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ABSTRACT

The assessment of image quality in medical imaging often requires observers to rate images for some metric or

detectability task. These subjective results are used in optimization, radiation dose reduction or system comparison

studies and may be compared to objective measures from a computer vision algorithm performing the same task. One

popular scoring approach is to use a Likert scale, then assign consecutive numbers to the categories. The mean of these

response values is then taken and used for comparison with the objective or second subjective response. Agreement is

often assessed using correlation coefficients. We highlight a number of weaknesses in this common approach, including

inappropriate analyses of ordinal data and the inability to properly account for correlations caused by repeated images or

observers. We suggest alternative data collection and analysis techniques such as amendments to the scale and

multilevel proportional odds models. We detail the suitability of each approach depending upon the data structure and

demonstrate each method using a medical imaging example. Whilst others have raised some of these issues, we

evaluated the entire study from data collection to analysis, suggested sources for software and further reading, and

provided a checklist plus flowchart for use with any ordinal data. We hope that raised awareness of the limitations of the

current approaches will encourage greater method consideration and the utilization of a more appropriate analysis. More

accurate comparisons between measures in medical imaging will lead to a more robust contribution to the imaging

literature and ultimately improved patient care.

INTRODUCTION

Qualitative ordinal scores are often used for a range of

activities in medical imaging. One common use of such

ordinal scores is in the quality assessment of an image.

Clinical image quality is measured in this way for a number

of reasons, including the assessment of a change in imaging

technique,1–3 to compare imaging systems,4 to assess

a change in computer enhancement or processing (for

instance the use of a new reconstruction algorithm in a CT

scanner),5,6 to measure image quality when optimizing the

radiographic settings in radiography,7,8 to assess the per-

formance of a machine vision algorithm9 or to compare

methods of image quality assessment.10 Viewing sessions

are used to collect the subjective scores and usually display

either one image at a time (absolute visual grading analysis)

or show two images to compare (relative visual grading

analysis),2 with several observers often rating the image

set.11,12 Scores are usually collected using a three- or five-

point ordinal2,6–8,13 scale, labelled with words rather than

numbers,14 for example, “poor”, “fair”, “good”, “very good”

and “excellent”,15,16 or a Likert scale.17 Recently annoyance

or impairment related scales, rather than preference scales,

have been used.12 Alternative question formats include

binary responses, which require the observer to select the

“better” of two images regarding a feature of interest or to

answer a simple yes/no response to the suitability of an

image for a given task.18

It is not unusual for the analysis of such ordinal data to be

oversimplistic or inappropriate. Once the non-numerical

scale data have been collected, it is common practice to

assign each ordinal category13 a number, typically “1,

poor”; “2, fair”; “3, good”; “4, very good” and “5, excel-

lent”.19 The analyses which follow often utilize methods

developed for numerical data, such as the arithmetic

mean.20 This measure can be referred to as the mean

opinion score (MOS)7,21–23 or the visual grading analysis

score (VGAS).7,10,24 Comparison of the summary values

across different areas of interest are then used to answer the

research question. For example, subjective scores for two
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systems or computer processing methods6,7 are often compared

using t-tests or analysis of variance,25 such as in the comparison

of a newer and established X-ray system with respect to image

quality. When the subjective ordinal measure is compared with

an objective measure, for instance with measurements from

a phantom image10 or computer vision algorithm, the com-

parator variable is often on a continuous scale. Examples include

the signal-to-noise ratio. In these cases, methods such as

Spearman’s and Pearson’s correlation coefficients have been

used10,26,27 and their magnitude reported. Other common

techniques include the use of Cohen’s kappa statistic28 to test for

the agreement between observers or measures2 or visual grading

characteristics (VGCs) analysis; based upon receiver operator

characteristic (ROC) curves and the area under the curve.6,8

This work highlights limitations with these data collection and

analysis steps and their adverse consequences when interpreting

study results, which have subsequent clinical implications. We

suggest a number of ways in which improvements can be made

through the study design and data analysis, and each approach is

demonstrated using a medical imaging example. A checklist and

associated flowchart are provided for guidance. Improving the

methods for data collection, and using a more sophisticated and

appropriate analysis, can provide more accurate results and

demonstrate differences between groups that would otherwise

not have be seen.25

LIMITATIONS OF COMMON APPROACHES

There are a number of problems statistically with the approaches

currently adopted to perform image quality assessment on im-

aging systems; each of which are described here.

Questionnaire design

The scale labels

Using three- or five-point scales, with words rather than num-

bers, forms some assumptions. For example, it assumes the

words excellent and good have the same meaning across

observers; however, some observers may interpret excellent to be

more positive than others.29 Of course, inter-30 and intra-

observer31 variability is a problem across all scales, but with

these scales there is the additional variability associated with

observer interpretation of the scale labels, which cannot be

quantified and accounted for during the analysis. Observers may

also interpret these words differently through the course of the

viewing, depending upon the question posed. Additionally, it

assumes symmetry in the scale such that excellent is as positive

as poor is negative, whereas this may not be the case for all

observers.29

In the following commonly used five-point scale: 1, poor; 2, fair;

3, good; 4, very good and 5, excellent,19 there is not an obvious

neutral response, although the centre option good could be seen

as neutral from its scale position. The word fair may be inter-

preted as a neutral response, but its position on the scale, 2 of 5,

may suggest it is more negative than positive. There is dis-

agreement whether observers are more influenced by the

wording or position of a category,29,32 but some scales are

formed with the intention that the mid-point represents a neu-

tral response. Of course, whether to include a neutral response

(usually by using an odd number of categories) is another area

of debate, since it may be used whenever the observer cannot

make a decision.33–35 There are instances where the observer

would like to rate an image between two categories, such as

between fair and good, but this flexibility is not possible. The

optimal number of points to use along a scale is another area of

disagreement,36–39 as are whether to include an option such as

“don’t know”,40 if a scale should be equally balanced between

positive and negative responses29 and if scale labels should be

used in conjunction with scale numbers.32

If words are used to label the five points on the scale, the

numbers are hidden from the observer and hence are mean-

ingless. Assigning numbers arbitrarily is unhelpful and assumes

the categories are equally spread in the decision space, as rec-

ognized by some authors.2 For example, it assumes that the

difference between excellent and very good is the same as be-

tween very good and good. This may be a correct assumption for

some observers but not for others.29 Assigning the numbers

1–2–3–4–5 may be as meaningful as assigning the numbers

1–24–56–789–1253 for example.

Analysis

Summary of the scale responses

The data are collected using an ordinal scale,13 yet summarized

using a method designed for continuous data; the arithmetic

mean.20 This approach would be more suitable had the data

been collected using an interval rather than ordinal scale13 as

correctly reported by some other imaging authors.2,8,24,41

Taking the mean of the responses, which can only take integer

values between one and five, can also result in a value which is

non-integer. If a mean response for a particular image is, for

example, 3.4, there is no predefined word to interpret this av-

erage response from observers. It is known to be more positive

than good but not as positive as very good, yet there is no

definitive answer for its interpretation and hence it lacks

meaning. The mean is also dependent upon the arbitrary coding

given, therefore would differ if the scale 1–2–3–4–5 was used

compared with 1–24–56–789–1253. More generally, reducing

the image quality to a single score may be questionable,41 since

there are variations in contrast, resolution and noise. A simple

mean value, or similar, may be an oversimplification of the in-

formation in the image.

Repeated images, patients or observers

Often studies use repeats, such as several images from the same

patient, the same observer to rate multiple images or the same

image altered in some way (this may include image degradation

or enhancement).11,12,18 Alternatively, observers may answer

several questions regarding different aspects of the same image.

If an observer likes or dislikes a particular image, their ratings

may be similarly high or low for all questions relating to that

image. It is also therefore expected that an image would be rated

in a more similar way to an enhanced or degraded version of

itself than an equally enhanced or degraded version of another

image. It follows that images from the same patient would have

more similarities with one another than with images from

a different patient. Factors such as the patient characteristics or
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machine settings may lead to generally poor images from one

patient yet excellent images from another.42 Additionally, data

are usually collected from multiple observers, each with their

own opinions and standards. Observers may respond consis-

tently between images, but they may not necessarily be consis-

tent with one another.30 This is particularly applicable if one

observer rates more harshly than another, resulting in a similar

ordering of images from best to worst, but with a shift along the

ordinal scale.13

Many approaches do not allow for these similarities between

repeated images, patients or observers, but instead assume that

each response is independent.6,8,24,41 This includes methods

which summarize the ratings as a single figure such as the MOS

or VGAS. This results in the standard errors being under-

estimated and hence possibly differing conclusions.43

Approaches such as the VGC curve,24 while able to compare two

methods, may also struggle to incorporate additional variables

or repeated data, owing to the increased complexity required of

the methodology stemming from the assumption of two un-

derlying normally distributed variables44 and the basis of the

method lying in ROC curves.24

Conditions and confounders

Conditions vary between the images, including the patient

characteristics and machine settings, and these conditions can

affect whether the image is fit for purpose.45 There may also

be confounders present, which could lead to confounding

bias if not accounted for.46 Confounding is the effect of an

extraneous variable which wholly or partially accounts for an

apparent association or which masks an underlying true as-

sociation.47 Confounders can be controlled for in the study

design by matching the comparison groups on confounding

variables, or by random allocation to one of the groups which

leads to the assumption that the groups are comparable with

respect to confounders. Alternatively, confounding variables

can be included in the analysis to remove confounding

bias. Many of the current approaches do not allow conditions

or confounders to be incorporated into the analysis, hence

could result in bias and lead to inaccurate findings. This

includes those methods which reduce the data to a single

figure (MOS or VGAS) or those which directly compare two

methods (VGC).

Comparison of the subjective and

objective measures

The final stage of the analysis usually compares either the often

continuous objective measure with the subjective measure

which originated from an ordinal scale, or two objective

measures. Since both Spearman’s and Pearson’s correlation

coefficients10,26,27 are usually calculated, there seems to be

uncertainty as to whether a parametric or non-parametric test

is required.48 Confirmation of the nature of both the subjective

and objective measures should be used to determine the most

suitable type of test, with all test assumptions verified. For

example, Pearson’s correlation assumes that the variables have

a number of characteristics—the variables are interval or ratio

measurements, are approximately normally distributed, have

a linear relationship with one another and have minimal out-

liers—and homoscedasticity (equal variance). Spearman’s

correlation can be used if these assumptions are violated or if

the data are ordinal and assumes a monotonic relationship

between the variables (as one variable increases, the other

increases or decreases, but not both).

These correlation coefficients also do not allow for the likely

complexity of the data structure such as its hierarchical nature49

or any confounding factors, resulting in an oversimplification of

the association between the objective and subjective measures.

Another method which may be used is an interrater agreement

score such as Cohen’s kappa statistic,28 with a chosen in-

terpretation of the 0–1 scale.2 Although this offers a useful ap-

proach for comparison between observers, it is limited when

most ratings for the observers gather at one level and is un-

helpful when there is total agreement between observers for all

images (since there is a division by zero).2 It is also unable to

account for any confounders or any repeats in the data. Finally,

t-tests or analysis of variance are sometimes used,25 but these

assume the data to be interval, whereas the data in image as-

sessment are usually ordinal.25

SUGGESTED IMPROVEMENTS

There are a number of ways in which these analyses may be

improved upon. Six suggestions are given below, presented in

the order in which they would appear in a study, along with their

limitations and examples of how these approaches can be

Figure 1. Example question with numbered categories for the contrast of a crown rump length ultrasound image.

Review article: Analysis of ordinal response data BJR

3 of 11 birpublications.org/bjr Br J Radiol;89:20160094

http://birpublications.org/bjr


applied to medical imaging data. Changes are suggested for the

data collection phase or to the way in which the ordinal data are

analysed, and these will be summarized in a checklist for best

practice and a flowchart for guidance.

Questionnaire design

Numbered categories

One very simple amendment to the study design to improve on

the current data collection would be to present the observer with

categories labelled with numbers rather than words. The ob-

server is instantly aware of the presumed equality of the gaps

between categories and can interpret the response options ac-

cordingly. Words may still be used to indicate the extremes of

the categories and possibly the mid-point, but fewer terms focus

the attention of the observer towards the numbers and their

equal spaces. The numbers need not be the integers 1–5, but

could instead be 0, 5, 10, 15, 20, to prompt greater observer

consideration of the scale and the equality of the gaps between

the categories. However, it has been found that assigning dif-

ferent numbers affects responses,50 so careful consideration of

the scale is required.

This suggested interval approach would address the prob-

lems associated with the assumed equally spaced categories

along the scale13 but would not allow for repeated images,

patients or observers within the analysis nor any conditions

or confounders thought to affect the study findings. There-

fore, this approach would be most suitable for simple data

sets only.

Example An example of this type of scale can be seen in

Figure 1 where the responses are numbered from 0 to 20. Only

the first and last categories have words assigned to show the

direction of the scale, but all five categories are given a number

to show the differences between the categories.

Continuous scale

Another simple approach to circumvent some of the problems

associated with the analysis of ordinal data would be to replace

the ordinal scale with a more flexible numerical continuous

scale. Values from 0 to 1 or 1 to 100 could be used, along which

any point may be selected by the observer. These data could be

analysed as a continuous outcome, using traditional analyses

such as linear regression,26,51 calculation of the mean or any

other appropriate summary.20 For comparison with previous

studies, this continuous scale could be split into three or five

categories, for example, 1–20, 21–40, 41–60, 61–80, 81–100, and

analysed as ordinal data. Alternatively, a cut-off point could be

specified, such as the mid-point where a scale changes from

“disagree” to “agree”, resulting in a binary response which could

be analysed using standard approaches to binary outcomes, in-

cluding logistic regression.26,51

This approach of amending the scale would again address any

problems associated with the assumed equality of gaps between

response categories but would unfortunately not allow for re-

peated images from repeated patients, viewed by multiple

observers, nor any confounders or conditions in the study.

Therefore, this approach would only be suitable for simple

data sets.

Example Figure 2 shows an example of an image with a con-

tinuous scale which could be analysed as continuous data or, if

necessary, dichotomized to a suitable/unsuitable scale or split

into three or five categories for comparison with previous or-

dinal work.

Analysis

Summary of the scale response

If using scales with words, rather than assign numbers and

summarize using the mean, instead select the median or modal

response.26 By choosing the mid-point or the category which

appears most frequently, the summary value can be interpreted

using the wording assigned to the original category. For ordinal

data, the median is usually recommended.13

Example A study uses the five-point scale poor, fair, good, very

good and excellent to collect data from 60 observers about the

Figure 2. Example question with a continuous scale for the suitability of a still image frame from a left coronary angiogram for

stenosis identification.
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contrast of an X-ray image, where excellent is considered to be

high contrast. The results are as shown in Table 1.

The modal response is simply the most selected category.

Therefore for Image 1, good is the most frequently selected

category, and for Image 2, it is fair, suggesting Image 1 has better

contrast than Image 2. The median is the middle number after

ordering the responses and hence for Image 1 is good and for

Image 2 is fair.

Regression analysis

Regression51 would allow more study information to be in-

corporated in the analysis such that any confounders or con-

ditions can be accounted for, resulting in a more accurate

summary of the data than the frequently used MOS.

Different regression models are available depending on the na-

ture of the scale used to record responses from the observers.

Logistic regression51 is useful for binary (often yes/no) responses

and linear regression51 is useful for continuous scales (for ex-

ample, any point between zero and one). Ordinal regression

models may be most useful in medical imaging as the data are

frequently recorded using ordered categories.52 Each of these

forms of regression allow multiple independent variables and

hence can incorporate confounders or any other variables

thought to be important for the study results.

This approach is suitable for confounders but does not allow for

a hierarchical structure of images, patients and observers.

Example A study is conducted which collects responses from

observers regarding the suitability of an image for a given task.

Images within the viewing session are at a range of different

contrasts to determine a contrast value at which images become

unsuitable. However, the images also contain some noise, which

is known to affect the suitability judgment from the observers

and can cause the contrast to appear lower. According to the

definition,47 noise is a confounder since it affects the perceived

contrast plus the suitability of an image for the identified task.

To account for the effect of noise, it can be included in the

regression model used for analysis.53

Let there be a measure for the suitability of the image taken from

the observers, along with a measurement for noise and for

contrast; these may be with respect to a reference image. The

association of interest is between the contrast value and the

response from the observer. Let the regression model have re-

sponse as the dependent variable, and both contrast and noise as

the independent variables. This enables the contrast and noise

variables to predict the response and, consequently, reduce the

confounding bias from noise. Any other recorded confounders

can be added to the model in the same way to reduce bias.53

Linear regression can be used when the responses are collected

using a continuous scale, and logistic or ordinal regression can

be used when the data are collected using two or more catego-

ries, respectively.52

Multilevel proportional odds model

Proportional odds models,54 also referred to as ordered logit

models or ordered logistic regression models, are an extension of

logistic models, which allow for an outcome with more than two

ordered categories.52 Therefore, these models are ideal for

responses in medical imaging which are often recorded using

a five-point scale.

Multilevel models,55 also known as mixed, random-effects,

nested or hierarchical models, can be used for continuous

responses and allow the analysis to account for repeated images,

patients and observers within a data set. The “levels” correspond

to responses that are given for each repeat or variant of a given

image, from each of the patients who have provided images,

rated by each of the observers participating in the viewing ses-

sion. Defining these levels in the model allow it to account for

the similarities between these repeats which lead to responses

which are not truly independent. The levels suggest the research

question does not relate to the variables which define the levels

but rather the wider population from which they were drawn.56

In medical imaging, this may be that the particular images or

patients within a viewing are not of particular interest, but the

wider populations of images and patients are. Hence, these

variables are often referred to as random effects, or nuisance

parameters.56 The levels also suggest that the responses are

expected to differ between different categories of a level, but

these differences cannot be explained via the measured varia-

bles.56 For example, responses regarding the quality of images

taken from one patient may be consistently higher than

responses from images taken from another patient, and these

differences may be due to underlying patient characteristics.45

Any variables included in the model which do not form the

levels are referred to as fixed effects.56

Multilevel models are therefore a type of model which can allow

for the similarity between images taken from a particular patient

or a group of patients from the same hospital but allow for

differences from one image or one patient to another. For fur-

ther details on fixed and random effects, an introductory tutorial

is given by Winter,57 which includes examples using the lme4

package58 in the statistical software R (R Core Team, Vienna,

Austria).59 Here, a random effect is described as something

expected to have a non-systematic, idiosyncratic or random

influence on the data, while fixed effects are expected to have

a systematic and predictable influence on the data.57 Fixed

Table 1. The contrast study results

Contrast Poor Fair Good Very good Excellent

Image 1 3 8 34 9 6

Image 2 14 23 8 8 7
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effects can be thought to “exhaust” the population of interest or

levels of a factor, such as including both levels of sex (male/

female) or all levels of machine setting (such as high/medium/

low).57 Random effects are usually a sample from the population

of interest,57 such as some images from a database or some

observers from those trained to look at the images of interest.

Multilevel proportional odds models60 offer the most flexibility

of the suggestions given here and can be implemented using

a range of general statistical software59,61,62 or specialized mul-

tilevel software.63 They combine the advantages of both the

proportional odds model which allows the outcome to consist of

ordered categories, with the ability of multilevel models to ac-

count for repeats within the study design. However, the pro-

portional odds assumption must be met for it to be suitable.60 If

not satisfied, the multinomial multilevel model can be used,64

but this can be difficult to interpret and therefore a statistician is

recommended. Further examples of this approach in medical

imaging can be found in the literature.44

Example—multilevel model Let there be a study conducted

into the observer annoyance12 induced by a coronary angio-

gram. The study includes three images, each shown at four

different simulated X-ray dose levels using image-degrading

software. The original image is shown along with simulated

reductions to 80%, 60% and 40% of the original dose. The

question of interest concerns the level of dose reduction toler-

able by observers and consequently the level at which they be-

come annoyed by the image. Observers are asked to respond

using a continuous scale.

It is expected that a particular image may annoy an observer

more than another, regardless of the dose level. In coronary

angiography, there may have been a bad projection angle used,

the patient might have a large body mass index or the radio-

opaque dye might not be injected properly; all factors which

may cause observer annoyance.45

Therefore, there may be similarities in the responses from the

same image at different simulated dose levels. Let the data set

include the (repeated) image number relating to the original

image, alongside the four dose levels. Analysis using a multilevel

model according to the image number accounts for the repeated

use of the same image after degradation. The same method can

be used to account for repeated observers.

Example—multilevel proportional odds model Let there be

a viewing session which records responses using a 5-point scale

from 10 observers. Each observer rates 36 images; 2 images from

6 patients, each at 3 simulated noise levels. The question of

interest relates to the simulated noise within an image and the

image quality. However, it is known that observers may respond

differently to one another, for example, with some rating more

harshly than others; that patients have different characteristics

which may affect the quality of the image; and that some original

images may be of higher quality than others.

A multilevel proportional odds model can be used, with the

levels defined to be the images within the patients, looked at by

the observers, and with the five response categories as the model

outcome. Thus, the model has incorporated both the hierar-

chical structure of the data set and the repeated values, plus the

ordinal nature of the responses. Any confounders or conditions

thought to affect image quality can also be included in the model

as extra independent variables.44

Comparison of the subjective and

objective measures

The nature of the subjective and objective measures, such as

whether they are continuous, categorical or normally distrib-

uted, for example, should be considered so that comparisons can

be made while satisfying the assumptions of any tests or

methods used. Resources are available which give the description

of the two measures and suggest a suitable method to compare

them.65,66 Methods include t-tests, regression models and

Mann–Whitney tests.26 The choice of method will also depend

upon the structure of the data. For example, if there is a hier-

archical structure or if the data are affected by confounders,

a regression model which can allow for these features would be

recommended. If the data have a simple structure and there are

no repeats within it, then an appropriate test or correlation may

be suitable. The requirements and assumptions of any approach

should be obtained and verified before the comparison is

completed.

Example Let there be a study conducted which collects

responses from observers regarding image quality using a five-

point scale, to compare machines from two manufacturers. The

question of interest is whether there is a difference in image

quality between the different manufacturers, since one is con-

siderably cheaper than the other. The viewing session displays 32

images; 2 images from each of 8 patients from 1 machine, and 2

images from another 8 patients on the other. 10 observers are

enrolled to the study and each observer rates all the images,

resulting in 320 responses from the observers on an ordinal

scale. Factors affecting image quality from the patients and

machines are also recorded as confounders.

For an ordinal subjective measure and a binary manufacturer

choice with continuous confounders, an ordinal regression

model should be used. The details of the ordinal regression

model depend upon the nature of the data gathered; in this

instance, hierarchical data with repeated patients and observ-

ers. Therefore, a multilevel proportional odds model is

required.

COMPARISON OF THE MEAN OPINION SCORE

AND MULTILEVEL PROPORTIONAL ODDS MODEL

USING IMAGE QUALITY DATA

Let there be a study comparing two image-processing methods

in radiography. Processing type A is a form of image processing

currently used in capturing images for diagnostic purposes, and

processing type B is an alternative method for image enhance-

ment. The research question is whether type B can produce

images which are as useful for diagnostic purposes as type A.

18 raw images were taken from 5 patients (3 images from

2 patients and 4 images from 3), and the 2 image-processing
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techniques were applied. 24 observers were asked to rate the

image quality of the resulting 36 processed images (18 from each

processing type) on a 1–5 scale (worst–best). The results are

shown in Table 2. Both MOS analysis and a multilevel pro-

portional odds model will be applied to the data, for comparison

of the results.

Mean opinion score analysis

The average score for processing type A and B must be calcu-

lated using the data in Table 2 and a difference between the

two sought.

Processing type AMOS

5
ð66 3 1Þ1 ð51 3 2Þ1 ð157 3 3Þ1 ð91 3 4Þ1 ð67 3 5Þ

ð661 51 1 1571 911 67Þ
         

5
1338

432
         

5 3:097

Processing type BMOS

5
ð47 3 1Þ1 ð43 3 2Þ1 ð145 3 3Þ1 ð101 3 4Þ1 ð96 3 5Þ

ð471 43 1 145 1 1011 96Þ
         

5
1452

432
         

5 3:361

The average score is therefore slightly higher for type B than type

A, but there appears to be no sizeable difference between the

processing types in terms of image quality.

Multilevel proportional odds model analysis

The data in Table 2, in conjunction with observer and patient

information, can be used to form a multilevel proportional odds

model. Observers are considered to be repeated, as they each

view more than 1 image (a total of 36), as are patients who each

provide 3 or 4 images. Since the same raw images are used for

both processing types, all machine settings except the processing

type remain constant; hence, these variables are not considered

to be confounders and do not need to be included in the model.

For measures such as dose and patient size to be classified as

confounders, they would need to affect image quality, which

they do, but also the processing type, which in this case they do

not. Processing type can be put into the model as usual in

regression modelling (as a fixed effect), but the observer and

patient variables must be entered into the model as random

effects, since they are repeated measures with the 24 observers

each having viewed the 36 images taken from the 5 patients. The

analysis was completed using R statistical software59 but can also

be carried out using other software packages.61–63

The fixed effects are shown in Table 3, where the estimate for

processing type is highly significant (p5 3.033 1026), showing

processing type B to have generally higher quality scores than

type A (positive estimate).

Table 4 displays the random effects, showing a measure of the

variability for observer and patient. Patients show more vari-

ability than observers, suggesting greater differences between

patients than between observers in relation to the quality score.

The research question concerned differences in image quality

between processing types A and B. The MOS analysis reported

mean values just above three for each processing type (slightly

higher for B than A). However, the estimate for processing type

in the multilevel proportional odds model was highly significant

and showed processing type B to give significantly higher image

quality ratings than processing type A. It may be that patient

characteristics such as patient thickness affected the image

quality and that some observers scored the image quality more

generously than others. These differences between patients/

observers and similarities within patients/observers were not

accounted for during the MOS analysis.

Therefore, taking into account the repeated nature of both

observers and patients, the conclusion from the study is clearer.

The same data set was used for both methods, but less variables

were included in the MOS analysis.

DISCUSSION

We have highlighted some weaknesses in the methods currently

used to analyse data collected from medical imaging viewing

studies, where method assumptions are not always known,

checked or adhered to. We have suggested simple amendments

to the data collection, as well as more sophisticated analysis

models to include conditions within the data which have not

previously routinely been accounted for. We encourage

Table 2. The raw ordinal response data

Processing Score 1 Score 2 Score 3 Score 4 Score 5

Processing type A 66 51 157 91 67

Processing type B 47 43 145 101 96

Table 3. Output from the multilevel proportional odds model: fixed effects

Fixed effects Estimate Standard error p-value

Processing type B 0.615 0.132 3.033 1026
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researchers to implement a multilevel proportional odds model

where appropriate but suggest the consideration of the other

approaches given too. A flowchart is shown in Figure 3 which

guides researchers through data collection suggestions when data

have not yet been acquired and, subsequently, recommends an

analysis approach given the structure of the data. A checklist is

also provided in Table 5 detailing best practice during the study

planning phase, data collection, analysis and results reporting.

Imaging examples have been used to demonstrate each of the

suggestions, and these approaches can be implemented using

packages in statistical software such as R59 or Stata® (StataCorp,

College Station, TX).61 Some statistical knowledge is required, so

the guidance of a statistician may be necessary, and any model

assumptions must be verified to ensure the model is valid before

the results are interpreted.

We have not discussed here the issue of sample size and statis-

tical power of a study. Calculations exist for simple models and

tests, and there are some general guides available,67,68 but these

become less common as the complexity of the analysis increases,

and simulation67,68 is often recommended instead. Although it is

desirable to have a large number of observers and a large

number of images in a study, in practice these numbers will

largely be determined by the availability of images and observers

and restricted by time constraints of observers to perform the

study. It is also likely that these two factors are inversely asso-

ciated, and a compromise must be achieved to maintain rea-

sonable statistical power.68 Care must be taken, however, to

ensure that the study is not compromised by too narrow a se-

lection of observers or images. In addition, there are modelling

requirements to abide by, such as the ratio of the number of

parameters and number of observations, to avoid overfitting

a model.44 For example, in logistic regression, the number of

observations should be at least 10 times the number of

parameters.44,67

The focus here is on evaluating image quality using visual as-

sessment and a given criteria, often referred to as visual grading.

However, ordinal data are also used for assessing agreement

between observers, devices and methods or for assessing the

agreement with an accepted reference standard. In each of these

three scenarios, different analyses will be required. When testing

agreement between two or more ratings, analyses such as pol-

ychoric correlation or the weighted kappa statistic, an extension

of Cohen’s kappa statistic,28 may be suitable, whereas

approaches such as ROC curves6,8 are more suited to agreement

with a given value such as in diagnostic accuracy. The inclusion

of observers as random effects in a regression model has been

suggested here for the assessment of image quality which does

not require a ground truth,44 but the information relating to the

observers themselves will be minimal and hence method choice

will be affected by the variable(s) of interest. Whichever method

is selected and whatever be the purpose of the analysis, all

assumptions should be checked and adhered to.

Table 4. Output from the multilevel proportional odds model:

random effects

Random effects Variance Standard deviation

Observer 1.625 1.275

Patient 2.168 1.472

Figure 3. Method flowchart tool.
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Although the focus here has been on image quality, the true

importance if using radiation is regarding patient dose, which is

assumed to be positively associated with image quality and

which is the reason for many of the viewing studies.69 Regression

models in general allow the inclusion of continuous variables

relating to factors such as dose and hence the effect of these

parameters can be assessed.44 A method has been suggested

which successfully uses ordinal logistic regression with random

effects to quantify the potential for dose reduction using post-

processing and which supports the analytical suggestions here.70

Although other authors have highlighted some of the issues

discussed here,8,24,25 with some also proposing alternative

methods of analysis, not all can be used in all scenarios asso-

ciated with subjective image analysis. For example, some authors

suggest24 and others use6,8 VGC analysis which is advantageous

over using the MOS since it does not make assumptions re-

garding the distribution of the data nor does it average ordinal

data. However, VGC analysis is based upon ROC curves and is

unable to account for repeated measures in the data or to return

information regarding the importance of confounding variables.

It is also affected by the interobserver variability.24 The approach

suggested here, namely multilevel modelling, provides results

relating to these additional variables and permits repeated

images, observers and patients. Consideration of these factors

during the analyses is highlighted by other authors,41,44 with one

of these publications44 also recommending ordinal logistic re-

gression. Additional recent publications agreeing with our con-

clusions include an evaluation69 of several regression models,

which recommends ordinal logistic regression for ordinal data

from visual grading experiments in medical imaging, as well as

an approach for quantifying potential dose reduction using

ordinal data which also uses ordinal logistic regression.70

Although other authors have drawn conclusions supporting

our message here, many focus on the analysis,41 whereas we

Table 5. Medical imaging viewing checklist

Area Item Recommendation Check

Planning

Observer selection 1
Determine a comfortable study length and select observers

with suitable experience
N

Patient selection 2

Choose patients who are suitable for the research question.

Unless necessary, do not select multiple images from one

patient

N

Image selection 3

Choose appropriate images to address the research

question. Unless comparing two approaches which can

utilise the same image set, e.g. image processing, select each

image only once

N

Data collection

Scale 4

Where possible, collect the data using a continuous scale,

labelled at each end to show scale direction and in the centre

as a reference point

N

Confounders 5

Collect data on any variable thought to be a confounding

factor. This may relate to the image, observer or viewing

conditions

N

Repeats 6

Record any repeats present in the viewing, such as repeated

images, patients providing multiple images, or observers

providing a response to more than one image

N

Data analysis

Scale 7

Decide upon the outcome of interest and amend the scale

accordingly. The continuous scale adopted allows for

a continuous outcome, a binary (two category) outcome or

an ordinal (more than two category) outcome. Categorise

the scale accordingly and justify the scale chosen

N

Analysis 8
Select an appropriate means of analysis using the flowchart

(Figure 3)
N

Reporting

Detail and justify 9

Ensure all aspects of the study design, data collection and

analysis have been included in the report and all choices

justified. Include assumptions for any analysis conducted

N

Interpret 10
Present all statistical findings and a full interpretation of the

results
N
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have covered the entire study design, from questionnaire

format to data analysis.

CONCLUSION

Greater insight can be gained through improved experimental

design and appropriate analytical methods for ordinal data in

image quality assessment. We have highlighted a number of

limitations in common approaches and provided a checklist and

accompanying flowchart for guidance on how to approach dif-

ferent situations. These suggested improvements can be used not

only in future studies and to contribute to the medical imaging

literature but the suggestions relating to data analysis can also be

used to reanalyse previous studies to verify older findings. More

informative results with less bias will lead to greater knowledge

in medical imaging which should impact positively on future

patient care.
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