promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in **Journal of Bacteriology**;

Figures and Supplementary Text

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/9826

Published paper

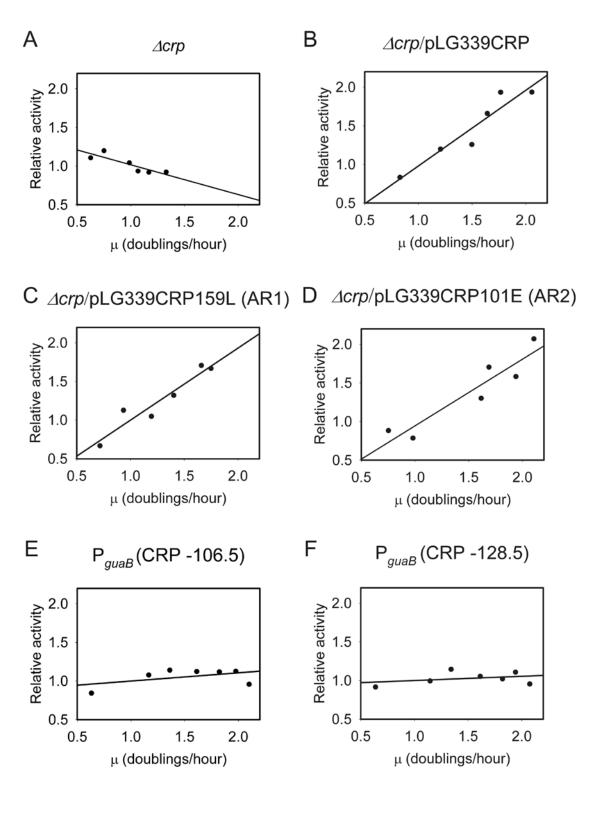
Husnain, S., Busby, S.J.W., Thomas, M.S. (2009) *Downregulation of the Escherichia coli guaB promoter by upstream-bound cyclic AMP receptor protein*, Journal of Bacteriology, 191 (19), pp. 6094-6104 http://dx.doi.org/10.1128/JB.00672-09

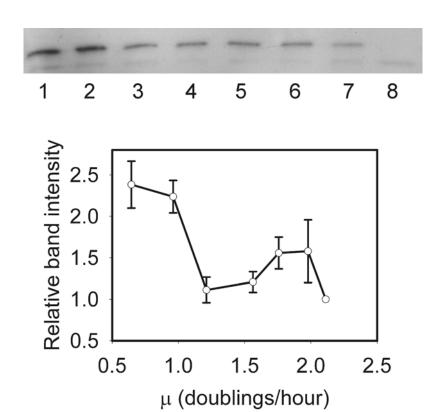
- Supplementary Figure 1. Involvement of CRP in GRDC of P_{guaB} . Data from
- 2 Figure 4 are replotted to show relative promoter activities. The β -galactosidase
- activity specified by each promoter was normalized to the β -galactosidase activity
- 4 corresponding to a growth rate of one doubling per hour. The β -galactosidase activity
- 5 specified by each promoter (in Miller units) at a growth rate of one doubling per hour
- 6 was as follows: Δ*crp*, 2763; Δ*crp*/pLG339CRP, 1425; Δ*crp*/pLG339CRP159L, 782;
- 7 Δ*crp*/pLG339CRP101E, 1333; P_{guaB} (CRP -106.5), 3091; P_{guaB} (CRP -128.5), 3035.

8

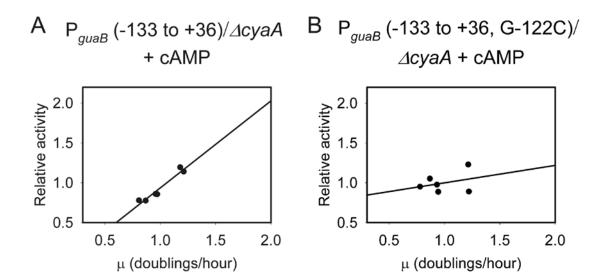
9

1

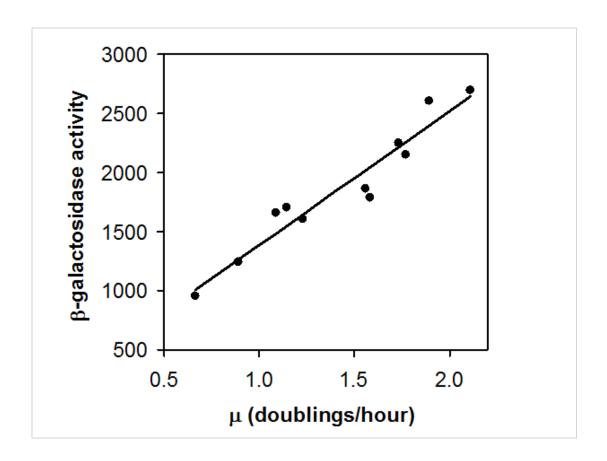

- Supplementary Figure 2. Effect of growth rate on the intracellular levels of CRP.
- 10 Strain VH1000G-133 was grown at different rates using 'standard media'. Cells were
- sonically disrupted, and 2.4 µg of total cell protein was used for SDS-PAGE and
- western blotting with polyclonal anti-CRP antibody. Samples were loaded in order of
- increasing growth rate, and are as follows: M9 minimal medium $+ 5 \mu g/ml$ thiamine
- and (1) glycerol, (2) succinate + 20 amino acids, (3) glycerol + 20 amino acids, (4)
- 15 glycerol + 1% (w/v) casamino acids, (5) glycerol + 2% (w/v) casamino acids, (6)
- glucose + 20 amino acids and (7) glucose + 0.8% (w/v) casamino acids. Lanes 8 was
- 17 loaded with a lysate isolated from strain VH1000G-133∆crp, grown in M9 minimal
- medium + $5 \mu g/ml$ thiamine and fructose. Carbon sources were included at a final
- 19 concentration of 0.4% (w/v), and 20 amino acids were each present at 20 μg/ml. In the
- 20 plot of CRP band intensity versus growth rate, the band intensity is expressed relative
- 21 to the intensity of the band corresponding to the highest cell growth rate (i.e., lane 7),
- which was assigned a value of 1.0. Each data point is the mean (with standard error)
- of data obtained from two independent experiments.


- 1 Supplementary Figure 3. Effect of exogenously added cAMP on GRDC of P_{guaB} .
- 2 Data from Figure 6B and 6D are replotted to show relative promoter activities. The β-
- 3 galactosidase activity specified by each promoter was normalized to the β -
- 4 galactosidase activity corresponding to a growth rate of one doubling per hour. The β-
- 5 galactosidase activity specified by each promoter (in Miller units) at a growth rate of
- one doubling per hour was as follows: P_{guaB} (-133 to +36)/ $\Delta cyaA$ + cAMP, 1537;
- 7 P_{guaB} (-133 to +36, G-122C)/ $\Delta cyaA$ +cAMP, 4617.

8


- 9 Supplementary Figure 4. Growth rate-dependent control of the *guaB* promoter.
- A strain harbouring a fusion of the wild type guaB promoter (P_{guaB} (-133 to +36)) to
- 11 lacZ was grown at different cellular growth rates in M9 minimal salts medium
- supplemented with the carbon sources listed in the accompanying table, whereupon
- the β -galactosidase activity was determined (expressed as Miller units). Each data
- point represents the mean promoter activity and mean growth rate, and was calculated
- using data obtained from at least three independent experiments. Media highlighted in
- 16 the same colour supports a similar growth rate and similar P_{guab} activity.

Supplementary Figure 1



Supplementary Figure 3

Supplementary Figure 4

Medium	doublings/hour	β-gal activity
glycerol	0.66	951.35
fructose	0.89	1242.23
succinate + 20 amino acids	1.09	1661.10
glucose	1.15	1707.78
glycerol + 20 amino acids	1.23	1608.60
fructose + 20 amino acids	1.56	1861.07
glycerol + 1% casamino acids	1.58	1789.46
fructose + 1% casamino acids	1.73	2250.17
glycerol + 2% casamino acids	1.77	2151.64
glucose + 20 amino acids	1.89	2603.39
glucose + 0.8% casamino acids	2.11	2696.15

Supplementary TABLE 1. Oligonucleotide primers used for promoter construction

Primer	Sequence (5' to 3') ^a	Promoter constructed ^b
Forward primer		
P_{guaB} -253	gcgc <u>GAATTC</u> AGCTGGTTGCGTGAAATTAGA	P_{guaB} (-253 to +36)
		P_{guaB} (-253 to +10)
P_{guaB} -133	gcgc <u>GAATTC</u> AGGTAACATGTGAGCGAG	P_{guaB} (-133 to +36)
P_{guaB} -133G7C	gcgc <u>GAATTC</u> AGGTAACATGTCAGCGAGATCAAATTCTAA	P_{guaB} (-133 to +36, G-122C)
P_{guaB} -133A18C	$\tt gcgc\underline{GAATTC}AGGTAACATGTGAGCGAGATCACATTCTAAATCAGCAG$	P_{guaB} (-133 to +36, A-111C)
P_{guaB} -117	gcgc <u>GAATTC</u> AGATCAAATTCTAAATCAGCAG	P_{guaB} (-117 to +36)
P_{guaB} -37	$\tt gcgc\underline{GAATTC}GACTGCAGTGGTACCTAGGAATGGTAGATGCAATCGGTTACG$	P_{guaB} (-37 to +36)
P _{guaB} -133CRPUP	${\tt gcgc} \underline{GAATTC} A CATGTGAGCGAGATCAAATTCAGAGACTGTTCTAAATCAGCAGGTTA$	P _{guaB} (CRP -128.5)
P _{guaB} -133CRPDN	$\tt gcgc\underline{GAATTC}AGGTAACAGACTGGCGACATGTGAGCGAGATCAAATTCGTTATTCAGTCGATA$	P _{guaB} (CRP -106.5)
	GTA	
Reverse primer		
$P_{guaB} + 10$	gcgc <u>AAGCTT</u> TAAATATTGCCGCGGCATTATA	P_{guaB} (253 to +10)
$P_{guaB} + 36$	gcgc <u>AAGCTT</u> GGCAATATCTCGACCAGAG	All remaining constructs
		with endpoints at +36.

^aRestriction sites for *Eco*RI and *Hin*dIII are underlined. Oligonucleotides also contain a GC clamp immediately preceding a restriction site at the

^{5&#}x27; end (shown in lower case).

^bRefer to Table 1 for information about promoters used in this work.