
This is a repository copy of Model-Based Testing for Composite Web Services in Cloud 
Brokerage Scenarios.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98323/

Version: Accepted Version

Proceedings Paper:
Kiran, M. and Simons, A.J.H. (2015) Model-Based Testing for Composite Web Services in 
Cloud Brokerage Scenarios. In: Ortiz, G. and Tran, C., (eds.) Advances in 
Service-Oriented and Cloud Computing. Workshops of ESOCC 2014, September 2-4, 
2014, Manchester, UK. Communications in Computer and Information Science , 508 . 
Springer , pp. 190-205. ISBN 978-3-319-14885-4 

https://doi.org/10.1007/978-3-319-14886-1_18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

Model-Based Testing for Composite Web Services in 

Cloud Brokerage Scenarios 

Mariam Kiran1, Anthony J. H. Simons
2
 

 

1 School of Electrical Engineering and Computer Science, University of Bradford,  

Bradford, BD7 4DP, UK 
m.kiran@bradford.ac.uk 

2 Department of Computer Science, University of Sheffield,  

Regent Court, 211 Portobello, Sheffield, S1 4DP, UK 
a.j.simons@sheffield.ac.uk 

Abstract.  Cloud brokerage is an enabling technology allowing various services 

to be merged together for providing optimum quality of service for the end-

users.  Within this collection of composed services, testing is a challenging task 

which brokers have to take on to ensure quality of service.  Most Software-as-a-

Service (SaaS) testing has focused on high-level test generation from the 

functional specification of individual services, with little research into how to 

achieve sufficient test coverage of composite services.  This paper explores the 

use of model-based testing to achieve testing of composite services, when two 

individual web services are tested and combined.  Two example web services – 

a login service and a simple shopping service – are combined to give a more 

realistic shopping cart service.  This paper focuses on the test coverage required 

for testing the component services individually and their composition.  The 

paper highlights the problems of service composition testing, requiring a 

reworking of the combined specification and regeneration of the tests, rather 

than a simple composition of the test suites; and concludes by arguing that more 

work needs to be done in this area. 

1 Introduction 

Cloud computing is becoming a prevalent business paradigm for software delivery 

and services, allowing businesses to save on the costs of infrastructure, maintenance 

and personnel [1].  To enable this, complex cloud computing environments are 

emerging that support new business models for cloud service and infrastructure 

providers, to help manage this increase in demand.  Among the various cloud 

scenarios such as private, public and multi-cloud scenarios, cloud brokerage is one 

which is quickly becoming popular and difficult to manage. 

Cloud brokerage is still an active research area, bringing challenges of risk, 

security and trust [2, 3] and further issues in terms of how brokers handle services, 

recommend optimal infrastructures and perform cloud service quality checking when 

they link customers to cloud environments [4].  By acting as an intermediary between 

the service consumers and providers, the brokers are expected to ensure that all 

requirements of the services are met and delivered on time. 



Given the need for mechanisms to assure the quality of service for risk and 

security, testing of the services is another challenging and expensive task, with 

brokers scrutinizing infrastructures and applications over issues of reliability, 

functionality and performance.  Cloud services consist of using service-oriented 

architecture applications which focus on Software-as-a-Service (SaaS) functionality.  

A large body of literature exists focusing on how various functional attributes of 

services can be tested using approaches like fault-based testing, model-based testing 

and interoperability testing [11].  However, these approaches have focused on specific 

individual services being used independently. 

This paper contributes to the area of service testing by focusing on the principles of 

functional testing for composed cloud services.  The paper describes how the 

specification of the composite service needs to be reworked and the service tested 

again, even after the individual services have passed all test cases.  This is due to 

issues of interoperability and integration of the components in the new composite 

service, which interact in ways not anticipated in the original component 

specifications.  A model-based testing tool [30] is used to demonstrate systematically 

the kind of test coverage required to achieve the same levels of quality assurance for 

simple and composed software services.  The tool attempts to automate the testing 

procedure as much as possible.   

The paper has been organized in the following manner:  Section 1 presents an 

introduction to cloud brokerage and the testing challenges for individual web services.  

Section 2 discusses the related work in this domain, discussing cloud environments 

and the test research used to produce test suites for services.  Section 3 describes the 

model based testing approach, with examples of two web services:  the login and the 

shopping services.  Section 4 discusses the issues when the two services are 

composed to produce a composite shopping cart service.  Finally Section 5 and 6 

present the problems encountered, leading to the conclusions of this paper and the 

future work in this domain. 

2 Related Work 

2.1 Testing in Cloud Brokerage Ecosystems 

Cloud computing adopts three broad styles of software architecture, when 

communicating between nodes.  These are as follows: 

 HTTP requests and responses, known as Representational State Transfer 
(REST).  This is a “lightweight” approach, where the client is a simple web-
browser and data is transferred in compact HTTP formats; but it requires 
bespoke server-side processing to dispatch requests. 

 Service-Oriented Architecture (SOA) adopts XML standards, using SOAP for 
message communication, WSDL and UDDI for service description and 
discovery.  SOA technology supports open, extensible, federated and 
composable architecture and fosters the separate development of autonomous, 



 

modular software components, which can be reconfigured in various ways 
before usage [5].  In this respect, SOA is vendor-diverse, offering the prospect 
of reusable, interoperable web-services [6], also offering a means of describing 
and measuring the Quality-of-Service (QoS) arising out of the distributed 
nature of services [7, 8]. 

 An increasingly popular style uses bespoke rich-client desktops, providing 
app-like services that use continuous information trickle via AJAX to 
communicate with back-end servers.  Rich-client applications are developed in 
client-side scripting languages, such as JavaScript, resulting in thick client 
MVC applications.  This architecture presents a different set of testing 
challenges [9, 10] and like RESTful services, does not lead to homogeneity. 

Much research has been conducted into developing tools to test SOA, which 

arguably may also apply to the cloud [11].  However, clouds are more challenging 

due to their heterogeneous nature, involving many different kinds of stakeholders, 

integrating many packages that operate asynchronously.  Cloud brokers are faced with 

merging services of more than one of the above kinds, to assess the trustworthiness of 

composite applications desired by consumers.  This involves assessing and certifying 

complex service oriented applications which are composed of distributed software 

services that can be selected dynamically, assembled together and executed to 

produce evolving software ecosystems. 

2.2 Functional Testing Approaches for Composite Web Services 

Web services use open standards and are quite flexible to accommodate fault 

tolerance, security or performance requirements [12].  A few approaches [9, 10, 11] 

have developed finite state-based testing methods, recognizing the state-based nature 

of services, but find it necessary to augment web standards and provider-based testing 

of services, using translations from agreed web standards [7].  Further work [29] has 

used labelled transition systems to define the testing of web services, based on their 

protocols. While web services may be used individually, accessed through simple 

HTTP or SMTP protocols, a more interesting prospect is when they are combined in 

more complex applications.  

Figure 1 describes a typical service-oriented architecture, in which communication 

takes place between three actors:  the service provider, the service requester (also 

known as the consumer) and the service broker.  The service provider publishes (1) a 

service interface (WSDL) to the broker’s UDDI registry.  The service requester then 

contacts the UDDI registry to discover (2) a suitable service and find out who the 

provider is; and then the broker acts as intermediary (3) in closing the deal.  The 

service requester thereafter communicates with the service provider directly (4) using 

the SOAP message protocol.  Since all SOAP data is transmitted as XML, the service 

provider may validate service requests; likewise the requester may validate the 

response from the provider, using a suitable XSD file (XML Schema). 



 

Fig. 1.  Interaction between provider, requester and broker in SOA c.f. [31]. 

In cloud computing environments, the providers are responsible for providing the 

necessary SOA infrastructure middleware and infrastructural mechanisms for service 

discovery, discovery to service providers, consumers and integrators.  Broker can act 

as a service integrator use existing services to create composite services to create an 

end user application.  In such cases, brokers are responsible for developing guidelines 

for testing composites of various types.  This involves employing a range of 

composition mechanisms (e.g. WSBPEL, application-embedded, WS-CDL). 

Testing composed services involves a workflow management to make 

interoperability possible by focusing on the interfaces for data transfer.  Researchers 

have used Mealy models for defining complex state based operations in services [14] 

or data driven approaches to OWL-S [15, 16], however these fail to describe how 

different test suites for services can be merged if individual services are tested. 

3 Towards a Methodology for Composite Service Testing for 

Cloud Brokerage 

3.1 Testing During the Cloud Service Lifecycle 

Kiran et al. [17] have described the use of model-based testing for cloud brokerage 

scenarios.  Model-based testing depends on some kind of model specification, either a 

state-based specification, or a functional specification, or a combination, such as 

UML with OCL1 pre- and post-conditions; essentially using any modelling formalism 

with a formal language grammar [18, 19].  The model serves as an oracle when 

generating tests for the system, linking specific test inputs with expected outputs [20, 

11], deriving the correct results for the tests.  The test generation algorithm also uses 

the model to determine the necessary and sufficient test coverage, given some 

reasonable assumptions about the system-under-test [20]. 

 

                                                           
1 Object Constraint Language, part of the Unified Modelling Language 



 

 

Fig. 2.  Service evolution through the lifecycle when services are engineered, tested during 

onboarding, and when deployed to execute on the infrastructure. 

Figure 2 illustrates how broker-managed testing might be organised during the 

onboarding phase of the service lifecycle.  The diagram shows the development stages 

for service specification, which describes the service formally, test generation, which 

produces abstract test sequences directly from the specification, and grounding, which 

translates the high-level tests into concrete tests capable of execution on a given 

service architecture [17], after which the concrete test suite may be used to test a 

service implementation to produce pass/fail test reports.  Testing during the service 

onboarding phase is likely to be an important part of service certification by brokers.  

Testing will still be carried out as usual by service providers during the service 

engineering phase; and potential service consumers may also wish to re-test the 

services that they include in service compositions, for added quality assurance.  

3.2 Testing Considerations for Composed Web Services 

The following general quality assurance considerations apply to platforms offering 

service discovery, conformance testing, and service composition [13, 24], where test 

case generation, execution and verdict assignment can be focused according to the 

service lifecycle stage: 

 

1. Testing service discovery, as part of the Service Engineering phase 

a. Define what properties should be described 

b. Define how to query against them efficiently 

2. Testing service composition, as part of the Service Engineering phase 

a. Specify the goals of a composition 

b. Specify the constraints on a composition 

c. Build a composition from component services 



d. Analyse the composition 

3. Testing data flows, during the Service Onboarding phase 

a. How to keep initial data separated 

b. How to track data movement between services 

c. How to provide the transactional guarantees 

 

During composite service testing, component services are treated as pieces to be 

glued together.  This gives rise to the naïve idea that composed test-sets might be 

derived cheaply by considering how the services are combined.  Services can be 

combined in three ways:  (1) sequentially, by ordering services one after the other - 

this is equivalent to joining two services on their respective final and initial states; (2) 

concurrently, when the combined services are executing together in parallel - this is 

not tractable, since every action of one service could interleave at any point with the 

actions of the other; and (3) decision-based, a variant of sequential combination, 

where the path to follow depends on a condition [25] (Figure 3). 

 

 

Fig. 3.  Sequential, concurrent and decision arrangement when composing services. 

Other researchers have used various approaches for composite testing using model 

checking for temporal logic using finite state machines [21] or using rule-based 

services [22].  Enkatraman et al. [23] showed a dynamic verification of protocol 

compliance in commitments modelled using auction behaviour.  Tsai et al. [26] used 

rank and fault detection to find the capability of test scripts to establish an oracle for 

most test inputs to test the complete composite service.  Endo et al. [27] employed an 

event-driven model approach to support the test model and generation, to test the 

environment and also support test concretization (grounding) and test execution. 

4 Generating Model-based Test Suites for Composite Services 

The eventual goal of composite service testing is to make it easier for the average 

developer to produce high-quality tests for composed services, possibly on-the-fly at 



 

run-time.  In the naïve approach, tests are created and archived for each component 

service, but are combined by rule at a later stage.  The example in fig. 4 presumes that 

a Login service and simple Shopping service are to be composed as an authenticated 

ShoppingCart service.  Decision-based composition initially seems to be appropriate, 

under the condition specified in table 1: 

 

 

Fig. 4.  The Login and Shopping service being combined for the ShoppingCart service. 

Table 1.  Decision Table for ShoppingCart service. 

                    Rules 

Constraints R1 R2 (opposite of R1) 

Server is Ready X X 

Next Action   

Login service  X 

Shopping Service X  

 
The decision table shows that if R1 is true (server is ready) then the Shopping 

initial state is reached, else the Login final state is reached.  Such a decision table can 

help build composed services, based on the constraint rules, by conditionally joining 

their state transition graphs.  The testing procedure could be something like: 

  
1. Generate test cases. 

a. Generate and store all paths for the Login service. 
b. Generate and store all paths for the Shopping service. 

2. Combine test cases. 
a. Generate a decision table for the combined ShoppingCart service. 
b. Create joined test sequences by combining paths. 
c. Create concrete test inputs for the combined paths. 

 

We will show that this approach is inadequate, because of a faulty intuition about 

sequential (and hence decision-based) composition.  A different model of composition 

is required to express faithfully what happens when services are joined. 

4.1 Login and Shopping Services Modelled Separately 

First we introduce the FSM concepts briefly to show how the test suites for each web 

service are generated.  FSMs consist of a finite number of states, one of which is an 



initial state and the rest are intermediate and final states.  To model the execution of a 

web service, every transition in a FSM corresponds to a web request/response cycle.  

Figure 5 show the FSMs for two component services, the Login service and the 

simple Shopping service.  These figures are the visual representation of the 

specifications, developed in a model-based specification language [30], which defines 

all states, transitions, service requests and responses received.  Based on these 

specifications, the model-based testing tool creates test suites for both the Login and 

the Shopping service. 

 

Fig. 5.  FSM for Login Service and Shopping Service 

 
<TestSuite id="0" testDepth="1"> 

 <Notice id="1" text="Generated test suite for service: LoginService"> 

  <Analysis id="2" text="Exploring all paths up to length: 1"/> 

  <Analysis id="3" text="Number of theoretical sequences: 9"/> 

  <Analysis id="4" text="Number of infeasible sequences: 0"/> 

  <Analysis id="5" text="Number of executable sequences: 9"/> 

 </Notice> 

 <TestSequence id="6" state="LoggedOut" path="0"> 

  <TestStep id="7" name="create/ok" state="LoggedOut" verify="true"> 

   <Operation id="8" name="create"/> 

  </TestStep> 

 </TestSequence> 

 <TestSequence id="9" state="LoggedOut" path="1"> 

  <TestStep id="10" name="create/ok" state="LoggedOut"> 

   <Operation id="11" name="create"/> 

  </TestStep> 

  <TestStep id="12" name="login/ok" state="LoggedIn" verify="true"> 

   <Operation id="13" name="login"> 

    <Input id="14" name="userName" type="String">Jane Good</Input> 

    <Input id="15" name="password" type="String">serendipity</Input> 

   </Operation> 

  </TestStep> 

 </TestSequence> 

   

 <!-- other sequences omitted for brevity --> 

</TestSuite> 

Fig. 6.  Fragment of a test suite generated for the Login Service. Some data from the above 

XML has been omitted for reasons of brevity. 

Figure 6 shows a fragment of the transition cover test set generated for the Login 

service.  This reaches every state, and explores every single transition from each state.  

This fragment shows just the first two sequences from this test set, which represent 



 

the initial (empty) sequence that should reach the LoggedOut state; and a valid login 

sequence that should reach the LoggedIn state.  The tool generates all realizable 

positive test cases (that should be present) and negative test cases (that should not be 

present).  The output is prefixed by metadata describing the possible number of 

theoretical sequences (in the state machine), which may sometimes be pruned, but in 

this example are all realizable (the guards permit all the transitions).  The tester may 

choose the maximum path length; typically a value slightly greater than 1 is chosen, 

since the implementation may not be a minimal state machine 

4.2 Composing the Two Services as a ShoppingCart Service 

When these two services are merged together to produce a composed service, they are 

not actually joined in any linear fashion on their initial and final states, but rather, the 

entire behaviour of the Shopping state machine is embedded inside the LoggedIn state 

of the Login machine.  The correct composition model for this is to use nested state 

machines, known as Compound FSMs or Hierarchical FSMs [28]. 

 

 

Fig. 7.  ShoppingCart Service FSM (Composite service of Login and Shopping Services) 

If we adopt the semantics from Harel and UML state machines, then any transition 

entering the LoggedIn superstate is deemed to enter the initial substate of the 

embedded Shopping machine; and any transition exiting this superstate is deemed to 

exit every contained substate.  It is then possible to flatten this hierarchical FSM, to 

remove the superstate and create an equivalent flat state machine.  According to Ipate 

[28], there are two possible strategies for generating tests for hierarchical FSMs: 

 Flatten the hierarchical model and generate tests for the flattened machine – this 

is adequate, but produces much larger test sets, as a result of the transition 

explosion resulting from longer paths to reach all states; 

 Treat the state hierarchy as a kind of refinement, and develop separate test suites 

for the external and internal FSMs, finding some way to integrate the expanded 

sequences for paths that traverse a superstate boundary. 

 



The first approach was applied to the model in figure 7, yielding the flattened 

model in figure 8.  The login/loginOK transition to the LoggedIn superstate was 

replaced by a transition from LoggedOut to the InitialiseApplication initial state of the 

embedded Shopping service.  All of the Shopping service’s substates were then given 

exit transitions for every exit transition leaving the LoggedIn superstate in the Login 

machine.  They acquired additional transitions timeout/timeoutok and logout/logoutok 

as shown in Figure 8. 

 

 

Fig. 8.  Flattening the ShoppingCart Service FSM.  For brevity, the substate exit transitions for 

timeout/timeoutOK and logout/logoutOK are each represented by single arrow. 

5 Experimental Test Generation Results 

The objective of this research was to investigate the two testing methods described by 

Ipate [28], using our testing tool for software services [30].  Initially, we expected the 

flattening approach to be computationally expensive, resulting from an exponential 

growth in test suite size.  The hierarchical FSM modelling approach then might point 

the way towards a smarter refinement testing strategy. 

In practice, the testing tool reduces the number of theoretical sequences generated 

for flattened examples, by pruning tests that either cannot be executed, or which 

replicate the results of other tests.  Initially the tool generates all positive paths (which 

must exist) and all negative paths (which must not).  However, once a negative 

transition has been proven absent, then all longer sequences containing this as a prefix 

may be pruned (assuming that memory is unchanged when an event is ignored).  



 

Similarly, the set of all positive paths includes some unrealizable sequences (blocked 

by guards on the current input and memory); so these are impossible, even in the 

specification, and are also pruned. 

Figure 9 shows the metadata generated by a longer test of the Login service, where 

the maximum path length has been increased to 2 (anticipating one redundant state 

per desired state in the implementation).  The count of infeasible sequences includes 

all pruned sequences; in this case, paths containing negative prefixes (such as a 

repeated login attempt when already logged in) have been pruned, after each negative 

test has been satisfied once. 

 
<TestSuite id="0" testDepth="2"> 

 <Notice id="1" text="Generated test suite for service: LoginService"> 

  <Analysis id="2" text="Exploring all paths up to length: 2"/> 

  <Analysis id="3" text="Number of theoretical sequences: 37"/> 

  <Analysis id="4" text="Number of infeasible sequences: 16"/> 

  <Analysis id="5" text="Number of executable sequences: 21"/> 

 </Notice> 

... 

Fig. 9.  Test Suite metadata generated for Login service, with path length 2. 

Test suites were generated for the individual component Login and Shopping 

services, and also for the composed ShoppingCart service.  The metadata statistics for 

these are shown in table 2.  From this, it is clear that while the theoretical size of the 

composed test set for the flattened state machine increases exponentially, the practical 

test set generated is a lot smaller than this, as a result of test pruning.  Nonetheless, 

the resulting test set is not a simple combination of the test sets for the two composed 

services.   

Table 2.  Statistics on test sequences for Login, Shopping and ShoppingCart services using 

statistics generated by the tool in figure 9. 

 LoginService 

(depth =1) 

LoginService 

(depth=2) 

Shopping 

Service 

(depth =2) 

Shopping 

Service 

(depth= 3) 

Shopping 

Cart 

Service 

(depth =2) 

Shopping 

Cart 

Service 

(depth=3) 

Theoretical 

Sequences 

9 37 151 907 511 5111 

Infeasible 

sequences 

0 16 120 846 372 4735 

Executable 

sequences 

9 21 31 61 139 376 

 

The testing tool reported that a path length of 3 was eventually necessary to cover 

all the transitions of the ShoppingCart service.  This is because operations depended 

on particular values of memory variables, such as an item necessarily being present in 

the cart, before proceeding to checkout.  Because of the longer paths explored through 

the combined machine, we expected a steep rise in the number of test sequences 

generated.  The theoretical test suite size grows exponentially with longer paths; an 



upper bound2 may be estimated from the recurrence relation: C*ȈĮk
, where C is the 

size of the state cover, Į is the size of the event alphabet, and k increments from zero 

to the maximum path length.  Nonetheless, table 2 shows that in some cases (as with 

this example), it might be tractable to compose state-based specifications by 

embedding and then generate tests from the equivalent flattened specification; after 

all, a test suite consisting of 376 tests sequences is not actually terrible, particularly if 

test generation and test execution are automated. 

Looking at the degree of pruning in the original component services, it is clear that 

the greatest reduction in test suite size was contributed by the simple Shopping 

service, for which the tool pruned 93% of the theoretical test paths (at depth = 3), 

which were found to be either redundant or non-realizable.  This is intuitively due to 

the “staged” nature of a shopping application, where many operations are disabled in 
particular states; and this only needs to be proved once for each operation.  By 

contrast, fewer paths were pruned for the Login service.  For the composite service, 

92% of paths were pruned (at depth = 3), which is highly useful. 

Considering the theoretical test explosion in table 2, it is attractive to speculate 

whether it might be possible to generate test suites for composite services by 

composing (in a more principled fashion) the test suites generated for the component 

services.  It is clear that this will be no simple pooling of the component test suites; 

one would need to generate additional “glue sequences” to verify that the two 

machines were correctly joined together.  Ipate previously speculated on the idea of 

refining the paths of the outer machine, by splicing in all paths through the nested 

machine, when the outer paths traverse the relevant superstate boundary [28].  In the 

conclusions below, we suggest an approach in which certain simplifying assumptions 

about the composed services allow you to identify sets of “glue sequences”. 

6 Conclusions and Future work  

This paper set out to determine whether it was tractable to develop test suites for 

composite software services either by reusing the test suites generated for the 

component services, or by reusing the component specifications in some way.  From 

the theory of testing FSM-based specifications, we expected to find that there was no 

easy way of reusing the component test suites to achieve the same level of coverage 

of the composite service.  However, we found that it is possible to compose and 

flatten state machine specifications, and from this, regenerate all-new tests for the 

composite service, to the same level of coverage.  The test suites for the composite 

service turned out to be more tractable than anticipated, due to the test path pruning 

behaviour of the testing tool [30], which eliminates redundant paths with null-op 

transitions in the prefix, and unrealizable paths for which tests cannot be executed. 

To achieve any better reduction than this requires making quite strong assumptions 

about the services being composed.  The most important assumption is that the sets of 

events processed by each service do not intersect; this allows consideration of the 

behaviour of each service in isolation.  Without this assumption, when testing the 

                                                           
2 Some sequences computed by the recurrence relation already exist in the state cover; the 

actual test suite is a set and contains no duplicate sequences. 



 

composite service, the events of both FSMs must be pooled and many more negative 

tests are required, to demonstrate a lack of mutual interference between the FSMs.  

However, if the non-intersection assumption holds, then it is feasible to consider an 

approach where a composite test suite consisting of the component test suites, plus 

some additional “glue sequences”, might be thought satisfactory.  For the composed 

ShoppingCart service, the glue sequences would have to ensure that: 

 

 Every transition of the Login service entering the LoggedIn state also enters (or 

enters instead) the initial state of the Shopping service. 

 Every transition of the Login service exiting the LoggedIn state also exits every 

state in the Shopping service and targets the LoggedOut state. 

 

Depending on whether the LoggedIn state is preserved, or expanded away in the 

composition, the first glue sequence may be considered additional, or a replacement 

for one of the Login service’s sequences.  The remaining glue sequences must reach 
the state cover of the inner nested FSM, and then exercise the “glue transitions” 
leading back to the outer machine.  This “extended state cover” is easily constructed 

by prefixing the state cover of the nested Shopping machine by the sequence from the 

Login machine that reaches the LoggedIn superstate.  Altogether, in this example, 

there would be nine “glue sequences”:  one path to verify that the login/loginOK entry 

transition reaches the Shopping initial state; and two paths for each Shopping state, to 

verify that the logout/logoutOK and timeout/timeoutOK exit transitions lead back to 

the LoggedOut state. 

 

 

Fig. 10.  Using composite agents to test composite web services. 

Figure 10 sketches one possible architecture for testing composite services.  The 

idea is based around a composition tool, here called a Composite Agent, that is able to 

reason in the manner described above, when composing FSM specifications.  The 

agent would have access to the database of service specifications (the specifications 

include a high-level FSM describing control states, plus a more detailed description of 

the service’s operations and their effects on memory [30]), and from this, would be 

able to calculate the additional “glue sequences” required, when services were 
composed by embedding one service’s FSM inside a state of the other FSM.  These 
“glue sequences” could be returned, on demand, along with the available test-suites 

for testing each of the individual component services. 

The advantages of such an approach includes the fact that “glue sequences” could 
be generated on-the-fly, as services were composed dynamically.  This would be very 



useful for creating “late integration” test suites, assuming that the components had 
already been tested.  Secondly, the approach is very flexible:  in principle, any service 

could be embedded inside any state of any other service; and multiple services could 

be composed, by embedding each component service in a different superstate of the 

composite service.  This approach is also fully compositional, in that FSMs could be 

nested to arbitrary depths. 

The drawbacks of this approach include the strong assumption that must be made 

about the non-interference of FSMs.  This is partly mitigated by the fact that the 

Composite Agent may check that the alphabets of each composed machine do not 

intersect (assuring the separation of machines, in principle).  As described above, the 

“glue transitions” do not anticipate any redundancy in the implementation.  They only 
verify every single-step test obligation needed to show that the composed services 

appear to be properly connected.  However, it would also be possible to generate 

slightly longer sequences that guarantee this with a higher level of confidence (c.f. 

testing redundant EFSM implementations with slightly longer paths [20]). 

Compound services are a complex and interesting proposition for testing.  Further 

work needs to explore how full automated test suites can be generated from individual 

test suites plus “glue sequences”.  The ideal solution should make use of component 

specifications, which may be composed on-the-fly.  Such a capability would be of 

great advantage to cloud service brokers. 

 

Acknowledgment.  The research leading to these results has received funding from 

the European Union Seventh Framework Programme (FP7/2007-2013) under grant 

agreement no. 328392, the Broker@Cloud project (http://www.broker-cloud.eu). 

 

References 

1. R. Buyya, C.S Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud Computing and Emerging 

IT Platforms: Vision, Hype, and Reality for Delivering Computing as 5th utility. Future 

Generation Computer Systems, 25, 599 – 616, 2008. 

2. A.U. Khan, M. Kiran, M. Oriol, M. Jiang and K. Djemame: Security risks and their 

management in cloud computing. CloudCom pp: 121-128 2012. 

3. M. Kiran, M. Jiang, D. Armstrong, K. Djemame, Towards a Service Life Cycle-based 

Methodology for Risk Assessment in Cloud Computing, Cloud and Green Computing, 

2011. 

4. D.C. Plummer, B.J. Lheureux, and F. Karamouzis, Defining Cloud Services Brokerage: 

Taking Intermediation to the Next Level. Report ID G00206187, Gartner, Inc., 2010. 

5. M. Bell, Introduction to Service-Oriented Modeling. Service-Oriented Modeling: Service 

Analysis, Design, and Architecture. Wiley & Sons. p. 3. ISBN 978-0-470-14111-3, 2008. 

6. Arcitura Education Inc, Service Orientation, Online: http://serviceorientation.com/, 2012. 

7. D. Norton, J. Feiman, N. McDonald, M. Pezzini, Y. Natis, D. Sholler, G. Heiden, F. 

Karamouzis, A. Young, G.A. James, E. Knipp, J. Duggan, T. Murphy, R. Valdes, M. 

Blechar, M. Driver, G. Young, J. Vining, R. Knox, D. Feinberg, T. Hart, C. Patrick, J. 

Forsman, M. Basso, R. Simpson, Y. Adachi, W. Clark, M. King, J. Hill, D. Gootzit, A. 

Bradley, L. Kenney, D. Stang, Hype Cycle for Application Development, Gartner, 2009. 



 

8. H. Mei, L. Zhang, A framework for testing web services and its supporting tool 

Proceedings of IEEE Int. on Service-Oriented System Engineering. Computer Society, 

2005, 199–206. 

9. A. Marchetto, P. Tonella, F. Ricca., State-Based Testing of Ajax Web Applications. Proc. 

of the Int. Conf. on Software Testing, Verification and Validation. IEEE Computer Society, 

121-130, DOI: 10.1109/ICST.2008.22, 2008. 

10. A. Mesbah, D. Roest, Invariant-Based Automatic Testing of Modern Web Applications, 

January/February 2012, vol. 38, no. 1, pp. 35-53. 

11. M. Bozkurt, M. Harman, and Y. Hassoun, Testing & Verification in Service-Oriented 

Architecture: A Survey Software Testing Verification and Reliability, 2009, 10.1002/000. 

12. Web Services Architecture (W3C Working Group). 

13. R. Hull, J. Su, Tools for Design of Composite Web Services, Presented Version (June 17, 

2004), Online: http://www.cs.ucsb.edu/~su/tutorials/sigmod2004.html 

14. G.H. Mealy, A Method to Synthesizing Sequential Circuits, Bell System Technical Journal. 

pp. 1045–1079, 1955. 

15. M. Klusch, A. Gerber, Evaluation of Service Composition Planning with OWLS-XPlan, 

Online: http://www-ags.dfki.uni-sb.de/~klusch/i2s/klusch-evaluation-owlsXPlan.pdf 

16. B. Norton, S. Foster, A. Hughes, A Compositional Operational Semantics for OWL-S, 
www.dip.deri.org/documents/Norton-et-al-A-Compositional-Semantics-for-OWL-S.pdf 

17. M. Kiran, A. Friesen, A.J.H. Simons, W.K.R. Schwach, Model-based Testing in Cloud 

Brokerage Scenarios ICSOC, 2013. 

18. M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach.  Morgan-

Kaufmann, Burlington MA, 2007. 

19. A. Pretschner, J. Philipps, Methodological Issues in Model-Based Testing.  In:  Broy, M. et 

al. (eds.) Model-Based Testing of Reactive Systems, LNCS, Vol. 3472, pp. 281–291, 2005. 

20.  W.M.L. Holcombe and F. Ipate, Correct Systems - Building a Business Process Solution.  

Applied Computing Series, Springer-Verlag, Berlin Heidelberg New York, 1998. 

21. X. Fu, T. Bultan, and J. Su, Analysis of interacting Bpel web services, Proceedings of the 

13th international conference on World Wide Web, ACM Press, pp. 621-630, 2004. 

22.  S. Deutsch, A. Vianu, Specification and Verification of Data Driven Web Services, 2004. 

23. M.V Enkatraman, M.P Singh, Verifying Compliance with Commitment Protocols Enabling 

Open Web-Based Multiagent System, 2010. 
24. T. Cao, P. Felix, R.Castanet, I. Berrada, Online Testing Framework for Web Services, 

Testing Composite Web Services. 
25. F. Belli, M. Linschulte, An Event-Based Approach, April 2009. 
26. W. T. Tsai, Y. Chen, R. Paul, N. Liao and H. Huang, Cooperative and Group Testing in 

Verification of Dynamic Composite Web Services, 2011. 
27. A.T. Endo, M.B. Silveira, E. Macedo, R. Simao, F.M. de Oliveiray, A.F. Zorzo, Using 

models to test web service-oriented applications:an experience report, 2012. 
28. F. Ipate, Test Selection for Hierarchical and Communicating Finite State Machines, The 

Computer Journal, Vol. 52, No. 3, 2009. 
29. A. Bertolino, L. Frantzen and A. Polini, Audition of web services for testing conformance 

to open specified protocols, Architecting Systems with Trustworthy Components, no. 3938, 

LNCS, 2006. 

30. A.J.H. Simons, Cloud Service Quality Control: Broker@Cloud Verification and Testing 

Tool Suite.  http://staffwww.dcs.shef.ac.uk/people/A.Simons/broker/, 2014. 

31. B. Wu, B. Zhou, L. Xi, Remote multi-robot monitoring and control system based on MMS 

and web services, Industrial Robot: An International Journal, vol 34, no. 3, pp 225-239, 

2007. 


