
This is a repository copy of Analysis of the shearing instability in nonlinear convection and 
magnetoconvection.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/982/

Article:

Rucklidge, A.M. and Matthews, P.C. (1996) Analysis of the shearing instability in nonlinear 
convection and magnetoconvection. Nonlinearity, 9 (2). pp. 311-351. ISSN 1361-6544 

https://doi.org/10.1088/0951-7715/9/2/003

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


   

 
 

White Rose Consortium ePrints Repository 
http://eprints.whiterose.ac.uk/ 

 
This is an author produced version of a paper published in Nonlinearity. This 
paper has been peer-reviewed but does not include final publisher proof-
corrections or journal pagination.  
 
 
White Rose Repository URL for this paper: 
http://eprints.whiterose.ac.uk/archive/00000982/ 
 

 
 
Citation for the published paper 
Rucklidge, A.M. and Matthews, P.C. (1996) Analysis of the shearing instability in 
nonlinear convection and magnetoconvection. Nonlinearity, 9 (2). pp. 311-351.
 
Citation for this paper 
To refer to the repository paper, the following format may be used: 
 
Rucklidge, A.M. and Matthews, P.C. (1996) Analysis of the shearing instability in 
nonlinear convection and magnetoconvection. Author manuscript available at: 
http://eprints.whiterose.ac.uk/archive/00000982/ [Accessed: date].  
Published in final edited form as:  
Rucklidge, A.M. and Matthews, P.C. (1996) Analysis of the shearing instability in 
nonlinear convection and magnetoconvection. Nonlinearity, 9 (2). pp. 311-351.   
 

 

White Rose Consortium ePrints Repository 
eprints@whiterose.ac.uk 

 



Nonlinearity � ������ �������	

Analysis of the shearing instability in nonlinear

convection andmagnetoconvection

A M Rucklidge and P C Matthewsx
Department of Applied Mathematics and Theoretical Physics

University of Cambridge
 Cambridge CB� �EW
 UK

Abstract� Numerical experiments on two�dimensional convection with or without
a vertical magnetic �eld reveal a bewildering variety of periodic and aperiodic
oscillations	 Steady rolls can develop a shearing instability
 in which rolls turning over
in one direction grow at the expense of rolls turning over in the other
 resulting in a
net shear across the layer	 As the temperature di
erence across the �uid is increased

two�dimensional pulsatingwaves occur
 in which the directionof shear alternates	 We
analyse the nonlinear dynamics of this behaviour by �rst constructing appropriate
low�order sets of ordinary di
erential equations
 which show the same behaviour
 and
then analysing the global bifurcations that lead to these oscillations by constructing
one�dimensional return maps	 We compare the behaviour of the partial di
erential
equations
 the models and the maps in systematic two�parameter studies of both the
magnetic and the non�magnetic cases
 emphasising how the symmetries of periodic
solutions change as a result of global bifurcations	 Much of the interesting behaviour
is associated with a discontinuous change in the leading direction of a �xed point at
a global bifurcation� this change occurs when the magnetic �eld is introduced	

Date� � February ����� revised �� November ����

�� Introduction

Over the past thirty years or more	 the shearing instability of convection rolls has
been discovered and rediscovered many times
 Most studies have focused either on the
linear behaviour at the onset of the instability	 or on the highly supercritical behaviour
in the turbulent regime
 In contrast	 we examine mildly nonlinear behaviour	 using
a combination of truncated ordinary di�erential equation �ODE
 models and one�
dimensional maps to explain the spatio�temporal transitions that we observe in
the partial di�erential equations �PDEs
 for two�dimensional ��D
 convection
 In
particular	 we examine the role of global bifurcations in determining whether or not
the direction of the shear changes over the course of unsteady behaviour
 An example
of such a reversing oscillation	 known as a pulsating wave �PW
 is shown in Figure �


Convection in a horizontal layer heated from below typically begins with a cellular
pattern �for example	 rolls	 squares or hexagons

 Rolls	 which are separated by
vertical planes of mirror symmetry	 may become unstable to a mode that breaks this
mirror symmetry and generates a net shear across the layer
 The physical mechanism
behind this instability is well understood� suppose a pair of rolls initially with vertical

x Present address� Department of Theoretical Mechanics
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Figure �� A pulsating wave �PW� in convection in a vertical magnetic �eld �from
Matthews et al ����
 with permission�	 The spacing between the streamlines is
uniform and is the same in each frame	 The zero streamline is dotted and negative
streamlines are dashed	 The parameters �de�ned in sections � and �� are � � ���

� � ���
 L � �����
 Q � ���� �q � ����� and R � ����� �r � �����	 The pulsating
wave is shown at times t � ��������������������������P 
 where P is the period of
the oscillation� after half a period
 the direction of the streaming has reversed and
the system is in a state that is the mirror image of its initial condition	

rising and descending plumes tilts over	 say to the right
 The rising plume	 now moving
up and to the right	 will transport rightward momentum to the top of the layer	 while
the descending plume will transport leftward momentum to the bottom of the layer

This results in a horizontal streaming motion with a net shear across the layer	 which
may be enough to sustain the original tilt of the rolls
 Moreover	 the shear enhances
the clockwise roll and suppresses the anti�clockwise roll
 The instability is favoured if
the rolls are narrow because of the greater e�ect that tilting has on narrow rolls
 In a
�nite box	 the shear will drive a mean circulation on the scale of the width of the box	
while the convective rolls act on the scale of the depth of the box
 This mechanism	 in
which parallel vortices can drive a �ow on a scale larger than the vortices themselves	
is independent of the force that drives the vortices �buoyancy in this case
	 and so is
relevant to a variety of �uid mechanical problems	 as illustrated in an experiment by
Tabeling et al �����



Large�scale mean �ows are observed in a variety of astrophysical and geophysical
contexts	 and this shearing mechanism has been put forward as a way of driving these
�ows
 An example of a shear �ow being driven by the transport of momentumby tilted
convection is the di�erential rotation of the Sun �R�udiger ����

 A similar process may
drive the zonal �ows of Jupiter �Busse ����
 and Venus �Thompson ����

 Matthews
et al �����
 considered the onset of convection in an imposed oblique magnetic �eld
as a model of penumbral convection in a sunspot	 and discovered mean �ows driven
by tilted rolls
 Drake et al �����
 invoked this instability to explain shearing �ows
in the edge of Tokamak plasmas	 where vortices are driven by the curved magnetic
boundary
 The instability may be responsible for the breakup of narrow salt �ngers



in double�di�usive convection �Proctor � Hughes ����


Large�scale �ows and tilted rolls have been observed in laboratory experiments on

convection
 Willis � Deardor� �����
 reported rolls that oscillated between tilting to
the left and tilting to the right
 Krishnamurti � Howard �����
 observed large�scale
circulation in turbulent convection in an annulus	 in one direction at the top and in
the other at the bottom
 The presence of mean �ows in this and other experiments
on turbulent convection has been reviewed by Siggia �����



The full symmetry of convection in a �D periodic box is O��
� the system is
invariant under translations and re�ections in a vertical plane
 Rolls near the onset
of convection break the translational symmetry but are invariant under re�ections
in the vertical plane that separates them
 Such rolls will be referred to as steady
symmetric �SS
 convection
 There is a continuous family of rolls generated by the
broken translation symmetry SO��

 The residual mirror symmetry may be broken in
a pitchfork bifurcation	 leading to a steady shear across the layer and one roll growing
at the expense of the other �Proctor � Weiss ����

 In a strati�ed �uid	 the dominance
of one roll over the other means that the tilted rolls will travel steadily


However	 in an incompressible �uid �modelled using the Boussinesq approxima�
tion
 with the same boundary conditions at the top and bottom	 the equations have
an additional symmetry� re�ection in the horizontal mid�plane	 which implies that SS
rolls have point symmetry about their centres
 In this case	 the vertical mirror sym�
metry can be broken in two distinct types of pitchfork bifurcation
 First	 the mirror
symmetry can be broken while the point symmetry of the original rolls is preserved

Any motion in one direction at the top will be balanced by an equal and opposite
motion at the bottom	 so breaking the mirror symmetry will not lead to travelling
rolls but to steady tilted convection �STC

 Second	 both the mirror symmetry and
the point symmetry can be broken �but their product preserved
	 which leads to trav�
elling rolls
 We concentrate on the Boussinesq case in this paper and examine only
point�symmetric solutions with spatial periodicity imposed �as in	 for example	 Fig�
ure �

 In doing so	 we �x the phase of the rolls in the periodic box	 and only two
of the continuous family of SS rolls persist� those with clockwise rolls and those with
anti�clockwise rolls in the right half of the box
 The continuous translation symmetry
now reduces to discrete translations through half the period of the original rolls	 which
interchange clockwise and anti�clockwise rolls
 The product of this discrete transla�
tion symmetry with the original mirror symmetry results in a second mirror symmetry
in the vertical plane that bisects one of the rolls	 again interchanging clockwise and
anti�clockwise rolls
 Thus there are two mirror symmetries important in our problem
and the spatial symmetry group is D�	 the symmetry group of a rectangle
 The re�
�ections are both in vertical planes� re�ection in the plane that separates SS rolls and
leaves them unchanged	 and re�ection in the plane that bisects one of the rolls and
changes the direction of their circulation
 The �rst is important in compressible and
incompressible convection	 and the second is important in incompressible convection
with imposed point symmetry	 the case that we consider
 We discuss the relevance of
our results to convection in a compressible layer in the �nal section


The mirror symmetry that leaves SS rolls invariant may also be broken in a Hopf
bifurcation �Landsberg � Knobloch ����� Proctor � Weiss ����
	 which leads to
oscillations in which the direction of the shear alternates
 In the compressible case	
rolls will travel �rst in one direction and then back again as the direction in which the
dominant rolls are tilted changes� there is no net drift of the pattern over the whole
oscillation
 These oscillations have a spatio�temporal symmetry� they are invariant



under the advance of half a period in time followed by a re�ection in a vertical plane
�compare the �rst and last frames of Figure �
	 and have been termed direction�
reversing travelling waves �DRTW
 by Landsberg � Knobloch �����
	 pulsating waves
�PW
 by Proctor � Weiss �����
 and sloshing oscillations by Lantz �����
 in di�erent
contexts
 In the Boussinesq case	 the Hopf bifurcation	 like the pitchfork bifurcation	
can break the mirror symmetry in two distinct ways	 either preserving or breaking
the point symmetry of the rolls
 We use the term pulsating wave to describe a
point�symmetric oscillation	 in which the rolls do not travel �as in Figure �
	 and
direction�reversing travelling wave to describe an oscillation in which the rolls break
the point symmetry and do travel back and forth
 Prat et al �����
 have found
Hopf bifurcations to both PW and DRTW in the PDEs for �D Boussinesq convection
with no�slip boundary conditions	 indicating that the shearing instability is not an
artifact of the stress�free boundary conditions that we use
 As we are imposing point
symmetry	 we exclude the possibility of DRTW in this paper


Pulsating waves have been observed numerically in a number of two� and three�
dimensional incompressible and compressible convective systems	 with and without a
magnetic �eld	 and with a variety of boundary conditions
 They can arise in a Hopf
bifurcation from SS rolls	 as described above	 but they can also be created in a global
bifurcation �Rucklidge � Matthews ����� Matthews et al ����� Proctor et al ����


The pitchfork from SS to STC can be followed by a secondary Hopf bifurcation to
oscillatory tilted convection �OTC
	 in which the magnitude of the shear varies but
the direction does not change
 As parameters are varied	 this OTC periodic orbit grows
and may �along with its mirror image
 collide with the SS roll solution	 glue together
in a global bifurcation	 and create a PW periodic orbit
 In this gluing bifurcation	
there is a gain of symmetry� the PW oscillations have a spatio�temporal symmetry
that OTC lack
 In this paper	 we explore the di�erent types of global bifurcations
that arise in di�erent parameter regimes	 with and without a magnetic �eld	 in order
to study the symmetries of the di�erent types of periodic orbits that appear and to
elucidate the mechanisms that cause the direction of the shear to reverse


In order to study these global bifurcations in detail	 we construct truncations
of the PDEs	 in which the amplitudes of the most important modes are governed
by a low�order set of ODEs
 One advantage of this method is that the amount of
computation required is greatly reduced	 allowing a much more thorough investigation
of parameter space than would be possible by solving the PDEs
 Others have
pursued this approach to understanding the shearing instability
 The �rst to do so
were Howard � Krishnamurti �����
	 who truncated the non�magnetic Boussinesq
PDEs in the spirit of Lorenz �����
	 and found a variety of global bifurcations and
chaotic oscillations
 Hermiz et al �����
 improved the Howard � Krishnamurti �����

truncation by including an additional shearing mode
 Brummell � Julien �����

have extended the model to include modes that break the point symmetry
 Lantz
�����
 included a horizontal magnetic �eld and found PW created both in a Hopf
bifurcation and in a gluing bifurcation from OTC
 Here we consider the case of an
imposed vertical magnetic �eld	 in addition to clarifying the transitions that occur in
non�magnetic convection


Since it is the behaviour of the PDEs that we are aiming to explain	 it is important
to understand how faithfully the behaviour of a truncated set of ODEs represents that
of the PDEs
 Close to the onset of convection	 the amplitudes will be small and the
truncation will be reliable	 so it is desirable to �nd a small parameter that brings all the
interesting bifurcations close to the initial bifurcation to SS rolls
 Hughes � Proctor



�����
 introduced the limit of narrow rolls in a model of salt �ngers	 and Proctor �
Weiss �����
 and Rucklidge ������ ����
 used the same limit to construct model ODEs
that gave asymptotically correct solutions to sets of PDEs describing thermosolutal
convection and magnetoconvection	 close to the initial bifurcation
 We use the same
limit of narrow rolls and the limit of small Prandtl number	 and although we have
not demonstrated that the resulting model ODEs give asymptotically exact solutions
of the PDEs	 through a careful choice of parameter regimes	 we will show that the
ODE model is a useful guide to understanding the dynamics of the PDEs	 particularly
for narrow rolls and small � �as amplitudes are small and Rayleigh numbers close
to critical
	 and near global bifurcations
 The reason that the model works well
near global bifurcations is that the dynamics of a system near a global bifurcation
is determined primarily by the symmetries of the system	 by the connections between
the �xed points and by the leading eigenvalues
 �The leading eigenvalues are those
that have real parts closest to zero

 Hence the dynamics of the ODE model and the
PDEs will be similar as long as the connections between the �xed points are the same
and the eigenvalues at those �xed points are ordered in the same way


Local bifurcations in systems with symmetry are well understood and equivariant
bifurcation theory successfully explains the many types of solutions that can occur
�Golubitsky et al ����� Crawford � Knobloch ����

 The theory of global bifurcations
in systems with symmetry is not so well developed
 Global bifurcations are often
associated with increases of symmetry �as in the gluing bifurcation mentioned above
	
even if the dynamics is chaotic �Dellnitz � Heinrich ����

 In this paper	 we show
how a heteroclinic gluing bifurcation	 which increases the symmetry of a periodic
orbit when there is no magnetic �eld	 can split �as soon as the magnetic �eld is
non�zero
 into a series of homoclinic and heteroclinic bifurcations some of which are
associated with changing symmetry	 rather than increasing or decreasing symmetry

This behaviour is associated with a discontinuous change in the leading stable direction
at the heteroclinic bifurcation
 We construct a one�dimensional map that captures the
behaviour of the ODE model and the PDEs and carry out a two�parameter study of its
behaviour
 This work is an important step in unravelling the role of global bifurcations
in the dynamics of systems with symmetry


Convection in three dimensions	 with the additional symmetry of exchanging the
two horizontal directions	 shows a more complicated form of the shearing instability
in which the alignment of the convection rolls and the shear �ow can alternate
 Such
alternating pulsating waves can arise in a Hopf bifurcation from square convection
�Rucklidge ����
� numerical examples are given by Matthews et al �����	 ����
 and
by Rucklidge � Matthews �����

 The analysis of the global bifurcations of shearing
behaviour in three�dimensional ��D
 convection will be considered in future papers

Here	 we restrict our attention to two dimensions because a study of the �D case is
a necessary prelude to understanding the �D problem	 and because the bifurcation
from �D to �D behaviour can take place at various points in the �D scenario
 In
particular	 all the �D behaviour we describe in this paper can occur in �D simulations
�Matthews et al �����
 have found PW in the �D PDEs
	 and even when the dynamics
is fully three dimensional	 the system may visit �D subspaces and be in�uenced by
the dynamics within those subspaces


In section �	 we present the PDEs for �D magnetoconvection and in section �
derive low�order models that describe the shearing oscillation in the presence of a
vertical magnetic �eld
 The notation we use to identify �xed points	 periodic orbits
and bifurcations is given in section �
 We discuss the non�magnetic case in section �



Table �� Symmetries of magnetoconvection �after Proctor � Weiss �����	 These
symmetries generate an eight�element group� the other elements are m� � ml

tm � mte
 tl � lte and tm� � m�te	

e� �x� z� t�� �x� z� t� ��� �� A�� ��� �� A�

m� �x� z� t�� ��x� z� t� ��� �� A�� ���� ���A�

l� �x� z� t�� �L� x� z� t� ��� �� A�� ��� �� A�

te� �x� z� t�� �x� z� t� �

�
P � ��� �� A�� ��� �� A�

and the magnetic case in section �	 addressing the question of the reversal of the shear
using the techniques of nonlinear dynamics	 and comparing the predictions of the low�
order models with solutions of the PDEs
 We discuss the relevance of our work to
other examples of the shearing instability in section �


�� PDEs for two�dimensional magnetoconvection

The PDEs for �D Boussinesq convection in a vertical magnetic �eld are�

��

�t
� J ��� �
 � �r�� � �R

��

�x
� ��Q

�
�r�A

�z
� J

�
A�r�A

��
� ��
�


��

�t
� J ��� �
 � r�� �

��

�x
� ��
�


�A

�t
� J ��� A
 � �r�A �

��

�z
� ��
�


where � � �r�� is the vorticity	 � is the streamfunction	 � is the deviation from
the conducting temperature pro�le	 A is the deviation of the �ux function from a
uniform vertical magnetic �eld	 and x	 z and t are the horizontal	 vertical and time
coordinates respectively �Knobloch et al ����

 The nonlinearities in the equations are
in the operator J�f� g
 � ��f��x
��g��z
���g��x
��f��z

 The physical parameters
are the Prandtl number � and magnetic di�usivity ratio �	 the Rayleigh number R
�proportional to the temperature di�erence across the layer
 and the Chandrasekhar
number Q �proportional to the square of the imposed magnetic �eld

 The boundary
conditions are chosen for mathematical convenience� � � � � � � �A��z � � on the
top and bottom walls �z � �� �

 We impose periodic horizontal boundary conditions
in a box of length �L and de�ne k	 the spatial wave number	 by k � 	�L
 The
equations have a trivial solution � � � � � � A � �


We will be dealing with point�symmetric solutions	 which do not drift	 so we need
consider only the discrete re�ection symmetries
 The symmetries relevant to this
problem �using the notation of Proctor � Weiss ����
 are given in Table �� these are
the identity e	 re�ections m and m� in the vertical planes x � � and x � �

�
L and

their product	 the translation l by a distance L
 The re�ection m leaves the SS rolls
unchanged
 Since we will be considering time�periodic solutions with period P 	 we also
require the symmetry te	 the advance of half a period in time
 Along with the products
of these elements	 they form the eight element group D� � Z�	 with each element its
own inverse
 The time advance symmetry operation arises naturally when considering
the e�ect of a spatial re�ection on a periodic orbit �Golubitsky et al ����
	 as there are
three possible outcomes when operating on a periodic orbit with a re�ection� either a



Table �� E
ect of the spatial symmetries on the mode amplitudes	

m� ����� ����������� � A���� ����� �������� ����� ��A���

l� ����� ������������ A���� ������ �������� �����A���

m�� ���� � ������� ����� A���� ����� � ��� ��������� ��A���

completely new periodic orbit	 or exactly the same periodic orbit	 or the same orbit but
shifted in phase by half a period �as re�ections are idempotent

 An orbit a�ected in
the last manner bym will be invariant under the spatio�temporal symmetry tm � mte

Fixed points and periodic orbits are characterised by the symmetry operations that
leave them invariant


�� Reduction to ODE models

We construct a low�order model by truncating the PDEs ��
�
���
�
	 extending the
treatment of Howard � Krishnamurti �����
 to the magnetic case
 Ordinary untilted
convection is represented by modes	 like � � sin kx sin	z	 whose amplitudes are
invariant under the symmetry m
 Horizontal shear is described by sin	z �invariant
under l
	 and nonlinear interactions between these two modes generate cos kx sin �	z
�invariant under m�
	 which gives the rolls a tilted appearance
 We therefore pose the
eleven�mode minimal truncation that imposes point symmetry�

� � ��� sin kx sin	z ���� sin	z � ��� cos kx sin �	z� ��
�


� � ��� cos kx sin	z � ��� sin �	z � ��� sin kx sin �	z� ��
�


A � A�� sin kx cos	z � A�� sin �kx

� A�� cos	z �A�� cos kx cos �	z � A�� cos kx� ��
�


where the mode amplitudes are functions only of time
 The subscripts refer to the x
and z spatial wave numbers
 The actions of the spatial symmetries on �ve of the mode
amplitudes are given in Table �
 Substituting the truncation into the PDEs yields an
eleventh�order set of ODEs�

���� � ��k������ �
�kR

k���
��� � ��Q	A�� �

k	

�k���
�k� � �	�
������

� ��Q
k	

�k���

�
��	� � �k�
A��A�� � ��	� � k�
A��A�� � �k� � �	�
A��A��

�
�

���� � k��� � k������ �
�
�k	 f������� � ������g �

�A�� � 	��� � �k���A�� � �
�k	 f����A�� � ���A�� ����A�� � ����A��g �

���� � ��	���� � �
�k	�������

�A�� � ���	�A�� �
�
�
k	 f���A�� � ����A��g �

���� � ��k������ �
�kR

k���
��� � ���Q	A�� �

k	

�k���
k������� ��
�


� ��Q
k	

�k���

�
k�A��A�� � ���k� � ��	�
A��A��

�
�

���� � �k��� � k������ � �
�k	�������



�A�� � �	��� � �k���A�� �
�
�k	 f���A�� � ���A�� � ����A��g �

�A�� � ��k�A�� �
�
�k	 f���A�� � ���A��g �

���� � ��	���� � ��Q	A�� �
�
�k	������ � ��Q�

�k	
�
A��A�� � �

�A��A��

�
�

�A�� � 	��� � �	�A�� �
�
�k	

�����A�� �
�
����A�� �

�
����A��

�
�

where k��n � k� � n�	�
 This system includes as subsystems the Lorenz �����

equations and the equations of Howard � Krishnamurti �����
 for convection without
a magnetic �eld� in addition	 the �fth�order truncated model of magnetoconvection
without shear of Knobloch et al �����
 is an m�invariant subsystem
 Lantz �����
 has
studied the analogous truncated model for sheared convection in a horizontal �eld


The number of parameters and equations is reduced by considering the limit of
narrow rolls� L � 	�k� � �Hughes � Proctor ����

 Taking this limit is justi�ed by
numerical experiments on the PDEs and the analysis of the stability of the unsheared
�xed point in ��
�
	 both of which show that the instability to shearing behaviour
occurs most readily in narrow rolls
 Indeed	 without a magnetic �eld	 we have shown
that the shearing instability from symmetric rolls will only occur in the PDEs with
L �
� �
�	 while convection sets in with L �

p
�
 Taking the limit L � � also has the

advantage of reducing the order of the model from eleven to �ve while retaining the
essential dynamics


The following scalings lead to an appropriate balance between the linear and
nonlinear terms�

��� � ��� � ��� � A�� � L� ��� � ��� � ��� � L�� A�� � A�� � A�� � L�
 ��
�


Time t and Chandrasekhar number Q are not scaled by any power of L
 We expand
R about RC	 the Rayleigh number at which the trivial solution �rst becomes unstable
to steady convection�

R � RC�� � L��
� where RC �
	��� � L�
�

L�
� 	��� � L�
Q
 ��
�


The parameter R �and equivalently �
 is the principal bifurcation parameter
 For
later convenience	 we de�ne alternate Rayleigh and Chandrasekhar numbers r and q
by the relations

R �
	��� � L�
�

L�
r and Q �

	��� � L�
�

L�
q
 ��
�


RC is minimised as a function of L when L� � �����q

 Thus with no magnetic �eld	
steady convection sets in �rst with L �

p
�	 when R � ��	���	 and strong magnetic

�elds leads to narrow rolls being preferred at the onset of convection

With the scalings in ��
�
	 the six variables ���	 A��	 ���	 A��	 A�� and A�� are

slaved to the other �ve variables
 Time	 the parameter � and the �ve variables are
rede�ned to give a tidier set of equations�

t� t��	�� �� ��� � �


�
�� ��� �

r
���� � �


�
���� ��� � �����

��� �
��� � �


�	
���� ��� �

r
���� � �


�
���� A�� �

�

�	
A���

��
�




Table �� Fixed points and their spatial symmetry groups	 The multiplicity of each
�xed point is indicated� angle brackets denote the group generated by the given
symmetry operations	

Fixed point De�ning equation Spatial symmetry group

Trivial ��� all modes � � D� � hm� li

SS ��� ��� � ��� � A�� � � Z� � hmi

STC ��� � �

this scaling yields the set of model equations �Rucklidge � Matthews ����
�

���� � ���� � ������ � �������

���� � ���� ���
���

���� � ����� ��������

���� � �
�

�
��� �

�Q

�	�
A�� �

��� � �


��
�������

�A�� �
�

�
��� �

�

�
A���

��
�


where � � ������� � �

 � �	 with � 
 �
 This system has an m�invariant subspace
���� � ��� � A�� � �
	 so untilted solutions are represented by ��� and ��� alone


The model can be simpli�ed further by considering the limit of small �
 If we
allow �	 � and � all to become small at the same rate	 the ��� mode will have a larger
decay rate than the other four modes and will be slaved to ���
 Making the following
additional scalings�

t � ���� ��� � A�� � �� ��� � ��� � �
�
� � ��� � ��� ��
��


de�ning �� � ��� and �� � ���	 and eliminating ��� by writing ��� � ���
���O��
	 we

obtain the equations of Hughes � Proctor �����
 extended to the magnetic case�

���� � ����� � ������ � ����
�� � O���
�

���� � �
�
�
� � ��

�
��� ������� �O��
�

���� � ��
���� �

Q

�	�
A�� �

�
������� �O��
�

�A�� �
��

�
��� �

��

�
A��


��
��


We have retained the O���
 term in the ���� equation since it provides an unsheared
�xed point� this �xed point goes to in�nity as � goes to zero �Moore �Weiss ����
	 but
still may in�uence the dynamics for non�zero � since m�invariant trajectories would
otherwise have unbounded growth of ���


�� Notation for �xed points� periodic orbits and bifurcations

One feature of this problem is the large number of �xed points and periodic orbits

Fixed points are summarised in Table �� the trivial solution has the full spatial
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Figure �� Periodic orbits and their spatio�temporal symmetries	 Phase portraits
have ��� �the roll amplitude� on the horizontal axis and ��� �the shear� on the
vertical axis	 The trivial
 SS and STC �xed points are indicated by crosses	 The
orbits and symmetries are� �a� OTC
 with no symmetries� �b� PW
 invariant
under tm� �c� PW�
 invariant under tm� � �d� HK
 invariant under tl� �e� AHK
 with
no symmetries� �f� �HK��
 invariant under tl	 Only one of several periodic orbits
that map to each other under the symmetry operators is shown in each case	

symmetry group	 steady symmetric �SS
 convection is invariant under the re�ection m	
and steady tilted convection �STC
 has no symmetry
 Periodic orbits are illustrated
in Figure �
 Oscillatory tilted convection �OTC
 has no symmetry	 but there are
three types of symmetric periodic orbit� pulsating waves of two types �PW and
PW�
 and orbits of the type described by Howard � Krishnamurti �����
	 which
we denote by HK
 Pulsating waves �Figure �
 have two rolls in the periodic box that
dominate alternately over the cycle	 while in PW�	 it is always the same roll that
dominates as the shear reverses
 In HK oscillations	 the rolls dominate alternately
but the shear does not reverse
 The pre�x letter A indicates a symmetry�broken
orbit �e
g
	 AHK in Figure �e
 and there are doubled orbits such as �HK
�	 and so
on
 Bifurcations �pitchfork	 symmetry�breaking	 period�doubling	 saddle�node and
homoclinic
 are abbreviated thus� pf	 sb	 pd	 sn and h	 and are pre�xed by the name
of the orbit involved	 so	 for example	 OTC�sn indicates a saddle�node bifurcation
involving OTC orbits


	� The non�magnetic shearing instability

Before launching in to a study of the full magnetic problem	 it is important to
understand the behaviour in the non�magnetic case	 so that we can determine how the
behaviour is in�uenced by the magnetic �eld	 and so that we can identify parameter



values where the non�magnetic behaviour is simple enough that it does not obscure the
magnetic e�ects
 Unfortunately	 if the aspect ratio L is set at the value that minimises
the critical Rayleigh number RC with no magnetic �eld �L �

p
�
	 then the instability

to �D shearing behaviour does not occur in the PDEs before other instabilities have
set in
 We therefore set L � �
�	 in anticipation of the preference for narrow rolls in
the presence of a magnetic �eld� all our calculations suggest that some narrowing of
the rolls is required for the shearing instabilities to take place


���� Overview of the simplest case

We begin with the analysis of the non�magnetic �Q � �
 version of the narrow�roll
�fth�order model ��
�
	 repeated here for convenience�

���� � ���� � ������ � �������

���� � ���� ���
���

���� � ����� ��������

���� � �
�

�
��� �

��� � �


��
������


��
�


The equations have an m�invariant subspace� ��� � ��� � �
 The trivial solution
has real eigenvalues ��	 ��	 �� and ��

��
	 and loses stability at � � � in a pitchfork
bifurcation to a pair of SS �xed points


For � � � � ������ � �
 �the upper limit is given by the restriction that � 
 �
	
the one�dimensional unstable manifold of the trivial solution provides a structurally
stable connection to the SS �xed points within the invariant subspace
 This implies
that a heteroclinic bifurcation involving the trivial and SS �xed points may occur
with codimension one
 Within the invariant subspace	 SS are attracting	 with stable
complex eigenvalues if � 
 �

� 
 The system breaks out of the invariant subspace in a
supercritical pitchfork bifurcation to form four STC �xed points when

� �
���

��� � �
�� � �� � ��


 ��
�


This expression for � translates to a prediction of r � � � ���L� for the location of
the pitchfork bifurcation from SS to STC in the PDEs	 in the limit of small Prandtl
number and roll width


The other way the system could break out of the invariant subspace would be in a
Hopf bifurcation from SS leading to pulsating waves	 but this does not occur in ��
�

for � 
 �
 This Hopf bifurcation occurs in the PDEs	 but only for � �

� �
� when
L � �
� �see below



The STC �xed points undergo a Hopf bifurcation to OTC �Figure �a
	 which collide
with the SS and trivial �xed points simultaneously �b
 and glue together� beyond this
heteroclinic bifurcation	 there are a pair of HK orbits �c

 These periodic orbits have
the symmetry tl �so symmetry is increased in this gluing bifurcation
	 and the sign of
the shear ��� does not change
 The remainder of this section is concerned with the
di�erent global bifurcations that may take the place of the simple heteroclinic gluing
bifurcation described here
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Figure �� The global bifurcation in ��	�� �no magnetic �eld�
 with � � ���	 The
four OTC periodic orbits in �a� � � ���� collide with the trivial and SS �xed points
near �b� � � ��������
 with two HK periodic orbits emerging in �c� � � ����	
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Figure �� The trajectory starts �on the left� near the origin on the plane �� 
 leaves
the box around the origin crossing ��
 continues to one of the SS �xed points
 enters
the box around that �xed point through ��
 leaves through ��
 then returns to ��	

���� Orbits and maps� real eigenvalues

Behaviour beyond the Hopf bifurcation must be determined numerically	 and global
bifurcations like the one illustrated in Figure � are best understood by constructing
Poincar�e maps
 Near global bifurcations	 trajectories spend most of their time near the
�xed points	 and move rapidly between them
 Using this separation of time�scales	
the �ow can be approximated by low�dimensional maps using standard techniques
�Guckenheimer � Holmes ����

 When � � �� at the bifurcation	 which is true in
the model ��
�
 when � �� �
��	 trajectories approach the origin tangent to the ����
axis
 We will show that this implies that non�reversing HK oscillations result after
the global bifurcation	 while for � �� �
��	 reversing oscillations are found


We consider a trajectory	 depicted in Figure �	 that starts near the origin on the
plane �� de�ned by j���j � h�	 where h� is a small positive constant� we follow
this trajectory as it passes the origin	 travels out to one of the two SS �xed points	
and returns to a neighbourhood of the origin	 hitting the plane �� once more
 Thus



the �ow de�nes a map from this plane back to itself
 This map may be calculated
approximately by considering small boxes around each of the �xed points� within these
boxes	 the �ow is approximately linear and is dominated by the eigenvalues of the �xed
points	 and between the boxes	 the �ow can be linearised about the one�dimensional
unstable manifolds of the �xed points


The OTC orbits collide with the trivial and the SS �xed points simultaneously
because the leading stable direction at SS is tangent to the structurally stable
heteroclinic connection from the trivial �xed point to SS within the m�invariant
subspace	 and almost all trajectories that hit SS must do so tangent to the leading
direction
 This forces the OTC periodic orbits to hit the invariant line that connects
the trivial and SS �xed points
 This situation holds in the model ��
�
 for all parameter
values of interest	 but we shall see below that either increasing � in the PDEs or adding
a magnetic �eld will allow a leading stable direction that is not in the m�invariant
subspace� in those cases	 periodic orbits need not collide with the trivial and SS �xed
points simultaneously	 and the global bifurcations will be quite di�erent


The construction of the map proceeds in the standard fashion	 but we will treat the
derivation in some detail as this is the simplest case considered in this paper
 We de�ne
four planar sections �� to �� �see Figure �
� �� �j���j � h�
 and �� �j���j � h�
 are
close to the trivial solution	 where the �ow is approximately

���� � �����
���� � ����� ���� � ������

���� � ��
�

���
 ��
�


By rescaling the variables	 we set h� � h� � � in the maps throughout
 The �ow
de�nes a map T� from �� to ���

T���
�
��� �

�
����

�
����

�
�� � ��
 � �sgn���

��
� �
�
��j��

��j������
��j��

��j�����j��
��j����
� ��
�


where we note that �� includes ��� positive and negative� we take ��� 
 � for the
moment
 The superscript � refers to the plane ��


We de�ne local coordinates �x� y� z� w
 around the SS �xed point �on the right in
Figure �
 such that in these coordinates	 the Jacobian matrix at SS is block diagonal

The coordinates x and y are in the m�invariant subspace	 while z and w are linear
combinations of ��� and ��� with the eigenvalue in the z direction positive and the
eigenvalue in the w direction negative
 We chose z such that z 
 � when ��� 
 �

The two remaining planes are �� �x � h�
 and �� �jzj � h�

 Again	 by rescaling	 we
may set h� � h� � �
 For now	 we consider only the case � � �

� 	 so the �ow near that
point is governed by

�x � ��� x� �y � ��� y� �z � ��z� �w � ��� w� ��
�


where the � s are the eigenvalues of the Jacobian	 with �� positive and the other three
negative
 We choose x and y such that ��� � ��� � �


The map T� from �� to �� is linearised about the unstable manifold of the origin	
which stays within the m�invariant subspace
 The symmetry with respect to changing
the signs of ��� and ��� �along with z and w
 simultaneously means that the most
general form of the linear map is

T���� �
�
����

�
����

�
��
 � ��� A� �A��

�
��� B��

�
�� �B��

�
��� C��

�
�� � C��

�
��

 ��
�




where A�	 A� etc
 are constants that depend on the �ow between �� and ��
 The
linear �ow near SS de�nes the map T� from �� to ���

T���� y�� z�� w�
 � �jz�j��
�

�
��� � y�jz�j��

�

�
��� � sgn�z�
� w�jz�j��

�

�
���

��
�


The trajectory can return to the neighbourhood of the trivial �xed point along either
branch of the unstable manifold of the SS �xed point	 depending on the sign of z�

We de�ne !� to be the branch of the unstable manifold of SS with ��� 
 � that
leaves the neighbourhood of that �xed point with ���	 or equivalently	 z	 positive

Similarly	 !

�
leaves with ��� negative� !

�
� m!�
 These two branches of the

unstable manifold of SS !� leave the neighbourhood of SS with z � �� and intersect
the plane �� at ���� �������
	 where � and � are constants that depend on the
global �ow
 The heteroclinic bifurcation occurs when !� returns exactly to the trivial
�xed point	 entering its stable manifold� this occurs when � � �
 Thus � in the map
controls the proximity to the heteroclinic bifurcation and increases through zero as �
and r increase through the primary heteroclinic bifurcation
 The most general form
of the map linearized about the unstable manifold is

T��x�� y����� w�
 � ��� � E�x� � E�y� � E�w�� �� F�x� � F�y� � F�w��

� � �G�x� � G�y� � G�w����
�
��
�


where E� etc
 are constants

Composing these four maps results in a three�dimensional map T from the plane ��

back to itself	 which can be simpli�ed in several ways if the parameter values are such
that the system is close enough to the global bifurcation
 In this case	 the value
of ��� at the beginning of the cycle will be small� this small number is raised to three
di�erent powers in the map T� ��
�
	 and the term with the power closest to zero will
be largest after that map
 In the case of interest here	 the ��� term dominates	 since
�
�� � � � �	 so we need only retain that term in T� and T��

T���
�
��� �� ����
	 �sgn���

��
� �� ���j��
��j����
 ��
�


and

T���� �� ����
��
 	 ��� A�� B��

�
��� C��

�
��

 ��
��


Here	 � indicates that the value does not matter	 near enough to the global bifurcation

Similarly	 the x term dominates the y term near SS� in addition	 for parameter values
of interest at the moment	 it dominates the w term	 so T� and T� can be simpli�ed to

T���� �� z�� �
 	 �jz�j��
�

�
��� � �� sgn�z�
� �
 ��
��


and

T��x�� ����� �
 	 ���� E�x�� �� ����

 ��
��


Under these circumstances	 the composed map T from �� back to itself simpli�es to

T ���
��� �� �� �
	

�
sgn���

��

���� Ej��

��j	T 	SS
�
� �� �� sgn�B�


�
� ��
��




where �T � ����	 �SS � ���� ��� and we have collected all constants together into one
parameter E and extended to the case of ��� negative
 Thus the essential dynamics
near the global bifurcation is governed by a one�dimensional map that we recognise
as the Lorenz map �see Sparrow ����
�

��� � f����
 � sgn����
��� � Ej���j	
� ��
��


where � � �T �SS 
 The behaviour of the shear variable ��� depends only on the sign
of the global parameter B�	 which must be positive when it is OTC periodic orbits
�which have shear in one direction only
 that are involved in the global bifurcation


To show rigorously that the map ��
��
 correctly captures the dynamics of the
�ow ��
�
 would require a proof of the existence of a strong stable foliation	 which

provides a new set of coordinates � "����
"����

"���
 of the plane �� that has the property

that lines of constant "��� are mapped to each other under the �ow
 We do not
undertake this proof� however	 numerical experiments show that in this system	 close
to the global bifurcation and close to the heteroclinic orbit �that is	 when � and ��

��

are small enough
	 the map ��
��
 is an excellent model of the �ow	 particularly so
when � is close to one
 To this end	 we return to the model ODEs ��
�
 and the PDEs
��
�
���
�
 to explore the parameter regime near the global bifurcation with � 	 �


���� Global bifurcations in the ODEs and PDEs

Global bifurcations in sets of ODEs can be continued numerically in two parameters
by following periodic orbits of very large period using the continuation package AUTO
�Doedel � Kern�evez ����

 A preferable method is to treat a homoclinic or heteroclinic
connection as a boundary value problem �Beyn ����� Champneys � Kuznetsov ����
�
Champneys kindly provided the code that allowed AUTO to continue homoclinic
and heteroclinic bifurcations in two parameters and to detect codimension�two global
bifurcations
 We have followed the primary heteroclinic bifurcation in the ODEs	
which was illustrated in Figure �	 to smaller � �see Figure �
� it begins with � 
 �	 but
crosses into region where � � � at a codimension�two point �labelled A in Figure �b

with ��� �
 	 ��
������ �
����

 With � 
 �	 the global bifurcation is a simple
gluing bifurcation	 converting OTC to HK periodic orbits	 but for � � �	 this gluing
bifurcation splits into an in�nite series of heteroclinic bifurcations	 with a narrow
wedge of attracting chaotic trajectories


This codimension�two point A in the ODEs corresponds in the map ��
��
 to the
point where there is a global bifurcation �� � �
 coincident with � � �
 The dynamics
of the map near this point is well understood �Glendinning ����	 ����

 Examples
of such points in other sets of ODEs have been studied �Lyubimov � Zaks �����
Shil nikov ����� Rucklidge ����
	 and Rucklidge �����
 has discussed an example of
such a point in the PDEs for �D magnetoconvection ��
�
���
�
	 but in a completely
di�erent parameter range from that under study here


The details of the dynamics near the codimension�two point depend on the
parameter E in the map ��
��

 When � 
� �	 ��� and � can be rescaled so that
E � �� �so only the sign of E matters
	 but the scaling is singular when � � �
 In
that case	 the actual value of E becomes important� there are critical values of E at
which the pattern of bifurcations near the codimension�two point changes �Lyubimov
� Zaks ����

 We have not estimated the value of E in the ODEs	 but the numerical
observation of the splitting of the gluing bifurcation into a wedge of chaotic trajectories
as � decreases through � is consistent with � � E � � �see Rucklidge ����
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Figure �� Partial unfolding diagram of the ODEs ��	��	 �a� The region � � � � ���
and � � � � ���	 �b� Detail of the region �shown as a dotted box in a� where
the gluing bifurcation crosses from � � � �above the broken line� to � 	 � �below
the broken line�	 The attracting solutions in each parameter region are labelled in
italics
 and the bifurcation lines are labelled in roman	 Two points where heteroclinic
bifurcations cross the line � � � are labelled A and B	 The thicker line �the lowest
line in a� indicates 
 � �
 the limit of validity of the ODE model	 Crosses in �a�
indicate parameter values illustrated in Figure � and Figure �	 A line of heteroclinic
connections of the Shil�nikov type �between pairs of STC �xed points
 which are
saddle�foci� is indicated	 The two dotted lines in �a� are the locations of HK�
symmetry�breaking bifurcations in the ODE model ��	��� �with Q � ��	

We have followed three of the bifurcations that emerge from the codimension�two
point in the ODEs� two heteroclinic bifurcations �Figure �
	 and a symmetry�breaking
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Figure �� Phase portraits of heteroclinic connections in the ODEs ��	�� at
the two heteroclinic bifurcations that were continued numerically	 �a� The OTC
heteroclinic bifurcation
 at ��� �� � ������������������ �b� the AHK heteroclinic
bifurcation
 at ��� �� � �����������������	 �c� the AHK heteroclinic bifurcation
 at
��� �� � �����������������������	

bifurcation at which the HK periodic orbit loses stability to a pair of asymmetric HK
�AHK
 orbits related to each other by tl �recall Figure �

 This last bifurcation is
subcritical when it begins at the codimension�two point	 so the AHK orbits formed
are unstable
 The line of heteroclinic bifurcations involving OTC orbits	 which is
labelled OTC�gluing when � 
 � and OTC�h when � � �	 continues to � � � � �	
whereas the lines of HK symmetry�breaking bifurcations �labelled HK�sb
 and AHK�
heteroclinic bifurcations �AHK�h
 both emerge from A	 then arch back until they
recross the broken line	 where � � �
 The AHK�heteroclinic bifurcation then turns
around again �outside the illustrated parameter range
 and approaches � � � � ��
the heteroclinic connection for this range of parameters is illustrated in Figure ��c



The value of � does not a�ect the symmetry�breaking bifurcation	 but the AHK�
heteroclinic bifurcation crosses the line � � � at a second codimension�two heteroclinic
bifurcation point	 which is labelled B in Figure ��b
� near this point	 the �ow is
modelled equally well by the map ��
��
	 though the T� map would include a more
elaborate itinerary �as in Figure �b

 Numerical exploration of the ODEs near the
AHK heteroclinic bifurcation with � 
 � reveals a cascade of symmetry�breaking
bifurcations	 interleaved with symmetry�restoring gluing bifurcations that produce
orbits like �HK
�
 The cascade accumulates in a chaotic attractor
 This gluing cascade
with � 
 �	 along with the observed presence of attracting chaotic trajectories near the
AHK heteroclinic bifurcation with � � �	 can be described by the Lorenz map ��
��

with � � E � � �Arn�eodo et al ����� Lyubimov � Zaks ����



To illustrate the e�ect of the OTC and AHK global bifurcations	 we take two cuts	
shown schematically in Figure �	 through the ODE ��� �
�plane
 Recall Figure � for
notation
 We choose two values of � with � 
 � and � � � at the global bifurcations
to demonstrate the possible patterns of behaviour
 Rather than show trajectories of
the ODE model ��
�
 to illustrate these bifurcation sequences	 we demonstrate that
the model provides a useful guide to understanding the sequence of bifurcations in the
PDEs by computing �rst the local bifurcations in the PDEs	 then a sequence of PDE
trajectories taken at two values of � with increasing r to explore global bifurcations

We choose a �xed small aspect ratio L � �
� �k � �	
	 so we do not expect quantitative
agreement between the PDEs and the ODE model	 which was derived in the limit of
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Figure 	� Schematic bifurcation diagrams of the ODES ��	��
 illustrating the
sequence of bifurcations that lead from the trivial solution to HK orbits� amplitude
plotted against the bifurcation parameter �	 Local bifurcations
 such as pitchfork
�pf� and Hopf bifurcations
 are indicated with closed circles
 while global �gluing

homoclinic or heteroclinic� bifurcations are indicated with open circles� bifurcations
are labelled in roman type	 Stable and unstable solutions are indicated by solid
and broken lines respectively and are labelled in italic type	 The diagrams are cuts
taken through Figure � with �a� � � ����� �� � �� and �b� � � ����� �� 	 ��

with � increasing	 In �a�
 there is a simple gluing bifurcation from OTC to HK at
� � �������� with � � ���� � �
 as in the case when � � ��� �Figure ��	 In �b�
 the
simple gluing bifurcationhas split into a chaotic wedge �attracting chaotic trajectories
exist for �������� � � ��������
 since � � ����	 �	 The unstable HK orbits created
in the heteroclinic bifurcation at � � ���������� gain stability at � � ������� in an
HK�symmetry�breaking bifurcation	

narrow rolls
 Nonetheless	 the qualitative agreement between the two �that is	 the
order of the bifurcations in the ODEs and PDEs as r increases
 turns out to be
remarkably good for small �	 considering how far this is from the narrow�roll limit

In comparing the ODEs and PDEs	 recall from ��
�
 that � is proportional to r � �


We have solved the PDEs ��
�
���
�
 using the spectral code of Rucklidge �����

extended to include modes that break the symmetrym along the lines of the expansion
given in ��
�
���
�

 We do not include modes that permit travelling waves	 so all
solutions presented here will be point�symmetric
 The code constructs a modestly
high order truncation of the PDEs using sines and cosines as basis functions
 Wave
numbers typically up to �� in the x and z directions were used� in the calculations
reported here	 the amplitudes of the highest�order modes did not exceed ���	 times
the amplitude of the primary mode
 The code also permits the direct numerical
determination of the eigenvalues of steady solutions


The locations of the local �pitchfork	 saddle�node and Hopf
 bifurcations from
the SS and STC �xed points in the non�magnetic PDEs with L � �
� are shown in
Figure �	 as a function of r and �
 The behaviour of the PDEs in the limit � � � is
captured correctly by the ODE model� the pitchfork bifurcation from SS to STC and
the Hopf bifurcation from STC to OTC have critical Rayleigh numbers that scale as
r � � � O���
� the integrations below will con�rm that the global bifurcations also
follow the behaviour of the ODE model
 Agreement between the PDEs and the ODE
model should be expected for small � as the secondary bifurcations occur soon after
convection sets in initially and the behaviour will be only weakly nonlinear


We have explored the global bifurcations in the PDEs in a series of calculations
taken with L � �
� and � � �
� and �
�	 shown in Figures ����
 These results
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Figure 
� Partial unfolding diagram for the non�magnetic PDEs� the locus of the
bifurcations from steady solutions as a function of r and �
 with L � ���	 Wave
numbers up to �� were included in these calculations	 The broken line indicates
which eigenvalues are dominant �closer to zero� at the origin� below the broken line

��� dominates and we expect HK oscillations after a global bifurcation� above the
broken line
 ��� dominates and we expect PW� oscillations after a global bifurcation	
The dotted line is the ODE prediction for the location of the pitchfork bifurcation
from SS to STC� r � �����L�	 Crosses indicate parameter values �some quite close
together� illustrated in Figures ����	
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Figure �� A sequence of phase portraits of the non�magneticPDEs
 withL � ��� and
� � ���
 showing how OTC orbits are converted to HK orbits in a global bifurcation

just as in the ODE model �see Figure � and Figure �a�	 �a� OTC� r � ������ �b� HK
just past the global bifurcation� r � �������� �c� HK� r � �����	 In �b�
 the relevant
ratio of eigenvalues is � � ����	 The trivial and SS �xed points are indicated by
crosses	

should be compared with the ODE behaviour in Figure �
 With � � �
�	 there is a
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Figure ��� A sequence of phase portraits of the non�magnetic PDEs
 with L � ���
and � � ���
 showing how the gluing bifurcation has split into a chaotic interval �see
Figure �b�	 �a� OTC� r � ������ �b� chaos� r � ������ �c� HK� r � ������ �d���f� are
time series corresponding to �a���c�	 In the chaotic interval �b�
 the relevant ratio of
eigenvalues is � � ����	

simple gluing bifurcation at r 	 �
����� �Figure �
� the value of � at these parameter
values is � 	 �
�� �greater than one	 so we do not expect	 and do not �nd	 chaotic
trajectories

 With � � �
�	 this gluing bifurcation has split into an interval of chaotic
trajectories �Figure ��
	 as predicted by the model ODEs ��
�

 The value of � at
r � �
��� is � 	 �
��	 less than one
 The time series in Figure ���d
��f
 correspond
to phase portraits in �a
��c
� the irregular changes of sign of ��� in Figure ���e
 are
the signature of Lorenz chaos
 In these oscillations	 the direction of the shear never
changes	 but there are chaotic switches between which of the two rolls in the periodic
box dominates
 Thus the value of � below which there is no simple gluing bifurcation
is between �
� and �
� in the PDEs� the ODE model predicts �
����	 so there is good
agreement between the PDEs and Figure ��a
 and �b



As the Rayleigh number is increased further	 we observe in the PDEs the
transitions to chaos predicted by the ODE model for larger r	 associated with the
point B in Figure ��b

 With � � �
�	 the HK periodic orbits are stable up
to r � �
�	 when there is a subcritical symmetry�breaking bifurcation	 and the
system immediately becomes chaotic	 and for higher �	 there are gluing cascades that
accumulate in chaotic oscillations


Clearly the correspondence between the full PDEs	 the ODE model and maps
derived near global bifurcations could be pursued further
 We limit ourselves to a
brief discussion of two further cases� smaller �	 where the dynamics is similar to that
discussed by Hughes � Proctor �����
	 and larger �	 when the �rst bifurcation from
SS in the PDEs is a Hopf bifurcation forming pulsating waves




���� Behaviour for smaller �

In the ODE model ��
��
	 which was derived from the PDEs in the limit of narrow
rolls and small �	 the linear growth and decay rates are controlled by the single
parameter �� � ��� when Q � �
 By considering thermosolutal convection	 which
has two additional parameters	 Hughes � Proctor �����
 derived a model with
independent linear growth and decay rates and considered the case when the growth
rate �� was very small and the two decay rates ���

� � �� and ��
� in this case
 were

almost equal
 The dynamics of their model was heavily in�uenced by the presence of
numerical noise� trajectories approached the m�invariant subspace to within round�o�
error	 so a small numerical error could push trajectories across the invariant subspace

Hughes � Proctor derived a multi�modal one�dimensional map that captured the
dynamics of the ODE model both in the presence and in the absence of noise
 Lythe
�����
 has shown that the same analysis can be carried through even if the decay rates
are not equal	 as is the case here


With � set equal to zero	 the cubic term in the ���� equation of ��
��
 vanishes	
and there are no SS �xed points
 This has the e�ect that noise�sensitive chaos sets
in as soon as �� is positive
 Including a �xed but small � restores the usual initial
sequence of bifurcations �pitchfork to SS	 pitchfork to STC then Hopf to OTC when
Q � �
	 but these happen almost immediately	 with �� � O���

 This asymptotic
behaviour is recovered in the PDEs �Figure �

 As �� increases	 there follows the
interval of noise�sensitive dynamics	 but once �� �

� O��
	 trajectories do not spend
time near the m�invariant subspace and the dynamics no longer depends on numerical
noise
 Subsequent behaviour seems to be independent of �	 so bifurcation values of
�� � ��� give the slope with which bifurcation lines approach ��� �
 � ��� �
 in the
unfolding of ��
�
 �Figure �

 We have solved the PDEs numerically only for � � �
�
and k � �		 and found that the amplitude of the ��� mode varies typically over eight
orders of magnitude � this range would be greater for smaller values of �


���� Behaviour for larger �

In the ODE model ��
�
	 the leading stable eigenvalues of SS are complex for � 
 �
� �

with � � �
� �Figure �
 the heteroclinic bifurcation occurs at � 	 �
��������
 It is
possible to derive a map for the case of complex eigenvalues at SS using the same
construction as was used above
 Starting on the plane �� with a given value of ���	
the trajectory returns to the same plane with a new value of ��� given by

��� � f����
 � sgn����
���� Ej���j	 cos�� � �i log j���j


 ��
��


Here � � �T �SS 	 where �SS is calculated using the real part of the leading stable
eigenvalue of SS	 �i � �T�i��

�	 where �i is the imaginary part of the stable eigenvalue	
and E and � are constants
 The same map arises in the context of homoclinic
connections from a single saddle�focus to itself �the Shil nikov scenario
� there is simple
behaviour �as in the case of real eigenvalues
 at the global bifurcation when � 
 � and
complicated behaviour �period�doubling cascades etc

 when � � � �Glendinning �
Sparrow ����� Glendinning ����

 The fact that we have a heteroclinic �rather than
homoclinic
 connection does not lead to any additional complications in this case

In the ODE model	 the transition from � 
 � to � � � at the global bifurcation
�with complex stable eigenvalues
 occurs at ��� �
 	 ��
��� �
��
	 and for � �

� �
��	 we
observe the expected period�doubling cascades and chaos
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Figure ��� A sequence of phase portraits of the non�magnetic PDEs
 with L � ���
and � � ����	 These integrations were done with wave numbers up to �� in each
direction	 �a� Pulsating waves at r � ���� were created in a Hopf bifurcation from SS
at r � �����	 �b� Pulsating waves are destroyedwhen they collide with the STC �xed
points around r � ����	 At this parameter value
 STC are saddle�foci with a single
real positive eigenvalue and complex leading stable eigenvalues	 The unsigned ratio
of the positive eigenvalue to the real part of the stable eigenvalues is ������	 �c� After
this global bifurcation �r � ����� there are chaotic oscillations in which the sign of
the shear does not change	

The derivations of the maps ��
��
 and ��
��
 above assume that the contraction in
the ��� direction is strong at the global bifurcation	 that is	 the ��� eigenvalue ��

��
dominates the ��� eigenvalue ��
 This condition holds in the ODEs ��
�
 at the
global bifurcation for � �� �
�� for these values of �	 it is ��� that does not change sign
in the periodic orbit created in the global bifurcation	 while ��� does change sign	
and an HK orbit is created in the global bifurcation
 The ����direction dominates for
larger �	 and it will be the shear ��� that changes sign after the global bifurcation

These oscillations with alternating shear are of the type PW�
 Thus we expect that
the PDEs will have HK oscillations	 without reversals of the shear	 whenever the shear
����
 eigenvalue dominates the tilt ����
 eigenvalue at the global bifurcation	 and that
this will occur for smallish �
 Conversely	 with larger �	 we expect that the PDEs will
have shear reversals beyond the global bifurcation
 The transition value of � in the
PDEs occurs when the eigenvalue of ��� in ��
�
 is equal to the leading eigenvalue
in the ����� ���
�plane	 shown as a broken line in Figure �
 Unfortunately	 matters
are more complicated in this range of �� not only has the leading direction at the
trivial solution changed	 but the OTC periodic orbits also approach the STC �xed
points	 which have complex unstable eigenvalues
 As a result	 we have not found a
clean transition from OTC to PW�	 though we do �nd reversals for � �� �


For even larger �	 the behaviour of the PDEs is more involved �Figure �

 The
pitchfork bifurcation from SS to STC becomes subcritical when � 	 � and emits
a line of STC�saddle�node bifurcations
 This line is tangent to the line of STC�
Hopf bifurcations when �r� �
 	 ��
�� �
�

 Numerical experiments suggest that
a line of bifurcations from OTC to unstable tori begins at this codimension�two
Bogdanov bifurcation	 which lies in a region where SS are stable
 The line of pitchfork
bifurcations from SS to STC intersects a line of Hopf bifurcations from SS to PW at
a Takens�Bogdanov bifurcation point with Z� symmetry at �r� �
 	 ���
�� �
��
� just
above this point	 the PW created in the Hopf bifurcation are destroyed in a heteroclinic
bifurcation with a pair of STC �xed points
 We do not pursue these calculations any



further	 other than to illustrate how	 with � � ��
�	 pulsating waves �Figure ��a
	
which were created in a Hopf bifurcation from SS at r � ��
��	 collide with STC
when �b
 r 	 ��
� and are replaced by large�amplitude chaotic oscillations �c
 in
which the shear does not change sign
 These last oscillations probably originated
in the interaction between the Hopf and saddle�node bifurcations from STC
 Prat et

al �����
 found the Hopf bifurcation to pulsating waves in the related problem of
�D convection between rigid �no�slip
 boundaries at the parameter values k � �		
� � ��
� and R � �
���� ��	 �r � ��
��




� The magnetic shearing instability

In the previous section	 we studied the global bifurcations in the non�magnetic PDEs
and ODE models
 Restoring the magnetic �eld makes matters more complicated as
the number of parameters increases by two �Q and �
 and the dimension of the ODE
models increases
 We focus on the e�ects of imposing a weak magnetic �eld
 Periodic
orbits will only be perturbed by the magnetic �eld	 but global bifurcations	 which are
structurally unstable	 can be radically altered
 We restrict ourselves to the value of �
that had the simplest sequence of bifurcations in the PDEs� with � � �
� and Q � �	
the eigenvalues of the trivial and SS �xed points are real and the eigenvalue ratio �
is greater than one at the primary gluing bifurcation at r � �
����� �Figure �

 We
analyse the ODEs �xing the same value of �	 and although the stable eigenvalues of
SS in the m�invariant subspace are complex at the heteroclinic bifurcation	 this does
not a�ect the ODE bifurcation structure as these eigenvalues are not leading� their
real part is greater in magnitude than the positive and negative eigenvalues out of the
m�invariant subspace
 We begin with a study of the e�ect of adding a magnetic �eld
on the map and ODE dynamics	 then move on to PDE calculations


	��� Eigenvalues of the trivial solution

The eigenvalues of the trivial solution of the ODE model ��
�
 are �	 ��	 �� and
�
� ���� � �
 � p��� � �
� � ���Q�	�


 The last pair of eigenvalues correspond to
the ����� A��
�plane	 and there three possibilities for them	 shown in Figure ��
 If
Q 
 	�����
�����	 then the two eigenvalues form a complex pair	 but with a smaller
magnetic �eld	 the eigenvalues are real and the behaviour of the system is governed
by which of the two is closer to zero
 The behaviour of these two eigenvalues in the
PDEs is identical


With small Q	 the two eigenvalues will be real and close to ��
�� and ��

��	 with
eigenvectors slightly rotated from the ��� and A�� axes
 We de�ne �� to be the
eigenvalue that is closer to ��

��	 and similarly �
 
 If � 
 � �region III	 Figure ��c
	
then ��� continues to dominate as in the non�magnetic case	 and the shear will not
reverse in the HK oscillations after the heteroclinic bifurcation


If � � � �region I in Figure ��
	 then the leading direction switches discontinuously
from the ����direction �Q � �
 to the A���direction �Q 
 �

 Moreover	 the leading
eigenvector is not quite in the A���direction	 so as a trajectory approaches the origin	
the shear ��� may change sign if the trajectory spends enough time in the box around
the origin	 as illustrated in Figure ���a

 The heteroclinic bifurcation occurs at � � �	
when !�	 the unstable manifold of the SS �xed point	 is within the stable manifold of
the origin
 As the system approaches the heteroclinic bifurcation	 !� will spend longer
and longer in the box around the origin	 and there must come a point when the shear
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Figure ��� The map T� in the parameter regions corresponding to Figure ���
�a� region I� real eigenvalues and � 	 �� �b� region II� complex eigenvalues�
�c� region III� real eigenvalues and � � �	 One half of the plane �� �shaded region
on the tops of the boxes� and the image this region under the symmetry m �on
the bottom of the box� not shown� are mapped to the plane �� �shaded regions
on the front of the box�	 Note how trajectories that begin with ��� � � can end
with ��� 	 � in �a� and �b�
 but not in �c�	

changes sign before it leaves the box
 At that point	 !� is in the stable manifold of SS	
so there will be a homoclinic bifurcation
 Similarly	 there is a parameter value after
the heteroclinic bifurcation at which !� enters the stable manifold of the opposite SS



�xed point

For larger Q or for � � � �region II in Figure ��
	 the eigenvalues of the origin

are complex
 As the system approaches the heteroclinic bifurcation at � � �	 the
shear will change sign an increasing number of times before !� leaves the box around
the origin �Figure ��b
� !� will �rst acquire a half�twist	 so the shear will change
sign once
 Closer to the heteroclinic bifurcation	 !� will acquire additional half�
twists	 and for each half twist there will be a parameter value at which there is a
homoclinic bifurcation	 with !� returning to the SS �xed point
 Thus we expect an
in�nite sequence of homoclinic bifurcations leading up to the heteroclinic bifurcation
at � � �
 After the heteroclinic bifurcation �� 
 �
	 there will be another in�nite
sequence of untwisting bifurcations	 with !� hitting the opposite SS �xed point
 In
the remainder of this section	 we discuss the implication of these additional global
bifurcations	 focusing on region I


	��� Local bifurcations

The ODEs have no local bifurcations in the two�dimensional m�invariant subspace
aside from the initial pitchfork bifurcation at � � �
 The pitchfork bifurcation STC
occurs at

� �
����Q� 	�


��� � �
��	��� � �
 � �Q� 	�
��

��
�


and there is also a Hopf bifurcation to pulsating waves	 which did not occur with no
magnetic �eld
 The pitchfork and the Hopf bifurcations coincide at a Z��symmetric
Takens�Bogdanov point when Q satis�es the quadratic equation

����Q� 	�
� � �	���� � � � ��
�Q� 	�
 � ��	��� � �
 � � ��
�


and � is given by ��
�

 In the ODEs ��
�
	 with the illustrative parameter values � �
�
� and � � �
�	 the two Takens�Bogdanov points occur with ���Q
 	 ��
����� �
���

and ��
����� ����
�

 We shall return to the Takens�Bogdanov point in our discussion
of the behaviour with larger magnetic �elds	 noting that for small Q	 the unstable
manifold of SS is one dimensional and that there is a structurally stable connection
from the origin to the SS �xed points


	��� The magnetic map

We construct a map for parameter values close to the non�magnetic heteroclinic
bifurcation and for small Q	 in order to examine the e�ect of adding a magnetic
�eld
 This construction follows the lines of those in the previous sections� we will
retain only ���	 ��� and A�� as the most important variables
 As we are aiming to
construct a one�dimensional map from �� back to itself �Figure �
	 we will assume
that	 with small Q	 the magnetic �eld variable A�� in�uences the dynamics only near
the origin	 providing the mechanism for the reversal of ���	 but otherwise it is slaved
to ���
 This implies that A�� takes on the same value �A�� � ��
 each time the
trajectory hits the plane �� ���� � �h�

 Then between �� and �� �j���j � h�
	 the
�ow is approximately

���� � �����
���� � ��

�
��� �

�Q

�	�
A���

�A�� �
�

�
��� �

�

�
A��� ��
�




de�ning a map T� from �� to ��
 The map T� is illustrated in Figure �� for the three
parameter regimes de�ned in Figure ��
 In region I	 with � � � and Q small	 the
eigenvalues are real and the magnetic �eld A�� decays most slowly	 and it is possible
for the shear variable ��� to change sign before emerging from the box
 A useful
approximate form of the map is

T���
�
��� �� �
 �

�
sgn���

��
� j��
��j	� � AQ�j��

��j	� � j��
��j	� 
� �j��

��j	�
�
� ��
�


where A is a constant	 �� � �����	 �
 � ��
�� and �	 assumed constant	 is the initial
value of A��
 The approximation was constructed by requiring that the resulting value
of ��

�� be a linear combination of two terms with decay rates �� and �
 having the

correct behaviour when Q � � and changing sign when ��
�� is small enough �provided

that �� � �
 � �

 The parameter A in ��
�
 could in principle be calculated
 We

have neglected terms that would a�ect the sign of the resulting magnetic �eld A�
�� on

the grounds that	 for small Q	 it is only ��� that matters

In region III	 ��� does not change sign	 and if we neglect terms in ��� that decay

with rate �
 	 we obtain the approximate map

T���
�
��� �� �
 �

�
sgn���

��
� j��
��j	� � �j��

��j	�
�

 ��
�


We have not included terms that in�uence the sign of A�
��


In region II	 the eigenvalues of the origin are � and �r � i�i	 and the map T� is

T���
�
��� �� �
 �

�
sgn���

��
� j��
��j	r cos

�
�
 � �i log j��

��j
�
�

j��
��j	r sin

�
�A � �i log j��

��j
��
�

��
�


where �r � ��r�� and �i � �i��	 and the two angles �
 and �A are constants

The other three maps T�	 T� and T� are the same for all three parameter regions


The T� map includes terms that mix ��� and A��	 introducing the possibility that ���

could change sign between �� and ��
 This mixing can be included in the constants
in regions I and II	 and the sign of ��� does not seem to change in region III	 so we
do not include such terms in T��

T�����
�
��� A

�
��
 � ��� z� � ��

��� w� � A�
��
� ��
�


where we have removed constant factors
 Between �� and �� near SS	 the �ow is
approximately

�x � ��� x� �z � ��z� �w � ��� w� ��
�


where x is in the m�invariant subspace
 We neglect the fact that SS has complex
stable eigenvalues in the m�invariant subspace in the ODEs� in this case	 ��� is the
real part of those eigenvalues
 The map T� is

T���� z�� w�
 � �jz�j	� � sgn�z�
� w�jz�j	�
� ��
�


where �� � ���� ��� and �� � ���� ���
 Finally	 the map T� returns to the plane ���

T��x����� w�
 � ��� �Ex� � FQw�������
� ��
��
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Figure ��� Examples of z����� ��	���
 the value of the shear variable on leaving
the neighbourhood of the origin
 in �a� region I
 �b� region II and �c� region III	
Illustrative values are used� �a� �� � ���
 �� � ��� and Q � ���� �b� �r � ���

�i � ��� and �� � �� �c� �� � ���	 The envelope of the oscillations is shown in �b�
by a dotted line	

where E and F are constants
 The factor Q is included here as with no magnetic �eld	
the value of w� �which is a magnetic �eld variable
 cannot in�uence the outcome of
the map
 Composing the four maps leads to a map T from �� back to itself
 We have
already dropped the variation in A��	 so the map T is a two�dimensional map�

T �������� � ��
 � �f����
���� sgn�z

� ��
��


where we have extended the map to include ��� � �	 and

f����
 � sgn����

���� Ejzj	� � FQ sgn�z
wjzj	�� 
 ��
��


The intermediate variables z and w are given by

z �

	
�

�
j���j	� � Q�j���j	� � j���j	�
 region I	

j���j	r cos ��
 � �i log j���j
 region II	

j���j	� region III	

��
��


and

w �

	
�

�
j���j	� region I	

j���j	r sin ��A � �i log j���j
 region II	

j���j	� region III


��
��


The map ��
��
 is strictly�speaking two dimensional	 but the ��� variable �which
represents the sign of the shear
 decouples so we can treat it as the one�dimensional
map ��
��

 A �xed point �with ��� � f����

 of ��
��
 corresponds to a �xed point
of ��
��
 when z����
 
 � and to a period�two point when z����
 � � as the shear
variable ��� changes sign on each iteration


	��� Global bifurcations in the ODEs and PDEs

In region III	 the map simpli�es to

T �������� � ��
 � �sgn����

��� �Ej���j	�	� � FQj���j	��	�	�

�
����

�
� ��
��


which gives the same behaviour as the Lorenz map ��
��
 in the non�magnetic case

The shear variable ��� does not change sign	 so the orbits created in the gluing
bifurcation or after the interval of chaos are of the HK type
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Figure ��� The sequence of global bifurcations in ��	��
 with Q � ���
 � � ���
and � � ���	 Compare with the Q � � sequence �Figure ��	 �a� OTC� � � ������
�b� PW
 invariant under tm� � � ������ �c� chaos� � � ������� �d� PW� 
 invariant
under tm� � � � ������ �e� PW�
 invariant under tm� � � ������ �f� HK
 invariant
under tl� � � �����	 The eigenvalues at the origin and SS are all real
 except for the
stable eigenvalues of SS in the m�invariant subspace	

The behaviour in regions I and II is more complicated and is best explained by
considering the fate of !�	 the branch of the unstable manifold of SS with ��� 
 �

First	 !� hits the plane �� with ��� � ��
 The z variable	 which represents the
shear as trajectories leave the origin	 is illustrated in Figure �� for the three parameter
regions
 These graphs represent z as a function of ��� � ��	 or equivalently	 the value
of z with which !� returns to the neighbourhood of the SS �xed point
 Each value of �
for which z crosses through zero represents a global bifurcation	 as when z���
 � �	
!� enters the stable manifold of an SS �xed point
 In region I	 z can only change sign
once before leaving the neighbourhood of the origin	 while in region II	 z changes sign
in�nitely many times as the global bifurcation is approached �Figure ��a and b



We begin the discussion of the global bifurcations in region I in the ODE
model ��
�
 and the PDEs by considering the sequence of orbits of the ODEs depicted
in Figure ��	 taken with Q � �
�	 � � �
�	 � � �
� and � increasing
 The ODE
bifurcations �and the analysis of the map
 are shown in the schematic diagram in
Figure ��
 A similar sequence of orbits in the PDEs is shown in Figure ��	 with
Q � �
� and the other parameters the same
 We focus on the ODE results �rst	 and
explain the di�erences between the ODEs and the PDEs later


The four OTC periodic orbits in Figure ���a
 collide with the two SS �xed points
�but not the trivial solution
 and glue together to form two PW �b

 Stable OTC and
PW orbits coexists over a small parameter interval
 At the gluing bifurcation	 the
ratio of leading stable and unstable eigenvalues of SS is about �
��� the bifurcation
cannot be a simple gluing bifurcation since this value is less than one
 Both the leading
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Figure �	� A sequence of orbits in the PDEs
 with Q � ���
 L � ���
 � � ��� and
� � ���
 similar to that in the ODEs �Figure ���	 These parameter values are in
region I	 �a� OTC at r � ����	 �b� After a gluing bifurcation� PW at r � ������	
�c� Chaos at r � ���������	 �d� Time series corresponding to �c�
 showing the chaotic
changes in the sign of ���	 �e� PW� at r � �������	 �f� HK at r � �������	 We have
not found PW� orbits	 At the heteroclinic bifurcation �r � ����������
 the relevant
ratios of eigenvalues are �� � ������
 �� � ������
 �� � ����� and �� � ������
�complex�	

eigenvalues of SS have eigenvectors in the shear directions that are reversed under the
symmetry m
 For larger �	 the PW orbits collide with the origin� there is an interval
of chaotic trajectories �c
	 from which a pair of PW� orbits emerges �d
	 invariant
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Figure �
� Examples of the one�dimensionalmap ��	���
 showing the same sequence
as in the ODEs �Figure ���	 Parameter values are E � �
 F � ���
 Q � �

�� � ������
 �� � ������ and �� � ������	 �a� A �xed point �OTC� at 
 � �����	
�b� After a gluing bifurcation there are PW at 
 � �����	 This is a period�two point
as z 	 � at the �xed point and the value of ��� �the shear� changes sign at each
iteration	 �c� Chaotic trajectories at 
 � �����	 �d� A PW� orbit at 
 � ����	 �e� A
PW� orbit at 
 � ���� ���� changes sign once each time around the period�two
orbit
 so it in fact period four�	 �f� An HK orbit at 
 � ����	

under tm� 
 The two PW� orbits become unstable before colliding with the two SS
�xed points simultaneously� they are replaced by �e
 a pair of PW� orbits
 The PW�
orbits are a type of pulsating wave �invariant under tm
 characterised by having two
positive excursions of the shear followed by two negative excursions
 Finally	 each of
these two orbits disappears in a saddle�node bifurcation� beyond this point	 there are
�f
 a pair of stable HK orbits	 invariant under tl
 These HK orbits were created in the
global bifurcation in which PW� were destroyed	 and subsequently gained stability in
a symmetry�breaking bifurcation


The initial bifurcations in the PDEs �Figure ��a�c	 e
 are the same as in the ODEs
�Figure ��a�d

 There are no PW� orbits in the PDEs� instead	 there is a transition
from PW� �Figure ��e
 to HK �f
 orbits	 as in the OTC to PW bifurcation
 The two
types of transition from PW� to HK orbits seen in the ODEs and in the PDEs have
the same net e�ect	 and will be discussed in greater detail below


	��� Analysis of the global bifurcations

We analyse these sequences of bifurcations in the ODEs and PDEs using the
map ��
��

 The behaviour of the system at these global bifurcations depends on
the magnitudes of the eigenvalue ratios at the trivial and SS �xed points and on the
values of the global parameters E and F 
 We take as illustrative parameter values the
eigenvalue ratios at the heteroclinic bifurcation in the ODEs that occurs with Q � �
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Figure ��� Following ��� homoclinic and heteroclinic connections in the ODEs with
Q � ���
 � � ��� and � � ���	 �a� At the OTC�homoclinic �or gluing� bifurcation� ��
begins at SS and returns there when � � ����������	 �b� At the APW�heteroclinic
bifurcation� from SS to the trivial solution at � � ����������	 �c� At the �primary�
PW�heteroclinic connection� from SS to the trivial solution at � � ����������	 This
corresponds to 
 � � in the map ��	���	 �d� At the APW��homoclinic bifurcation�
from SS back to itself at � � ����������	 �e� At the HK�heteroclinic bifurcation�
from SS to the image of SS under l or m� at � � ����������	 �f� At the AHK�
homoclinic bifurcation� from SS back to itself at � � ����������	

and � � �
� at � � �
������ �see Figure �b
� at the trivial �xed point	 �� � �
���� and
if we choose � � �
� then �
 � �
����� at SS	 �� � �
��� �complex
 and �� � �
����

We set the global parameters to E � � �since with �� 
 � 
 ��	 for small z we can
drop the Ejzj	� term

 The parameter F is chosen to be �
�	 which approximately �ts
the chaotic data in Figure ���c
 � note that this is the only parameter that is �tted
to the data as all the eigenvalue ratios are determined analytically
 Details of the
�tting will be given below
 With Q � �
� �corresponding to Figure ��
	 the parameter
values fall in region I
 We illustrate the map ��
��
 for these eigenvalue ratios and
various values of � �equivalent to �
 in Figure ��	 showing how the map has the same
progression from OTC to HK orbits as in the model ODEs �Figure ��

 The map and
ODE bifurcations are summarised in Figure ��


The full sequence of bifurcations that leads from OTC to HK orbits involves
many local �saddle�node and symmetry�breaking
 bifurcations and six principal global
�homoclinic and heteroclinic
 bifurcations� the connections corresponding to the global
bifurcations are shown in Figure ��
 With parameters in region I	 these bifurcations
can be divided into three groups� the gluing bifurcation from OTC to PW	 a pair
of global bifurcations that bound the interval of chaos in which PW are replaced by
PW�	 and three global bifurcations involved in the transition from PW� to HK orbits
via an interval of PW� orbits




	����� First group� from OTC to PW
 At the gluing bifurcation	 !� returns to the SS
�xed point �see Figure ��a
 in the w direction since �� � ��	 so the gluing bifurcation
is in the �gure�of�eight con�guration� both the outgoing and incoming parts of the
homoclinic connections are reversed under the action of the re�ection symmetry m

Such gluing bifurcations involve stable orbits when the eigenvalue ratio ��� in this
case
 is greater than one	 and unstable orbits when it is less than one


Glendinning �����
 has shown by combinatorial arguments that if there is a gluing
bifurcation in the �gure�of�eight con�guration that has the net e�ect of a gluing
bifurcation involving stable orbits	 but actually involves unstable orbits as the relevant
eigenvalue ratio is less than one	 then there is a hierarchy of possible bifurcation
diagrams connecting the two branches of stable orbits
 Glendinning s results need to
be reinterpreted in this case	 as the global connections can be homoclinic �Figure ��a

or heteroclinic �e

 The two simplest examples of Glendinning s hierarchy occur in
Figure ��� the simplest	 called type �a
	 is the OTC to PW sequence	 involving a pair
of saddle�node bifurcations on either side of the gluing bifurcation	 with a parameter
interval in which stable unglued and stable glued orbits coexist
 Type �b
	 the next
simplest	 is exempli�ed by the PW� to HK transition �see below



With parameters in region I	 there is a single transition from OTC to PW� in
region II	 there is a in�nite number of transitions from OTC to PW and back again
as orbits accumulate twists near the origin
 The additional global bifurcations are
created when the line of heteroclinic bifurcations crosses	 with increasing Q	 from
region I into region II
 Examples of some of these bifurcations will be given below


	����� Second group� from PW to PW �
 The transition from PW to PW� involves
an interval of chaotic trajectories	 occurring between the APW�heteroclinic and the
PW�heteroclinic bifurcations �Figure ��b and c

 In this regime	 with � and ��� small	
the expression for z is dominated by the j���j	� term since �
 � �� 	 so z 	 �Qj���j	� 	
and the map T is approximately

T �������� � ��
 	 �sgn����

�
�� � FQ��	� j���j	����	��
�����

�

 ��
��


In this simpli�ed map	 the shear changes sign at each iteration	 as indeed it does in
the ODEs in Figure ���c
 and in the PDEs in Figure ���c

 The behaviour will depend
on the magnitude of �
��� ��
 	 �
��
 Since this value is less than one	 the interval of
chaos and the same sequence of bifurcations as in the Lorenz map ��
��
 is expected


The chaotic behaviour in the ODEs is well described by this map �Figure ��a
	
but the PDEs are show more complicated behaviour �b
	 which is not �tted by the
map ��
��

 This serves as a reminder of the circumstances under which we should
expect ODE models to reproduce the dynamics of PDEs near global bifurcations� the
connections between equilibria must be the same	 and the type �real or complex
 and
the ordering of the leading �or possibly more
 eigenvalues must be the same
 In this
case	 the leading stable eigenvalue of SS ���� 
 in the PDEs is complex �rather than
real as in the ODEs
� we would need to derive a map that allowed twisting at the
origin and at the SS �xed points in order to explain this behaviour
 Nonetheless	 in
the other global bifurcations	 this complex eigenvalue does not a�ect the dynamics of
the PDEs qualitatively	 and the range of r over which there is disagreement is of the
order of ���

 The discrepancy between the ODEs and PDEs is discussed in greater
detail below
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Figure ��� Fitting the map ��	��� to the chaotic oscillations in �a� the ODEs
�Figure ��c� and �b� the PDEs �Figure ��c�	 The crosses represent the values of
��� as trajectories cross the plane �� �j���j � ����� plotted against the value at
the previous crossing	 The solid line is the �tted map	 The exponents ����� ��� are
�a� �	���� and �b� �	����� the �tted parameters are �a� 
 � ������� and F � �����	
The map ��	��� does not �t the data in the PDEs as the leading stable eigenvalues
at SS are complex	

For eigenvalue ratios �
 ��� ��
 greater than one	 there would not be an interval of
chaotic trajectories	 but instead a transition from �a pair of
 PW to �a pair of
 PW�

orbits	 involving an exchange of symmetry	 rather than a gain of symmetry as in a
normal gluing bifurcation
 We have not searched for a heteroclinic bifurcation with
eigenvalue ratio greater than one in the ODEs	 but conjecture what would happen
in this case
 Four heteroclinic connections of the type illustrated in Figure ���c

would be involved in the transition
 Just before the heteroclinic bifurcation	 the two
PW orbits are each made up of a pair of these connections �related to each other
by the symmetry m
	 along with two structurally stable connections from the trivial
solution to the SS �xed points
 Just after the heteroclinic bifurcation	 the two PW�

orbits are each made up of a di�erent pair of connections �related to each other by
the symmetry m�
	 along with two structurally stable connections from the trivial
solution to the two opposite SS �xed points
 One might think that it would be
possible to obtain HK orbits from this bifurcation with parameters in region I	 but
it is not because as the heteroclinic bifurcation is approached	 from either side	 the
shear ��� must change sign in the neighbourhood of the origin
 If	 on the other hand	
the shear does not change sign �as in	 for example	 region III or with Q � �
	 it is HK
and OTC orbits that are involved in the heteroclinic bifurcation


	����� Third group� from PW � to HK
 The transition from PW� to HK orbits involves
three global bifurcations �Figure ��d	 e and f
	 and is a type �b
 gluing bifurcation
�Glendinning ����

 Initially there is a pair of stable PW� orbits �Figure ��a

 Only
one of the two PW� orbits	 which are �xed points of the iterated map f�����
	 is
shown
 Two PW� orbits �b
 are created in a saddle�node bifurcation
 The stable
PW� orbits persist	 but the unstable orbits each collide with one of the two SS �xed
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Figure ��� Parameter values as for Figure ��
 but with f� plotted against ��� �
�a� 
 � ������ the single �xed point is a PW� orbit� �b� 
 � ������ a pair of PW�
orbits are created in a saddle�node bifurcation� �c� 
 � ������ the PW� orbit loses
stability in a subcritical symmetry�breaking bifurcation� �d� 
 � ������ the unstable
PW� orbit is replaced by an HK orbit after a global bifurcation� �e� 
 � ������
the HK orbit gains stability in a subcritical symmetry�breaking bifurcation� and
�f� 
 � ������ the PW� orbits are destroyed in a saddle�node bifurcation
 leaving a
single �xed point representing the HK orbit	 Note that in �a� and �f�
 the graphs of
f� are almost tangent to the diagonal
 but in fact only intersect the diagonal in one
place	

points and unglue to form a pair of unstable asymmetric PW� �APW�
 orbits
 Each
pair of APW� orbits ends up in a subcritical symmetry�breaking bifurcation �c
	 where
the two PW� orbits lose stability
 The unstable PW� orbits collide simultaneously with
the two SS �xed points to be replaced with �d
 a pair of unstable HK orbits
 These
gain stability in �e
 a subcritical symmetry�breaking bifurcation
 Each of the two pairs
of asymmetric HK �AHK
 orbits collides with an SS �xed point to glue together in
pairs to form two unstable PW� orbits	 which are destroyed in a pair of saddle�node
bifurcations with the stable PW� orbits �f



For larger values of the parameter F 	 the transition from PW� to HK is through
a type �a
 bifurcation sequence� this sequence is observed in the PDEs �Figure ��e	f


An additional possibility	 which we have discovered only in the map	 is that there
may be intervals of chaotic behaviour if trajectories approach the trivial solution

Alternatively	 if the eigenvalue ratio �� is greater than one	 then two stable PW�

orbits can be converted to a pair of stable HK orbits when they collide with the two
SS �xed points


Two of the these three global bifurcations in the type �b
 sequence just described
involve an increase in symmetry� two asymmetric orbits glue together to form a larger
symmetric orbit
 The APW�� and AHK�heteroclinic bifurcations �Figure ��d and f




are straight�forward gluing bifurcations involving a single SS �xed point	 and each
forms a PW� orbit � but not the same one� they are di�erent as the orbits cross the
����axis with ��� negative in Figure ���d
 and positive in �f

 Thus a PW� orbit
that is created in a gluing bifurcation when a pair of APW� orbits collides with an SS
�xed point is destroyed in an ungluing bifurcation when it collides with the other SS
�xed point	 forming a pair of AHK orbits


The other of these three global bifurcations �Figure ��e
 involves a change	 rather
than an increase	 in symmetry� PW� orbits �invariant under tm� 
 are replaced by HK
orbits �invariant under tl

 This is because the heteroclinic connections are between
the SS �xed points	 which are mapped to each other by m� or l
 The four heteroclinic
connections between the two SS �xed points can be �tted together to form periodic
orbits in two distinct ways
 Thus gluing bifurcations	 which involve homoclinic
connections	 create orbits with increased symmetry	 while heteroclinic bifurcations
can give an increase in symmetry �OTC going to HK orbits
	 or a change of symmetry
�PW to PW� and PW� to HK orbits
 in the case when the heteroclinic connections are
between �xed points with the same symmetry type
 There is a need for a systematic
study of homoclinic and heteroclinic bifurcations in systems with symmetry


	�	� Unfolding the magnetic map and ODEs

This complicated sequence of local and global bifurcations in the ODEs ��
�
 with
Q � � �Figure ��
 has the same net e�ect as the simple heteroclinic bifurcation
that converts OTC to HK orbits with Q � �
 We have followed the location of the
bifurcations in the ODEs using AUTO and the code of Champneys � Kuznetsov
�����
� the results in Figure ���a
 show how the whole gamut of bifurcations comes
down in a cusp to a single bifurcation at Q � �
 Calculating the locations of the global
bifurcations in the map �Figure ��b and Table �
 con�rms the pattern of bifurcations
and the correctness of the approximations made in deriving the map


The locations of the local and global bifurcations in the ODEs were followed to
larger values of Q �Figure ��

 The �rst group of bifurcation lines �the OTC� and PW�
saddle�node bifurcations and the OTC�homoclinic	 or gluing	 bifurcation
 all get tied
up with the Takens�Bogdanov point	 labelled C in the �gure
 This codimension�two
bifurcation point occurs when lines of pitchfork �from SS to STC
 and Hopf �from SS
to PW
 bifurcations coincide	 and organises the two routes from SS to PW �Matthews
et al ����

 The OTC�saddle�node is created when the Hopf bifurcation from STC to
OTC changes from being subcritical to being supercritical


The remaining global bifurcations �with one exception
 continue to larger Q	
entering parameter region II when Q 
 �
��
 Since it is the eigenvalues of the
trivial solution that become complex in region II	 only those heteroclinic bifurcations
involving that �xed point are a�ected� the APW� and PW�heteroclinic bifurcations
�Figure ��b and c

 As these two lines cross into region II	 an in�nite number of
heteroclinic bifurcations is created
 We have not attempted to follow these numerically


The AHK�heteroclinic bifurcation does not continue to large Q	 but turns back and
returns to Q � � at � � �
������� to form the AHK�heteroclinic gluing bifurcation
that forms �HK
� orbits
 This gluing bifurcation is part of the non�magnetic gluing
cascade associated with point B in Figure ��b

 The symmetry�breaking from HK to
AHK occurs at � � �
������� with Q � �
 The cusp of bifurcations in Figure �� will
be repeated for this �and subsequent
 heteroclinic bifurcations with longer and longer
periodic orbits
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Figure ��� Locations of the local and global bifurcations in �a� the ODEs ��	��
and �b� the map ��	���
 with varying Q	 The �xed parameters are �a� � � ��� and
� � ���
 and �b� �� � ������
 �� � ������
 �� � ������
 E � � and F � ���	 Global
bifurcations are shown as solid lines
 symmetry�breaking bifurcations as broken lines
and saddle�node bifurcations as dotted lines	

These calculations were performed with � � �
�	 chosen for the simplest non�
magnetic behaviour
 With smaller �	 the OTC�heteroclinic gluing bifurcation splits
into a wedge of chaotic trajectories with an in�nite number of global bifurcations
�Figure ��

 The map ��
��
 could be used to explore the complications that
the non�zero magnetic �eld will introduce in this chaotic regime
 On the other
hand	 with larger �	 the eigenvalue ratio �� �corresponding to the complex stable
eigenvalues of SS within the m�invariant subspace
 becomes less than one	 leading to
Shil nikov chaos� this could be modelled by combining the features of map ��
��
 �for
complex eigenvalues at SS
 with map ��
��
 �for non�zero magnetic �eld and complex
eigenvalues at the origin

 In fact	 in the PDEs	 the stable shear eigenvalues �those
corresponding to ��
 are already complex
 A map combining all these features would



Table �� Algebraic conditions satis�ed at the global bifurcations in the map ��	���	
The global connections are illustrated in Figure �� and solutions of these equations
are in Figure ���b�	

Figure �� Bifurcation De�ning equation

�a� OTC�gluing z��
� � � and 
 	 �

�b� APW�heteroclinic f��
� � �

�c� PW�heteroclinic 
 � �

�d� APW��heteroclinic z�f��
�� � � and z��
� 	 �

�e� HK�heteroclinic z��
� � � and 
 � �

�f� AHK�heteroclinic z�f��
�� � � and z��
� � �
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Figure ��� Locations of the local and global bifurcations in the ODEs ��	��	 The
�xed parameters are � � ��� and � � ���	 These parameter values are in region I
for Q 	 ���� and in region II �complex eigenvalues at the origin� for Q � ����	 The
lines have the same meaning as in Figure ��	 The lines of OTC�homoclinic �gluing�
bifurcations and PW�saddle�node �PW�sn� bifurcations connect to the Takens�
Bogdanov bifurcation point �labelledC�	 Where no attractor is indicated
 trajectories
are by and large chaotic	

have at the very least trigonometric functions raised to fractional powers	 and would
have very intricate dynamics


	�
� Behaviour of the magnetic PDEs

We have already discussed the behaviour of the PDEs with parameters in region I
�Figure ��
	 and noted two discrepancies between the between the behaviour of the
PDEs and that of the ODE model
 The lack of PW� orbits in the PDEs we ascribe
to their having a di�erent value of the parameter F in the map ��
��

 The chaotic
interval in the PDEs is not described by a Lorenz map �Figure ��
	 possibly because
of the complex leading stable eigenvalues �corresponding to ��
 at SS
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Figure ��� A sequence of global bifurcations in the PDEs
 with Q � �����
�q � �����
 L � ���
 � � ��� and � � ���
 showing how the orbits wind up around
the origin and then unwind	 These parameter values are in region II	 �a� OTC at
r � �����	 �b� After a gluing bifurcation� PW at r � �����	 �c� OTC with a full
twist at r � �����	 �d� PW with � �

�
twists at r � �����	 �e� HK with a full twist

at r � �����	 �f� PW� at r � �����	 At the heteroclinic bifurcation �r � ������
 the
relevant ratios of eigenvalues are �r � ������
 �i � ������
 �� � ����� and �� � �����
�complex�	

Unfortunately	 the full story of the behaviour of the PDEs is likely to be even
more complicated� since �� corresponds to complex stable eigenvalues and �� � �	
the gluing bifurcation from OTC to PW and that from PW� to HK must follow the
symmetric Shil nikov scenario �Glendinning � Sparrow ����

 In this case	 we expect
chaotic reversals	 with periodic windows of reversing �PW or PW�
 and non�reversing
�OTC and HK
 oscillations over a parameter interval around the global bifurcation
�Glendinning ����

 We have not observed this behaviour near the gluing bifurcation	
only the expected chaotic reversals near the heteroclinic bifurcation in the parameter
interval �
�������� � r � �
�������� �Figure ��c	d

 One reason for this may be
that the parameter interval of these additional chaotic oscillations is small� not only
is �� quite close to one	 but the width of the parameter interval will scale with some
power of Q as Q becomes small
 These additional complications do not change the
overall correctness of the picture given by the ODE model and map� the sequence of
transitions from OTC to PW to PW� to HK with parameter values in region I


We have computed solutions of the PDEs for larger Q	 wider boxes �L � �
� or
k � 	
 and � � � � �
� �region II
 in Figure ��
 Trajectories wind up as they approach
the heteroclinic bifurcation	 going from OTC �a
 to PW �b
	 back to OTC �c
	 back to
PW �d
	 and so on
 After the heteroclinic bifurcation	 trajectories unwind	 going from
HK �e
 to PW� �f
	 the whole picture consistent with Figure ���b

 The sequence is
interrupted in this case before the �nal HK orbit




�� Discussion

Using ideas from nonlinear dynamics	 we have unravelled the complicated shearing
behaviour observed in numerical simulations of the PDEs for convection with small
Prandtl number � and in narrow rolls
 The low�order sets of ODEs have greatly aided
the interpretation of the numerical results	 and an understanding of the precise nature
of the global bifurcations requires the use of low�dimensional maps


We have shown under what circumstances pulsating waves	 with reversals of shear
�ow should be expected
 With no magnetic �eld	 we �nd the pitchfork bifurcation
to STC occurs when r � � � ���L�	 with small � and narrow rolls
 This is
followed by Hopf and global bifurcations� we do not expect reversals for small Prandtl
number �	 and �nd non�reversing HK oscillations
 Since the value of r at which
the instability �rst sets in goes to one as the rolls become narrower and � goes to
zero	 the shearing instability is likely to be the �rst �or at least	 one of the �rst

instability of narrow rolls with small Prandtl number
 With moderate Prandtl number
�when ��� dominates ���
	 we expect reversing shear �PW� oscillations
 after global
bifurcations	 and with large Prandtl number	 we �nd a Hopf bifurcation directly to
reversing PW oscillations
 Understanding the transitions between these regimes as
� is varied remains a challenge


With a weak magnetic �eld and narrow rolls	 our results indicate PW� reversals
if ��� dominates ��� and A��	 as in the non�magnetic case with moderate �
 With
small � we need � � � for PW reversals	 or Q large enough for there to be complex
eigenvalues at the origin
 The PW oscillations are created in a gluing bifurcation and
there can be complicated sequences of global bifurcations with increasing r	 involving
orbits with several di�erent symmetries
 The condition � � � for reversals of shear
can be understood physically in the following way� shear ����
 decays more rapidly
than horizontally stretched magnetic �eld �A��
	 so when the shear has decayed to
small levels and convection is just about to restart	 the shear is driven in the opposite
direction by the residual magnetic �eld


Although the results obtained from our ODE model are strictly valid only in the
limit of narrow rolls	 we �nd good qualitative agreement with PDE results for rolls
of moderate aspect ratio	 L � �
� �and L � �
� in Figure ��
 for parameter values
near global bifurcations
 If	 however	 we select the box size that minimises the critical
Rayleigh number	 the behaviour is very di�erent
 With no magnetic �eld	 we have
not found any local bifurcations from SS to STC or PW in the PDEs �for r � ���
and �
�� � � � ���

 For this reason	 our results	 which relied on perturbing the
dynamics near a non�magnetic global bifurcation	 will not apply directly
 Nonetheless	
the presence of a magnetic �eld encourages narrow rolls �Chandrasekhar ����
	 and
we have found both the pitchfork to OTC and the Hopf to PW in the PDEs with
L set to the value that minimises the critical Rayleigh number
 We also �nd global
bifurcations of the type discussed in this paper	 and further analysis will be possible


In the course of analysing this system	 we have found novel and interesting
nonlinear dynamics in the presence of two re�ection symmetries
 The symmetries
mean that an asymmetric orbit	 such as OTC	 occurs in four copies that can glue
together in a variety of di�erent ways	 involving gains of symmetry and subsequent
losses or exchanges of symmetry
 Our results will be relevant to other systems with the
same symmetries and similar mode interactions	 such as	 for instance	 in convection in
a horizontal magnetic �eld �Lantz ����� Brownjohn et al ����
	 in models of thermally
driven dynamos �Chui � Mo�att ����
	 or in the �D bending instability of rolls in



low�Prandtl�number convection �Massaguer et al ����� Busse et al ����



This work is the �rst systematic two�parameter study of the global bifurcations
associated with the shearing instability
 Our results provide an interpretation of the
results of other studies of the magnetic and non�magnetic shearing instability� in
narrow rolls	 we should expect non�reversing shear with low Prandtl number and
reversals with larger Prandtl number
 There have been many such studies and their
results are all consistent with our �ndings
 In their truncation of the PDEs for
�D Boussinesq convection between stress�free boundaries	 Howard � Krishnamurti
�����
 found non�reversing chaos with � � �
� and �
� and reversing oscillations	
created in a global bifurcation	 with � � ��
�	 all with wavenumber k � �
�		 where
k � 	�L
 Prat et al �����
 studied the same PDEs between no�slip boundaries and
found a Hopf bifurcation to PW with � � ��
� and k � �	
 Deardor� � Willis
�����
 found reversing oscillations in the same system with k � 	 and � � �
��	
though we �nd a decaying oscillation for these parameter values
 Guzdar et al �����

have simulated the experiments of Tabeling et al �����
 and found vortices that tilt
back and forth �the analogue of our pulsating waves
 created in a global bifurcation

Hurlburt et al �����
 found vigorous but non�reversing streaming motion in the PDEs
for compressible convection between stress�free boundaries with � � �
� and both
k � �	 and k � �

�	
 Ginet � Sudan �����
 found unsteady but non�reversing shear in
compressible convection using the anelastic approximation	 with � � �
� and k � �	

We discuss below how our model can be reinterpreted in the context of compressible
convection	 where the top and bottom of the layer are no longer equivalent


There is similar agreement with numerical studies of Boussinesq �described here

and compressible convection in a vertical magnetic �eld	 but Landsberg � Knobloch
�����
 and Proctor � Weiss �����
 argued on general grounds that the symmetry�
breaking instabilities of SS rolls occur in the compressible case
 Weiss �����
 was
the �rst to report PW in the compressible case	 with � � � � �
� and k � 	

This calculation was extended by Proctor et al �����
	 who investigated the gluing
bifurcation in which the PW are created
 As discussed in the Introduction	 there is
no symmetry between the top and bottom of the layer in a strati�ed atmosphere	
and tilted rolls will travel
 As a result	 it is not possible to �x the phase of the
rolls in the box	 so there are not just two SS �xed points generated by the discrete
translation l	 but a whole circle of them	 generated by continuous translations
 Proctor
et al �����
 extended our ODE model ��
�
 to cover this case by complexifying the
��� and ��� variables and re�introducing terms that were excluded by the Boussinesq
symmetry
 Pulsating waves	 which now travel back and forth	 are created in a
symmetry�breaking Hopf bifurcation	 and uniformly travelling tilted rolls �travelling
waves	 or TW
	 the analogue of STC	 are created in a pitchfork bifurcation
 As in the
Boussinesq case	 these two local bifurcations can coincide at a Takens�Bogdanov point
with Z� symmetry �as in Figure ��
	 and lines of secondary bifurcations can begin
at this point	 including Hopf bifurcations from travelling rolls to quasi�periodically
modulated rolls �modulated waves	 or MW
	 the analogue of OTC	 and then a gluing
bifurcation from MW to PW
 Thus the global bifurcation in which non�reversing
�MW
 oscillations are transformed into reversing �PW
 oscillations occurs in both
the Boussinesq and compressible cases
 If this line of global bifurcations is followed
away from the Takens�Bogdanov point	 the leading eigenvalues of SS may become
complex	 leading to the possibility of symmetric Shil nikov dynamics	 with chaotic
trajectories and periodic windows involving reversing and non�reversing oscillations
�Glendinning ����





This global bifurcation	 and others involving connections between SS �xed points	
need to be interpreted carefully in the compressible case
 At one of these global
bifurcations	 the system begins near SS rolls	 these rolls tilt over and travel as the shear
across the layer is generated	 and then the system returns to SS rolls translated from
the original rolls
 With this interpretation	 the homoclinic connections in Figure ���a

and �e
 are not distinguished and are equivalent in the compressible case
 Figure ���d

and �f
 represent bifurcations that persist with compressibility as they are associated
with changes in the pattern of shear reversals over the course of the oscillation
 For
example	 in the global bifurcation in Figure ���d
 there is a transition from PW�

�shear alternating left and right
 to PW� orbits �shearing twice to the left followed
by twice to the right

 However	 the heteroclinic bifurcations involving the origin
will need to be re�examined as these involve transition between orbits that are no
longer distinguished on the grounds of symmetry� the OTC and HK orbits in the
non�magnetic heteroclinic bifurcation are both MW in the compressible case	 and the
PW and PW� orbits �involved in the heteroclinic bifurcations in Figure ��b and c
 are
equivalent in the compressible case
 As a result	 it is not clear that these heteroclinic
bifurcations	 observed in the Boussinesq case with small Prandtl number	 will persist
once compressibility is introduced


Three�dimensional convection will obviously generate a much wider variety of
solutions than in two dimensions
 Physically	 an instability to �D convection should
be expected for su#ciently vigorous convection	 as magnetic �eld and shear stretched
out in one direction �say	 along the x�axis
 will suppress x�rolls �with their axis in
the y�direction
	 but will not suppress y�rolls	 which act to interchange	 but not bend	
magnetic �eld lines �Matthews et al ����

 A low�order model can be derived to
describe the �D shearing instability in narrow rolls �Rucklidge � Matthews ����


The global bifurcations and heteroclinic cycles in the nonmagnetic PDEs and an ODE
model are discussed by Matthews et al �����
� the magnetic problem will be described
in a future paper
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