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Abstract Multi-hazard risk assessment is a major con-

cern in risk analysis, but most approaches do not consider

all hazard interactions when calculating possible losses.

We address this problem by developing an improved

quantitative model—Model for multi-hazard Risk assess-

ment with a consideration of Hazard Interaction

(MmhRisk-HI). This model calculates the possible loss

caused by multiple hazards, with an explicit consideration

of interaction between those hazards. There are two main

components to the model. In the first, based on the hazard-

forming environment, relationships among hazards are

classified into four types for calculation of the exceedance

probability of multiple hazards occurrence. In the second, a

Bayesian network is used to calculate possible loss caused

by multiple hazards with different exceedance probabili-

ties. A multi-hazard risk map can then be drawn addressing

the probability of multi-hazard occurrence and corre-

sponding loss. This model was applied in northeast Zhe-

jiang, China and validated by comparison against an

observed multi-hazard sequence. The validation results

show that the model can more effectively represent the real

world, and that the modelled outputs, possible loss caused

by multiple hazards, are reliable. The outputs can addi-

tionally help to identify areas at greatest risk, and allows a

determination of the factors that contribute to that risk, and

hence the model can provide useful further information for

planners and decision-makers concerned with risk

mitigation.

Keywords Multi-hazard risk modelling � Hazard

interaction � Hazard-forming environment � Bayesian

network � Zhejiang

1 Introduction

Multi-hazard risk assessment (MHRA) is a major concern

in risk analysis and management (Carpignano et al. 2009;

Frigerio et al. 2012; Marulanda et al. 2013; Ming et al.

2015). MHRA is a relatively new field, with little MHRA

research conducted before 2000, although three recogniz-

able phases in MHRA development can be identified. Ini-

tially, research focused on multiple hazards affecting a

given area through the development of a synthetic indica-

tor. Examples included the Australian Geological Survey

Organisation Cities project (Granger and Trevor 2000), the

Natural Hazard Index for Mega-cities (Munich Re 2003),

the World Bank’s global Natural Disaster Hotspot analysis

(Dilley et al. 2005), European Spatial Planning and

Observation Network (ESPON’s) multi-hazard approach

for the enlarged European Union (Schmidt-Thomé 2006),

and the Calculation of the Total Place Vulnerability Index

for the State of South Carolina, USA (SCEMDOAG 2009).

These synthetic indicators are effective in comparing the

relative danger experienced by different areas, but give no

representation of the real risk situation in those areas—that

is, the approach is useful in assessing relative but not

absolute losses. To address this problem, research moved

from synthetic indicators to assessing integrated losses

caused by multiple natural hazards in a given region and

time period. This included HAZUS-MH software for Risk
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Assessment in the USA (FEMA 2004), the Regional

RiskScape project for New Zealand (Schmidt et al. 2011),

and the Central American Probabilistic Risk Assessment

Program for Latin America and the Caribbean Region

(Linares-Rivas 2012). However, this research still neglec-

ted hazard interaction, hence recently, more comprehensive

MHRA research was proposed to assess possible loss due

to multiple hazards with a consideration of domino effects

(Marzocchi et al. 2012, Eshrati et al. 2015). Nevertheless,

these studies, which typify a rather small body of MHRA

work, are incomplete. The interaction between different

natural hazards is complex and dynamic, and only

addressing domino effect hazard interaction is not enough

to cover all situations. For example, hazards can occur

independently without evident common cause, yet in close

proximity, spatially, temporally, or both, and thus interact

to elevate risk. Thus the incomplete consideration of pos-

sible hazard interactions represents a significant gap in

MHRA. This paper therefore aims to develop an improved

MHRA model, Model for multi-hazard Risk assessment

with a consideration of Hazard Interaction (MmhRisk-HI).

The model calculates the possible loss caused by multiple

hazards, with an explicit consideration of interaction

between different hazards.

2 Multi-hazard risk assessment

The MHRA process is based on that for single-hazard risk

assessment, with its main advance being that it puts dif-

ferent hazard types into a single system for joint evaluation

(Armonia 2006; Di Mauro et al. 2006; Marzocchi et al.

2009; Carpignano et al. 2009). MHRA is a relatively new

field, with no clear definition, but in principle, it takes into

account the characteristics (frequency, magnitude) of each

hazardous event, and their mutual interactions and inter-

relations (e.g. a hazard may occur repeatedly in time; dif-

ferent hazards may occur independently in the same place;

different hazards may occur dependently in the same place)

(Kappes et al. 2012; Marzocchi et al. 2012). The aim of

MHRA is to have a holistic view of the total effects or

impacts by assessing and mapping the expected social,

economic and/or environmental loss due to the occurrence

of all natural hazards in a given area (Dilley et al. 2005;

Armonia 2006; Kappes et al. 2012; Komendantova et al.

2014).

A conceptual model for multi-hazard risk assessment is

as shown in Fig. 1, based on the disaster formation process

(Burton et al. 1993; Shi 1996; Wisner et al. 2004). Natural

hazards are natural events that arise from a specific geo-

physical environment, accompanied by concentrations of

energy released to produce major threats to human life or

economic assets (McGuire et al. 2002; ISDR 2004). Space,

time, magnitude and frequency are the basic characteristics

of natural hazards (Alexander 1993; Smith 2000). The

hazard forming environment is the specific geophysical

environment that natural hazards arise from, including

environmental factors in the atmosphere, hydrosphere,

biosphere and lithosphere. These factors are the basic

conditions for the occurrence of hazards (Park 1994; Shi

1996; McGuire et al. 2002). Natural hazards are then

caused by the substantial departure of one or more envi-

ronmental factor from their mean values, either in a posi-

tive or negative direction. Thus flood can be induced when

precipitation is above the normal level, and drought when it

is below. Hence, the time, space, magnitude and frequency

of hazards are determined by the hazard-forming environ-

ment. Some hazards can occur in close proximity, spatially,

temporally, or both, in a specific hazard-forming environ-

ment. Exposure is defined as the number, type and/or

monetary value of elements that are under threat from

natural hazards (Alexander 2000; Blanchard 2005; Tong

et al. 2009). Vulnerability is broadly defined as the con-

ditions, determined by physical, social, economic, and

environmental factors, which determine the potential

damage following exposure to hazard (Pelling 2003;

Brooks 2003; Ge et al. 2013). The hazards’ interaction with

vulnerability and exposures can result in losses and impacts

of a human, material, economic and/or environmental

nature, losses that can be increased if one hazardous event

interacts with another (Gill and Malamud 2014). The

induced consequence also influences the stability of the

hazard-forming environment and the distribution of expo-

sures, whilst the influenced hazard-forming environment

has a chance of producing new hazards. This conceptual

model provides a theoretical basis for the improved MHRA

model (MmhRisk-HI) construction.

3 Model construction

3.1 Framework

The structure of the MmhRisk-HI model, with its’ explicit

consideration of interaction between different hazards, is

shown in Fig. 2. There are two main components. In the

first, the hazard-forming environment is used in hazard

identification and hazard interaction analysis to analyse the

relationship between hazards and to calculate the excee-

dance probability of multiple hazards occurrence. The

second component focuses on the calculation of the pos-

sible loss from multiple hazards with different exceedance

probabilities. The methods used for the exposure analysis

depends on the scale of the region addressed and the

assessment units. A Bayesian network (BN) is used to

measure the possible loss ratio (the ratio of total losses to
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the total value of the exposure) caused by multiples hazards

with different exceedance probabilities, considering the

relevant vulnerability indicators in the loss ratio assess-

ment. Finally, a multi-hazard risk map can be drawn

addressing the probability of multi-hazard occurrence and

corresponding loss.

3.2 Calculation of the exceedance probability

of multiple hazards

Natural hazards arise from specific hazard-forming envi-

ronments, with environmental factors in each environment

determining the preconditions for hazard occurrence. The

hazard-forming environment can therefore be used to

identify which natural hazards influence a given area. For

example, proximity to a crustal plate boundary is a pre-

condition for an earthquake. Substantial change in one

or more environmental factor in a hazard-forming

environment is the main reason that hazards are induced,

thus these factors can be taken as triggers for natural

hazards and used to analyse hazard interaction. Hazards are

thus classified, into four types, according to their trigger

factors (Liu et al. 2016), as follows.

3.2.1 Independent relationship

The Independent relationship is where there is no evident

common cause between two different hazards. This means

that changes in trigger factors which induce hazard A are

independent of those which induce hazard B. The rela-

tionship between these trigger factors and hazards can be

expressed by Eqs. (1) and (2), whereby changes in trigger

factors t1, t2… ti… tn are independent of changes in trigger

factors tn ? 1, tn ? 2…ts…tt. Therefore, the probability of

these two hazards occurring together can be calculated as

Eq. (3).

Fig. 1 Conceptual model for multi-hazard risk

Fig. 2 Framework of model for multi-hazard Risk assessment with a consideration of Hazard Interaction (MmhRisk-HI)
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f pt1 ; pt2 . . .pti . . .ptnð Þ ¼ p hAð Þ ð1Þ

f ptnþ1
; ptnþ2

. . .pts . . .ptt
� �

¼ p hBð Þ ð2Þ

P A \ Bð Þ ¼ p hAð Þ � p hBð Þ
¼ f ðpt1 ; pt2 . . .pti . . .ptnÞ � f ðptnþ1

; ptnþ2
. . .pts . . .pttÞ

ð3Þ

where f is the function used to calculate the probability of

the change in trigger factors within the brackets occurring

together, ti is the trigger factor i, i = 1, 2,…n, ts is the

trigger factor s, s = n ? 1, n ? 2,…t, hj is the hazard j,

j = A, B, pti is the probability of the change in trigger

factor i, pts is the probability of the change in trigger factor

s, and p(hj) is the probability of hazard j occurrence.

3.2.2 Mutex relationship

A Mutex relationship is where the changes in trigger fac-

tors which induce hazards A and B are mutually exclusive,

and so these hazards cannot occur together. The relation-

ship between the trigger factors and hazards can be

expressed as:

f ptiþ
� �

¼ p hAð Þ ð4Þ

f pti�ð Þ ¼ p hBð Þ ð5Þ

where f is the function, which is used to calculate the

probability of the change in trigger factors within the

brackets occurring together, ti is the trigger factor i, i = 1,

2,…n, ti? represents the trigger factor i departure in posi-

tive direction from its mean values, ti- represents the

trigger factor i departure in the negative direction from its

mean values, hj is the hazard j, j = A, B, pti is the proba-

bility of the change in trigger factor i, and p(hj) is the

probability of hazard j occurrence.

One trigger factor cannot move in two directions

simultaneously, hence, the probability of these two hazards

occurring together can be expressed as:

P A \ Bð Þ ¼ 0 ð6Þ

3.2.3 Parallel relationship

Changes in one or more trigger factor may induce more

than one hazard A1, A2…Am at the same time, that is, the

relationship of hazard A1, A2…Am is parallel. This rela-

tionship between trigger factors and hazards can be

expressed by Eq. (7), where hazards A1, A2…Am constitute

a hazard group, with all hazards induced by the same

trigger factor(s). Hence, the frequency and magnitude of

this hazard group are determined by changes in the trigger

factors, with the probability of the hazard group (hazard

A1, A2……Am) occurring expressed by Eq. (8).

f pt1 ; pt2 . . . pti . . .ptnð Þ ¼ p hA1
ð Þ

f pt1 ; pt2 . . .pti . . .ptnð Þ ¼ p hA2
ð Þ

. . .

f pt1 ; pt2 . . .pti . . .ptnð Þ ¼ p hAm
ð Þ

ð7Þ

P A1 \ A2 \ . . . \ Amð Þ ¼ f pt1 ; pt2 . . . pti . . .ptnð Þ ð8Þ

where f is the function, which is used to calculate the

probability of the change in trigger factors within the

brackets occurring together, ti is the trigger factor i, i = 1,

2,…n, hj is the hazard j, j = A1, A2,…Am, pti is the prob-

ability of the change in trigger factor i, and p(hj) is the

probability of hazard j occurrence.

3.2.4 Series relationship

In the series relationship, hazard A induces changes in

trigger factors, then the changes in these trigger factors

induce hazard B. Hazards A and B are in a series rela-

tionship, which can be expressed by Eq. (9). Changes in

trigger factors t1, t2…ti…tn induce hazard A, then hazard A

changes the trigger factors tn ? 1, tn ? 2…ts…tt, which then

induce hazard B. The probability of hazards A and B

occurring together can thus be expressed by Eq. (10).

f pt1 ; pt2 . . . pti . . .ptnð Þ ¼ p hAð Þ ! f ptnþ1
; ptnþ2

. . . pts . . .ptt
� �

¼ p hBð Þ
ð9Þ

P A \ Bð Þ ¼ p hAð Þ � p hBð Þ ¼ f ðpt1 ; pt2 . . .pti . . .ptnÞ
� f ðptnþ1

; ptnþ2
. . .pts . . .ptt pt1 ; pt2 . . .pti . . .ptnj Þ

ð10Þ

where f is the function, which is used to calculate the

probability of the change in trigger factors within the

brackets occurring together, ti is the trigger factor i, i = 1,

2,…n, ts is the trigger factor s, s = n ? 1, n ? 2,…t, hj is

the hazard j, j = A, B, pti is the probability of the change in

trigger factor i, pts is the probability of the change in trigger

factor s, and p(hj) is the probability of hazard j occurrence.

This classification of trigger factors is useful as it helps

ensure all possible relationships among hazards are consid-

ered. It fills a gap in current multi-hazard methods which to

date only consider domino effects, just one type of possible

hazard interaction. Based on the four part hazard interaction

classification above, the probability of multiple hazards of

different magnitudes occurring together can be calculated

based on changes in trigger factors, with the degree of change

representing the magnitude of hazards, and the probability of

change representing the probability of hazards. This can be

achieved using a mathematical statistics approach to define a

function that determines event magnitude and frequency. For

example, Grünthal et al. (2006) calculated exceedance

probability-mean wind speed curves for windstorm
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magnitude assessment using Schmidt and Gumbel distribu-

tions (Gumbel 1958).

3.3 Calculation of the possible loss caused

by multiple hazards

The second main component of the MmhRisk-HI model

focuses on the calculation of possible loss caused by

multiple hazards with different exceedance probabilities.

This requires exposure analysis, and loss ratio assessment.

3.3.1 Exposure analysis

Exposure analysis is used to determine the spatial distri-

bution of elements at risk (e.g. people, infrastructure). This

is usually achieved using analysis of data contained in

official statistical reports, or that obtained via on-site sur-

vey or remote sensing image. These data sources vary

considerably in their characteristics: on-site survey data

may be very detailed, but generally only exist on a very

local scale, as it is time and resource intensive to collect.

Conversely remotely sensed images provide wide area

coverage, but the raster format means that the information

conveyed is more limited in scope. Official statistics data,

based on government administrative units, represent a

common intermediate point, in terms of functional reso-

lution. The exposure analysis module selects from these

sources following a consideration of the study area size,

and the data available for that area.

3.3.2 Loss ratio assessment

The loss ratio assessment module is used to measure the

possible loss ratio for a given exposure, under conditions

caused by multiple hazards with different exceedance

probabilities, and then to determine how vulnerability-re-

lated indicators (physical, social, economic and/or envi-

ronmental factors) influence the possible loss ratio. A BN,

a probabilistic graphical model that encodes probabilistic

interdependencies among a set of random variables (Jensen

and Nielsen 2007), is used in this process. A BN is a good

method for modelling uncertainties and interactions

between related factors (Maldonado et al. 2015), and has

previously been applied in risk assessment of earthquake

(Bayraktarli et al. 2006), landslide (Straub 2005) and

flooding (Li et al. 2010). The two key steps in the BN,

discussed further below, are the construction of the BN

structure and estimating the conditional probabilities of

relationships within the network.

(1) Bayesian network structure

A BN is a complete model of the system of interest,

comprising component variables and the probabilistic

relationships between them. In this module, the BN mod-

elling framework is constructed according to domain

knowledge (e.g. Alexander 2000; Cutter et al. 2003; Vil-

lagran 2006; Schmidt-Thomé 2006). Figure 3 shows that

the loss ratio, which is assumed to be a parent node of

vulnerability and hazard related indicators, is the root node.

Trigger factors are then used to construct the set of hazard-

related indicators which represent the magnitude of mul-

tiple hazards. Indicators in economic, social, physical and

environmental domains represent the sets of vulnerability-

related indicators (Table 1).

Table 1 identifies some possible vulnerability-related

indicators, with further details given below:

• GDP/capita: high GDP/capita indicates more economic

activity is under threat of hazard events (Blaikie et al.

1994; Schmidt-Thomé 2006).

Fig. 3 Generic Bayesian network framework for loss ratio assessment
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• Income of residents: high income indicates residents

have more personal resources to absorb losses and

speed up recovery after a disaster (Hewitt 1997; Cutter

et al. 2003; SCEMDOAG 2009).

• Population density: high population density indicates

more population is under threat of hazard events

(Puente 1999; Pelling 2003).

• Gender ratio: females are often more vulnerable than

males as they tend to have more limited education,

lower income and family care responsibilities (Cutter

et al. 2003; SCEMDOAG 2009).

• Age structure: children and the elderly are more

vulnerable to hazard than young adults due to their

limited physical strength (Cutter et al. 2000; Ngo

2001).

• Telecommunication: high telecommunication capacity

supports fast and precise hazard information transmis-

sion, thus targeted measures can be adopted quickly

(Blaikie et al. 1994; Puente 1999).

• Transport route: good transport infrastructure makes it

easier to evacuate people and to distribute emergency

rescue and relief materials (Platt 1991; Villagran 2006).

• Medical condition: good medical services ensure

wounded people get fast and effective treatment after

a disaster, thus the recovery period can be shortened

(Morrow 1999; Cutter et al. 2003).

• Social dependency: people who are wholly dependent

on social services have very limited personal resources

to absorb losses, and require more support in the post-

disaster period, thus they are more vulnerable than the

employed (Cutter et al. 2003; SCEMDOAG 2009).

• Risk perception: this measures an individuals’ ability to

discern and understand the characteristics and severity

of risk from hazard events (Slovic 2000). Understand-

ing risk promotes taking effective measures to cope

with disaster, thus people with low risk perception are

inherently more vulnerable (Armas 2006; Smith 2013).

• Warning system: a disaster warning system gives early

warning to those at risk and promotes preparedness,

mitigating against disaster (Zschau and Küppers 2003).

• Institutional preparedness: this comprises regulations or

procedures (e.g. emergency response plan) developed

to mitigate against potential disasters (Haque 2000;

Schmidt-Thomé 2006).

• Educational achievement: higher education levels indi-

cate people can better understand information about

hazard events and take more effective measures to cope

with disaster (Cutter et al. 2003; SCEMDOAG 2009).

• Technical infrastructure: this indicates presence of

facilities needed to respond to hazard events (e.g. fire

trucks, steamboats, helicopters). Good technical infras-

tructure makes it possible to evacuate people and exert

more control during a disaster (Schmidt-Thomé 2006).

• Significant natural areas: these areas (e.g. national

parks) are considered more vulnerable as they are

unique and hard to recover (Schmidt-Thomé 2006).

• Fragmented natural areas: these are vulnerable because

nature in larger undisturbed areas recovers faster than

that in smaller areas (Schmidt-Thomé 2006).

In this framework, the indicators used to construct vul-

nerability-related indicators should be independent. To

check for this, factor analysis, a classical statistical method

to detect structure in the relationships between variables or

indicators, is applied (Russell 2002). Using SPSS statistics

software, principal component analysis (PCA) (Jolliffe

2002) is adopted to first make distinct the principal com-

ponent, and then the varimax rotation strategy (Osborne

2008) is used to calculate the factor loading in each prin-

cipal component. The factors (vulnerability-related indi-

cators) having the highest loading in each principal

component are then selected to construct the BN.

Next, trigger factors are chosen to construct the set of

hazard-related indicators which represent the magnitude of

multiple hazards. Hazard-related indicators for multiple

hazards with different relationships are shown in Fig. 4.

In Fig. 4a, hazards A and B have an independent rela-

tionship. The changes in trigger factors t1, t2…ti…tn which

induce hazard A are independent of the changes in trigger

Table 1 Some possible vulnerability-related indicators

Domain Indicator

Economic GDP/capita

Income of residents

Social Population density

Gender ratio

Age structure

Telecommunication

Transport route

Medical condition

Social dependency

Risk perception

Warning systems

Institutional preparedness

Educational achievement

Physical Technical infrastructure

Environmental Significant natural areas

Fragmented natural areas

cFig. 4 Bayesian network frameworks for loss ratio assessment of

multiple hazards with different relationships a Independent relation-

ship, b Parallel relationship, c Series relationship
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factors tn ? 1, tn ? 2…ts…tt which induce hazard B. The

two trigger factor groups (t1, t2…ti…tn) and (tn ? 1,

tn ? 2…ts…tt) can be used to measure the frequency and

magnitude of hazard A and B respectively. Hence, the

trigger factor group (t1, t2…ti…tn) is chosen as the hazard-

related indicator to represent the magnitude of hazard A,

and the trigger factor group (tn ? 1, tn ? 2…ts…tt) is cho-

sen as the hazard-related indicator to represent the mag-

nitude of hazard B.

In Fig. 4b, hazards A1, A2…Am represent a parallel

relationship. Hazards A1, A2…Am are all induced by the

changes in the same trigger factors t1, t2…ti. The frequency

and magnitude of this hazard group (A1, A2…Am) are

determined by the changes in these trigger factors. Hence,

the trigger factor group (t1, t2…ti…tn) is chosen as the

hazard-related indicator to represent the magnitude of

group (A1, A2…Am).

In Fig. 4c, hazards A and B are in a series relationship.

The changes in trigger t1, t2… ti…tn induce the hazard A,

then hazard A cause the changes in trigger factors tn ? 1,

tn ? 2…ts…tt. The changes in trigger factors tn ? 1,

tn ? 2…ts…tt induce hazard B. Hence, the trigger factor

group (t1, t2…ti…tn) is chosen as the hazard-related

indicator to represent the magnitude of hazard A, and the

trigger factor group (tn ? 1, tn ? 2…ts…tt) is chosen as the

hazard-related indicator to represent the magnitude of

hazard B. The probability and degree of the changes in the

trigger factor group (tn ? 1, tn ? 2…ts…tt) are decided by

the magnitude of hazard A, that is, the changes in the

trigger factor group (t1, t2…ti…tn).

Hazards in a mutex relationship cannot occur together,

so the mutex relationship is not mentioned further.

(2) Determining the conditional probability

A conditional probability measures the probability of an

event given that another event has occurred. Once a BN

framework is constructed, the conditional probability of a

node given their parent nodes should be determined. The

conditional probability of a vulnerability-related indicator

or hazard-related indicator given a loss ratio is determined

in this module as:

p vkjjli
� �

ð11Þ

where li represent the i state of loss ratio l, i = 1, 2,…m, and

vkj represents the j state of a vulnerability-related indicator or

hazard-related indicator k, k = 1,2,…s, j = 1, 2,…n.

Fig. 4 continued
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There are three commonly used methods for estimation

of the conditional probability. When applied to a complete

observed data set, maximum-likelihood estimation (MLE),

a well-known statistics method is used to provide estimates

for the model’s parameters (the conditional probabilities)

(Redner and Walker 1984; Grossman and Domingos 2004;

Liu et al. 2015). If the model relies on incomplete observed

data, an expectation–maximization (EM) algorithm, an itera-

tive method for finding maximum likelihood estimates of

parameters (conditional probabilities) in statistical models, can

be used (Lauritzen 1995). When there is no observed data for

the model, the model’s parameters (conditional probabilities)

can be estimated according to domain knowledge (Heckerman

et al. 1995; Liao and Ji 2009). Hence, in this module, the

methods used for estimation of conditional probabilities are

determined according to the availability of observed data.

(3) Loss ratio calculation

In this step, given the above conditional probability, the

joint probability (Eq. 12) is used to estimate the posteriori

probability of the target loss ratio:

pðli; v1; v2; . . .vk. . .vsÞ ¼ pðliÞpðv1; v2; . . .vk. . .vsjliÞ

¼ pðliÞ
Ys

k¼1

pðvkjliÞ
ð12Þ

where li represents the i state of loss ratio l, and vk is the

vulnerability-related indicator or hazard-related indicator k,

k = 1,2,…s.

When the states of all vulnerability-related indicator and

hazard-related indicators are given as j, the probability of

loss ratio li occurring can be calculated based on the pos-

teriori probability of the target loss ratio:

PðliÞ ¼
pðli; v1j; v2j; . . .vkj. . .vsjÞ

Pm

i¼1

pðli; v1j; v2j; . . .vkj. . .vsjÞ
ð13Þ

where li represent the i state of loss ratio l, i = 1,2,…m, and

vkj represents the j state of vulnerability-related indicator or

hazard-related indicator k, k = 1,2, …s, j = 1, 2,…n.

The final loss ratio L, with given all vulnerability-related

indicator and hazard-related indicator states j, can then be

calculated as:

L ¼
Xm

i¼1

li � PðliÞ ð14Þ

where li is the i state loss ratio with given all vulnerability-

related indicator and hazard-related indicator states j,

i = 1,2,…m, and P(li) is the corresponding probability of

the target loss ratio li occurred.

The loss ratio with other states of vulnerability-related

and hazard-related indicator can be calculated in the same

way. This module can thus calculate the loss ratio induced

by multi-hazards of different degree (different states in

hazard-related indicators), whilst also addressing vulnera-

bility using vulnerability-related indicators from physical,

social, economic and environmental domains.

3.4 Multi-hazard risk assessment

At this point, and based on the hazard identification and

hazard interaction analysis modules, the exceedance

probability of multiple hazards can be determined. For any

given exceedance probability of multiple hazards, the

corresponding loss can be calculated by the value of

exposure (identified in the exposure module), and the

corresponding loss ratio induced by these hazards (mea-

sured in the loss ratio assessment module). With the help of

ArcGIS software, the possible loss caused by multi-hazard

with different exceedance probabilities in each spatial

assessment unit can then be mapped. These maps can be

used to identify high risk (large potential loss) areas. Fur-

thermore, this model can help to identify what underlies

these large losses. This is significant, as such information

supports, guides and targets the development of appropriate

loss prevention and risk mitigation measures.

4 Model application: a case study in northeast
Zhejiang

4.1 Study area and data

Northeast Zhejiang (Fig. 5), as part of the Yangtze River

Delta, is one of China’s main economic regions. This region

comprises seven prefecture-level cities in Zhejiang pro-

vinces (hereafter ‘‘city’’), and comprises 55 county level

cities and counties (hereafter ‘‘county’’). With both popu-

lation density and economic activity growing, this already

vulnerable region is increasingly at risk from natural disas-

ters (Liu et al. 2013). Northeast Zhejiang, facing the Pacific

to the east, is a typical floodplain with numerous rivers,

lakes and canals, and is highly prone to natural hazards. This

region is downstream of the Yangtze and Qiantang Rivers

and their many tributaries, with channel density[0.5 km of

river per km2, factors that make it liable to frequent flooding

(Li et al. 2013). The region is coastal and an oceanic land-

form between Eurasia and the Pacific, so is susceptible to

typhoons and storm surges. In addition, some hilly areas are

likely to be influenced by landslides. Hence, due to its

geographical location and topography, multiple hazards,

particularly typhoons, floods, landslides and storm surges

are evident in Northeast Zhejiang.

In addition, according to historical observations, being

struck by two consecutive typhoons (within 60 days) is the

most common multi-hazard scenario in Northeast Zhejiang.
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The first and second typhoons have an independent rela-

tionship, and these two typhoons could induce floods,

landslides and storm surges respectively. Typhoons, floods,

landslides and storm surges have a strong relationship with

each other in this multi-hazard scenario. Hence, Northeast

Zhejiang being struck by typhoons twice consecutively

(within 60 days) is a suitable case to show the application

of the proposed model.

Three types of data are needed to implement the pro-

posed model: environmental data, disaster data and

socioeconomic data. Environmental data mainly comprises

meteorological data, downloaded for 15 recording stations

(Fig. 5) in the region, with daily data from 1980 to 2013, a

suitably lengthy period for hazard-forming environment

analysis. Disaster data for this period, collected from the

Meteorological Department and the Civil Administration

Department in China, includes the disaster type, time,

place, and direct economic loss for each disaster in

Northeast Zhejiang. Socioeconomic data, derived from

statistics yearbooks (1980–2013) in each city includes

GDP, income (of rural and urban residents), population

density, gender ratio, age structure, telecommunication

infrastructure (number of mobile phone users, fixed line

phone users, and internet users), transport route (road

Fig. 5 Northeast Zhejiang, China
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length), medical service provision (number of medical

institutions, beds and medical personnel), and social

dependency (number of residents covered by subsistence

allowances, number of employed) in each county.

4.2 Exceedance probability for multiple hazards

from two consecutive typhoons in northeast

Zhejiang

Typhoons, floods, landslides and storm surges are the main

hazards in the region. In contrast to other hazards, typhoons

can move thousands of kilometres accompanied by strong

winds and heavy rain, and a series of hazards (strong

winds, floods, landslides and storm surges) induced by

changes in wind and rainfall are the reasons for losses in

the typhoon track (Lee et al. 2012; Smith 2013). Thus

typhoon is viewed as changes of wind speed and rainfall,

with these changes used as trigger factors to measure the

magnitude of the series of hazards in the track. Hence, the

relationships among multiple hazards of two consecutive

typhoons in northeast Zhejiang is shown by Fig. 6.

Both typhoons are viewed as the trigger factors, with

changes of wind speed and rainfall, which induce strong

winds, floods, landslides and storm surges. During each

typhoon, these four hazard types are in a parallel rela-

tionship and constitute a hazard group with each hazard

induced by common trigger factors (wind speed and rain-

fall). Hence, the frequency and magnitude of this hazard

group are determined by changes in wind speed and rain-

fall. The exceedance probability of this hazard group

(strong winds, floods, landslides and storm surges) occur-

ring with different magnitudes can be expressed as:

EP Hw \ Hf \ Hl \ Hs

� �
¼ EP wind speed; rainfallð Þ

ð15Þ

where Hw is strong wind, Hf is flood, Hl is landslide, Hs is

storm surge, and EP(wind speed, rainfall) is the excee-

dance probability of the corresponding maximum daily

rainfall and maximum daily wind speed sets during the

typhoon, calculated using the mathematical statistics

approach with maximum daily rainfall and maximum wind

speed during each historical typhoon.

According to the trigger factors for hazard occurrence,

two typhoons are in an independent relationship, so the

hazard groups A and B are also in an independent rela-

tionship. Hence, the exceedance probability for multiple

hazards of two consecutive typhoons can be calculated as:

EP MHð Þ ¼ EPf wind speed; rainfallð Þ
� EPs wind speed; rainfallð Þ ð16Þ

where EP(MH) is the exceedance probability for multiple

hazards of two consecutive typhoons, EPf(wind speed,

rainfall) is the exceedance probability of the corresponding

maximum daily rainfall and maximum daily wind speed

sets during the first typhoon, and EPs(wind speed, rainfall)

is the exceedance probability of the corresponding maxi-

mum daily rainfall and maximum daily wind speed sets

during the second typhoon.

In our analysis, we adopted the two dimension informa-

tion diffusion method (Huang 1997) to calculate the

exceedance probability of the corresponding maximum daily

rainfall and maximum daily wind speed sets. Within this

method, maximum daily wind speed and maximum daily

rainfall are viewed as two associated factors in one set, and

the coefficient of correlation between them is considered

during the diffusion. The results in 3 meteorological sites are

used as cases to be shown in Fig. 7. Then, a spatial inter-

polation technique is used to estimate the rainfall and wind

distribution in the whole region. The results, as distribution

of maximum daily rainfall and maximum wind speed with

different exceedance probabilities, are shown in Fig. 8.

4.3 Possible loss caused by multiple hazards

from two consecutive typhoons in northeast

Zhejiang

4.3.1 Exposure distribution in northeast Zhejiang

With respect to losses, our case study takes economic loss

as an example, with GDP selected as the exposure

Fig. 6 Relationships among multiple hazards of two consecutive typhoons in northeast Zhejiang
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indicator. The assessment unit in northeast Zhejiang is the

county level (government administrative division), so the

official statistics data analysis method is used. From these

statistics, GDP in each county was obtained, and mapped

using ArcGIS. Figure 9 shows that countries with higher

GDP in 2013 are mainly located in the north eastern part of

the region.

4.3.2 Loss ratio assessment in northeast Zhejiang

For northeast Zhejiang, the relevant vulnerability-related

indicators are selected as shown in Table 2. Among these

indicators, GDP per km2, population density and percent-

age of residents covered by subsistence allowances show

the same trend direction with vulnerability, that is, as the

value of these indicators increases, the value of vulnera-

bility increases. The other indicators show the opposite

directional trend with vulnerability. In order to unify the

directional trend of these indicators with vulnerability, the

reciprocal of the GDP per km2, population density, and

1-percentage of residents covered by subsistence allowan-

ces are used in Factor analysis. PCA is adopted to make

distinct the principal component. Table 3 shows eight

principal components selected based on the cumulative

variance, then a varimax rotation strategy is used to cal-

culate the factor loading in each principal component.

Variables with the highest loading in each principal

component (bold figures in Table 3), are selected as the

vulnerability-related indicators to construct the BN. These

were: the number of mobile phone users per 10,000 persons

(a proxy for income of residents, and telecommunication

condition), doctors per 10,000 persons (a proxy for hospital

beds and access to medical services), reciprocal of the

population density (a proxy for population density and road

length per 10,000 persons), reciprocal of the GDP per km2,

number of medical institutions per km2, percentage of

population age[15 and\65, and percentage of male res-

idents and percentage of employed.

Maximum daily rainfall and maximum daily wind speed in

each typhoon are selected as trigger factors to construct the

set of hazard-related indicators which represent the magni-

tudes of multiple hazards. The first and second typhoons have

an independent relationship, hence based on the hazard

interaction analysis (Sect. 4.2), the BN framework in north-

east Zhejiang can be constructed as shown in Fig. 10.

In our case study, the loss ratio is divided into six states,

the eight vulnerability-related indicators are each divided

into five states, and the hazard-related indicators (maxi-

mum daily rainfall and maximum daily wind speed sets)

are divided into eight states (Table 4). From the 1980–2012

historic disaster records, aggregate loss data from two

consecutive typhoons were collected, along with corre-

sponding data for vulnerability-related indicators (from the

relevant statistics yearbook) to construct a complete

Fig. 7 Exceedance probability distribution of rainfall and wind speed sets a Hangzhou, b Shengshan, c Yuhuan
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observed data set. Then maximum-likelihood estimation

(MLE) was then used to provide estimates of the condi-

tional probabilities (Grossman and Domingos 2004). With

these conditional probabilities, the loss ratio with different

states of vulnerability-related and hazard-related indicator

was calculated based on Eqs. 12–14. Taking the maximum

daily rainfall distribution and maximum wind speed dis-

tribution of the first typhoon with exceedance probability

of 10 %, and the second with exceedance probability of

5 % as example, the results are shown in Fig. 11.

4.4 Multi-hazard risk map in northeast Zhejiang

Taking northeast Zhejiang in 2013, influenced by consec-

utive typhoons (maximum daily rainfall distribution and

maximum wind speed distribution of the first typhoon with

exceedance probability of 10 %, and the second with

exceedance probability of 5 %) as an example, and

according to the hazard identification and interaction

analysis described above, the magnitudes of multiple haz-

ards can be expressed by the maximum daily rainfall dis-

tribution and maximum wind speed distribution (Fig. 8).

With these rainfall and wind speed distributions, the cor-

responding loss can be calculated by the exposure distri-

bution (Fig. 9) and corresponding loss ratio distribution

(Fig. 11). The final risk map is shown in Fig. 12.

This analysis shows that higher loss counties are mainly

in the south eastern part of the region, with Linhai, Tiantai,

Xianju, Sanmen and Jinzhou counties in the highest risk

area. Risk is determined by the magnitudes of multiple

Fig. 8 Distribution of maximum daily rainfall and maximum wind

speed with different exceedance probabilities a Maximum daily

rainfall distribution with exceedance probability of 5 %, b Maximum

wind speed distribution with exceedance probability of 5 %,

c Maximum daily rainfall distribution with exceedance probability

of 10 %, d Maximum wind speed distribution with exceedance

probability of 10 %
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hazards, vulnerability and value of exposure. Jinzhou is in

the highest risk area due to its highest exposure value. The

high risk at Linai, Tiantai, Xianju and Sanmen is due to the

interaction of the highest magnitudes of multiple hazards

and the highest vulnerability. Thus the relative importance

of factors that underlies observed high risk varies geo-

graphically. The model can be used to estimate the loss

distribution influenced by typhoon with other exceedance

probabilities, and also through other hazard combinations.

5 Model validation

Model validation is used to check how well the model

represents reality. In our example application, MmhRisk-

HI is applied to estimate potential loss caused by multiple

hazards in northeast Zhejiang. To test the effectiveness of

the model, the hazards that occurred in 2013 were simu-

lated, and calculated losses compared to observed losses. In

2013, northeast Zhejiang was influenced by typhoon Trami

(21st August) then typhoon Fitow (7th October). According

to the hazard identification and hazard interaction analysis,

the magnitudes of multiple hazards induced by typhoons in

northeast Zhejiang can be expressed by the maximum daily

rainfall and maximum wind speed. Data for these variables

was collected from 15 meteorological stations in northeast

Zhejiang. With these hazard-related indicators (maximum

daily rainfall and maximum wind speed) and vulnerability-

related indicators described, using data for 2013, the loss

ratio assessment module (based on historical data from

1980 to 2012) was used to estimate the probability of loss

ratio in each county induced by these typhoons Trami and

Fitow. The modelled and observed loss ratio in 55 counties

in northeast Zhejiang are shown in Table 5.

As shown in Table 5, among these 55 counties, the real

loss ratio in 42 counties (76.36 %) falls into the loss ratio

state (li) which has the highest estimated probability (bold

figures in Table 5). Taking Shangcheng as an example, the

real loss ratio in this county is 0.01 %, which falls into the

loss ratio state 2 (0 %\ l2\ 0.5 %). In the corresponding

estimated results, the estimated probability of l2 occurring

in Shangcheng is 98 %, which is the highest among all six

loss ratio states. In addition, the total estimated loss in these

55 counties is 51,893.39 million yuan compared to the

Fig. 9 GDP distribution in northeast Zhejiang in 2013
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Table 2 Vulnerability-related

indicators in northeast Zhejiang
Domain Indicator Indicator in northeast Zhejiang

Economic GDP/capita GDP per km2

Income of residents Income of urban residents

Social Income of rural residents

Population density Population density

Gender ratio Percentage of male residents

Age structure Percentage of population with age above 15 and under 65

Telecommunication Number of mobile phone users per 10,000 persons

Number of fixed line phone users per 10,000 persons

Number of internet users per 10,000 persons

Transport route Road length (km) per km2

Road length (km) per 10,000 persons

Medical condition Number of medical institutions per km2

Number of hospital beds per 10,000 persons

Number of doctors per 10,000 persons

Social dependency Percentage of employed

Percentage of residents covered by subsistence allowances

Risk perception –

Warning systems –

Institutional preparedness –

Educational achievement –

Physical Technical infrastructure –

Environmental Significant natural areas –

Fragmented natural areas –

– Represents the data is not available in these indicators. These indicators should be considered if such data

are available

Table 3 Factor loadings in each principal component in northeast Zhejiang

Vulnerability-related indicators Component

1 2 3 4 5 6 7 8

Reciprocal of the GDP per km2 -0.294 -0.151 0.137 -0.865 -0.072 0.121 0.158 -0.068

Income of urban residents 0.849 0.125 0.128 0.325 0.035 -0.243 -0.070 0.166

Income of rural residents 0.829 0.190 0.105 0.328 0.079 -0.213 -0.174 0.161

Reciprocal of the population density -0.146 -0.021 0.884 -0.303 -0.209 -0.036 0.110 -0.011

Percentage of male residents -0.270 -0.237 0.226 -0.212 -0.220 -0.018 0.815 -0.083

Percentage of population with age above 15 and under 65 -0.226 0.046 -0.002 -0.103 0.063 0.954 -0.001 -0.061

Number of mobile phone users per 10,000 persons 0.916 0.254 0.005 0.066 0.058 -0.081 -0.069 0.190

Number of fixed line phone users per 10,000 persons 0.851 0.263 0.099 0.177 0.056 -0.162 -0.191 0.182

Number of internet users per 10,000 persons 0.850 0.355 -0.086 -0.059 0.042 0.054 -0.113 0.150

Road length (km) per km2 0.793 -0.001 0.094 0.274 0.384 -0.002 0.023 0.079

Road length (km) per 10,000 persons 0.428 -0.010 0.859 0.164 0.036 0.029 0.079 0.011

Number of medical institutions per km2 0.128 0.211 -0.147 0.056 0.916 0.066 -0.155 0.005

Number of hospital beds per 10,000 persons 0.347 0.807 -0.066 0.057 0.220 -0.023 -0.189 0.015

Number of doctors per 10,000 persons 0.248 0.889 0.020 0.133 0.073 0.068 -0.066 0.082

Percentage of employed 0.485 0.093 -0.006 0.085 0.011 -0.085 -0.075 0.853

1-Percentage of residents not covered by subsistence allowances -0.692 -0.412 -0.051 0.048 0.018 0.145 0.391 -0.005

Cumulative variance (%) 49.4 63.1 72.0 77.8 82.8 86.6 89.7 92.8

Bold values represent the highest loading in each principal component
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actual loss of 50,485.43 million yuan; a deviation of esti-

mated from actual value of less than 2.79 %. Hence the

MmhRisk-HI model is shown to effectively represent the

real system, with estimated results reflecting the real loss

situation.

6 Conclusion and discussion

MmhRisk-HI fills a key research gap in existing MHRA

methods as it goes beyond the simple consideration of

multi-hazard interaction as domino effect, to calculate

possible loss with an explicit consideration of all possible

hazard relationships. In our case study example, whilst the

typhoons are independent, the short time period between

them means the area is more vulnerable as it has not

recovered immediately from the first typhoon. Previous

MHRA methods assume there is no change in vulnerabil-

ity, and so would calculate the loss in each typhoon indi-

vidually assuming the same vulnerability, then the

aggregates the losses. Thus such results cannot reflect the

real loss situation. In MmhRisk-HI, the loss ratio assess-

ment module addresses this issue by considering the

magnitudes of these two typhoons together in hazard-re-

lated indicators. These two typhoons are treated as a

multiple hazards group, and the relevant vulnerability-re-

lated indicators correspond to this group rather than a

single typhoon. Hence, the results obtained in the model

are more reliable.

Model validation is a highly desirable step in model

development, but a process that has previously proved

intractable in MHRA due to the nature of the existing

models. MmhRisk-HI can be validated through comparison

of modelled and observed data, with the model used to

simulate different multiple natural hazards scenarios and

estimate the corresponding loss. In the case study,

MmhRisk-HI was used to simulate consecutive events,

typhoons Trami and Fitow which struck northeast Zhejiang

within a few months in 2013. The simulated results were

then compared to the observed data, with good agreement.

The validation, although based on a necessarily limited set

of actual multi-hazard interaction, does indicate that

MmhRisk-HI can represent the real world risk situation

with greater confidence.

In conclusion, MmhRisk-HI provides more reliable

results (possible loss caused by multiple hazards) with an

explicit consideration of interaction between different

hazards, and can also be used to explore and better explain

what underpins large potential losses (high risk). Hence,

the model is a useful tool which can provide better infor-

mation in risk mitigation planning.

Further improvements to MmhRisk-HI are possible.

First, a change in one (or several) trigger factors may

induce more than one hazard at the same time. In

MmhRisk-HI, these hazards are treated as a multiple haz-

ards group, with all hazards in the group induced by the

same trigger factor(s). These trigger factors can be used as

hazard-related indicators to represent the intensity of this

hazard group in loss ratio assessment. In this way, the

results obtained in this model are more reliable. However,

these results cannot show how much loss is induced by

each single hazard in the hazard group. In reality, it is also

hard to distinguish how much loss is induced by each

single hazard. For example, during a typhoon, it is hard to

distinguish how much loss can be attributed to strong

winds and how much to floods. Indeed, in the historical

Fig. 10 The basic structure of Bayesian Networks for loss ratio assessment in northeast Zhejiang
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Table 4 Different states of factors in Bayesian network

Factor State

Number of mobile phone users per 10,000 persons (M) 1. M1\ 2500 phone users/10,000 persons

2. 2500 phone users/10,000 persons B M2\ 5000 phone users/10,000 persons

3. 5000 phone users/10,000 persons B M3\ 7500 phone users/10,000 persons

4. 7500 phone users/10,000 persons B M4\ 10,000 phone users/10,000 persons

5. M5 C 10,000 phone users/10,000 persons

Number of doctors per 10,000 persons (D) 1. D1\ 10 doctors/10,000 persons

2. 10 doctors/10,000 persons B D2\ 15 doctors/10,000 persons

3. 15 doctors/10,000 persons B D3\ 20 doctors/10,000 persons

4. 20 doctors/10,000 persons B D4\ 25 doctors/10,000 persons

5. Di C 25 doctors/10,000 persons

Reciprocal of the population density (Pd) 1. Pd1\ (1/1000) km2/persons

2. (1/1000) km2/persons B Pd2\ (1/750) km2/persons

3. (1/750) km2/persons B Pd3\ (1/500) km2/persons

4. (1/500) km2/persons B Pd4\ (1/250) km2/persons

5. Pd5 C (1/250) km2/persons

Reciprocal of the GDP per km2 (G) 1. G1\ (1/30) km2/million yuan

2. (1/30) km2/million yuan B G2\ (1/20) km2/million yuan

3. (1/20) km2/million yuan B G3\ (1/10) km2/million yuan

4. (1/10) km2/million yuan B G4\ (1/5) km2/million yuan

5. G5 C (1/5) km2/million yuan

Number of medical institutions per km2 (Mi) 1. Mi1\ 0.02 medical institutions/km2

2. 0.02 medical institutions/km2 B Mi2\ 0.03 medical institutions/km2

3. 0.03 medical institutions/km2 B Mi3\ 0.04 medical institutions/km2

4. 0.04 medical institutions/km2 B Mi4\ 0.05 medical institutions/km2

5. Mi5 C 0.05 medical institutions/km2

Percentage of population with age above 15

and under 65 (Pa)

1. Pa1\ 72 %

2. 72 % B Pa2\ 73.5 %

3. 73.5 % B Pa3\ 75 %

4. 75 % B Pa4\ 76.5 %

5. Pa5 C 76.5 %

Percentage of male residents (Ma) 1. Ma1\ 50 %

2. 50 % B Ma2\ 50.5 %

3. 50.5 % B Ma3\ 51 %

4. 51 % B Ma4\ 51.5 %

5. Ma5 C 51.5 %

Percentage of employed (E) 1. E1\ 50 %

2. 50 % B E2\ 60 %

3. 60 % B E3\ 70 %

4. 70 % B E4\ 80 %

5. E5 C 80 %

Maximum daily rainfall and maximum daily wind

speed sets in the first typhoon (WRf)

1. WRf1(W\ 10 m/s, R\ 50 mm)

2. WRf2(W\ 10 m/s, 50 mm B R)

3. WRf3(10 m/s B W\20 m/s, R\ 50 mm)

4. WRf4(10 m/s B W\20 m/s, 50 mm B R\150 mm)

5. WRf5(10 m/s B W\20 m/s, R C 150 mm)

6. WRf6(W C 20 m/s, R\ 50 mm)

7. WRf7(W C 20 m/s, 50 mm B R\150 mm)

8. WRf8(W C 20 m/s, R C 150 mm)
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Table 4 continued

Factor State

Maximum daily rainfall and maximum daily

wind speed sets in the second typhoon (WRs)

1. WRs1 (W\ 10 m/s, R\ 50 mm)

2. WRs2 (W\ 10 m/s, 50 mm B R)

3. WRs3 (10 m/s B W\20 m/s, R\ 50 mm)

4. WRs4 (10 m/s B W\20 m/s, 50 mm B R\150 mm)

5. WRs5 (10 m/s B W\20 m/s, R C 150 mm)

6. WRs6 (W C 20 m/s, R\ 50 mm)

7. WRs7 (W C 20 m/s, 50 mm B R\150 mm)

8. WRs8 (W C 20 m/s, R C 150 mm)

Loss ratio (l) 1. l1 = 0 %

2. 0 %\ l2\ 0.5 %

3. 0.5 % B l3\ 1 %

4. 1 % B l4\ 5 %

5. 5 % B l5\ 10 %

6. l6 C 10 %

Fig. 11 Loss ratio distribution influenced by two typhoons with exceedance probability of 10 % and exceedance probability of 5 %
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Fig. 12 Multi-hazard risk map for two consecutive typhoons with exceedance probability of 10 % and exceedance probability of 5 %

Table 5 The estimated results and observed real loss ratio

Estimated probability of loss ratio li occurring Real loss ratio

l1 = 0 % 0 %\ l2\ 0.5 % 0.5 % B l3\ 1 % 1 % B l4\ 5 % 5 % B l5\ 10 % l6 C 10 %

Shangcheng 1.62 98.00 0.31 0.07 0.00 0.00 0.01

Xiacheng 1.62 98.00 0.31 0.07 0.00 0.00 0.00

Jianggan 0.79 99.08 0.11 0.02 0.00 0.00 0.02

Gongshu 1.62 98.00 0.31 0.07 0.00 0.00 0.03

Xihu 1.62 98.00 0.31 0.07 0.00 0.00 0.28

Binjiang 1.46 97.80 0.53 0.21 0.00 0.00 0.00

Xiaoshan 0.61 99.27 0.10 0.02 0.00 0.00 0.49

Yuhang 1.03 98.61 0.28 0.08 0.00 0.00 0.49

Tonglu 10.07 86.07 1.56 2.29 0.00 0.00 0.16

Chun’an 93.64 4.78 0.74 0.41 0.02 0.41 0.00

Jiande 55.55 38.22 1.16 4.57 0.13 0.36 0.00

Fuyang 3.76 95.13 0.51 0.59 0.00 0.00 0.27

Lin’an 33.57 64.42 1.27 0.73 0.00 0.00 0.41

Haishu 0.75 98.82 0.36 0.06 0.00 0.00 1.06

Jiangdong 0.75 98.82 0.36 0.06 0.00 0.00 0.44

Jiangbei 0.00 0.00 0.00 99.57 0.43 0.00 4.04

Beicang 0.50 97.90 0.88 0.72 0.00 0.00 0.10

Zhenhai 1.10 98.49 0.29 0.11 0.00 0.00 0.33
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disaster record, only records of loss induced by the whole

typhoon are made, rather than for the constituent hazards.

Understanding the loss induced by each single hazard

could help decision-makers take more targeted mitigation

measures. Addressing this issue, without historical loss

data, will be challenging. Equally challenging will be the

inclusion of uncertainty quantifiers in the MmhRisk-HI

model. Uncertainty is inherent in natural disaster risk, and

needs to be better addressed for effective risk management,

yet uncertainty analysis in MHRA remains rare.
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Table 5 continued

Estimated probability of loss ratio li occurring Real loss ratio

l1 = 0 % 0 %\ l2\ 0.5 % 0.5 % B l3\ 1 % 1 % B l4\ 5 % 5 % B l5\ 10 % l6 C 10 %

Jinzhou 0.00 0.00 0.00 98.01 1.99 0.00 4.91

Yuyao 0.00 0.00 0.00 97.63 2.37 0.00 26.62

Cixi 0.00 0.00 0.00 98.56 1.44 0.00 1.96

Fenghua 0.00 0.00 0.00 99.77 0.23 0.00 6.76

Xiangshan 0.00 0.00 0.00 97.99 2.01 0.00 1.58

Ninghai 0.00 0.00 0.00 98.87 1.13 0.00 1.08

Nanhu 0.00 0.00 0.00 89.84 10.16 0.00 0.83

Xiuzhou 0.00 0.00 0.00 89.87 10.13 0.00 4.73

Pinghu 0.00 0.00 0.00 91.64 8.36 0.00 1.16

Haining 0.00 0.00 0.00 73.04 26.96 0.00 1.92

Tongxiang 0.00 0.00 0.00 90.58 9.42 0.00 1.37

Jiashan 0.00 0.00 0.00 90.58 9.42 0.00 2.28

Haiyan 0.00 0.00 0.00 97.56 2.44 0.00 5.63

Wuxing 4.66 94.92 0.37 0.04 0.00 0.00 0.66

Nanxun 0.00 0.00 0.00 98.75 1.25 0.00 1.50

Deqing 0.00 0.00 0.00 98.28 1.72 0.00 1.42

Changxing 0.00 0.00 0.00 99.07 0.93 0.00 1.07

Anji 0.00 0.00 0.00 93.37 6.63 0.00 7.54

Yuecheng 1.45 98.18 0.33 0.05 0.00 0.00 0.08

Shaoxing 0.00 0.00 0.00 96.16 3.84 0.00 0.55

Shangyu 0.00 0.00 0.00 92.00 8.00 0.00 2.75

Zhuji 7.03 89.86 1.44 1.67 0.00 0.00 0.02

Shengzhou 8.77 63.45 6.65 20.78 0.35 0.00 0.09

Xinchang 5.95 52.34 3.17 37.97 0.57 0.00 0.27

Dinghai 3.01 93.09 2.07 1.79 0.03 0.00 0.10

Putuo 4.08 94.02 1.43 0.46 0.01 0.00 0.18

Daishan 7.29 77.66 5.81 8.96 0.29 0.00 0.12

Shengsi 6.72 71.91 4.05 16.44 0.88 0.00 0.02

Jiaojiang 3.58 92.16 3.41 0.83 0.01 0.00 0.19

Huangyan 5.20 4.99 7.74 58.89 5.30 17.89 1.19

Luqiao 3.58 92.16 3.41 0.83 0.01 0.00 0.17

Wenling 8.42 60.32 5.23 25.13 0.90 0.00 0.21

Linhai 9.61 31.25 16.01 35.75 5.17 2.21 0.66

Yuhuan 3.74 69.94 1.98 13.96 10.38 0.00 0.95

Sanmen 0.00 0.00 0.00 54.90 4.99 40.11 1.89

Tiantai 3.81 3.97 13.91 65.10 3.52 9.70 0.90

Xianju 3.16 2.53 6.62 67.25 5.92 14.51 1.16

Bold values represent that the real loss ratio falls into the loss ratio state which has the highest estimated probability
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