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Abstract—It is envisioned that Heterogeneous cellular network
is key technology in 5G that can be used to meet the ever increas-
ing demand of data rate. The most critical problem of HetNet is
interference. One of our objectives is to design beamformers to
mitigate interference and achieve the maximum throughput while
satisfying some power and interference constraints. In this paper
we are able to determine the global solution of the non-convex
NP-hard weighted sum-rate problem using branch and bound
method. It involves searching for the best individual rates among
many feasible rates achievable in the system that maximizes the
weighted sum-rate of the system while fulfilling the power and
interference constraints. Results obtained show that our proposed
method outperformed other methods such as egoistic beamform-
ing method and the relaxed convex optimization heuristic method
which produces sub-optimal solution to the original non-convex
problem.

I. INTRODUCTION

Heterogeneous Networks (HetNets) [1], composed of small

cells distributed around the coverage area of conventional

macrocellular network, are regarded as a cost-efficient solution

to improve system coverage and capacity. This improved

capacity can only be achieved if good interference management

scheme is in place for the system under consideration.

So in this paper, we determine the global solution of the

weighted sum-rate maximization problem for a 2-tier Het-

Net, while using optimized beamforming vectors for spatial

separation of user equipment’s (UE) signals to manage in-

terference subject to constraints. Maximizing the weighted

sum-rate of a system is generally regarded as an NP-hard

problem because there are no known efficient algorithms that

can solve it in polynomial time. Usually most authors shy away

from this problem because of its non-convex nature; instead,

local optimization methods are most widely adopted. In local

optimization methods [2], the global optimal solution is usually

sacrificed for a local optimal solution which can be achieved

in polynomial time. Similarly, others solve the reformulated

convex version of the non-convex problem, this usually can be

solved efficiently and also produces (roughly) global solution,

but the downside to it is that the solution found is not for

the exact problem hence is suboptimal too. Many works have

been done for maximizing the weighted sum-rate of a system

but most of these works are targeted at either single tier co-

ordinated multi-cell system [3] or single tier single-cell system

[4] where there are no variations in the power class of the base

stations (BSs). However, in our work we consider the impact of

the the superior interfering power generated by the macro-base

station (MBS) to other co-users in the multi-tier heterogeneous

system together with the interference between small cells.

In this work we propose an approach which first solves

convex feasibility problem and then performs an exhausive

search within the feasible set of the sum-rate optimization

problem in order to find the global optimum of the non-convex

optimization problem. This method is regarded as branch and

bound (B&B) method [5], [10], which was adapted to solve

the weighted sum-rate maximization optimization problem of

a 2-tier HetNet. In our approach, the feasible set that satisfies

the constraints of the optimization problem are represented

in a box interval which is assumed to be compact and a

subset of the non-negative orthant ℝ
�
+ , where the optimal

solution can be selected from. The B&B algorithm efficiently

computes a lower bound and upper bound on the optimal value

over this box. The lower bound of this box is initially found

using heuristic reformulation of the non-convex optimization

problem into a convex one, while the upper bound is found

by assuming each UE achieved the best individual rate using a

beamforming scheme that maximizes individual UE rates. This

algorithm is iterative and will only terminate if the difference

between the upper bound and the lower bound is smaller than

a threshold. If not, the initial box is split into two using

bisection method where their respective upper and lower bound

are determined again, in each iteration the convex feasibility

of the point gotten through line search is checked to make

sure it satisfies the constraints of the feasible set, otherwise

it is discarded. The iterative process continues until a global

optimal value is achieved.

The compromise in achieving the global solution is efficiency.

However, in this work we limit our consideration to small

number of variables and total number of users considered to

ensure efficiency. The rest of the paper is organized as follows.

Section 2 describes the system model and problem formulation

and it shows how the non-convex problem can be relaxed

into convex heuristic problem which can be easily solved by

efficient algorithms. It also shows how to formulate convex

feasibility problems. Section 3 describes the B&B methods

while in section 4 we show using simulation results how

our proposed method outperforms other existing methods. We

conclude our work in section 5.

Notations: (⋅)� is the transpose-conjugate operation, (⋅)� is



the transpose operation, ∥ ⋅ ∥ is the norm of a vector, ∣ ⋅ ∣ is

the magnitude of a complex variable, �{⋅} is the expectation

over a random variable. We use upper-case boldface letters for

matrices and lower-case boldface for vectors.

II. SYSTEM MODEL

We consider the downlink of a 2-tier HetNet as depicted in

Fig. 1, which consist of �� pico cells and a single macrocell

making it a total of K cells in the system. Each BS has �

antennas and communicate with a single active UE assumed

to have a single effective antenna per cell, making the total

number of cells to be equal to the total number of UEs in the

system. The pico cells are underlaid in the coverage area of

the macro cell and all cells use the same carrier frequency.

The respective BSs are connected through a limited backhaul

link, hence each BS will only send data to UE belonging to

its cell while the beamformers can be jointly optimized by

the all the BSs in the network. We denote the set of BSs in

the HetNet by Υ = {0, 1, . . . , ��} where 0 represent the

macro BS. The complex-baseband received signal at UE � is

�� ∈ ℂ and given by

�� =
�
∑

�=1

√
��,�(h

�
�,�)

�
x� + ��, (1)

where
√
��,� is the large-scale pathloss from the ��ℎ BS

Fig. 1. Downlink 2-tier HetNet model with two Pico cells in the coverage
area of MBS

to UE �. Also h
�
�,� ∈ ℂ

�×1 is the small scale (fading)

channel vector from the ��ℎ BS to UE �. �� ∈ ℂ is the

additive noise from the surrounding and is modelled as

circularly symmetric complex gaussian, distributed as �� ∼
� (0, �2), where �2 is the noise power. Consequently, the

signal-to-noise-and-interference ratio (SINR) at UE � is

����� =
∣h�

�,�x�∣2
�2
� +

∑

� ∕=�
�∈Υ

∣h�
�,�x�∣2

. (2)

Where h�,� ≜
√
��,�h

�
�,�.

A. Coordinated Beamforming: Problem Formulation

Recall that in coordinated beamforming [6], BS � transmit

signal to UE � while the beamformers from each BSs are

jointly optimized by all BS in the system considered. The

transmitted signal by each BS to its served UE is

x� = w���, (3)

where w� ∈ ℂ
�×1 and �� ∈ ℂ are transmit beamforming

vector and information symbol for UE � respectively, �� is

normalized to unit power, E[∣��∣2] = 1.

Hence the achievable data rate for the UE � is

��({w�}) = ���2(1 + �����) ∀� = 1, . . . ,�, (4)

which can be expressed in a more detailed form as

��({w�}) = ���2

(

1 +
∣h�

�,�w�∣2
�2
� +

∑

� ∕=� ∣h�
�,�w�∣2

)

, (5)

where {w�} denotes the set of beamforming vectors of the

system.

In this paper, the target is to select w� ∀� = 1, . . . ,�, to

maximize the weighted sum-rate, which is

maximize
{w�}

�
∑

�=1

����({w�})

subject to
(�����)

⎧

















⎨

















⎩

∣∣w�∣∣22 ≤ ��, ∀� = 0,� ∈ Υ,

∣∣w�∣∣22 ≤ ��, ∀� ∕= 0, � ∈ Υ,

w
�
�G�,�w� ≤ ��, ∀� = 0.

(6)

Where the utility function represents the weighted sum-rate

of the system with the nonnegative factor �� denoting the

individual weights assigned to each UE �, determined based

on individual channel gain. A larger gain has larger weight

and vice versa, also the second, third and fourth row of (6)

represent MBS power constraint, low power node (LPN)

power constraint and interference power constraint (i.e.,

interference generated from MBS to UE � ), henceforth these

constraints will be denoted by �����. G�,� ≜ h�,�h
�
�,� is a

positive semidefinite (PSD) matrix (G�,� ≥ 0), where h�,�

is the channel vector from the MBS to UE � and �� is the

threshold which controls the allowable level of interference

in UE � .

These constraints (�����) are convex but the utility function



is not convex thanks to the ����� which are non-convex

functions of the beamforming vectors {w�}. To make the

problem formulation more elaborate it can be rewritten as

minimize
{w�}

−
�
∑

�=1

����({w�})

subject to ∣h�
�,�w�∣2 ≥ ��(�

2
� +

∑

� ∕=�

∣h�
�,�w�∣2),

��� ����� �� (6).

(7)

In (7) the second row represent the quality of service (QoS)

constraint expected of each UE � in the system and is generally

known as the ����� constraint, where ����� ≥ �� ∀� =
1, . . . ,� and ����� denotes all the power and interference

constraints as in (6). In this case �� denotes the QoS threshold

for each UE in the system while the term
∑

� ∕=� ∣h�
�,�w�∣2

represent the total interference towards the desired UE �. This

formulation is still non-convex but in the next subsection, we

show how (7), an NP-hard non-convex problem can be made

convex.

B. Convex Heuristic Reformulation

To solve the non convex problem, convex heuristics are

easily adopted by researchers because of its efficiency.

However, it produces suboptimal solution to the non-convex

problem. To reformulate (7) into a convex problem, this can

be achieved by either fixing the �� value at each user or by

fixing the interference term. In this paper we prefer limiting

the interference to a particular fixed threshold Γ� which is

more practical and not equating it to zero as in the case

when zero forcing technique is applied, which is seen as an

overreaction. Hence we obtain our convex reformulation as

minimize
{w�}

−
�
∑

�=1

����({w�})

subject to ∣h�
�,�w�∣2 ≥ ��(�

2
� + Γ�),

∑

� ∕=�

w
�
� (h�,�h

�
�,�)w� ≤ Γ�,

��� ����� �� (6).

(8)

Then semidefinite relaxation [7] can be applied to the

quadratic terms in (8) after which it can be efficiently solved

by a solver known as SeDuMi or SDPT3 implemented in

CVX [8] - a Matlab-based modeling system for convex

optimization. We will use the result from here to initialize

the proposed procedure which will lead to global optimal

solution of the non-convex problem. We will also use it as a

benchmark to compare with our proposed method.

C. Convex Feasibility Problem

This feasibility problem will help us in our proposed

method to always check if a selected solution from a box

interval is feasible or not. If not, it can be discarded because

it cannot be the optimal solution. Convex feasibility problem

is to find any feasible solutions without regard to the utility

function. In our case we seek the set of beamformers {w�}
that satisfy the convex constraints. In this case �� value

is believed to be known a priori but can be computed as

�� ≜ 2�� − 1 obtainable from (4), hence our convex feasibility

problem formulation can be formulated as

find {w�} ∀� = 1, . . . ,�

subject to ∣h�
�,�w�∣2 ≥ ��(�

2
� +

∑

� ∕=�

∣h�
�,�w�∣2),

��� ����� �� (6).

(9)

In order to be easily solved, the feasibility problem can be

formulated as a power control problem such as minimizing

some transmitted power in the system subject to QoS

constraint, power and interference constraints. If we assume a

fraction of the total power in the system to be a non-negative

value and denoted as �, also the upperbound of the MBS

power constraint and the LPN power constraints of the �����

in (6) be replaced with ��� and ��� respectively then the

power minimization problem can be formulated as

minimize
{w��

},�
�

subject to ∣h�
�,�w�∣2 ≥ ��(�

2
� +

∑

� ∕=�

∣h�
�,�w�∣2),

��� ����� �� (6).

(10)

This can be easily solved. Note, the optimization problem in

(10) is convex if the SINR constraint is rewritten as a second

order cone (SOC) constraint [9]. After we find a feasible

solution, we can use other steps in the (B&B) algorithm to

obtain the global solution.

III. BRANCH AND BOUND METHOD

Branch and Bound (B&B) method is the method through

which we can get the global optimal solution of an NP-hard

non-convex weighted sum-rate maximization problem for

a 2-tier HetNet. It is an iterative method that requires at

least two procedures that can efficiently calculate a lower

and an upper bound on the optimal value of the non-convex

problem over a given set or region. In our case, the set or

region considered is a subset of a box interval. This set is

the feasible set that satisfies our problem formulation, also

the utility function in our optimization problem is lipschitz

continous and increasing over this box interval. We denote

the initial box as � = [a b] ⊆ ℝ
�
+ , this box is assumed to be

compact and normal [11] and houses all kind of rates from

the worst to the best rates. a denotes the worst rate vector

achievable by UEs in the system thus a = 0 ∈ ℝ
�
+ while

b ∈ ℝ
�
+ is the best rate vector achievable by UEs in the

system using egoistic beamforming scheme such that a < b,

also [a b] is defined to be the set of all rates achievable in

the system such that a ≤ r ≤ b . Egoistic beamforming is

a beamforming scheme where beamformers are designed to



maximize the array gain of a single UE in a system. Note

this beamforming scheme will always be suboptimal if there

are other sources of interference, hence

b = [�1 . . . �� ]� = ���2

(

1 +
∣h�

�,�w�∣2
�2
�

)

∀� = 1, . . . ,�.

(11)

This best rate vector is not always feasible when co-users

interference are considered in the system while designing the

beamformers.

Our feasible set from the original problem formulation for

the �� that optimizes the sum-rate can be denoted as

� =
{

(�1, . . . , ��)∣(w1, . . . ,w�) ∈ ℂ
�×1, ����� �� ��(6)

}

.

(12)

Where � denotes the set of all feasible solution (�1, . . . , ��)
for which (w1, . . . ,w�) is feasible and satisfy the �����

in (6). Therefore, our optimization problem for maximizing

the sum-rate of the system in this section is equivalent to

searching for a feasible solution in the box that has the

minimum L-2 norm to b, and this is formulated as

maximize
{r}

�(r)

subject to r ∈ �.
(13)

Where our utility function is denoted as

�(r) =
�
∑

�=1

����, (14)

where r = [�1 . . . �� ]� is the rate vector achievable by UEs

in the system. The lower bound on the optimal value of the

non-convex problem can be found from its convex relaxation,

and in this paper (8) gives a feasible solution on the optimal

solution of the non-convex problem. Let r denotes this feasible

solution of the box �, hence the lower bound on the optimal

value of this box is denoted �
�
���(r). Similarly, since b

represent the best rate vector in the system, though might not

be feasible, ��
���(b) denotes the upper bound on the optimal

value of this box hence ���� ≤ ���� ≤ ����. Where ����
denotes the optimal value of the sum-rate of the system, ����

and ���� denote lower bound and upper bound on the optimal

value of the weighted sum-rate of the system respectively, also

0 ≤ r��� ≤ b where r��� denotes the optimal solution of the

system while 0 and b denote the worst feasible solution and

the best feasible solution achievable in the system .

A. Branching

This is the process of spliting the initial box � into more

than one partitions. Branching will only be necessary if

���� − ���� > �. Where � is the accuracy of the sum-rate

in the B&B method. The splitting of box � is done along

the longest edge using line bisection principles in Euclidean

space, after which the upper and lower bound on the optimal

value are calculated for each. After splitting, � = �1 ∪ �2

where �1 denotes box 1 and �2 denotes box 2. Assuming

�1 = [a1 b1] and �2 = [a2 b2] where a1 and a2 denote the

lower conners of boxes 1 and 2 respectively, also b1 and b2

denote the upper conners of boxes 1 and 2 respectively. Note

that b2 = b and a1 = a of the initial box � . The feasible

solution of the new boxes can be chosen by comparing the

feasible solution of the initial box to the lower conner of box

2, if greater than or equal to it, will give rise to a new feasible

solution for boxes 1 and 2, which can be computed as

r
�1 =

{

r− [r− b1], r ≥ a2,

r, otherwise,

r
�2 = r,

(15)

summarily, the new feasible solution for boxes 1 and 2

becomes r and r if for box 1, r ≤ a2 in the first row of (15).

While the upper bounds on the optimal value for both boxes

can also be chosen as

��1

��� = ���(�(b2), �(b1)),

��2

��� = �(b2)
(16)

respectively. Where the min(⋅) operator selects the smallest

value of its argument.

Futhermore, we shall proceed by removing parts of the

boxes which cannot contain the optimal solution, knowing

that �
�
���(r) ≤ ���� ≤ ��

���(b2), note that b2 = b . This can

be done by checking for any part that is less than �
�
���(r)

or greater than ��
���(b2) which cannot contain the optimal

solution.

Generally we assume w.l.o.g that ���

��� ∀� = 1, 2 is non

increasing while �
��

��� ∀� = 1, 2 is non decreasing. After

prunning of the boxes, the lower conners of the new boxes

can be computed as

ã1 = (1− ��1)b�
1 + ��1a�1 ,

ã2 = (1− ��2)b�
2 + ��2a�2 ,

(17)

where ã1 and ã2 denote the lower conners of the new boxes

after prunning, b�1 and a�1 also denote the ��ℎ element of the

upper and lower conners of the new boxes respectively.

The parameter ��� can be gotten through line search and

can take values between zero and one, it is computed as

��� =
�(b�)

� − �
�
���(r)

�(b�
� − a�� )

, ∀� = 1, 2, � = 1, . . . ,�. (18)

Similarly, the upper conners of the new boxes can be

computed as

b̃1 = (1− ��1)ã1 + ��1b�1 ,

b̃2 = (1− ��2)ã2 + ��2b�2 ,
(19)

while parameter ��� can also be computed as

��� =
���

��� − �(ã�)

�(b�
� − a�� )

, ∀� = 1, 2, � = 1, . . . ,�. (20)



The prunned new boxes are denoted as �̃� = [ã� b̃�] ∀� = 1, 2.
One of these boxes contain the optimal value, and the most

likely one is box 2. This is because maximizing the weighted

sum-rate is equivalent to searching for the feasible point with

the minimum L-2 norm to the best infeasible individual rate

achievable in the system. We check if this box is feasible by

solving (10) using ã2 to get the QoS constraint. This leads us

to bounding procedure in the next subsection.

B. Bounding

If the box is feasible, bounding procedure involves

searching for the best lower and upper bound on the optimal

value in each iteration using line search technique. This line

search corresponds to looking for the best feasible point with

minimum Euclidean length to the best infeasible individual

rates in the box. This is achieved by starting with an initial

feasible point ã2 which is then added to the product of the

step size (positive scalar) and the search direction. Where the

search direction is denoted as �� = (b̃2−ã2)

∣∣(b̃2−ã2)∣∣1
, also the step

size is denoted as � ∈ [0, ∣∣(b̃2− ã2)∣∣1] whose set is searched

for the best value using line bisection search method; also

every value selected must satisfy the feasibility condition, the

bounding procedure can be computed for any box using

n = ã2 + ��� (21)

where n is a feasible point better than a2. In each iteration

we check to know if the present optimal value of the feasible

point is greater than the previous ones, if so we finally update

the value to be the best optimal value based on the feasible

point. Finally we set ���� = ���
(

�
�
���(r), �

�̃�

���(n)
)

, and

���� = ���
(

��
���(b), �

�̃�

���(b̃)
)

∀� = 1, 2.
We summarized the B&B method using Algorithm 1.

Algorithm 1 Branch and Bound Method

Require: B&B accuracy tolerance � > 0
Require: compute best infeasible individual rate b using (11);

Require: compute feasible solution r of initial box using (8);

Require: initial box � = [a b];
Ensure: ���� = �

�
���(r) and ���� = �

�
���(b);

1: while ���� − ���� > � do

2: split the initial box along the longest edge;

3: prune the new boxes using (18),(20);

4: check feasibility of the outermost box using (10);

5: If feasible,

6: apply bounding procedures using (21);

7: obtain best feasible point n and upper bound � �̃�

���;

8: set ���� = ���
(

�
�
���(r), �

�̃�

���(n)
)

;

9: set ���� = ���
(

��
���(b), �

�̃�

���(b̃)
)

;
10: end while

Ensure: final optimal bound [����, ����];
Ensure: final optimal solution r��� = ���(r,n).

IV. SIMULATION

Our considered HetNet system model is depicted in Fig.

1. The Simulation parameters are as follows: the transmit

powers of the macro and pico BSs are respectively 46dBm

and 30dBm, while the receiver noise power is -75dBm. The

large-scale path loss model of the macro and pico cells are

respectively ��(��) = 128.1+37.6���( �0

103 ) and ��(��) =
140.7+36.7���( �0

103 ) where �0 is the distance of a user to the

BS. The channel vectors are generated as uncorrelated rayleigh

fading while the large-scale pathloss given by

√
��,� =

�

���,�
, (22)

where � is a constant which accounts for system losses and

can be determine through the large scale path loss models

for both macro and pico cells respectively. � is the path-loss

exponent, typically � > 2, while ��,� is the distance between

��ℎ BS and the ��ℎ UE. The default system setting for the

simulation are as follows; � = 3,� = 3 . 10000 monte

carlo runs are used for the channel realizations, while the

maximum number of iteration and evaluation function for the

B&B algorithm are 3000 and 4000 respectively. The B&B

accuracy tolerance � = 0.001. This settings will be used

except otherwise indicated. Fig. 2 shows the average sum-
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Fig. 2. Average sum-rate achievable at different SNR for � = 3

rate achievable as a function of SNR. It compares the average

sum-rate achieved in the system using our proposed method,

the heuristic convex method and the egoistic beamforming

method. Our proposed method outperforms both methods in

both low and high SNR, the lowest performing method is

achieved by egoistic beamforming which shows single cell

processing without beamforming coordination.

In Fig. 3 the cumulative distribution function (CDF) of user

average rate achieved for the system by different methods are

illustrated clearly. The proposed B&B scheme outperforms the

heuristic convex and the egoistic schemes.
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Fig. 4 compares our proposed method with the brute force

search method which also gives global optimum solution and is

usually a baseline for global convergence of non-convex opti-

mization problems. The result shows that our proposed method

only slightly outperforms the brute force search method at low

SNR between -5dB and 5dB. Nevertheless, the brute force

search method is not recommended because of computational

complexity involved in each iteration where the utility function

is evaluated for each feasible solution in the search space.

However, our proposed method involves an intelligent search

procedure that searches only parts of the feasible set that

contain the optimal solution thereby reducing the computa-

tional complexity of our proposed algorithm. Having said

that, the brute force search method is not recommended for

implementation in a system setting with more than 6 UEs.

V. CONCLUSION

In this paper, we have shown that B&B method can outper-

form popular methods using relaxed convex-optimization for

finding the optimal solution to non-convex NP-hard weighted

sum-rate problem in HetNet. B&B method involves searching

of a box interval to get the best feasible solution that maxi-

mizes the weighted sum-rate of the system; but this search is

not like the brute force search that brings a lot of computational

complexity. It is more of an intelligent search because only part

of the box that contain the optimal solution is searched, hence

reducing computational complexity. The search can be proved

to be global because the utility function which is maximized

is Lipschitz continuous and increasing over the box interval.

A function � : [a b] → ℝ is said to be lipschitz continuous

with lipschitz constant �� , if ∣�(r) − �(r̀)∣ ≤ �� ∣∣r − r̀∣∣1,
∀ r, r̀ ∈ [a b] and r ≥ r̀. The global optimal value is

guaranteed because ���� is nondecreasing in the box while

���� is non increasing in the box.
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