 User Stories. Due
to space limitations User Stories are not presented in this paper. For the complete list
of User Stories that exemplify the Epics presented here we refer the reader to [5],
which describes the requirements analysis results in full extent.

4.1 Themes and Epics

Governance and Quality Control. This Theme is concerned with managing the
lifecycle of cloud services as they evolve; creating policies with respect to technical,
business and legal aspects of service delivery and checking services for policy
compliance; continuously monitoring services for conformance to Service Level
Agreements; repetitively testing services to certify conformance to specifications or
regulations and compatibility with expected behaviour. We have identified four Epics
for the Governance and Quality Control Theme. The Epics are introduced in the table
below (Table 1):

Table 1. Epics associated with the Governance and Quality Control Theme

No Name Description Service
Lifecycle

E1 Service
certification

Service certification is a process that occurs during
the onboarding and evolution of a cloud service. The
process aims at certifying that a cloud service
conforms to various requirements of the broker (e.g.
pricing, fault-tolerance, correctness, etc.).

Onboarding,
Evolution

E2 SLA
enforcement

SLA enforcement is a process that aims at
guaranteeing the expected service levels with respect
to the agreements in place between a cloud service
provider and a consumer.

Operation

E3 Policy
enforcement

Policy enforcement is a process aiming at
guaranteeing the conformance of the brokered cloud
services to a variety of policies [12] – where policies
may originate from different stakeholders.

Onboarding,
Evolution

E4 Service
lifecycle
management

Service lifecycle management is a process that aims
at controlling the evolution of different governed
entities (e.g. providers, consumers, services, etc.)
within the ecosystem of the broker.

Onboarding,
Operation,
Evolution

Failure Prevention and Recovery. This Theme is concerned with the reactive and
proactive detection of cloud service failures; selection of suitable adaptation strategies
to prevent or to recover from problematic situations as they surface; recommendation
or (where possible) automated enactment of appropriate adaptation actions such as
service substitution or renegotiation of service terms. We have identified two Epics

for the Failure Prevention and Recovery Theme. They are introduced below (Table
2).

Table 2. Epics associated with the Failure Prevention and Recovery Theme

No Name Description Service
Lifecycle

E5 Failure
identification

Failure identification is a process that aims at the
detection of failures that have either occurred or are
likely to happen in the near future, by monitoring
and analysing runtime data, through a combination
of different monitoring approaches [14].

Operation,
Evolution

E6 Failure
prevention &
recovery
decision
making

Failure prevention & recovery decision making is a
process that aims at the suggestion of actions to
recover from a failure, or to prevent an impending
failure, by analysing an identified failure in order to
decide a corrective action.

Operation,
Evolution

Service Optimisation. This Theme is concerned with continuously identifying
opportunities to optimise the set of services consumed by an enterprise with respect to
different goals such as cost, quality, or functionality; ranking of optimisation
alternatives through multi-criteria decision making, based on precise and imprecise
characteristics of services and their providers thus exploiting a large number of QoS
attributes, such as accountability, agility, assurance of service, cost, performance,
usability. We have identified three Epics for the Service Optimisation Theme. The
Epics are summarised below (Table 3).

Table 3. Epics associated with the Service Optimisation Theme

No Name Description Service
Lifecycle

E7 Consumer
preferences
analysis

Consumer preferences analysis is a process that
aims at the aggregation and processing of user
preferences (e.g. regarding functionality, precise
and imprecise criteria [13]) in a unified way. It
involves the management of criteria values
expressed as crisp numbers or linguistic terms, in
order to enhance the optimisation mechanism.

Operation,
Evolution

E8 Optimisation
opportunity
identification

Optimisation opportunity identification is a process
that aims at identifying appropriate situations
during which optimisation can be performed.

Onboarding,
Operation,
Evolution

E9 Optimisation
decision
making

Optimisation decision making is a process that aims
at deciding the appropriate optimisation action and
recommending that to relevant stakeholders.

Onboarding,
Operation,
Evolution

Platform-neutral Cloud Service Description. The first three Themes described
above are concerned with processes executed in different phases of the Service
Lifecycle to achieve certain quality assurance and optimisation characteristics. This
Theme is concerned with declarative descriptions of inputs/outputs
consumed/produced by the above processes. Hence, it is a cross-cutting concern that

appears in the majority of the Epics presented so far. Platform-neutrality of
descriptions is a precondition for addressing the above themes in the frame of an
interoperable software framework. Many of the functional capabilities rely on the
availability of certain kinds of suitable declarative descriptions defining the format of
their inputs and outputs. The most of those descriptions can be specified as an
integral part of a service or policy description. Therefore we define requirements on
platform-neutral cloud service description by considering declarative descriptions
such as service description and policy description to be capabilities as well.

4.2 Capabilities

To bridge the gap from the problem domain (understanding user needs) to the solution
domain (specific requirements intended to address the user needs) we have identified
15 Capabilities as key requirements for our envisaged brokerage framework. The
Capabilities are summarised in Table 4. For each Capability we provide a short
description and the identifier of the Epics that it helps to realise.

Table 4. Capabilities and their association with Epics.

No Name Description Epics
C1 Functional testing

(blackbox)
Functional testing is a capability that aims at
validating the conformance of a cloud service to its
behavioural specification, which is provided as part
of the service description.

E1

C2 Policy evaluation
(e.g. pricing
model, security
characteristics)

Policy evaluation is a capability that aims at checking
if a process or an artefact complies with various
policies established by different stakeholders
(consumers, providers or broker).

E1, E4

C3 Code auditing
(whitebox)

Code auditing is a capability that refers to the manual
or automated inspection of the implementation of a
cloud service with the intention to uncover faults,
inconsistencies, security vulnerabilities and other
issues.

E1

C4 Service
description

Service description is a capability that aims at
representing information about a cloud service in a
form suitable to allow other capabilities in the same
software framework to fulfil their goal.

E1

C5 Policy description Policy description is a capability that aims at
representing the policies of the various stakeholders
(consumers, providers or broker), in order to enable
policy evaluation.

E1

C6 Consumer
optimisation
preference
description

Consumer optimisation preference is a capability that
aims at representing the consumer preferences to be
considered for the purposes of optimisation.

E7

C7 Consumer
optimisation
preference
analysis

Consumer optimisation preference analysis is a
capability that aims at handling and exploiting
preferences expressed as crisp numbers or as
linguistic terms in a unified way, in order to enhance
optimisation.

E7

C8 Monitoring Monitoring is a capability that aims at collecting,
aggregating and correlating runtime and marketplace
data, in order to facilitate several capabilities of the
broker.

E2,
E3,
E5, E8

C9 Optimisation
analysis

Optimisation analysis is a capability that aims at
analysing optimisation opportunities, in order to
identify optimisation actions.

E8, E9

C10 Optimisation
recommendation

Optimisation recommendation is a capability that
aims at reasoning about alternative optimisation
actions, in order to recommend the best alternatives
to the relevant stakeholders.

E9

C11 Optimisation
validation

Optimisation validation is a capability that aims at
collecting feedback about the recommended
optimisation actions, in order to improve the
optimisation process.

E9

C12 Failure recovery
& prevention
rules description

Failure recovery & prevention rules description is a
capability that aims at representing the rules required
for reasoning about potential failure recovery and
prevention actions.

E6

C13 Failure analysis Failure analysis is a capability that aims at identifying
the cause of a failure which has already occurred or is
impending, and to reason about the appropriate
recovery or prevention actions.

E5, E6

C14 Failure recovery
& prevention
recommendation

Failure recovery & prevention recommendation is a
capability that aims at recommending the best
alternative recovery or prevention actions to the
relevant stakeholders.

E6

C15 Failure prevention
and recovery
validation

Failure recovery & prevention validation is a
capability that aims at collecting feedback about the
recommended recovery or prevention actions, to
improve the failure recovery and prevention process.

E6

5 Conclusions

As the number of cloud service providers grows and the requirements of cloud service
consumers become more complex, the latter will come to depend more and more on
the intermediation services of cloud service brokers. For many cloud service
consumers, continuous quality assurance and optimisation of cloud services will
become a mission-critical objective that they will find difficult to cope with by
themselves, thus creating room for intermediaries to offer their services.

Broker@Cloud is a research project aiming to make it easier for cloud service
intermediaries to address this emerging need. This is to be achieved by creating an
extensible brokerage framework that allows cloud service intermediaries to equip
their platforms with core capabilities for continuous quality assurance and
optimisation of cloud services. The framework will comprise methods and
mechanisms for governance and quality control of cloud services, prevention and
recovery of failures, as well as continuous optimisation of cloud service usage,
building on common means for platform-neutral description of cloud services.

In this paper we reported on the methodology followed to capture high-level
requirements for the envisaged framework, and presented the results obtained from
this first-level analysis. We presented the abstract cloud service lifecycle model
which helped us to frame our requirements thinking, presented the Design Thinking
process that was followed to derive initial requirements, and discussed our adopted
information model for the formalisation of requirements. We then presented the key
requirements identified through this process in the form of summarised results.

The Design Thinking process that was followed was rather effective in helping us
to kick-start the requirements analysis process and to derive initial requirements from
two companies that are already offering a number of cloud services on the market and
are presently considering enhancing their platforms with capabilities for continuous
quality assurance and optimisation of cloud services. This process served as
groundwork for further internal discussion and reflection, and shed light on critical
aspects to consider. The agile requirements capturing methodology that we followed
was effective in helping us to ground these insights and to move forward, from
analysis to specification. The resulting identified requirements are organised around
4 Themes, 9 Epics, 15 Capabilities and 38 User Stories. Next steps of this work
include early prototypes to cover the core requirements discussed here. This will be
the first step towards defining and implementing the architecture of a framework
bringing capabilities for continuous quality assurance and optimisation brokerage
closer to the reach of cloud service intermediaries.

Acknowledgments.
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°328392,
the Broker@Cloud project (www.broker-cloud.eu).

References

1. Verginadis, Y., Patiniotakis, I., Mentzas, G., Kourtesis, D., Bratanis, K., Friesen, A.,
Simons, A.J.H., Kiran, M., Horn, G., Rossini, A., Schwichtenberg, A., Gouvas, P.:
D2.1 State of the art and research baseline. Broker@Cloud Project deliverable (2013)

2. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: Cloud
Computing Reference Architecture. National Institute of Standards and Technology,
USA, 500-292 (2011)

3. Plummer, D., Lheureux, B., Karamouzis, F.: Defining Cloud Service Brokerage:
Taking Intermediation to the Next Level. Gartner (2010)

4. Broker@Cloud project website, http://www.broker-cloud.eu/
5. Kourtesis, D., Bratanis, K., Friesen, A., Simons, AJH., Kiran, M., Verginadis, Y.,

Rossini, A., Schwichtenberg, A., Gouvas, P.: D2.3 Requirements Analysis Report.
Broker@Cloud Project deliverable (2013)

6. Cloud Services Brokerage Is Dominated by Three Primary Roles. Gartner (2011)
7. Bratanis, K., Kourtesis, D., Paraskakis, I., Verginadis, Y., Mentzas, G., Simons,

AJH., Friesen, A., Braun, S.: A Research Roadmap for Bringing Continuous Quality
Assurance and Optimization to Enterprise Cloud Service Brokers. eChallenges 2013
(2013)

8. Kourtesis, D., Bratanis, K.: Towards Continuous Quality Assurance in Future
Enterprise Cloud Service Brokers. In: Proceedings of the 8th South East European
Doctoral Student Conference, SEERC (2013)

9. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Oxford
UK and New York: Berg, (2011)

10. Leffingwell, D., Aalto, J.: A Lean
and Scalable Requirements Information Model for the Agile Enterprise.
Leffingwell LLC, (2009)

11. Kniberg H., Skarin, M.: Kanban and Scrum - Making the Most of Both, LULU,
(2010)

12. Kourtesis, D.: Towards an Ontology-driven Governance Framework for Cloud
Application Platforms. Tech. Rep. CS-11-11. Sheffield, UK: Department of
Computer Science, The University of Sheffield (2011)

13. Patiniotiakis, I., Rizou, S., Verginadis, Y., Mentzas, G.: Managing Imprecise Criteria
in Cloud Service Ranking with a Fuzzy Multi-Criteria Decision Making Method. In:
Proceedings the 2013 European Conference on Service-Oriented and Cloud
Computing. Malaga, Spain, (2013)

14. Bratanis, K.: Towards Engineering Multi-layer Monitoring and Adaptation of
Service-based Applications. Tech. Rep. CS-12-04. Sheffield, UK: Department of
Computer Science, The University of Sheffield (2012)

