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Efficient value of information calculation using a non-parametric regression approach: 

an applied perspective 

Abstract 

Value of information (VOI) analysis provides an analytical framework to assess whether 

obtaining additional evidence is worthwhile to reduce decision uncertainty. The reporting of VOI 

measures, particularly, the expected value of perfect parameter information (EVPPI) and the 

expected value of sample information (EVSI), is limited because of the computational burden 

associated with typical two-level Monte Carlo-based solution. Recently, a non-parametric 

regression approach was proposed that allows the estimation of multi-parameter EVPPI and EVSI 

directly from a probabilistic sensitivity analysis sample. We used the regression approach to 

calculate EVPPI and EVSI in two models, and compared the results with the estimates obtained 

via standard Monte Carlo simulation. VOI values from the two approaches were very close; 

however, the regression method was faster. We conclude that the non-parametric regression-

based approach provides an efficient and easy-to-implement alternative for EVPPI and EVSI 

calculation in economic models. 
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1. Introduction 

Decision models are commonly used to evaluate the cost-effectiveness of health 

interventions. They are populated with input parameters estimated from various sources; 

however, the true values of these parameters are not known with certainty, which may result 

in suboptimal decisions.(1) The preferred approach to characterise decision uncertainty is to 

conduct probabilistic sensitivity analysis (PSA) whereby uncertainty is propagated in the 

model using Monte Carlo simulation.(2) Decision uncertainty is then presented as the 

probability that each intervention has the highest expected net benefit (i.e., benefits minus 

costs). Nevertheless, an important additional step is to know whether a decision can be made 

based on current evidence or if additional research is required. This can be informed using 

value of information (VOI) analysis.(3) Measures of VOI include (1) the expected value of 

perfect information (EVPI), which is the maximum value of additional information to resolve 

all uncertainty in the parameters; (2) the expected value of perfect parameter information 

(EVPPI), which is the value of resolving uncertainty in a given parameter or set of 

parameters; and (3) the expected value of sample information (EVSI), which estimates the 

value of a particular data collection exercise (e.g. a randomised controlled trial with some 

chosen sample size) in reducing decision uncertainty.(4)  

EVPI calculation is straightforward given the PSA; however, although this measure is 

necessary, it is not sufficient to inform decisions because it represents only an upper-bound of 

the value of additional research to resolve uncertainty.(3) Rather, it is important to know 

which parameters are contributing most to decision uncertainty, such that further research 

should focus on these. Here, the EVPPI for some parameter represents the value of 

eliminating uncertainty about that parameter, and therefore gives an upper-bound on the 

value of a study to inform that parameter. The EVSI meanwhile represents the value of a 
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given study design in reducing parameter uncertainty.(5) Comparing the EVSI with the 

expected cost of a research study establishes a sufficient condition to inform whether 

additional research is worthwhile. Unfortunately, the reporting of EVSI and EVPPI estimates 

in economic evaluations remains limited because of the perceived computational burden 

associated with these two measures.(6-8)  

The EVPPI for a single parameter or a group of parameters is typically calculated 

using a two-level nested Monte Carlo simulation approach. This requires sampling values of 

the parameter(s) of interest in an outer loop, and then conditional on each sampled parameter 

set, sampling from the joint conditional distribution of the remaining parameters in an inner 

loop. At each inner loop step the model is evaluated.(9, 10) For EVSI calculation, plausible 

sets of data from the proposed future study of a given sample size are simulated in an outer 

loop, and then conditional on each generated data set, the posterior distribution of the 

parameters is sampled in an inner loop. Again, the model is evaluated at each inner loop 

step.(11, 12) The repeated sampling and evaluation of the model within the inner loop is time 

consuming. Calculating EVSI values for a range of possible sample sizes could take days or 

even weeks depending on the complexity of the model.(12-14) Furthermore, it is often 

difficult to determine the number of simulations at each level to ensure adequate precision 

and to avoid the upward bias that results from the maximisation over sampled quantities that 

occurs within the outer loop of the simulation.(15) Finally, the presence of parameter 

correlation or non-conjugacy between prior parameter distributions and proposed data 

likelihoods makes EVSI calculation even more difficult.(11) Here, Markov Chain Monte 

Carlo simulation (or some similar approach) will be necessary.(6, 7) In some situations, most 

notably in multi-linear (i.e. sum-product type) models (e.g., decision tree) where the net 

benefit is a linear function of the cost and effect parameters, or when the incremental net 
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benefit is approximately normally distributed, one-level Monte Carlo simulation or analytical 

equations can be used.(11, 16, 17) However, there is a wide class of models for which these 

constraints do not apply.  

Methods for efficient EVPPI calculation of single parameters have been developed. 

These show promise, but do not extend to groups of parameters simultaneously.(18, 19) A 

method based on the numerical approximation of the posterior expected net benefit, 

conditional on sampled data, has been proposed as an efficient approach for EVSI 

calculation; however, it requires significant skills and effort to write the necessary computer 

code.(13, 20) Recently, Strong et al. have proposed a more straightforward non-parametric 

regression approach for calculating multi-parameter EVPPI and EVSI directly from a PSA 

sample.(9, 21) The method has the advantage in that the model does not need to be run as part 

of the EVPPI or EVSI algorithm. Nevertheless, there is a need to demonstrate the value of 

this method in real-world cases and to compare its performance with the standard approach of 

Monte Carlo simulation. 

    In this paper we apply the non-parametric regression method to calculate the EVPPI 

and the EVSI in two decision models for two healthcare interventions. In addition, we 

compare the results and computation time with the estimates obtained using Monte Carlo 

simulation.  

2. Methods 

2.1 The two economic models 

We conducted two cost-effectiveness analyses using two decision models constructed 

in TreeAge Pro (Version 2014 R1). The full details of the two models and analyses can be 

found elsewhere.(22, 23)  
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Model 1: Negative pressure wound therapy in caesarean section patients 

The first model was a decision tree for negative pressure wound therapy (NPWT) 

compared with hydrocolloid dressing in preventing surgical site infections following 

caesarean sections in high-risk (e.g., obese) women.(23) The modelled patients may develop 

surgical site infection which could be either superficial or deep. Patients could die or survive 

depending on the type of the infection developed (Appendix 1). To populate the model we 

systematically searched the literature and identified relevant evidence. Due to the scarcity of 

information on the effectiveness of NPWT in this setting, we combined the data on the 

relative effectiveness of the device from a pilot study (n=92) on obese women undergoing 

caesarean sections with the data from a trial (n=81) on NPWT in high-risk patients with 

various types of surgeries.(23) 

 
Model 2: Nutritional support for the prevention of pressure ulcers in hospitalized patients 

The second model was a six-health-state Markov cohort model for nutritional support 

compared with standard hospital diet in preventing pressure ulcers.(22) Model duration was 

one year with a one-day cycle length. Patients start the model with intact skin before they 

move sequentially between different stages of skin ulceration (i.e., closed wound to open 

wound).  Further, patients could either die of any cause, be discharged, or remain hospitalised 

(Appendix 1). We systematically searched and identified relevant evidence. We performed a 

meta-analysis of five trials (n=1,381) to estimate the relative effectiveness of nutritional 

support in preventing pressure ulcers compared with hospital diet.(22) 

 

The two models were probabilistic; input parameters were assigned probability 

distributions. In general, beta distributions for probabilities and utilities, gamma distributions 

for costs and disutilities, and lognormal distributions for relative risks.(22, 23) For the set of 
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unknown input parameters (ș), each model predicted the net benefit (NB) for each 

intervention (i), thus NB (i, ș) = willingness-to-pay* Effect (i, ș) – Cost (i, ș). The efficacy 

outcome in the two models was quality-adjusted life-years (QALYs) gained, and we set the 

willingness-to-pay threshold at $50,000/QALY. The preferred intervention would be the one 

with the maximum expected NB (maxi Eș NB (i, ș)). In each case, a PSA was performed 

using Monte Carlo simulation (10,000 iterations) to characterise decision uncertainty. 

2.2 Value of information calculation 

We calculated VOI measures using the standard Monte Carlo and the Strong et al. 

non-parametric regression approach for each of the two decision models. We also recorded, 

for each decision problem, the computation time for each VOI approach.  

Methods to calculate value of information measures using Monte Carlo simulations 

are described in detail elsewhere.(11, 24, 25) In summary, we started our analysis by 

calculating the EVPI, which is the difference between the expected NB of a decision with 

perfect information and the decision based on current information:(3) 

EVPI = Eș maxi NB (i, ș) - maxi Eș NB (i, ș)    Equation 1  

The EVPPI for the parameter(s) of interest șI is the difference between the expected NB 

with perfect information on these parameters, conditional on the complementary set of other 

parameters șC, and the expected NB with current information: (5, 25) 

ࡵࣂࡵࡼࡼࢂࡱ  ൌ ǡ࢏ሺ࡮ࡺሻࡵࣂȁ࡯ࣂሺࡱ ࢏࢞ࢇ࢓ࡵࣂࡱ  ǡࡵࣂ ሻ࡯ࣂ  െ ǡ࢏ሺ࡮ࡺࣂࡱ ࢏࢞ࢇ࢓  ሻ  Equation 2ࣂ
  

For the pressure ulcer Markov model, we performed two nested Monte Carlo simulation 

procedures with 1,000 simulations in each loop. We found this number of simulations 

sufficient for the estimates to converge.(25) We assumed the NPWT model is linear with no 
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correlation between input parameters, and therefore, a one-level simulation scheme was used 

in which we sampled from șI, but kept șC fixed at their prior mean.(25)  

The EVSI is the difference between the expected value of a decision made after 

collecting data (D) on the parameter(s) of interest and the expected NB with current 

information:(11) 

ࡵࡿࢂࡱ ൌ ǡ࢏ሺ࡮ࡺ ࡰ ȁࡵࣂǡ࡯ࣂࡱ ࢏࢞ࢇ࢓ࡰࡱ ǡࡵࣂ ሻ࡯ࣂ  െ ǡ࢏ሺ࡮ࡺࣂࡱ ࢏࢞ࢇ࢓   ሻ Equation 3ࣂ

We assumed the prior distribution and data were conjugate distributions, and thus, the 

posterior distribution was known in closed form.(11, 14) We conducted a two-level Monte 

Carlo simulation with 1,000 iterations in each of the inner and outer loops for the Markov 

pressure ulcer model.(11) For the NPWT decision tree, we avoided nested simulation in 

estimating the NBs by “plugging in” the prior means of șC and the posterior means of șI.(11) 

We repeated EVPPI and EVSI calculations for the two models using regression 

methods in R software as described by Strong et al. (9, 21) Using the PSA sample of 10,000 

iterations (K =10,000), we fitted a regression model for each decision option. After that we 

extracted the regression model fitted values denoted as ො݃൫݅ǡ  :ூ௞൯ and calculated EVPPI viaߠ

(9) 

ࡵࣂࡵࡼࡼࢂࡱ  ؆   ૚ࡷ σ ࢑ୀ૚ࡷ  ǡ࢏ෝ൫ࢍ ࢏࢞ࢇ࢓  ൯ࡵ࢑ࣂ െ ࢏࢞ࢇ࢓   ૚ࡷ σ ࢑ୀ૚ࡷ  ǡ࢏ෝ൫ࢍ  ࢑൯ Equation 4ࡵࣂ

To calculate EVSI, we generated data and calculated summary statistic Dk conditional on 

each sample ߠ୩୍ in the PSA. For the relative risk parameter for example, we calculated the 

summary statistics by generating a sample data of the probability of the event in the 

intervention group (ܲ௜௞) from a Binomial (ܲ ௜௞, n) and for the control group (௖ܲ௞) from a 

Binomial (ܲ ௖௞, n); thus, Dk = log (ܲ ௜௞ ௖ܲ௞Τ ሻǤ Then we fitted a regression model for each 
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decision option and extracted the regression model fitted values denoted as ො݃ሺ݅ǡ  ௞ሻ. EVSIܦ

was estimated via:(21)   ࡵࡿࢂࡱ ؆   ૚ࡷ σ ࢑ୀ૚ࡷ  ǡ࢏ෝ൫ࢍ ࢏࢞ࢇ࢓  ൯ࡵ࢑ࡰ െ ࢏࢞ࢇ࢓  ૚ࡷ σ ࢑ୀ૚ࡷ  ǡ࢏ෝ൫ࢍ  ࢑۷൯  Equation 5ࡰ

3. Results 

The incremental NB of NPWT was $70 with 65% probability being cost-effective. 

The per-person EVPI was $76. The parameter with the highest EVPPI was the relative risk of 

surgical site infection. The per-person EVPPI was estimated at $75 using Monte Carlo 

simulation, and $74 using non-parametric regression. The per-person EVSI for a future study 

to inform this parameter was $63 when calculated with Monte Carlo simulation compared 

with $61 using regression. The calculation time for the EVPPI and EVSI measure was short 

(around one minute) in both Monte Carlo simulation and non-parametric regression.  

For nutritional support intervention, the incremental NB was $675 indicating it is 

cost-effective. The probability this intervention is cost-effective was 85%, and the per-person 

EVPI was $33. The parameter with the highest per-person EVPPI value was the relative risk 

of pressure ulcer which had a value of $17 under both methods of computation. The per-

person EVSI of a study to inform this parameter was approximately $6 under both 

approaches. In terms of the computation time, non-parametric regression estimated EVPPI 

and EVSI values in less than one minute and in one step. For the Monte Carlo simulation, 

every EVPPI estimate took around four hours, and every EVSI value for a given sample size 

took around eight hours. Table 1 summarises the results and Figure 1 illustrates the EVSI 

curves from the two models. 

4. Discussion 

This study reports the first comparison of the non-parametric regression and Monte 
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Carlo methods for EVPPI and EVSI computation in real-life decision problems. The 

estimates from the two methods were close; however, VOI computation using regression 

methods was faster, particularly in the Markov model. The regression approach eliminated 

the need for two-level simulation in the Markov model. Further, we avoided the Bayesian 

updating step for EVSI calculation. This benefit of the regression method becomes very 

important in the computation of EVSI when the parameter prior is not conjugate to the data 

likelihood. 

The non-parametric regression method used in this paper represents a significant 

contribution in resolving the computational burden often perceived with EVPPI and EVSI 

calculation. The method provides a flexible approach to calculate VOI measures for models 

built in any software and of any complexity. The approach does not require knowledge of the 

statistics language R, or sophisticated programming ability. Although the R code is provided, 

the Sheffield Accelerated Value of Information (SAVI) online tool provides a free platform 

for VOI calculation.(26) It only requires that the PSA files be uploaded before VOI measures 

can be calculated and presented. We anticipate that the uptake of this efficient approach will 

increase as time passes. This will hopefully encourage more reporting of VOI estimates in 

economic evaluations and encourage a wider adoption of VOI analysis as a useful tool to 

inform funding decisions and to optimise research design and prioritisation. 

It is worth mentioning that another efficient approach has been recently proposed by 

Jalal and Kuntz for EVSI calculation from a PSA sample.(27) In their method, they use linear 

regression metamodeling with the assumption that the incremental NB is normally 

distributed.(27) Unfortunately, the normality assumption, and the assumption of linearity of 

the model could make it difficult to generalise this approach.(28) However, it would be 

interesting to see how the two regression approaches, and other efficient methods, compare 

http://savi.shef.ac.uk/SAVI
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using models of various types.  It would be useful also to compare the performance of these 

efficient methods with Monte Carlo simulation using more complex models such as those 

using microsimulation, or models with non-conjugate priors (e.g., Weibull distribution), or 

with correlated parameters.  

In conclusion, the non-parametric regression-based approach provides an efficient, 

flexible and easy-to-implement alternative for EVPPI and EVSI calculation in economic 

models. The approach should facilitate the wider incorporation of VOI analysis in decision 

frameworks.  
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Table 1: A comparison of value of information measures calculation using Monte Carlo 
simulation and non-prametric regression 
Intervention EVPPI in $  (SE) Approximate 

computation  

time 

EVSI in $  

(SE)c 

Approximate 

computation  

time 

Monte Carlo simulationa 

NPWT RR site infection:   

Other parameters: 

74.8 (1.6) 

3.0 (0.3) 

1 minute 

1 minute 

63.0 (1.3) 1 minute 

Nutritional 

support  

RR pressure ulcer: 

Other parameters:   

17.4 (2.2) 

8.9 (1.7) 

4 hours 

4 hours 

6.4 (0.7) 8 hours 

Non-parametric regressionb 

NPWT RR site infection:   

Other parameters: 

74.3 (0.6) 

5.8 (1.4) 

1 minute 

1 minute 

61.2 (0.8) 1 minute 

 

Nutritional 

support  

RR pressure ulcer: 

Other parameters:   

17.2 (1.0) 

9.4 (1.0) 

1 minute 

1 minute 

6.3 (0.8) 1 minute 

 
a Two-level Monte Carlo of 1,000 iterations each in the nutritional support model, and single level simulation of 
10,000 iterations in the NPWT model. 
b From a probabilistic sensitivity sample of 10,000 iterations. 
c For a sample size of 200 patients in the NPWT model and 1,200 patients in the nutritional support model. 
$ = Australian dollar; NPWT = negative pressure wound therapy; EVPI = expected value of perfect information; 
EVPPI = expected value of perfect parameter information; EVSI = expected value of sample information; RR = 
relative risk; SE = standard error. 
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EVSI = Expected value of sample information; MS = Monte Carlo simulation 
 

Figure 1: EVSI curves for the nutritional support model (A) and NPWT model (B) 

 


