
This is a repository copy of Experiences using Z2SAL.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98328/

Version: Accepted Version

Proceedings Paper:
Siregar, M.U., Derrick, J., North, S.D. orcid.org/0000-0002-8478-8960 et al. (1 more
author) (2014) Experiences using Z2SAL. In: Proceedings - ICACSIS 2014: International
Conference on Advanced Computer Science and Information Systems. International
Conference on Advanced Computer Science and Information Systems, 18-19 Oct 2014,
Jakarta, Indonesia. IEEE , pp. 225-231. ISBN 9781479980758

https://doi.org/10.1109/ICACSIS.2014.7065856

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Experiences Using Z2SAL

Abstract—The Z notation is a language that can be used
for writing formal specifications of a system since it is based
on mathematical notation and logic. However, there is less tool
support for this language that one might wish for. In this paper,
Z2SAL, a translator for Z which translates the Z notation into
a SAL input language, is explored. The generated SAL file can
be used further by an existing model checker, specifically ones
provided in the SAL tool suite. This paper describes experiences
during conducting several experiments on the Z2SAL translator.

I. INTRODUCTION

To date, computer applications have been used almost in

every aspect of human life. Nevertheless, one needs those

applications can do their jobs accurately, particularly safety-

critical system.

To achieve that aim, several decades ago, natural language

and graphics were used to draw system flowcharts and to

write specifications. It turned out that natural language is

inadequate as a vehicle for specification due to its imprecision.

The alternative, which is the use of a programming language

to write a specification is equally flawed in that it forces one

to work at the wrong level of abstract [1].

Therefore, there is a role for a method of writing a specifi-

cation that is not only precise enough but also implementation

free. Moreover, such a method, if it is equipped with a proof

theory, can help us to describe properties of specifications

easily by conducting ’rigorous arguments’ [1]. It needs a

certain level of formality and for specifications to be written

at a suitably high level of abstraction. Thus, mathematical

notation is used which is based on set theory, logic, functions

and relations to write those specifications. Notations used to

do this are called specification languages or formal methods.

Indeed, although their use is not widespread in every sphere,

’formal methods are recommended by many standards bodies

concerned with Safety-Critical systems and for some they are

mandatory’ [2].

As a formal language, the use of Z can make a specifi-

cation free from ambiguity. In addition, it can make such a

specification be analysed mechanically [3].

Whilst there has been increasing interest in the use of Z,

the tool support for Z is limited. There are many aspects to

this situation, such as the abstraction and the logic of the

language are undecided [3]. One of such deficiencies in tools is

validating the intended meaning of a Z specification or model

checking it [4], [5].

In this paper, we discuss the provision of a translation of

the Z notation, in a tool called Z2SAL, into a format that

an existing tool can be applied on. This exploration involves

several experiments on the translator.

On providing a translator for Z into an input language of an

existing tool, Symbolic Analysis Laboratory (SAL) was chosen

since it has similar representation of many aspects of Z [7],

such as the module mechanism of SAL represents appropriately

a Z state transition system [6]. SAL also supports expressive

mathematics which is a necessity in model checking an expres-

siveness of Z specification [6]. Moreover, there exists many

different tools that use the SAL input language [5] which has

been offered freely by SRI under academic licence such that

attracts users to engage in international groups. SAL provides

several tools reflecting its functions such as simulator of a

system, model checker either symbolic or bounded, deadlock

checker, etc. Some of them are detailed on I-A2.

The structure of this report is as follows. Section I-A

describes the related works, this is followed by Section I-B,

which discusses our experiments with Z2SAL. The next is

Section II which concludes this paper and is followed by

Acknowledgement and References.

A. Related Works

In this section, we discuss the existing work on Z2SAL and

the translation of Z notation into a SAL input language.

The idea of translating Z into a SAL input language is due

to Smith and Wildman [6] at the University of Queensland,

Australia. However, since the basic idea given in [6], the ideas

have been implemented in a tool set, and the current Z2SAL

has been extended in a different direction. In doing this, it has

also had to tackle optimization issues [5], and thus is quite

different from the ideas as originally envisaged.

1) Z2SAL: Z2SAL translates a Z specification into a SAL

module. In this module, it groups a number of definitions

including types, constants and modules to describe the states

transition system [7]. A SAL module has general format as

follows:

State : MODULE =

BEGIN

INPUT ...

LOCAL ...

OUTPUT ...

INITIALIZATION [...]

TRANSITION [...]

END

There are several challenges to the translation of Z into

the SAL input language [5]. First is bounding the infinite.

Z supports fully abstract (non-grounded, non-constructive)

specification styles, while SAL input language is a concrete

and grounded language. For example, Z supports the built-

in numerical types Z, N and N1, whose ranges are infinite.

On the other hand, the SAL has the similar unbounded types

INTEGER, NATURAL and NZNATURAL, which can only be

used as the base types of finite sub ranges in the actual

specification. Z also supports basic types which have the

semantics of un-interpreted sets, such as [TAPE, NAME].

Therefore, the translations provided by Z2SAL should define

a finite number for those sets.

The mismatched formal paradigms is the second challenge.

Z and SAL have very different styles of specification and

description. A Z specification is built-up increasingly, which

consists of state and operational schemas. It views locally and

functionally such that every operational schema operates on

its input and output variables, or on variables of the state

schema. In contrast to this, a SAL specification is created

as a ’monolithic finite state automaton’ such that all inputs,

outputs and local variables are compiled into the aggregate

states and all operations act upon guard transitions from one

state configuration to other state configurations [5]. Thus,

this mismatch could be approached by re-ordering all the

information in a Z specification. Another mismatch is Z

specifications often use partial functions. This is to express

incomplete operations of operational schemas and to express

the associative data types, maps of the state schema, whose

sizes are dynamics. By contrast, as SAL is based on Binary

Decision Diagrams (BDDs), SAL always needs a representa-

tion of a function given as a total function. This means one

needs a work-around in order to represent partial functions in

Z specifications, which frequently exist, as total functions in

SAL. Furthermore, a set cannot be treated as a monolithic of

SAL, but as a ’polylithic collection of judgements’ over its

elements instead. Thus, several operations in a set need to be

expressed differently, such as the cardinality of a set which is

not supported by SAL.

The last challenge is the issue of non-computable specifi-

cations. A Z specification naturally supports non-constructive

styles of specification. These styles need to be expressed

in computable specification in SAL, which essentially are

different. Normally, a SAL specification consists of a series

of update assignments to primed variables, which indicates

posterior variable states. In contrast, in a Z specification this

direction of constructive approach is not necessary. Z2SAL

adopts an assertion of posterior existence of variables and re-

stricts their values in the precondition. This needs a searching

for suitable precondition values.

Currently, the tool has two operating modes, which it will

either translate a single Z specification into the input format

of SAL for model checking purposes, or translate a pair of

Z specifications for refinement checking purposes [8]. The

translated output is placed in the same directory as the source.

More information relating to Z2SAL can be found on related

references. The Z language syntax can also be read further on

[14].

2) SAL: SAL is a framework for combining different tools

for abstraction, program analysis, theorem proving and model

checking towards the calculation of properties (symbolic anal-

ysis) of transition systems [9]. Thus, SAL is used to change

the perception and implementation of model checkers and

theorem provers which previously based on verification to

based on calculation of properties such as abstraction, slicing

and composition [10].

As an intermediate language which serves as a medium for

representing the state transition semantics of systems with their

own source languages, SAL has been integrated with several

loosely coupled back-end components. These components

relate to each other by using well-defined interfaces [10].

The SAL environment contains a simulator for finite states

specifications based on BDDs which allows users to explore

different execution paths of a SAL specification [11]. By doing

such an exploration, users will be more confident of their

model before verification is done on such a model.

Regarding model checking, SALenv contains a symbolic

model checker called SAL-smc (simple model checker). Users

can specify properties in LTL and CTL temporal logics.

In addition to SAL-smc, SALenv also contains SAL-bmc

(bounded model checker) which only supports LTL formulas.

By using bounded model checker, SAL can search on a state

space on a given depth. When a property is invalid, a counter-

example will be produced, otherwise, it will be proven. The

SAL language syntax can be read further on [9].

B. Experiments with Z2SAL

We have conducted several experiments with Z2SAL by

providing Z specifications, and translating them with Z2SAL.

The generated SAL could be processed further either by

simulating or verifying them with SAL simulator or SAL

model checker. Due to the page limitation, only few of them

will be presented here, particularly specifications which have

modification in their original specifications.

1) Experiment with Hotel Specification: This specification

is taken from [12, p. 55-57]. The specification has one

basic/ given type, GUEST, and has a data type definition

HOTELROOM whose values are from Room1 until Room15.

It also has another data type definition RESPONSE which

values are no room vacant, not a guest, success,

wrong number, and add to tab ok. The state schema of

this specification is:

Hotel

current guest : PGUEST

unoccupied room, occupied room : PHOTELROOM

occupies : GUEST ↔ HOTELROOM

tab : HOTELROOM ↔ N

current guest = dom occupies

occupied room = ran occupies

unoccupied room = HOTELROOM \ occupied room

There are new types which are formed by relating a basic

type to a defined type, such as occupies whose domain is

GUEST and whose range is HOTELROOM. This relation gives

information about guests and their occupied rooms. There is

also another relation, tab which relates HOTELROOM and a

natural number. By the relation, every guest knows the price

they should pay for their room.

The specification includes a relational composition which

relates two relations to create a new relation. This new relation

treats the domain values of the first relation as its domain

and the range values of the second relation as its range. For

example, occupies;tab, this operation will give us a new

relation relating each guest to their bill. The schema that has

this operator is DepartGuest:

DepartGuest

∆Hotel

guest? : GUEST

bill! : N
reply! : RESPONSE

∃ b : N • (guest? ∈ current guest

guest?(occupies o

9 tab)b
b = bill! ∧ occupies′ = {guest?} −⊳ occupies

tab′ = tab ∧ reply! = success)

The schema also contains a non-constructive, originated

from Z styles, predicate in the second lines of the existential

quantifier block.

Based on our experiment, Z2SAL cannot translate it. Thus,

this predicate should be written in another way around as

follows:

(guest?,b) ∈ (occupies;tab)

There is another schema that also contains the non-

constructive predicate as above schema, as written below:

room? tab n

Thus, the related schema after its first line predicate modi-

fication is as follows:

AddToTab

∆Hotel

room? : HOTELROOM

charge? : N
reply! : RESPONSE

∃ n : N • (room?, n) ∈ tab

room? ∈ occupied room

tab′ = ({room?} −⊳ tab) ∪ {room? 7→ (charge? + n)}
occupies′ = occupies ∧ reply! = add to tab ok

Indeed, these constructive writing are easy to read and

understand. Both of those which are rewritten in other way

around predicates express the constructive predicates which

are supported by SAL model checker.

Although this specification can be verified by SAL model

checker, it cannot be simulated by SAL simulator, due to ran

out of memory. Originally, there are 15 rooms on HOTELROOM

defined in Z specification and there are three guests on GUEST

defined by Z2SAL.

There are three alternatives to combat the problem. The first

is to reduce the size of GUEST. The second is the same as the

first, but is done on HOTELROOM. The third is to reduce the

size of both those given type.

TABLE I
EXPERIMENTS ON SOLVING THE OUT OF MEMORY ERROR

Max size of GUEST Max size of HOTELROOM Result

3 15 Fail

2 15 Fail

2 8 Success

1 15 Success

3 8 Success

All of our attempts are given on Table I. These experiments

were conducted on a machine with Intel(R) Core (TM) i5-2320

CPU 3.00 GHz.

2) Experiment with Telephone Network Specification: This

specification is taken from [13, p. 31-34]. The specification

has one given type [PHONE]. It has one defined data type

Status whose values are Yes and No. In order to translate

this specification, several modifications must be taken place

first.

Firstly, it contains a generic constant, such as:

[X]
disjoint : PPPX

∀ cons : PPX • cons ∈ disjoint ⇔
(∀ c1, c2 : cons • c1 6= c2 ⇒ c1 ∩ c2 = ∅)

A generic constant which is a generic construct supported by

Z is used to define a parameter without explicit type. Some

mathematical tool kits are defined by this generic constructor.

Unfortunately, to date, Z2SAL has not supported yet the

generic constructs. To solve this problem, the generic constant

was deleted and all occurrences of following predicate:

cons ∈ disjoint

in other schemas were deleted and were replaced by:

∀ c1,c2: cons • c1 6= c2 ⇒ c1 ∩ c2 = ∅

and referred to appropriate cons. For example, a state schema

below:

TN

reqs, cons : PCON

cons ⊆ reqs ∧ cons ∈ disjoint

it contains the predicate taken from the generic constant. The

schema will be changed into:

TN

reqs, cons : PCON

cons ⊆ reqs

∀ c1, c2 : cons • c1 6= c2 ⇒ c1 ∩ c2 = ∅

CON is a connection in a set of PHONE.

Secondly, there are schemas which consist of a predicate

referring to other schema and having parameters, namely

schema references. For example, a schema as below:

efficientTN

TN

¬ (∃ cons0 : PCON • cons ⊂ cons0 ∧ TN [cons0/cons])

and this schema:

∆TN

TN

TN′

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)

efficientTN′ [cons1/cons′])

For those schemas, changes were made by defining those

schemas without including those references. For the first

schema, TN[cons0 / cons] was replaced by all the con-

tents of TN schema. Next, changing cons into cons0. Here

is the new efficientTN schema:

efficientTN

TN

¬ (∃ cons0 : PCON • cons ⊂ cons0 ∧ cons0 ⊆ reqs

∀ c1, c2 : cons0 • c1 6= c2 ⇒ c1 ∩ c2 = ∅)

and below is the ∆TN schema:

∆TN

TN

TN′

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON • cons1 ⊂ cons0 ∧ cons0 ⊆ reqs

∀ c1, c2 : cons0 • c1 6= c2 ⇒ c1 ∩ c2 = ∅))

Thirdly, this specification also includes theta symbol which

is used to bind information. The predicate is:

Θ TN’ = Θ TN

The schema consisting of the predicate is:

Engaged

∆TN

engaged! : Status

other! : PHONE

θTN′ = θTN

(engaged! = Yes) ⇒ ({ph?, other!} ∈ cons)

(engaged! = No) ⇒ ph? 6∈ (∪ cons)

Z2SAL does not support this tag, so it was rewritten into its

definition of laws based on [14, p. 62] and replaced by two

lines of predicates as follows:

reqs’ = reqs ∧ cons’ = cons

These refer to laws of Θ [14]:

ΘS′ = ΘS ⇔ x′
1
= x1 ∧ ... ∧ x′n = xn

Lastly, Z2SAL has a standard meaning for a delta schema

which says that variables in the state schema can change

their after operational values. Therefore, the related schema

only knows all variables that are listed in the state schema,

state schema variables, so does the predicates. This is a

convention but not enforced by the semantics. And indeed, in

this specification, there is another meaning of a delta schema

which is to add predicates not defined in the state schema. To

overcome this problem, add all the variables and predicates of

the delta schema into other schemas that refer to this schema,

and keep those that are listed in the state schema. The delta

schema (∆TN) was renamed into another name, DeltaTN,

and its contents are as follows:

DeltaTN

TN

TN′

ph? : PHONE

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON • cons1 ⊂ cons0 ∧ cons0 ⊆ reqs

∀ c1, c2 : cons0 • c1 6= c2 ⇒ c1 ∩ c2 = ∅))

The operational schemas which call such a different mean-

ing of ∆TN schema are also modified appropriately. For

example, the Engaged schema above will be modified into:

Engaged

∆TN

engaged! : Status

other! : PHONE

ph? : PHONE

reqs′ = reqs ∧ cons′ = cons

(engaged! = Yes) ⇒ ({ph?, other!} ∈ cons)

(engaged! = No) ⇒ ph? 6∈ (∪ cons)

¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′)
¬ (∃ cons0 : PCON •
cons1 ⊂ cons0 ∧ cons0 ⊆ reqs

∀ c1, c2 : cons0 •
(c1 6= c2) ⇒ (c1 ∩ c2 = ∅)))

Z2SAL has also been updated by revising its translation for

universal quantifier which appears on this specification. The

predicate with this quantifier is as follows:

∀ c1, c2 : cons • (c1 6= c2) ⇒ (c1 ∩ c2 = ∅)

Previously, it was translated by Z2SAL as follows:

(FORALL(q 1 : CON, q 2 : CON) :
(q 1/ = q 2 =>
set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)AND

set{CON; }!contains?(cons, q 1)AND

set{CON; }!contains?(cons, q 2)))

Based on the Z book [15, p . 31]

∀ x : a | p.q

this is equivalent to:

∀ x : a.p => q

Thus, the translation was revised and the new translation is as

follows:

(FORALL(q 1 : CON, q 2 : CON) :
((set{CON; }!contains?(cons, q 1)AND

set{CON; }!contains?(cons, q 2))AND(q 1/ = q 2)) =>
(set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)))

which is equivalent to:

(FORALL(q 1 : CON, q 2 : CON) :
(set{CON; }!contains?(cons, q 1)AND

set{CON; }!contains?(cons, q 2)) => ((q 1/ = q 2) =>
(set{PHONE; }!intersection(q 1, q 2) =
set{PHONE; }!empty)))

However, this generated SAL cannot be simulated by SAL

simulator due to ran out of memory. Several experiments have

been tried, such as deleting one by one the invariant, deleting

both the invariants, but all of these did not work. After the

size of PHONE was changed into 1, default is three; this SAL

can be simulated successfully.

3) Experiment with One Increment Specification: This

specification is obtained from [12, p. 94]. The specification

includes a user-defined function to add one to other natural

numbers. This function, f, needs one argument whose type is

natural number and returns a result which is also a natural

number. Here is the full specification:

f : N → N

∀ n : N • f (n) = n + 1

State

number : N

Init

State′

number′ = 0

Increment

number? : N
result! : N

result! = f (number?)

Z2SAL can translate this specification into its SAL. How-

ever, the generated SAL cannot be run by SAL simulator due

to the existing of empty initial set. Based on the evaluation,

this error might be occurred since the invariant could yield

false. After modified the specification as follows, it can be

simulated by SAL simulator.

max : N
f : N → N

max = 3
∀ n : N • (n > max ⇒ f (n) = n)
(n <= max ⇒ f (n) = n + 1)

State

number : N

Init

State′

number′ = 0

Increment

number? : N
result! : N
ΞState

(number? > max ⇒ result! = number?)
(number? <= max ⇒ result! = f (number?))

4) Experiment with Inverse Relation in Hotel Specification:

This specification is almost the same as specification in Exper-

iment 1. The difference is in this specification one operational

schema is added. The schema is as follows:

WhoWhichRoom

ΞHotel

room? : HOTELROOM

guest! : GUEST

reply! : RESPONSE

∀ g : GUEST • ((g, room?) ∈ occupies) ⇒ guest! = g

We then rewrote the predicate by using inverse relational

operator as follows:

(room?, guest!) ∈ occupies∼

and it works. It means that Z2SAL has also supported inverse

relational operation. However, from our experiment using this

operator on function instead of relation as above example,

there was a problem, Z2SAL cannot translate the specification.

5) Results and Discussion: For the first experiment, the

specification contains non-constructive predicates. In order to

enable the translation, those predicates are rewritten in another

way around which is more constructive.

For the second experiment, the generic constant is deleted

and any occurrence of its predicate in other schemas is

replaced appropriately, so does with theta operator, and schema

references. We do the same for another meaning of delta

schema, change it into the ordinary delta schema and add

manually other variables or predicates which are not included

in the state schema.

For the third experiment, based on our investigation, it is

identified that the invariant is sometimes false since the func-

tion is not really total. Z2SAL defines the maximum number

for the natural number used here which is 4. This maximum

number is one above the maximum number specified in the

Z specification. Thus, for this maximum natural number, it

will not be mapped to any number and it gives false. In order

to avoid the problem, the specification should be modified

to make it never reach the number more than its Z defined

maximum one which is 3. If such a number is reached then it

returns the maximum number defined by Z2SAL in generated

SAL. Otherwise, the output is the same as this number.

For the last experiment, as mention above, it seems Z2SAL

has supported inverse relational operation, but not for all types

of variables. For example, variables formed by functions are

not translated at this moment.

II. CONCLUSION AND FUTURE WORKS

As stated previously, the aim of this paper is to report

experiences during conducting several experiments with the

Z2SAL tool. This study has shown that Z2SAL is rich enough

with tags accepted by Z LATEX styles and supports many parts

of Z, such as set, sequence (although needs further testing),

relations and functions, several mathematical operator, hori-

zontal schema writing as well as vertical one, also accepts

more than one Z package styles. In these experiments, oz

and zed package styles were used. Therefore, a specification

which contains Z language is written by using LATEX styles

either oz or zed package styles. For the translation strategies

of those Z language into SAL language, could be read on [5].

We cannot describe it here due to the page limitation. Based on

this finding, we could declare that the Z2SAL is not complete

since it has not supported all parts of Z language. Due to this

incompleteness, our research has aims to explore parts of Z

that has not been translated by Z2SAL and to suggest those

parts to be able to translation by Z2SAL.

The second major finding is that if Z2SAL does not support

such tags or definition of Z language, we could rewrite them by

using their similar meaning. This might be applied to schema

calculus which is not supported yet by Z2SAL, but we could

rewrite them by using a direct single schema definition as

usual.

Third, it seems that some errors found are merely a con-

sistency preservation of Z2SAL and SAL model checker,

such that Z2SAL avoids to translate a non-constructive style

of Z specification which is appropriate with SAL’s common

expressions writing, the constructive style. We have also found

that sometimes the unable to run by SAL simulator is a

technical deficiency, for example the size of memory on the

used machine. This issue relates to the state space explosion

problem in model checking. We have taken into account

the issue of ran out of memory by investigating the use of

abstraction as a means to enable model checking can verify

arbitrary Z specifications.

Fourth, although we have not yet proved it formally due to

there is no a common semantic module for Z and SAL, we

think the Z2SAL is sound. We could claim that based on our

experiments, for almost all translations of Z language into SAL

language, both of them have equivalent meanings. However,

some awareness of the differences between the Z language

and SAL language should be taken into consideration for that

soundness. For example, Z language supports infinite types

in contrast to SAL language. Thus, such as N, Z2SAL must

translate the infinite N of Z specification into the finite of that

type which can be recognized by SAL.

ACKNOWLEDGMENT

The first author would like to thank John Derrick, Siobhan

North and Anthony Simons since this paper is initially based

on their Z2SAL, and to Graeme Smith and Kirsten Winter for

inspiring us with the use of abstraction in model checking Z

specification. The first author would also like to thank ISI-

HEMORA the Republic of Indonesia for its financial support.

REFERENCES

[1] Potter, B., Till, D., and Sinclair, J.: An introduction to formal specification
and Z. Prentice Hall PTR (1996)

[2] West, M.M.: Issues in Validation and Executability of Formal Specifica-
tions in the Z Notation. Thesis of University of Leeds (2002)

[3] Jackson, D.: Abstract model checking of infinite specifications. FME’94:
Industrial Benefit of Formal Methods. Springer, 519–531 (1994)

[4] Malik, P., Groves, L. and Lenihan, C.: Translating z to alloy. ASM, Alloy,
b and Z. Springer, 377–390 (2010)

[5] Derrick, J., North, S., and Simons, A.J.H.: Z2SAL: a translation-based
model checker for Z. Formal aspects of computing. Springer, 23 1, 43–71
(2011)

[6] Smith, G. and Wildman, L.: Model checking Z specifications using SAL.
ZB 2005: Formal Specification and Development in Z and B. Springer,
85–103 (2005)

[7] Derrick, J., North, S., and Simons, A.J.H.: Issues in implementing a model
checker for Z. Formal Methods and Software Engineering. Springer, 678–
696 (2006)

[8] Simons, AJH: The Z2SAL User Guide. Accessed from
http://staffwww.dcs.shef.ac.uk/people/A.Simons/z2sal/userguide.html
(2012)

[9] De Moura, L., Owre, S. and Shankar, N.: The SAL language manual.
Computer Science Laboratory, SRI International, Menlo Park, CA, Tech.
Rep. CSL-01-01 (2003)

[10] Bensalem, S., Lakhnech, Y. and Owre, S.: Computing abstractions of
infinite state systems compositionally and automatically. Computer Aided
Verification. Springer, 319–331 (1998)

[11] de Moura, L.: SAL: tutorial. Computer science laboratory, SRI Interna-
tional (2004)

[12] Rann, D. and Turner, J. and Whitworth, J.: Z: a Beginner’s Guide. CRC
Press (1994)

[13] Hayes, I. and Flinn, B.: Specification case studies. Prentice-Hall Inter-
national London (1987)

[14] Spivey, J.M.: The Z notation. Prentice Hall New York (1989)
[15] Woodcock, J. and Davies, J.: Using Z: specification, refinement, and

proof. Prentice-Hall, Inc. (1996)

