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Hadamard renormalized scalar field theory on anti-de Sitter spacetime
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We consider a real massive free quantum scalar field with arbitrary curvature coupling on n-dimensional
anti—de Sitter spacetime. We use Hadamard renormalization to find the vacuum expectation values of the
quadratic field fluctuations and the stress-energy tensor, presenting explicit results for n =2 to n = 11

inclusive.
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I. INTRODUCTION

Quantum field theory (QFT) on curved spacetime is a
semiclassical approach to quantum gravity, where the
n-dimensional spacetime geometry is fixed and classical,
and a quantum field propagates on this background. This
approach is encapsulated in the semiclassical Einstein
equations,

(1.1)

where (|T,,|y) e, is the renormalized stress-energy tensor
(RSET), associated with the state |y) of a quantum field,
and where we are using units in which

G;w + Ag;u/ = 8”<W|T;w|l//>ren’

c=G=hn=1. (1.2)

The RSET is the central object of interest in QFT on
curved spacetime as it is responsible for the backreaction
of the quantum field on the spacetime geometry. Since
(W|T y|w)en depends on the state as well as the geometry,
understanding the backreaction requires a methodology for
computing (|7, W), in which the state dependence is
manifest.

The stress-energy tensor involves products of quantum
operators at the same spacetime point. Hence its expect-
ation value is divergent and requires renormalization.
Renormalization in curved spacetime is challenging.
Calculations of explicit expressions for (y|T,,|y),., have
been attempted mostly in n = 4 spacetime dimensions and
appear to be tractable only for highly symmetric space-
times. A particular emphasis in the literature to date has
been computations on black hole spacetimes. For n = 4,
the RSET has been computed for various quantum fields on
static, spherically symmetric black hole spacetimes [1-7],
while for n =3 it is also possible to find the RSET on
the rotating Bafiados-Teitelboim-Zanelli (BTZ) black hole
[8,9]. For black holes in more than four spacetime
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dimensions, the literature on the computation of renormal-
ized expectation values is rather limited. There is work on
computing the RSET using the Schwinger-DeWitt repre-
sentation of the Feynman propagator when # is even [10].
In addition, the renormalized expectation value of the
quadratic field fluctuations (RQFF) has been computed
on the horizon of an asymptotically flat, spherically
symmetric, three- and five-dimensional black hole in
[11] and [12] respectively and on the five-dimensional
analogue of the BTZ black hole [13].

The subject of QFT on anti—de Sitter spacetime, AdS, has
held a particular interest for some time: initially, since AdS
arises as a natural solution of a certain class of supergravity
theories (see, for example, [14]); and more recently in the
context of the AdS/CFT correspondence [15—18]. The fact
that AdS is not globally hyperbolic [19] has important
consequences for QFT on this spacetime. Boundary con-
ditions must be imposed at infinity in order to define a
consistent QFT [20]. These conditions were first explored
in [20] for a quantum scalar field when n = 4, leading to
expressions for the scalar field modes and the Feynman
Green'’s function in this case. For general n, the scalar field
modes have been obtained in [21,22] and the Feynman
Green’s function has been calculated by summing over
these modes [21]. Two-point functions for scalar, spinor
and vector fields have also been derived for general n
[23,24] by directly solving the field equations, exploiting
the underlying symmetries of AdS. Vacuum expectation
values for a massive scalar field with general coupling to
the Ricci scalar curvature have been computed using zeta-
function regularization, for n =4 [25] and n > 2 [26]. In
addition, the one-loop effective potential for n =4 has
been studied [27].

Hadamard renormalization (HR) was introduced in the
development of Wald’s axiomatic approach [28,29]. It
extends the method of covariant geodesic point separation
[30,31] and is based on the requirement that the short-
distance singularity structure of the Green’s function
solutions of the field equation have the form of
Hadamard’s “elementary solution” [32]. The Hadamard
form is a powerful device in the context of renormalization
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not least since its structure is given by a rigorous theorem,
but moreover it clearly exhibits the influences of the field
state. Rigorous approaches to QFT in curved space rely on
the notion of a Hadamard state, whose point-split two-point
function has the Hadamard form.

Décanini and Folacci [33] have implemented HR in an
elegant framework for a free scalar field coupled to a
general n-dimensional spacetime. Reference [33] serves as
a practical approach to higher-dimensional renormalization
in specific spacetimes. Even so, applications of HR to
RSET computations in the literature mostly remain
restricted to n =4 (see, for example, [34-37]). In this
paper our focus is on applying HR to RSET computations,
but HR has wider applications, for example to studies of the
self-force [38,39] and stress-energy tensor correlators [40].

In this paper, we apply HR to expectation values of
operators for the global vacuum state |0) of a real massive
free quantum scalar field ® coupled to n-dimensional anti—
de Sitter spacetime, AdS,. Maximally symmetric spaces
such as AdS,, are the simplest nontrivial spacetimes on
which to compute the RSET. Working on AdS,, is therefore
a good preliminary step in the development of practical
HR methodology in more than four spacetime dimensions.
Ultimately an implementation of HR for higher-
dimensional black hole spacetimes would be of great
interest. In four spacetime dimensions, a computation of
the RQFF for a massless, conformally coupled scalar field
on an asymptotically anti—de Sitter black hole [41] has
shown that the expectation value far from the black
hole approaches the (nonzero) AdS, expectation value.
Knowledge of the vacuum expectation value of the RSET
for a scalar field with arbitrary mass and curvature coupling
on AdS, is therefore useful for extensions of the work of
[41] to more general field mass and curvature coupling as
well as future computations on higher-dimensional, asymp-
totically anti—de Sitter black holes.

The outline of this paper is as follows. We begin, in
Sec. II, with a review of the geometrical foundations
required for QFT on AdS,, [20], as well as the basic tools
necessary for covariant geodesic point separation [30,31].
Section III is concerned with the Feynman Green’s function
Gr(x,x’) for a quantum scalar field on AdS,, which is
constructed in Sec. III A. In Sec. III B, we set out the
Hadamard form of the Feynman Green’s function,
Gy(x, x’), which enables us, in Sec. III C, to fix an overall
normalization constant in Gg(x,x’). In order to perform
HR, in Secs. IV and V, we expand both Gy and Gy
respectively as formal series up to second order in the point
separation. Based on this regularization, in Sec. VI we then
detail the procedure used to obtain expressions for the
RQFF, (®?) .., and the RSET, (T, ) ., with respect to |0).
Analytic results for (9?)., and (T, )., for n =2 to
n = 11 inclusive are presented in Sec. VII and our con-
clusions are in Sec. VIII. In particular, we compare our
results using HR with those obtained from zeta-function
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regularization [26]. Throughout this paper, we adopt the
Lorentzian metric signature convention (—,+,+,...,+),
and the unit system (1.2). The Appendix lists properties of
the gamma, psi and hypergeometric functions which are
used in our calculations.

II. PRELIMINARIES

A. Scalar field theory on AdS,

AdS, may be realized as the embedding of a single-
sheeted n-dimensional hyperboloid in an (n+ 1)-
dimensional Euclidean space,

[En+1 :{C”,y:0,1,2,...,n}, (21)
endowed with the metric
gfy:diag(—l,l,l,...,l,—l). (2.2)

Intrinsic coordinates are then given by the constraint

{v} ={¢" gulte* = —a’}, a>0, (2.3)
where ia is the radius of curvature of AdS,,. A convenient
dimensionless coordinate system is the set of hyperspher-

ical coordinates,

—n<t<um, 7= —n and T = identified,
T
0<p<—,
<p )
OSGJ-SH, j=12,...,n=3,
0< ¢ <2n, (2.4)

parametrizing the temporal, radial, polar and azimuthal
directions respectively. The coordinate system (2.4)
covers AdS,,, excluding polar singularities. In terms of
the coordinates (2.4), the metric on AdS,, takes the form
ds* = a*(secp)?[—dz* + dp® + (sinp)?dz2_,] (2.5)
where dX2_, is the metric on the (n — 2)-sphere.
The simplest action for a real massive free classical

scalar field ®(x) coupled to g,,, the metric tensor of
AdS,, is

1
S[<I>,g,w]:—5 / p d"xg(¢*V, 0V, &+ mid?), (2.6)

where

g:=|detg,,|, (2.7)

and

m?} = m® + ER (2.8)
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is an effective mass-squared term with m, the mass of the
field quanta, and the constant £, the coupling between
and R, the Ricci scalar curvature. The scalar field equation
of motion

(O- m?)(b =0, (2.9)
(where [ is the n-dimensional curved-space Laplacian) is
obtained by varying S (2.6) with respect to ®.

The quantization of (2.6) requires a globally hyperbolic
background. However, since v = —z and 7 = x are iden-
tified, AdS,, admits closed timelike curves. Although the
covering space CAdS,, (where —oco < 7 < 4-00) does not
have closed timelike curves, nonglobal hyperbolicity per-
sists since spatial infinity p =7 remains timelike and
information may be lost or gained at infinity [20]. To
ensure a well-defined QFT, we adopt reflective boundary
conditions [20], whereby modes of ® vanish at p = 7. Such
modes are known as regular modes [42] and exist provided

(n—1)
4

n = n’%a2 + > 0. (210)

For the rest of this paper we shall assume that (2.10) holds.

B. Bitensors on AdS,

A bitensor B(x,x") is a quantity which transforms as the
product of two tensors, evaluated at x and x’ respectively
[31]. Similarly, a biscalar b(x, x") transforms as the product
of two scalars, evaluated at x and x’ respectively. Covariant
derivatives of b(x, x’) with respect to x or x’,

b, =V,b(x,x'), by =V, b(x,x), (2.11)
are specified by an unprimed or primed index respectively.

Given two points x, x" sharing a geodesic, s(x, x') is the
proper distance between them and is pure imaginary for
timelike intervals. The related invariant,

o(x,x') = % [s(x, x')]?, (2.12)

is known as the geodetic interval [43], or world function
[44], and obeys the partial differential equation (PDE)

1
o= 56;"0;’4. (2.13)

In this paper we are considering the maximally symmetric
spacetime AdS,. A biscalar b(x,x’) is a function of the
proper distance s(x,x’) [that is, b(x,x") = b(s)] if it is
invariant under the action of all isometries of a maximally
symmetric spacetime [23]. This greatly simplifies our
calculations.

PHYSICAL REVIEW D 91, 044044 (2015)

The bivector g#”/ (x,x") enables parallel transport of
vectors from x to x’ along a geodesic [31], such that the
unit tangent vectors s,, and s, (at x and x’ respectively) are
related by

!

R (2.14)

The bivector of parallel transport satisfies the boundary
condition

limg,, = g, (2.15)
The Van Vleck—Morette determinant [45-47],
A(x,x') = =[g(x)] 2 det [-o(x, ), )[g(x)] 7, (2.16)

contributes to the description of the rate of geodesic

convergence [43], and satisfies the PDE [33]
L

Oy = n—2A72A5,,6%, (2.17)

where [, is the n-dimensional curved-space Laplacian

with respect to the unprimed coordinates, with the boun-
dary condition

limA(x, x') = 1. (2.18)
The relationship
n—1 s
Os = coth (—), (2.19)
a a

established in [23] allows the explicit form of the Van
Vleck determinant to be found on AdS,,, namely

n—1
A= F cosech (i)] .
a a

ITII. SCALAR FIELD GREEN’S FUNCTION

(2.20)

A. Feynman Green’s function

In order to compute the RQFF and RSET, we first
need to find the Feynman Green’s function Gg(x, x) for
the scalar field ®. The Feynman Green’s function is
defined by

Gelx,¥) = (OIT@WBNI0). (1)
where
T@wew) ={ g T 62)
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denotes the time ordering of the application of the field
operators. The Feynman Green’s function satisfies the
inhomogeneous Klein-Gordon equation

(O, = m})Gg(x, x') = g728"(x — x'). (3.3)
Integral representations of Gg can be found using
Schwinger’s proper time method [48], generalized to
curved spacetimes (see, for example, [30,31,43,49]). The
time-ordered nature of Gg is guaranteed in such schemes
by requiring that it be the limiting case of a function
that is analytic in the upper complex half-plane of s.
Accordingly, in what follows, it is tacitly implied that

Gg(x,x') :== Gp(s(x,x") +i07), 0T := lirrole, e > 0.
(3.4)

Explicit expressions for Gg on AdS, can be obtained
using one of two methods, both of which are greatly
simplified by virtue of the underlying spacetime sym-
metries. Burgess and Liitken [21] evaluate (3.1) as a sum
over field modes. However, the maximal symmetry of
AdS,, means that we are in the special situation of being
able to find a closed-form expression for the Feynman
Green’s function Gg(x, x") without employing a sum over
modes. Allen and Jacobson [23] show that Gy is invariant
under the action of all isometries of a maximally symmetric
spacetime and express (3.3) as the ordinary differential
equation (ODE)

L n-1 d
LT o () L Z |G =0,
a a <

ds? ds (3:5)

for s #0. The ODE (3.5) is then identified with the
hypergeometric equation (A11)

d? 1\ d ) 5
Z(l—Z)d—Zz—l’l Z—E d—z+m5a GF:O, (36)
for z # 0 by means of the change of variable

=l

Following [27] we write the solution of (3.5) in the form
(using §9.153.7 of [50])

(3.7)

Gr = Gyg(c) + Grp), (3.8)

which is valid for |z| < 1, for all n > 2, where
Gr(c) = CFla, p;7; 2], (3.9a)
Ggp) = DFa., B;7;1 = 2], (3.9b)

with C and D coefficients to be determined, and where
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n—1 n

. pEaamn vi=s

n—1
2

(3.10)

a:=

with n given by (2.10). In view of (A8)-(A10), as s — 0,

llmGF(C) = C,

s—=0

(3.11)

and Gg(py diverges. It follows that to isolate the short-
distance singularity structure of Gy, it is necessary to
determine the constant D.

In preparation for this exercise in Sec. III C, following
[27], we apply the linear transformation (A12d) to both
(3.9a) and (3.9b) and then (A12b) to the latter result,
yielding the expression

n—1

Gp = AT (=2)"T71F () + A~ (=2) T F_(z), (3.12)
for |z| < 1, where we have defined the constants
pet rErE2
2E = (C + (=1)5+1D) n_l(z) ( 1'7) . (3.13)
P £n)lG+n)
and
n—1 1 1
Fi(z)=F EngEnl £t (3.14)

Following [27], for G to remain finite as s — oo, it must
be the case that

C=(-1)7D. (3.15)
Therefore
Gr = AeoD(=2)"T71F (2), (3.16)
where
r(Hr(-2
hon o= 207 sin (mp) — DT 20) (3.17)

rEst—mrG-—n)

B. Hadamard form

The Hadamard form of Gg on AdS, is given by
[recalling (3.4)]

Gu(x,x') = ix[U(x,x)6' 5 + V(x,x') In& + W(x,x')],

(3.18)
with
! —2 (3.19)
K =iz n=2 .19a
re-1
k = G ﬂ), n>2, (3.19b)
2(2x)?
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and where U(x,x’), V(x,x’) and W(x,x’) are biscalars
which are regular as x’ — x. In (3.18) we have defined the
dimensionless quantity

(3.20)

which depends on an undetermined renormalization mass
scale M [33].

The biscalars U(x, x') and V(x, x’) are purely geometric,
depending on the spacetime geometry but not on the
state of the quantum field. Since we are working on
the maximally symmetric AdS, spacetime, U(x,x’) and
V(x,x') are therefore functions of the geodetic interval
o(x,x") [or, equivalently, s(x,x’)]. The conventional
Anscitze for the functions U and V are the series expansions

U(o) =0, n=2, (3.21a)
U(o) = f U(o)d', n odd, (3.21b)

1=0

12
U(o) =Y U o), n>2,neven, (3.21c¢)

1=0

and

V(o) =0, n odd, (3.22a)
V(c) = 3 V,(6)e!, n even. (3.22b)

The following recursion relations determine the coefficients
U 1 and V i

U, - mé%
- 5 Ul
2l+4—n
= U A7 6" — (14 1)U — Uy 0¥, (3.23a)

O, —m;
—V
[+ 1
=2V, ATAY 6% — (20 + n)V i =2V 0%,

(3.23b)

with the associated boundary conditions for U, and V:

Uy = AL, (3.24)
and
Voo AL =2, (3.25a)
1 1,1 . :
Vo = =gy RVoATAY 0" = 2V, = (O, = md)Usg
n>2. (3.25b)
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Using these relations, the U; and V; [and hence U(s) and
V(0)] can be determined by integrating along the unique
geodesic separating the events x and x’ (assuming that x and
x' are sufficiently close that they are connected by a unique
geodesic). However, the biscalar W(x, x) is not uniquely
defined, a feature that can be attributed to the state
dependence of Gy. It follows that the terms of (3.18)
involving the functions U and V (i.e. those terms containing
the short-distance singularities) are the purely geometrical
parts of Gy, and the term of (3.18) involving the biscalar
W(x, x’) additionally incorporates the state dependence of
Gy. Even on the maximally symmetric AdS,, spacetime, for
a general quantum state the biscalar W(x, x) is not simply a
function of the geodetic interval o(x, x’). However, if we
are considering a quantum state which shares the maximal
symmetry of the underlying AdS,, spacetime, then W (x, x’)
will depend on x and x” only through o(x,x’), so we can
write W(x,x") = W(o). In particular, this is the case for the
global AdS,, vacuum which is our focus in this paper.

C. Determination of the coefficient D

We now complete our determination of the Feynman
Green'’s function Gg by finding the coefficient D in (3.16).
This coefficient is fixed by directly comparing the leading-
order divergence of Gg with that of Gy. To extract the
leading-order divergence of G, we follow [23]. Applying
(A12b) to the hypergeometric function in (3.16) gives

n—=1

Fi(z)=(1-z")"57F(2), (3.26)
where
~ n—1 1 .
F(@) = F|=——+n5+m2n+ 1z, (3.27)
with
.1 2
== [sech (i)} . (3.28)

As z — 0, we have Z —» 1. Applying (A12a) to (3.27) gives

n 3

F(z) = (1-2)'7F(2), (3.29)

31 -
,=+m2n+ 1;z],

FE)=Fln-"2" 3

(3.30)

is convergent as 7 — 1 for all n > 2. Combining (3.16),
(3.26) and (3.29) gives

G2 = 2,77 11(1 = 2)'5F(3), (3.31)
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where all the singular behavior in Gg as 7z —» 1 (z = 0) is
now in the (1 —2)!~ factor.

When n = 2, given (3.26) and applying the transforma-
tion (Al2e) to F(Z), the Green’s function (3.16) has the
form

F2n+1) X [G+n),)?
G2 = 1, Dz D21 U 55 {(2 '”)k}
[F(E =+ 7])] k=0 k!
x [U"=2 —In(1 - 2)](1 = 2)*, (3.32)
where (% + 1), is the Pochhammer symbol defined in (A3)
and where

5 (3.33)

Ur=2 = 2{w(k+ 1) —l//(l—i—r]—&—k)},
with y denoting the psi function defined in (AS). The
expression (3.32) exhibits a logarithmic leading-order
divergence.

With the expressions (3.31)—(3.32) in hand, the coef-
ficient D can be determined by extracting the leading-order
divergences and then directly comparing this behavior with
that of their respective Hadamard form counterparts,

GI=? ~ —éln 5, 50, (3.34a)

lﬂF E—1 s2n 550,
4z \2

obtained from (3.18), (3.24) and (3.25) with (2.18), where
“~” denotes “diverges as” and defining 5 := Ms where M is
the renormalization mass scale (3.20).

When n =2, as s - 0 the k =0 terms are the only
contributors to the summation in (3.32). Furthermore,

In(1-3) = ln{ [tanh(;—a)]z} ~2In3, s - 0.

(3.35)

n>2
G~

(3.34b)

Making use of (A2), the comparison of (3.32) and (3.34a)
then yields
i

D = —sec(nn),

i (3.36)

for n = 2.

When n > 2, the leading-order divergence of Gi?z is
that of the (1 — Z)'~% = [tanh(3)]*™" factor in (3.31). Thus,
as s = 0,

(2a)"2s>". (3.37)
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Making use of (A2) and (A3), for p=1,2,..., the
comparison of (3.34b) and (3.37) then yields, for
n>2,

(=1)r (=n),(n)
(4m)Pta® 'C(p+1) 7

D= P 7 cosec(nn),

(3.38)

forn =2p +1 and

D i(=1)7 <1 > <1+ > sec(nn)
=——a g\ 1) (5+n)| msec(an),
(4m)P+1a®rp! \2 ,\2 ,

(3.39)

forn=2p+2.

We emphasize at this stage that despite the presence of
poles in (3.36) and (3.39) for n = %,%, ..., and in (3.38) for
n=1,2,..., the Feynman Green’s function Gg remains
finite for all .

IV. SINGULARITY STRUCTURE OF Gy

To compute the RQFF and RSET using HR, the purely
geometric, divergent parts of the Hadamard form (3.18)
(i.e. the terms containing U and V) are subtracted from the
Feynman Green’s function (3.8) and the limit x' — x is
taken. The first step is therefore to regularize, by isolating
all the divergent terms in both the Feynman Green’s
function (3.8) and the Hadamard form (3.18) and write
them in a form which facilitates renormalization, i.e. the
subtraction and limit process. In this section we regularize
the Feynman Green’s function (3.8) and in the next section,
the corresponding calculations for the Hadamard form
(3.18) are performed.

The regularization

G = GF.reg + GF.singv (41)
where G gy, denotes the part of Gg containing its
singular terms and G, denotes the remaining regular
part of Gp that is developed below by expanding the
hypergeometric functions in (3.9a) and (3.9b) as series
in s, for n =2 and n > 2 with n odd and with n even
respectively.

The computations of (®?) . and (T,,)., require an
expression of Gg to zeroth and second order in s
as their corresponding inputs. In what follows, we
adopt a convenient notation for such expressions. For a
formal series f(s), we denote: f* and fI! as its respective
zeroth and second-order truncations; f(© and f® as
its zeroth and second-order terms; and f**) as its singular
terms.
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A.n=2

The relations (3.15), (3.36) and (A2) and the expansion
(A8) of the hypergeometric function in (3.9a) combine to
give

+oo (1 1_
Gid = 311 ~ itan(an)] ;—(2 * ’7()15()22 Wik (42)

Recalling (3.36) and (A2) and applying (Al2e) to the
hypergeometric function in (3.9b) yields

. foo
i x> GEM G cae
G} —4—; 2 k2 Tk ("% —nz)zk

(4.3)

valid as s — 0, where

~ 1 1
\Ifn_2 = 21[/(k+])—1//<2+71+k) —l//(z—ﬂ+k)

(4.4)

The Feynman Green’s function therefore has a logarithmic
singularity as s — 0, which can be seen explicitly from

Inz=2In5—2In2—2Ina—icsgn(is> )ﬂ+m+ O(s*),
(4.5)

as s = 0, where

1, Rey >0, or Rey=0,Imy >0,

csgny:=¢ 0, y=0,

—1, Rey<0, or Rey=0,Imy <0,

(4.6)

is the generalization of the signum function to complex
numbers y [51], and where we have defined the dimension-
less variable a := Ma where M is the renormalization mass
scale (3.20).

Adding (4.2) and (4.3) gives

1SRG+
ngz__z(z ’7)/(( ’l)kzn >

R CIECT

where
zn= 2.

log = {ﬂ—z{h//(i >+27+L+lnz]}zk, (4.8)

with the boldface y being the Euler-Mascheroni constant
and
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k—1 1 k 1
L= S (49
<+n+l ——n+l) gl 2

=0

having applied (A6) and (A7) to (4.4).

For the summation in (4.7), only the k =0 and k =1
terms contribute to a second-order expansion in s.
From (4.8) and (4.9), the contributions from ZI”Og2 to these
terms are

1
er'o§2|k=o =r- i[Zw(§+ 77) +27 + lnz], (4.10)

and
Zin et = (Ziog* ko — 16L)z, (4.11)
where
1 2
5+ 2n
oL = L|k l_L|k 0_L|k 1_21 112 . (412)
4

Recalling (4.5), the second-order truncation of the k = 0
term is

2
Ziodlico = —2i<Y +1In5 +%a2>, (4.13)

where

1
Y:=w(§+n>+y—ln2—lna. (4.14)

From (4.11) the second-order truncation of the k = 1 term
is then

2

N
20 = (2l = i0L) 1

log log 4(12 ’ (4 1 5)

The truncation of G~ to second order in s is therefore

Iy s g
o 2442
1 52 1 52
T (e B Y (LI REA
X[ +<4 ")4a2}+<4+”>4a2}

(4.16)
Accordingly, the zeroth order terms of G are

ILn=2 _
Gp =

G(ln =2 _LY’

0
G;) Freg — o0

(4.17)

and the singular term of G is

044044-7
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GI(:*).n =2 Gon 2

i
Fsing — 2—1ns.

T

(4.18)

B.n > 2, n even

The relations (3.15), (3.39), (A2) and (A4) and the
expansion (A8) of the hypergeometric function in (3.9a)
combine to give

ELG -
- k(1= p)y :

PHYSICAL REVIEW D 91, 044044 (2015)

- 1 —itan(zn)] (1 1
F(C
©) (4z)PH1a?r  \2 2\2 ,
" R(p+5+n)(p+5—n), 5
Zk:o k!(k+ p)!

(4.19)

Recalling (3.39), applying (A12f) to the hypergeometric
function present in (3.9b), then simplifying with (A2)
yields

M i

1 1 (P 3+ (p+3-n)
" ("*‘”) ("‘ﬂ) 2 B DIk (=22 I 2)c |, (4.20)
2 »\2 » ; k!(k + p)!
|
where n=2p+2 . 1 7 k
Ziog =9 —i|2y 54—77 +2y+L+1Inz| pz
\If":2p+2 = _W(k + 1) _ l//(k +p+ 1) (4.25)
1 1
+W<P+§+f7+k>+‘l’<l’+§_”+k>' where
(4.21) o pk=l 1 1 kg
, . . L= <+n+l ——n+l> 27 27
Equation (4.20) reveals poles in the formal Laurent series =0 I=1 I=1
(FLS) of the first summation and a logarithmic divergence (4.26)

in the second summation.

Adding (4.19) and (4.20) gives the Feynman Green’s

2p+2 2 .
function Gj.~>"**. To expand G >*** to second order in s,

it is convenient to split it into a part containing the
logarithmically divergent terms and another containing
the FLS:

Gn =2p+2 __ _ Gn =2p+2 + G]r;?ip—ﬂ (422)

F.log

where

_ 1 1 1
n=2p+2 _ - (2 -
it =G (31),67),

" *i (P+3+m (P +5=m) uapia
et k'(k + p)! log ’( |
4.23
and
_ 1 _
n=2p+2 n=2p+2
Geps = (az)p g s ! (4.24)

In Egs. (4.23)—(4.24), we have introduced the quantity

[having applied (A6) and (A7) to (4.21)], and where

-1 /1 1
& (E + ’7)]((5 - W)kzk_p'

72202 o i(—1)PT(p) k!(1 - p),
k=0 ™

(4.27)

For the summation in (4.23), only the k =0 and k = 1

terms contribute to a second-order expansion in s. From
(4.25) and (4.26), the Zf’ozz” 2 contributions to these terms

are

1 .
Zrog2p+2|k 0 :”—i[zll/(2+77) +27+ L= +Inz|,

(4.28)
and
=2p+2 =2p+2 o5
Zioe " it = (Zigg " ko — i6L)z, (4.29)
where
- - ~ 2p +1 p+2
6L = L[ = L|j—o = (4.30)

(p+97 =7 prl

044044-8
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Recalling (4.5), the second-order truncation of the k = 0 term is

n= . - _ s2
leolé 2p+2|k:0 = -2 (Y +§L|k:0 +1Ins —|——),

From (4.29), the second-order truncation of the k = 1 term is then

log

11.n=2p+2 - 11.n=2p+2 A
A |k:1 = (Zlog k=0 — 15L) 4_a2'

The truncation of the expansion of G to second order in s is therefore

_ 1 1 1
Gln=2r+2 _ 1 1
F (r)" a2 (p + 1) R 2 \2 g ,

n= 1?2
X [leolg 2 <P +1- {’72 - (P + 2> ]

Accordingly, recalling (4.5), the zeroth order terms of G .,
are

On=2pt2 _ =i 1 1
G = g (247), (377),
1 1-
X |\wlz+n|+7y+=Lli_g—In2—-Ina|,
2 2
(4.34)

and the zeroth order truncation of the part of Gy containing
its singularities is

o (4.31)
2
(4.32)
52 | 1\2] s? ZfI]:'"ZZP+2
4(12) + oL |:1’] - (p +2> :| 402:| +W. (433)

Recalling (4.27) and in particular that the kth summands
for k=0,1,...,p—1 are each respectively a FLS of
leading order s727,s>7%7 ..., 572, it follows that as
s = 0, the sum Zg’::zp 2 also contains nonvanishing finite
terms. These nonzero finite terms contribute to the singular
part of the Feynman Green’s function, G gy,. For the
purposes of renormalization in Sec. V1, it is therefore useful
to make a further decomposition of (4.35):

* 0
Gg.sing = G](:,zing + G;{iing’ (436)
where Ggfs)mg contains all the singular terms and G(F(?s)ing is

finite and nonzero as s — 0.

C.n>2,n odd

The relations (3.15), (3.38), (A2) and (A4) and the
hypergeometric function in (3.9a) combine to give

1
[i — cot(nn)|nF [p tnp-mp+ts ;z] . (4.37)

Recalling (3.38), applying (A12c) to the hypergeometric function in (3.9b), and then applying the results (A2) and (A4)

_ 1
0n=2p+2
GF,sing - (4”)p+1a2p
1 1
_ 3+n),G-n
x Zg,sn—Qp-&-Zlk:O —2i <2 )p(!Z )pl -
(4.35)
|
n=2p+1 1 (’7)11(_’7)1)
GF(C) = i
(4m)PT2a®"'T(p+3) 1
yields
Gn:2p+1 _ 1 1 (77),;(—77)
FD) (4m)P+1a?r=1 \T(p +3)
where

1 _
P 7 cot(zn)F {p +n.p—np +—;Z] + ngzpﬂ}’

5 (4.38)
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{2 4+ =), 2
Zh = (=)D (p == 2 k2 Lk : 4.39
Adding (4.37) and (4.38) gives
_ 1 ir. (n),(-n) 1 -
n=2p+1 __ P P . .. n=2p+1
Gg  (4x)P g {F(p +0 Flp+np—np+ 7% + Zy, . (4.40)
Recalling (A8), the truncation of the expansion of Gg to second order in s is given by
GII.n:2p+] _ 1 in ('7)17(_77)17 1— (P + ’7)(1’ - 7’]) i + lesﬂ:2P+1 ) (441)
F (4r)rtia-1 \D(p+1) 1 p+i 4a?] T
|
Accordingly, the zeroth order terms of Gg are and
GOn=2p+1 _ in () ,(=n), Giiging = ik(Us' ™ + VIng). (5.3)
' @or i Tp )
(4.42)  Given that the Feynman Green’s function Gy and the
] Hadamard form Gy are alternative expressions for the
and the singular terms of Gy are same object (as long as the two spacetime points are
sufficiently close together), the state-dependent quantity W
GHn=tl _ S0n=2p+l ! 0.n=2p+1 can then be determined using
F F,sing (4”)p+%a2p_1 fls .
(4.43) W = —ix™(Gp - Giising)» (5.4)

Recalling (4.39) and in particular that the kth summands for
k=0,1,..., p—1 are each respectively a FLS of leading
order s1727 327 .. s~ it follows that as s — 0, the sum
Z0"=P*1 does mnot contain nonvanishing finite terms.

(0)

Therefore the nonvanishing finite terms Gy, g,

only need
to be considered when 7 is even.

V. SINGULARITY STRUCTURE OF Gy

As will be seen in Sec. VI, expectation values obtained
using HR are constructed from the regular, state-dependent
object W. Unlike the purely geometric terms U and V in the
Hadamard form (3.18), the quantity W cannot be uniquely
determined from recurrence relations similar to (3.23).
Instead we may find W using the Hadamard form (3.18)
and the explicit form of the Feynman Green’s function Gg,
given in (4.7), (4.22) and (4.40) for n =2, n > 2 with n
even and n > 2 with n odd respectively.

In this section we regularize the Hadamard form (3.18)
by splitting it into two parts,

Gy = GH,reg + GH,singv (51)

where

Giireg = iKW, (5.2)

since Gy ging 18 the purely geometric part responsible for
the short-distance divergences. The computation of expres-
sions for Gy gy, for specific n is discussed below.

1.n=2
In two spacetime dimensions, the Hadamard form (3.18)
does not contain a geometric term U, so the singular part is
simply

_ i 1
Gﬁ,_sizng = Z—HV(lns - Eln 2).

2. n> 2, neven
When n > 2 is even, the singular part of the Hadamard
form is

(5.5)

- 1
Glian? = ik [21’ Us™2P 42V <1n §—5n 2) } . (5.6)

As the functions U and V multiply poles and logarithmi-

cally divergent terms respectively, it is convenient to split

Gn:2p+2
H,sing

Accordingly, we define

into parts exhibiting these different behaviors.

=2 2 . _
GI'=2Pt2 = k2P Us™2P,

H(U) (5.7a)

044044-10
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(5.7b)

_ 1
n=2p+2 — < _
GH(V) = 2ikV (ln s 5 In 2> .

3. n>2,nodd
When n > 2 is odd, the geometric term V is absent from
the singular part of the Hadamard form, so we have

Gn:2p+l

_ n=2p+1
H,sing G .

Hoy = iK2PUs'=2P

(5.8)

A. Computation of G;'{(w
For each n, the geometric quantity U in (5.7a) and (5.8)
is found from the expansions (3.21). The coefficients U,
(with [ > 0) are found by exploiting (3.23a), which can be
written in the following form since all quantities depend
only on s(x,x):

1
I+ WUt + Uprs = U A s = U0 (5.9)

with [ =0,1,2,...,5 — 3, where “, s” denotes a derivative
with respect to the distance s, and where

0= (B )y
= \n-20-4)""

Multiplying through by A~2s!, the left-hand side of (5.9)
can be written as (U, ;A72s'"!) . The determination of
each U, reduces to the following integration:

(5.10)

Ar AT s,

where the dummy integration variable is denoted as §. As
s — 0, the geometric quantity U, (and therefore U)) is

Upy = A~3lds, (5.11)

regular but this is not generally so for A2s~(HD) and so the
constant of integration K vanishes. Therefore

1
A s, |
= 1 U,A_islds.
sit
0

From the explicit form of the Van Vleck determinant on
AdS, (2.20), it can be seen that A and hence U, have
Taylor series expansions in even powers of s. By
induction, using (5.12), this is true for all U,;, which
we therefore write as

—+00
Ul: E LNtﬂszj,
=0

with expansion coefficients ;. The truncation of the
expansion of G?I(U) to second order in s is then given by

Upi (5.12)

(5.13)

PHYSICAL REVIEW D 91, 044044 (2015)

[)—1 /p

lK22 1 E E - lu S2]+21 n+2

=0 j=0

Gy = (5.14)

where n =2p +2ifnisevenand n = 2p + 1 if nis odd,
and

, {p—l+1,
P -,

If n is even, the second-order truncation (5.14) possesses

L. .. 0),n=2p+2 .
nonvanishing finite terms, GI(_I li';g P™= corresponding to

the j = p — [ summands. As discussed at the end of
Sec. IV, these nonvanishing finite terms will need to be
considered when we compute renormalized expectation
values for n even, particularly as, in general,

n=2p+2,

5.15
n=2p+1. ( )

GO

H.sing ;é GF,sing‘ (516)

B. Computation of G;'l(V)

This part of the Hadamard form is nonzero only when n
is even. The function V in (5.5) and (5.7b) is a solution of
(2.9) [33], and therefore it may be expressed as a linear
combination of the same hypergeometric functions present
in (3.8),

V—AFn_l n—1 n
- 2 Ty Tyt
n—1 n—1 n
BF |[—— —_— =1 = .1
+ [ S T Ty z}, (5.17)

where A and B are constants. Since V must be finite as
s — 0, this implies that B = 0, yielding

n—1 n—1 n
V=AF|—+n——-1n;7;2|.

5 5 5 (5.18)

Considering the expansion of V in powers of ¢ (3.22b),

= hr%VO (5.19)
The coefficient V|, is obtained from (3.25b),
(m2 =0, Ut = (n = 2)V + 2V, —2VpA7ALs,
(5.20)

recast here in terms of s. Therefore, since V|, has a Taylor
series expansion in even powers of s only,

m2 -4

. & X
A —_ ] n—: . .21
S1m0< U 24) (5 )
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Now that A is fixed, the exact expression (5.18) can be
easily used to find the expansion of Gﬁ(v) to the required
order in s.

VI. HADAMARD RENORMALIZATION

A. Renormalized expectation values

Having regularized the Feynman Green’s function Gg
and considered the singularity structure of the Hadamard
form Gy, we are now in a position to find renormalized
expectation values, in particular the RQFF and RSET. Both
these are determined from the state-dependent biscalar
W(x,x’) appearing in the Hadamard form (3.18), which
is calculated using (5.4). In this paper we are interested in
the global AdS,, vacuum state |0) which possesses all the
symmetries of the underlying AdS,, spacetime. Therefore
the geometric quantities U and V, and the Feynman Green’s
function (3.8) depend only on the proper distance s(x, x’)
between the two spacetime points x and x'. From (5.4), we
deduce that, for the AdS,, vacuum state the quantity W also
depends only on s(x, x’). This simplifies our calculations
greatly.

The simplest nontrivial expectation value is the RQFF,
which is given by [33]

(%) (6.1)

ren ‘= KW,

where

(6.2)

w = limW.
s—0

The RSET is given by the action of a second-order linear
differential operator T,, on W [33]:

<T/w>ren = KE_I)%TWW + 0. (6.3)

where T,, is a point-separated second-order linear
differential operator version of the classical stress-energy
tensor [31]:

/ 1 ,
nfﬂ—mwww+@&9mwww

- 259;4” glzy vﬂ’vl/ + 2§g/vavp

1

1
+ f(le - Egpr) - zg”,,mz, (64)

where R, is the Ricci tensor.

The RSET satisfies Wald’s axioms [29], and hence is
determined only up to the addition of a local, conserved,
purely geometric tensor ©,,, [29]. As discussed in [33], this
ambiguity in the definition of (7', ) ., in curved spacetimes
is related to the freedom of choice of renormalization mass

scale M present in HR, which is manifest in (3.20). In HR,

PHYSICAL REVIEW D 91, 044044 (2015)

the local tensor ®,,, can be found explicitly in terms of the
renormalization mass scale M as follows [33].

Firstly we note that, due to the maximal symmetry of the
AdS,, vacuum, in the limit s — 0, the quantity W will be a
constant throughout spacetime, and therefore the RQFF is
also a constant. With this in mind, the definition (6.3) can
be reduced to [33]

<T;w>ren = K(_Wuz/ + §R;ww - g,uvvl) + G);uw (65)
where
W= limW,,  op=limV, 1=0.1..  (6.)

recalling from (3.22a) that for n odd, the term v; will
disappear.
For n even, given (3.20), the Hadamard form (3.18) can
be written
Gy = ix[Us'3 + V(InM? 4+ Ino) + W]. (6.7)
This implies that changing the renormalization mass
scale from unity (corresponding to the Planck mass) to
M corresponds to the transformation
W — W+ VinM2. (6.8)
It follows therefore from (6.3) that the ambiguity in the
definition of (T, ), is given by

C)

= —Kli_l’)IOITﬂDVIHMZ, (6.9)
which is zero when 7 is odd, but nonvanishing when 7 is
even. Since V depends only on s(x,x") (5.18), the compu-
tation of ®,, simplifies considerably [33]:

®;w = K[(UOW + g/lllvl) - gRMDHO] lan’ (610)

where

(6.11)

UO/H/ = ii_I’%VO;yw
and v, and v, are given by (6.6).
To find the RQFF (6.1) and RSET (6.5) we therefore
need to compute w, w,,, vy, Vg, and v;. Since we have to
take two derivatives of w and v, we require W!! and V!,
respectively the expansions of W and V to second order in
the (small) separation s. For the remainder of this section,
we give the results for W and VI forn =2ton =11
inclusive, before calculating the RQFF and RSET in the
next section.
Firstly, V1!, the expansion of V, is found from the exact

expression (5.18) and given in Sec. VI B. Finding W!I, the
expansion of W, is more complicated. The first step is,

044044-12
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for each n, to find explicitly the expansions GII;I’” of the
Feynman Green’s function, using the general expressions

from Sec. IV. In Sec. VIC we present, forn =2ton =11
(0)

F,sing
our results. The expressions for the full second-order

expansions G;I'” are extremely lengthy so we do not
present them here. Next we find the second order expan-

inclusive, the zeroth order expansions G to illustrate

PHYSICAL REVIEW D 91, 044044 (2015)

then use them to find W!! from (5.4), presenting our results
in Sec. VID.

B. Expressions for V!

The second-order expansions of the geometric function
V appearing in the Hadamard form (3.18) are required only
when 7 is even. Using the results of Sec. V B, we find the

sions of the singular part of the Hadamard form, GH sing and following:
|

ylln=2 _ _ | _ <}17]2 _ 11_6> :_i’ (6.12a)
yitnet = L :%,72 _%Jr (116,7 _;_2 : +%> :l_z} (6.12b)
ylln=6 _ % __%,74 + %nz _ % <916 7o — %’74 n 1255396 P — %) _2] (6.12¢)
=G % - 3385 T+ 1255396 23;518 - (15136 8 sz U 502996 ' 234252796 4 13%32) S_Z] - (6129)
it = ;8 [ 23104" * 7%’7 N 5124194 '+ 336282694 Ui 615252356

- (ﬁ” - 1212188 U 12220 - 219T98112 4 1131170426290 : 133226) S_Z] (6.12¢)

C. Expansions of the Feynman Green’s function

The singularity structure of the Feynman Green’s function has been discussed in detail in Sec. IV. Here we present our

results for the zeroth order expansions G(F gm ,

which are sufficient for the computation of the RQFF. The second order

expansions GII ", required for the computation of the RSET, are computed using the method of Sec. IV, but the resulting
expressions are too lengthy to reproduce here. The explicit forms for the zeroth order expansions are

0.n=2 __ i <
GF sing — E Ins,
GO,n.:3 ;”
F.sing Ars
GO.n:4_L l_,_ m_2_|_(1 65)i Ins L
F.sing 47 S2 2 a2 12612 ’
Gon=s _ i [L_[m* 2— 106 1
F,sing 8 S3 2 a2 s’
o i (1 [m (5 15\ 1]1
F,sing ”3 {S4 |: 4 + (3 2 6) a2] Sz
m* (5 15 \m? (3 75_ 225,
C[mt (515 \m? (3 75, 225 In
[16+(8 4§>a2+<2 it 5) ]

044044-
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_ 3i (1 [m*> (5 1 1 [m* (2 7 \m*> [8 147 171
GY=T — =+ (3-7¢) 5| += |+ (5-2¢&) 5+ (5 -28E+—& ) | -, 6.13f
Fsing ™ 1673 {SS [6 * (3 5) (12] +s3 [24 + (3 2§> a? + (3 &+ 2 é:)adl s} ( )
omes 1 [1 [m* (7 171 [m* (35 7 \m> (259 245 ) 1] 1
n=s _ = ) _ | 7)== —_ R [ - - 4 — | =
Ksng = 5 {s6 [8+(4 ‘§>a2 Ftlea T los 1) 2t o 126 T% ) 4| 2
m® 707 \m* (21 49_ 49 \m? (15 147, 686, 1372\ 1
- = - _Z il - —-__ e == —|Ins
+{384+<96 16§>a2+<32 6§+2§)a4+<8 yetse 3 5>a6]“s
m* 117 \m* (11027 77_ 49\ 1
e =) o oo — =+ =& ) =&, 6.13
76842 (360 48§> e (60480 45“125)&} (6.13¢)
o 150 (1 [m®> /28 36 \111 [m 4 6 \m* (98 96 216 171
GO.".79:_ - = =« & I e > e e 7~ Ve |5
Fosing = 39 74 {s7 [10 * <15 5 5) az} ST {1207L <15 5‘§> 2zt (45 set s e > a4] 53
m® 1 3 \m* [11 108 \ m> (16 264 2592 171
ot (o=l (o= 8+ —& )+ | ==& +28882 -8 | —| -, 6.13h
[720+<18 105) a2+<15 S §)a4+<5 5 o288 5 £>a6]s} ( )

_ 3i (1 m? 15 111 m* 7 15 \ m? 47 315 675 111
GO,n;lO:_ — = o I e o o e iy >2 2 W e
Fsing ™ 775 {sg {12 * < 2 5) az] ot [192+ (32 16€> ZT <20 6" 16 ¢ ) a4] st
m® 3 15 m* 203 135 675 ’ m> 3229 609 6075 )
- [—2304+(1_28_E85>?+<@_3_25+6_45>F+<—1260_1_65+—32 ¢
10125 171 1 5 5 mb 109 225 675\ m*
20) 2] e () (e )

32 a2 18432 1536 256°) >  \1536 256" ' 256" ) a
761 1635, 10125, 10125 m?> (35 3805 L T35T5 151875
1152 128 128 64 a® " \16 64 128 64
455625 ) 1]y o m® (2 s, m4+ S1601 271, 225, m?
2 s _ 2 e\ (22000 2l 29 p\ Mo
128 b 276484% ' \138240 512°) 4* ' \1451520 768~ ' 256° ) af
262349 51601 . 4065 , 3375 ;)\ I .
- - — 6.13
(1209600 16128° " 356 ° T 128 >a8} (6.13i)
_ 105 (1 [m?> (15 55\ 1] 1 m* 4 11 \m*> (13 440 _ 605 171
0.n=11 __ — = I I A o me [ SV e
Crine = 6475 {s9 [14 N (7 7 5) a2] i [280+ (21 14‘5) Z <5 T ) a‘l 53
m® 111 \m* (103 55_ 605\ m?
B [—504o+(7—z‘@5>?+<m‘ﬁ“8—45)?
164 2266, 3025, 33275\ 1]1 m8 111\ mb
+<§ 63 ° 18 ¢ T iz g)i]s_ﬁ {40320+ 504 1008°) @@
37 55 605 \m' (16 814 _ 3025, 33275 .\ m?
+(@ @“ﬁf)?*(ﬁ BT mt T m ) s
128 1760, 44770 , 166375 , 1830125 ,\ 171 ,
= - e 6.13
+<35 ST S N S S Y & s (6.13j)

The corresponding expansions of the singular part of the Hadamard form Gy ;,, can be found using the method of Sec. V.
We do not give the resulting expressions explicitly here. The form of Gy g, for a general spacetime withn =2ton =6
dimensions can be found in [33]. Typically, such expressions involve biscalar functions and are ridden with Riemann tensor
polynomials. However, the maximal symmetry of AdS,, simplifies these expressions by involving scalar functions only and
reducing the possible types of Riemann tensor polynomials significantly. The singular terms of the results (6.13) agree with
their counterparts in [33] for the case of AdS,,.
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For n odd, we find that

_ GO

0
G( ) H,sing

F.sing 0’ (614)
so that the zeroth order expansion of the singular part of the
Hadamard form equals that of the Feynman Green’s
function given in (6.13). For n even, the singular terms

i

PHYSICAL REVIEW D 91, 044044 (2015)

in Gl(; 2mg and Gg)sing match, but there are nonvanishing

finite renormalization terms (FRTs), defined by

_go

0
= G( ) H,sing*

F,sing

GF,frt = }vi_r)%(GF,sing - GH,sing) (6 15)

Explicit expressions for the FRTs for n =2,4,6,8
and 10 are

Gp? = Eln 2, (6.16a)
N 1 m?
Ffit — W @4’ 2|— 2 (1 - 6?:) In2 (616]3)
4 5 15\ m? 3 75 225 1
n=6 _ —4 m_ R — R 2 1
G = { (480 2 ) {16 + (8 2 5) P <2 ) ¢+ 5 ) } } (6.16¢)
1811 7 m2 46639 12677 . 49 1
n=8 __ _ - e = =0
Ot = {128a <11520 8€> <60480 a0 < T2t )
m m* 21 49 49 m> 15 147 _ 686 1372 1
8|— — (-2 — —2——3 In2 6.16d
+Lg4+(% o) (e 5 e (e e e ) ma) eas
Gr=10 i mS [ 3823 _ig m* (624013 _38235 ggz
Eft " ox5 | 345642 \276480 64°) a* \2903040 1536
2091139 624013 _ 57345 , 3375 ;)\ 1 1 5 mb
— — — 3) 16— m8 R —
<1935360 32256 ° T 512 ¢ 16 §>a8 {18432"1 + <1536 2565) a?
109 gg 67_5ij 4 761 1635 1012552 10125 o m*
1536 256° 256 1152 128 128 64 ab
35 3805 73575 151875 455625
2 _ 4 6.16
< 28 ° 64 5) } } (6.16e)

D. Expressions for W!!

Expressions for W!! are computed using results for GL and
n = 11 inclusive as functions of 7:
s
Y

1 1 1 - 1
Wn=2 _ — )| _2a2 [ 2,2 -2 )s2|Y
v - (g G

V2 1,1
Mn=3 _ Y2 |_ 2 (2.3_2 )2
e R
1 1 1, s 9\ L]«
WII,n=4:_ 2 _ 2 4 2 - 2 Y —
a4{K’7 4)“ +<8” 16" +128> }
V2 2 1 4
witn=s _ V212,35 _ 2 )2 _- -
& {(3’7 3’7)‘1 +<15,7 3" +15’7) }

044044-

GII

H,sing ODtained previously. and are given below for n = 2 to

(6.17a)
(6.17b)
1,1 5, 35, 47
) . 2 4 _ 7 2 2
(2’7 N 24)“ (32" 192 2560) ’ } (6.17¢)

(6.17d)
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259

75\ L]+
T 768" "1024>s }Y‘

2741

(3 20, 107N o (17 o 403
16" 96" 576" " 2304

V2 4 o 4, 16\ , 2 . 4
—7{<"—n+—n——w>a <n§7_5”

1 259 75
WII,n:8 _ . _ 2 2
ag{ {( 192” 763 1024)“+ (

96 3840

WII,n:7 —

a 45 45

(11 ¢ 313 7 2471

, 11969
n n
5767 " 2304 T 15360

774144 )¢

7
768" ~ 256" T

4 4138441

), 14171
15360 " 774144

+E E 2
557 ~331)

329

2048

(6.17¢)

(6.17f)

3229 3675
2465536) ]11

12288

37 o 601 . 103523
184327 T 18432 T 737280"

WII.n:9 — ﬁ 8 7 16 ,75 ﬁn:" — 2
1575 225 225 175

T 30965760

195425
2
14155776> } (6.17¢)

2 (o b 52,5 656 5 256 N
1 175" "0a5" Te75" ~ 2835 T is75"

(6.17h)

| 1 7 329 , 3229
=10 _ ' o — 4
v a? { [( T152" " 334 URETYErL

1152 384" T 3072

o 11 1463 17281

6 _

1225
32768 )¢

1 17469

61447 " 61440
a1 o, 81983

<23o4o

147456
3854941

19845 2|3
655360~ 524288

27648 " 276487 71105920

8

~ 46448640

6 36356041

, 288563 \ ,
- a
35389440

L, 442096687

o 3381 579833
2764800 2211840 " 22118400

371589120

2624

), 19213927
4954521600 " 2076180480

(6.17i)

Wwila=l11 :Q _ 16 o+ 32 - 208 e
1 99225 6615 4725

* 19845
1112

1024\
T~ T10251)¢

(8 a8 g, 28
10914757 ~ 19845 T 33075"

where [recalling (4.14)], for even n,

1 1 1
Y=W<§+’7> —|—y—§1n2—lna :Y+§ln2.
(6.18)

VII. RESULTS

In this section we present our results for the RQFF in
Sec. VIT A and the RSET in Sec. VII B, calculated using
the methodology developed in previous sections. For
each object, we begin by listing the algebraic expressions
that have been obtained for n = 2 to n = 11 inclusive. For

B s, 15328 . 512 N
19845 T 99205 4851 )% |

(6.17))

both the RQFF and the RSET, these expressions are
polynomials in the quantity # [given by (2.10)]. Since a
significant part of the subsequent discussion of these
expressions considers the behavior of these objects as
functions of #, we begin by repeating the definition (2.10)
here for convenience:

n= \/mzaz—cfn(n— 1)+ <n;1)2,

(7.1)

where we have made use of the fact that the Ricci scalar
on AdS,, is given by
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R=-a?n(n-1). (7.2)

On the fixed background AdS,, geometry, # depends on
both m?, the mass squared of the scalar field and &, its
coupling to the background curvature. In our analysis we
have assumed that # is real, which implies an upper bound
on ¢&:

m2a> n—1

¢ < Cimax ’=m+v

(7.3)

It follows that an increase in # is, in general, the result of a
decrease in & from &,,,, and/or an increase in m? > 0. In the

PHYSICAL REVIEW D 91, 044044 (2015)

In this article, these values are chosen for their simplifying
effect on the expressions rather than to illustrate any special
physical effects. We have therefore included surface plots
for each n. In these plots, the dependence of the RSET on &
can be observed separately from the dependence on #.

A. Results for (®?),..

Using (6.1) and (6.17), expressions for (®?)

given below for n =2 to n =11 respectively [with Y
given by (4.14)]:

ren arc

1
2\n=2 _ _
case of the RSET, the algebraic expressions for the object (%" = 27 T, (7.6a)
carry an explicit linear dependence on &, as well as their
dependence on & (and m?) through powers of 7. ( (I)g>,,=3 _ i'l (7.6b)
Our discussions of the results for the RQFF and the ren dra " '
RSET are structured as follows. We begin by commenting
on the general form of the expressions for each object. We (@)=t — 1 - 1 ¥ 1”2 b (7.6¢)
then fix the renormalization mass scale M and compare e 8x%a? 4 2 24|’ ’
the resulting profiles for each number of spacetime
dimensions n. Next, we plot this behavior for even n rones ] 3
separately for a discrete selection of values of M. In all (™ = 24n%a’ O =), (7.6d)
our analysis below, we fix the AdS,, radius of curvature
a = 1 for convenience. (@2)1=6 — _ 1 40 n 9 ¥
We emphasize that the algebraic expressions presented in ren 643 a* g 2 n 16
Sec. VII A and Sec. VIIB are valid for all n > 0 [and 3 29 107
therefore for all values of £ in the range (7.3)]. In view of A ey —} , (7.6¢)
the additional explicit dependence of the RSET on the 4 24 960
curvature coupling &, plots such as those just described
(sepgrately highlighting the dependence on n and M), <q>2>;l;7 = _W(,f - 57 +47), (7.6f)
require the value of £ to also be fixed. For this purpose, we na
highlight the minimally coupled case £ =0 and the B | 35 259 295\ -
conformally coupled case, (®2)n=8 — -t == - Y
e 7687%a® 4 16 64
n—72
E= , (7.4) e 313, 2471 5, 11969 76
4(n—1) 2T 320" “es (709
when
1
D29 — ———— (n” — 14n° + 49° — 367), 7.6h
. s (P = 3360577 (1~ 14r + 49 = 36y).  (7.6h)
n=/ma +-. .
4
J
1 987 3229 11025\ -
2\n=10 _ 8 6 4 2
(O™ = = 1 geasas [(’7 B A S T R T )Y
25 o 461 . 87983 , 3854941 , 288563 .
-— —n° = 7.6
24" 24T T 7960 T T 40320 T 30720 | (7.69)
- 1 .
(@)=l — _ C0IR0S (n’ = 305" + 2731 — 8201 + 5767). (7.6)
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FIG. 1. (®?),, for varying n with a = 1 and M = %

1. General remarks

For each number of spacetime dimensions n, the
expressions (7.6) depend on the length scale a (which
determines the AdS,, radius of curvature); the mass of the
field quanta m; and &, the coupling to the spacetime
curvature. The dependence on m and ¢ is only via the
constant 7, given by (7.1). For even n, there is an additional
dependence on the renormalization mass scale M. Once
these parameters are fixed, the vacuum RQFF is a constant
throughout AdS,, for each n.

The results (7.6) agree with expressions computed using
zeta-function regularization [26], up to the addition of a
constant. This difference may be attributed to the freedom
in the definition of the renormalization mass scale, where
Caldarelli’s scale M is related to ours via

Mc = V2e7M, (7.7)
which agrees with that in [52].

The results (7.6) are plotted in Fig. 1 as functions of 7,
in which we have set a =1 and M = 273¢7 (so that
M =1). When n =0, the RQFF vanishes for n odd,
but for even n, the Y factor present means that (®2) . # 0.
The curves associated with consecutive pairs of consecu-
tive values of n alternate as to whether they are ultimately
decreasing or increasing functions of 7. This behavior
arises from the mathematical structure of the Green’s
function, as exemplified by the factors of (—1)” in the
formal Laurent series (4.27) and (4.39) for spacetimes
with 2p 4+ 2 and 2p + 1 dimensions respectively. This
overall factor of (—1)” multiplies the whole of the RQFF
(7.6), and hence results in the large # behavior shown
in Fig. 1.

In Minkowski space, the expectation value of the RQFF
becomes negligible for large scalar field mass m. In anti—
de Sitter space, for fixed curvature coupling £ we see that
the expectation value of the RQFF becomes large in
magnitude when the scalar field mass m increases. This

PHYSICAL REVIEW D 91, 044044 (2015)

can be understood as follows. The scalar field equa-
tion (2.9) and the RQFF expectation values (7.6) depend
only on 7 and not on the scalar field mass m and curvature
coupling ¢ separately. Therefore having large scalar field
mass m is equivalent [via (7.1)] to having small scalar
field mass and large negative values of &. Therefore, a
scalar field having large mass behaves in the same way as
a scalar field with a large negative coupling to the negative
spacetime curvature.

2. Varying renormalization mass scale

For n even, the influence of the renormalization mass
scale M on the RQFF can be seen in Fig. 2, where
we show the RQFF for M =273¢710/-5, (with
Jj=-5,-4,...,5). For each even value of n, the depend-
ence of the RQFF on the renormalization mass scale is
through the In M term in Y (6.18). For our choice of values
of M, the different curves in Fig. 2 correspond to adding a
constant to Y. For n =2, since the RQFF is simply
proportional to Y', we therefore find a parallel arrangement
of curves. For even n > 2, the plots show that the RQFF
rapidly increases in magnitude as #x increases, following
the passage of each curve through its zeroes for small
values of 7. For increasing values of n this oscillating
phase takes place nearer to (®?)., =0, and the phase
where the RQFF has increasing magnitude is delayed
and more rapid. For n =2p + 2, with p =1,2,..., the
j=0 curve will tend to (—1)?"'oo as 7 increases.
Consequently, the curves corresponding to j < 0 will
tend to £(—1)"c0.

B. Results for (T, ).,

Using (6.5), (6.12) and (6.17), expressions for (7,)
are given below for n = 2 to n = 11 respectively:

ren

_ 1 1 < 1
<Tﬂl/>;1e;2 = Tl [(—2'72 —4&+ E) Y +n* + E} v

(7.8a)

(7.8b)

3 4 10 3| =
T n=4 _ __ ~ I 1 _ 2 4E-=|Y
< ;w>ren 128224 { |: 3’7 ( 6 3 )7] +4¢ 4]
29 2 107
4 _ = 2 S0 n=4
+7 +(85 18>’7 +3§ 720}gﬂy+®,w )
(7.8¢)

[ + (20& = 5)i — (20& — 4)n] g0
(7.8d)

1
n=5 _
<T/w>r1en - 12077.’2615
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FIG. 2. (®?),, for(@n=2,(b)n=4,(c)n=6,(d) n=238and (e) n = 10. In each case we have set a = 1 and M = \“/—% 10/-9.
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(T’ == So530m5 I1° + (126 = 30007 = (1008 = 273)° + (3528 = 820)7° — (2592¢ = 5761 (7.8h)
oyt 137 120 ) (10800, 4950\ (226800, 65835\
when = T 147456000570 | | 137" 137 ° 7 137 137 137
(1332450, 1296075\ (2179575 15858315\ , 7441875, 13395375]
137 548 137 4384 2192 17536
Lo (1250, 20605\ (207450, 481133\ o (3959235 . 161437505
1 137 ° 7 548 137 1096 548 92064
57824115 418944187\ , 12985335 262292845 o .
_ _ _ n= 7
< 7672 © 245504 ) 17536 ° " 1543168 } G+ O (7.8)
1
T ) = [y1 4 (1108 — 55)5° — (33008 — 1023)7 + (300308 — 76451’
Tuwhten' = gossgosm ' + (1105 = 55)n" — (33005 "+ ( 3 n
— (90200 — 21076)sp* + (63360& — 14400)7]g,,. (7.8§)

For even n, the RSET depends on the geometric tensor ©,,. This is evaluated using (6.10), together with (6.12) and
(6.17), and the resulting expressions are given below for n = 2,4,6,8 and 10:

B In M?
@M;z = [,72 +2&— 4] G+ (7.9a)
In M? 5 9
n=4 __ 4 22 = -
O’ = [n + (125 2)71 3¢+ 16] G~ (7.9b)
In M> 35 259 135, 225
n=6 _ __ 6 _ = I —
Z 768734 [’7 + <30§ 4) (755 )'7 T T m ] Gja> (7.9¢)
B In M2 987 1813 3229 1575 11025
e [ns (566 =21 (4905 - —)n (—5 - —) e ]g (7.94)
- In M2 65 4389 44415 86405
G’fw‘”:‘m[”“ (905‘7)” - (18905‘7)”” <Tf P )’7
145305 _ 1057221\ , 496125 _ 893025 (1.92)
8 256 128 1024 | ‘

1. General remarks

As is the case for the RQFF, for each number of
spacetime dimension n, the expressions (7.8a)—(7.9¢)
depend on the length scale a (which determines the
AdS,, radius of curvature); the mass of the field quanta
m; and &, the coupling to the spacetime curvature. For even
n, there is an additional dependence on the renormalization
mass scale M. As well as depending on m and ¢ through
the quantity 7 (7.1), the expectation values of the RSET,
unlike those of the RQFF, have an additional explicit linear
dependence on &. Since the AdS, vacuum is maximally
symmetric, once these parameters are fixed, the RSET
equals a constant times the metric tensor g,,.

The results (7.8) also agree with expressions previously
computed by Caldarelli [26] using zeta-function regulari-
zation methods, up to the addition of a constant, which can
be absorbed into the definition of the renormalization
mass scale by (7.7).

Since the RSET is proportional to the metric tensor, in
our plots we show 1 (T,#) . which corresponds to the
constant of proportionality. We first plot, in Fig. 3, the
results (7.8) as functions of # for £ =0, with a = 1 and
M = 272¢". We recall that the choice of & here is for
illustrative purposes only. Since & is now fixed however,
the quantity # is in fact a measure of the field mass m.
When = 0, the RSET vanishes for n odd, but for even n,
the presence of finite terms means that (T,/) ., # 0.
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The curves for even n decrease with increasing 7,
whereas those for odd n alternate, being ultimately
increasing functions of n for n =3, 7 and 11 and
decreasing functions of # for n =5 and 9. As with the
RQFF, this behavior arises from an overall factor of
(—=1)? in the Green’s function for spacetimes with 2p + 1
and 2p + 2 dimensions which then multiplies the renor-
malized expectation values (7.8a)—(7.9¢). This overall
factor can be seen explicitly in the formal Laurent series
(4.27) and (4.39) which form part of the Green’s
function. In addition, curves for even n have a slower
rate of change with respect to # and can be found on the
right-hand side of the plot. From the expressions for even
n, it can be understood that their decrease is slowed by
the (3 +#) term present in Y. For increasing 7, after
initially passing through its zeroes, the rapid growth of
each curve takes place in ascending order of n. The fact
that the expectation values (7,*),., have large magnitude
for large n with ¢ fixed follows from the argument at
the end of Sec. VIIA 1. Since the scalar field theory
described by (2.9) depends only on 7 and not on the
scalar field mass m and curvature coupling & separately, a
scalar field having large mass m and small coupling &
behaves in the same way as a field having a small mass
and a large negative value of &.

2. Varying renormalization mass scale

To investigate the effect of changing the renormaliza-
tion mass scale M, in Fig. 4 we show §(T,*)., as a
function of # for a massive, conformally coupled field for
n =4, a = 1 and with varying M. Once again, recall that
this choice is purely for illustration and means that 7 now
depends solely on m (7.5). We do not include plots for n
even with n # 4 since this pattern of behavior is quali-
tatively identical to the description given for the plots of
(®?),., in Fig. 2.

Figure 4 shows that, for fixed curvature coupling &, the
large 7 (or, equivalently, large scalar field mass) behavior of

(T ") en (in particular, its sign) depends on the choice of
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renormalization mass scale. When n =4, we see from
Fig. 4 that small renormalization mass scales give rise to
values of X (T,*) ., which are negative for large # while
large renormalization mass scales give rise to values of
+(T,#)ren Which are positive for large 5. This behavior will
be the same for n = 8. However, for n = 6 and n = 10, the
opposite behavior is found: small renormalization mass
scales give § (T,/)., positive for large 7 and large renorm-
alization mass scales give § (T,/),., negative for large 7.
This mirrors the behavior of the RQFF seen in Fig. 2. In
Figs. 3 and 5 we have plotted expectation values for fixed
renormalization mass scale. The results shown in those
plots will therefore also change considerably for even n if
a different value of the renormalization mass scale is
chosen.

3. Varying curvature coupling

Allowing & to vary, in Fig. 5 we show 1(T,#) ., as a
function of # and & for n =2 to n = 11 inclusive with
a=1and M = £510/~°. For n even, the range |, (T)

corresponding to £ e€[-0.2,0.2] with 5 e[0.0,7.5]
decreases as n increases. Conversely, for n odd,
| 1(T#) en| increases as n increases. The linear dependence
on ¢ for fixed 7 is particularly visible at the intersection of
the plot’s surface with the n = 7.5 plane.

We remark that the scalar field equation (2.9) depends
only on the scalar field mass m and curvature coupling &
through the quantity # (7.1). Therefore, at the level of the
classical theory, a scalar field with a large mass behaves in
the same way as a scalar field with a small mass and large
negative coupling to the curvature. The definition of the
RSET (6.5) depends explicitly on the curvature coupling &
as well as 7, yielding the complicated dependence of
| (T ) 1en| on both & and 5 which is depicted in Fig. 5.
The picture is further complicated by the fact that the large
n behavior of the expectation values for even n also depends
on the choice of mass renormalization scale, as discussed in
Sec. VIIB 2.

ren |
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4. Trace anomaly

In the particular case that the quantum scalar field is
massless and conformally coupled (7.4), the trace of the
geometric tensor ©,,, vanishes [33]. For odd n, the vacuum
RSET vanishes when the field is massless and conformally
coupled. For even n, the trace of the vacuum RSET reduces
to the well-known conformal anomaly (see, for example,
[53] for a review). In AdS,,, the explicit expressions for the
conformal anomaly for n = 2,4,6,8 and 10 are

(T Ve == 12;”’ (7.10a)
(T Ve == Wiﬂ;ﬁ’ (7.10b)
(Tone ) Von® == m, (7.10c)
(Tine, Yem® = = m, (7.10d)
N (ATS

where the subscript “mc” indicates the expectation value
has been evaluated in the massless, conformally coupled
case. We note that the conformal anomaly is always
negative.

VIII. CONCLUSIONS

In this paper we have studied a real massive free
quantum scalar field on AdS, with arbitrary coupling to
the Ricci scalar. We have used HR to calculate the RQFF
(®?) ey and the RSET (T, ) ., when the quantum field is in
the global AdS, vacuum state. Our method works for
arbitrary n and we have presented explicit results for n = 2
to n = 11. The maximal symmetry of both the underlying
spacetime and the quantum state under consideration have
enabled us to give analytic results for all quantities.

We started with a derivation of the n =4 Feynman
Green’s function, Gg(x,x’) [27], that generalizes in a
natural way to n > 2. Due to the maximal symmetry of
the spacetime and quantum state, Gg depends only on the
distance s between the two spacetime points under con-
sideration. We regularized Gy by expanding it as a formal
series to second order in s. We have also regularized the
Hadamard form Gy by expanding it as a formal series to
second order in s, using the framework in [33]. We verified
that the divergent terms of G match those of Gy for n = 2
to n =11 inclusive, and also observed the presence of
FRTs for even n. Using these two series expansions, we
then computed the RQFF and RSET for each n. Our results
for (®?),, and (T,,)., agree with expressions obtained
previously using zeta-function regularization [26] up to a
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choice of renormalization mass scale [52]. The equivalence
of zeta-function regularization with HR has been proven
rigorously for globally hyperbolic spacetimes [52,54,55].
Even though AdS is not globally hyperbolic and so does
not satisfy the hypotheses of the theorems in [52,54,55],
our results have shown that zeta-function regularization and
HR remain equivalent on this spacetime.

In this paper we have demonstrated how HR works in
practice for the vacuum state on AdS,,. The short-distance
divergences characterizing QFTs on curved spacetimes are
independent of the quantum state under consideration. This
means that the process of renormalization for a particular
spacetime can be performed for a single quantum state,
which can be taken to be the simplest, namely the vacuum.
Finding renormalized expectation values for other quantum
states then reduces to finding differences in expectation
values between two quantum states. For example, we will
consider in a forthcoming publication [56] thermal states
on AdS,. Such a study will be necessary for future
calculations of the RQFF and RSET for a scalar field
(with general mass and curvature coupling) on asymp-
totically AdS,, black hole spacetimes.

Finally, let us return to semiclassical Einstein equa-
tions (1.1). Since we have been considering the vacuum
state of a free quantum field on a maximally symmetric
spacetime, our results for (T, )., have been proportional
to the metric tensor g,,. The semiclassical Einstein equa-
tions (1.1) are easily solved exactly in this situation, simply
by making a one-loop quantum correction to the cosmo-
logical constant [57].
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APPENDIX

The calculations that we feature in Secs. III and IV
rely heavily on specific properties of the gamma, psi
and hypergeometric functions. An appropriate formulary
is provided here for reference, throughout which
z,a,p,y € C, where a,f,y are constants, and k,j, p €
{1,2,...}.

First, useful results concerning the gamma function,
I'(z) (defined for z € C\{0,—1,-2,...}), are the recur-
rence relations
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I(z+1)=2z(z) = 2!, (Ala)

IMz+j)=(z+j-1Ez+j=-2)-(z+ DHI(z+1),
(Alb)
and the reflection formula
['(z)I'(1 —z) = & x cosec(nz) (A2)

(see §6.1.15-§6.1.17 [58]). Defining the Pochhammer
symbol

. I'(z+j)
@ =4 G- == (@a=1
(A3)
(see §6.1.22 [58]), we also have
I(p+j+2)=(p+2);(2),I(). (A4)
Useful formulas for the psi functions
() = LT (45)
Vg =g e
(see §8.361.1 [50]) are
/]
p(i+1)=-7+) 7. (A6a)
=1
Jj—1 1
yi+2)=w(@)+Y —. (A6b)
2+
and the reflection result
1 1
mtan(nz) =y <§ + z) -y (E - z) (A7)

(see §8.365.3, §8.365.4, §8.365.9 [50] respectively), and
where in Eq. (A.6a) the boldface y is the Euler-Mascheroni
constant.

|

L)y —a—p)
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The hypergeometric series (§15.1.1 [58])

(a)j(ﬂ)jZ_j
(}’)j J!

Flapird =3 (A8)
=0

is undefined for y = 0, —1, -2, ..., unless either a or f is a
negative integer. The series converges (diverges) absolutely
for|z| s L Ifz=1,

C(y)C(y —a—p)
Ly—a)l(y=p)’

for 0 < Re(y —a—p) (see §15.1.20 [58]). If |z| = 1 and
z# 1, then F

Fla,piy:z] = (A9)

converges absolutely, 0<Re(y—a-p),
—l<Re(y—a-p) <0,

Re(y —a—-p) < -1

converges conditionally,

diverges,
(A10)

(see also §15.1.1 [58]). Solutions Fla, #;7; z] of the hyper-
geometric differential equation (see §15.5.1 [58])

2(z=DF  +[y—(a+p+1)z]F, —apF =0
(Al1)

are the hypergeometric functions, exhaustive lists of
which can be found in, for example, [50,58,59] and
whose specific forms depend partly on the properties
and interrelations of a, f and y.

The linear transformations of hypergeometric series of
direct relevance to Secs. III and IV are

Fla.fiy;z) = (1 =2 PFly —a.y — By 2], (Al2a)

ﬂm&ﬁd—wl—d”FP#—&ﬁyéﬂ;(AU@

Fla,p;r; 7] :F(y—a)F(y—ﬂ)F[a’ﬁ;a+ﬁ_y+ 1;1—2¢]
+(1 —z)rme? F(Y)g((;?(g)_ 2 Fy—ay=pr—a-p+11-2, larg(1 —z)| <7z, (Al2c)
Fla,B;7: 2] ?E;))I;((i : Z; (=2)"Fla,a+1=-yia+1-pz71]
C)Ca-p) | » |
+rmw@_ﬂﬂ‘@ﬁFWﬂ+‘—%ﬁ+l—ax]7 larg(—z)| < m; (A12d)
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(a+ﬂ)§( a);(B);
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Flaobrat Pl = r ) 24~ (17
[2w(1+1) wla+j) —w(p+j)—In(1-2)](1-2z), arg(1 —z)| <z |1 -2/ <1, (Al2e)
, . <J>F<a+ﬁ 7 ( '> ; Ta+p-J)
Fla.pra+p—jiz) = (1—2)7 N (p) z% k' 1_ k(l—z)k_(—l) Ta— (G-
xg%(l—Z)k[ln(l—Z)—y/(k+1)—1//(k+j—|—1)+y/(a+k)+l//(ﬂ+k)},
larg(1 —2)[ < 7, [l -z <1 (A12f)

(see §15.3.3, §15.3.4, §15.3.6, §15.3.7, §15.3.10 and §15.3.12 [58], respectively).
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