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We consider the definition of the global vacuum state of a quantum scalar field on n-dimensional anti-
de Sitter space–time as seen by an observer rotating about the polar axis. Since positive (or negative) 
frequency scalar field modes must have positive (or negative) Klein–Gordon norm respectively, we find 
that the only sensible choice of positive frequency corresponds to positive frequency as seen by a static 
observer. This means that the global rotating vacuum is identical to the global nonrotating vacuum. For 
n ≥ 4, if the angular velocity of the rotating observer is smaller than the inverse of the anti-de Sitter 
radius of curvature, then modes with positive Klein–Gordon norm also have positive frequency as seen 
by the rotating observer. We comment on the implications of this result for the construction of global 
rotating thermal states.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

In the canonical quantization approach to quantum field the-
ory (QFT), states of the quantum field containing particles are built 
up from the vacuum state using particle creation operators. The 
definition of particle states therefore relies on the definition of a 
vacuum state (a state with no particles). On a curved space–time, 
in general there is no unique definition of vacuum state, although 
there may be one or more natural, physically motivated, choices of 
vacuum.

This can be understood by considering the expansion of a free 
quantum field as a complete orthonormal set of field modes. Each 
mode can be classified as either a positive (or negative) frequency 
mode, whose expansion coefficient is an annihilation (or a cre-
ation) operator respectively. Since the vacuum state is defined as 
the state annihilated by all the annihilation operators, its definition 
therefore depends on the split into positive and negative frequency 
field modes. In the case of a scalar field, the choice of split into 
positive and negative frequency field modes is constrained by the 
fact that positive (or negative) frequency modes must have positive 
(or negative) Klein–Gordon norm respectively.

The consequences of this constraint on the definition of a vac-
uum state for a quantum scalar field can be illustrated by the 
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simple toy model of Minkowski space as seen by an observer ro-
tating about the polar axis. In this case the rotating vacuum is 
identical to the Minkowski vacuum [1]. The constraint on the def-
inition of the vacuum state also has an impact on the definition 
of states containing particles. In particular, rotating thermal states 
for scalar fields in Minkowski space are ill-defined everywhere un-
less the system is enclosed inside a time-like boundary sufficiently 
close to the axis of rotation [1,2].

Motivated by the results of [1,2], in this letter we consider a 
quantum scalar field on n-dimensional global anti-de Sitter space–
time (adSn). We study the constraints on the definition of an 
appropriate vacuum state as seen by an observer rigidly rotating 
about the polar axis. We find that, as in Minkowski space, the 
global rotating vacuum is identical to the global nonrotating vac-
uum. However, if the angular velocity of the rotating observer is 
sufficiently small and n ≥ 4, this global vacuum contains only pos-
itive frequency particles as seen by the rotating observer.

2. Anti-de Sitter space–time in rotating co-ordinates

A convenient dimensionless coordinate system for global adSn
is the set of hyperspherical coordinates,1

−π < τ ≤ π, τ = −π and τ = π identified,

0 ≤ ρ <
π

2
,

1 Throughout this paper we use units in which c = G = h̄ = 1.
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0 ≤ θ j ≤ π, j = 1,2, . . . ,n − 3,

0 ≤ ϕ < 2π, (1)

parametrizing the temporal, radial, polar and azimuthal directions 
respectively. The coordinate system (1) covers adSn , excluding polar 
singularities. In terms of the coordinates (1), the metric on adSn

takes the form

ds2 = a2(secρ)2[−dτ 2 + dρ2 + (sinρ)2dΣ2
n−2

]
, (2)

where a is the radius of curvature of adSn and dΣ2
n−2 is the metric 

on the (n − 2)-sphere. Since τ = −π and τ = π are identified, 
adSn admits closed timelike curves. To remedy this, we work on 
the covering space CadSn where −∞ < τ < +∞.

We now consider global CadSn as seen by an observer rotat-
ing with a constant angular velocity Ω about the polar axis. The 
line-element for the rotating space–time is found from (2) by the 
change of co-ordinates

τ �→ τ̃ , ϕ �→ ϕ̃ := ϕ − Ωaτ (3)

and takes the form

ds2 = a2(secρ)2
[
−

(
1 − Ω2a2D2

(
sinρ

ρ

)2)
dτ̃ 2

+ 2ΩaD2
(

sinρ

ρ

)2

dτ̃ dϕ̃ + dρ2 + (sinρ)2dΣ̃
2
n−2

]
, (4)

where dΣ̃
2
n−2 is the metric on the (n −2)-sphere with dϕ replaced 

by dϕ̃ and D is the distance from the rotation axis:

D = ρ sin θ1 sin θ2 . . . sin θn−3. (5)

The speed of a rotating observer who has angular speed Ω about 
the polar axis increases as the distance D from the polar axis in-
creases, and becomes equal to the speed of light when gτ̃ τ̃ = 0. 
This surface is known as the speed-of-light surface (SOL). At the 
SOL we have Ω2a2D2ρ−2 sin2 ρ = 1, and so, from (5), if Ωa < 1
there is no SOL; if Ωa = 1 the SOL is on the equator at the bound-
ary of the space–time and if Ωa > 1 the SOL moves closer to the 
rotation axis as Ω increases. Sketches of the SOL can be found in 
Fig. 1 of [3].

3. Scalar field on global anti-de Sitter space–time

The equation of motion for a real massive free scalar field Φ(x)
coupled to gμν , the metric tensor of global CadSn , is(� − M2 − ξR

)
Φ = 0, (6)

where

� := gμν∇μ∇ν (7)

is the n-dimensional curved-space Laplacian, M is the mass of the 
field quanta, and the constant ξ is the coupling between Φ and R, 
the Ricci scalar curvature.

Solving the Klein–Gordon equation (6) on the nonrotating 
global CadSn metric (2), the mode solutions take the form [4]

Φr� = Nr�e−iωτ R(ρ)Y�(θ,ϕ), (8)

where Nr� is a normalization constant. The hyperspherical har-
monics Y�(θ, ϕ) are normalized eigenfunctions of the Laplacian 
on the (n − 2)-sphere, whose eigenvalues depend on the angu-
lar quantum number �, which takes the values � = 0, 1, 2, . . . . For
each � there are M� eigenfunctions, where the multiplicity M� is 
[5,6]

M� = (2� + n − 3)
(� + n − 4)!
�!(n − 3)! . (9)

It will be convenient for our later analysis to separate out 
the dependence of Y�(θ, ϕ) on the azimuthal angle ϕ , so we 
write

Y�(θ,ϕ) = e±imϕΘ�m(θ), (10)

where m ≥ 0 is the azimuthal quantum number and

θ := (
θ1, θ2, . . . θn−3

)
. (11)

The function Θ�m(θ) also depends on additional quantum num-
bers associated with the angles θ2, . . . , θn−3, which we denote 
m1, . . . , mn−4. For compactness of notation, we do not explicitly 
write out this dependence. These additional quantum numbers sat-
isfy the inequalities [5,6]

� ≥ m1 ≥ . . . ≥ mn−4 ≥ m ≥ 0. (12)

Although CadSn does not have any closed time-like curves, it 
is not a globally hyperbolic space–time because of the time-like 
boundary at ρ = π

2 . In order to have a well-defined QFT in the 
next section, appropriate boundary conditions have to be placed on 
the scalar field Φ [7]. We consider regular modes [8] which satisfy 
reflective boundary conditions Φ = 0 on ρ = π

2 . These modes exist 
provided

k =
√

M2a2 + ξRa2 + (n − 1)2

4
+ n − 1

2
(13)

is real. With this assumption, the radial function in (8) takes the 
form

R(ρ) := (sinρ)�(cosρ)k P
(�+ n−3

2 ,k− n−1
2 )

r
(
cos(2ρ)

)
, (14)

where P
(�+ n−3

2 ,k− n−1
2 )

r is a Jacobi polynomial of degree r and we 
have introduced the radial quantum number r = 0, 1, . . . .

The modes (8) are normalized according to the Klein–Gordon 
inner product:

〈Φr�,Φr′�′ 〉KG = −
∫
H

dn−1x
√

g gττ
(
Φr�

)∗ ↔
∂τΦr′�′ , (15)

evaluated on some space-like hypersurface of simultaneity H , with

A
↔
∂μB := A∂μB − (

∂μ A
)

B, (16)

and

g := ∣∣det gμν

∣∣. (17)

The normalization constant Nr� is then found to be [4]

Nr� = a
2−n

2

√
r!Γ (r + � + k)

Γ (r + � + n−1
2 )Γ (r + k − n−3

2 )
. (18)

4. Defining a global nonrotating vacuum

As outlined in the Introduction, the first step in defining a 
global vacuum state is to split the field modes into positive and 
negative frequency. We start by considering the nonrotating modes 
(8). These modes have frequency ω as seen by a static observer 



190 C. Kent, E. Winstanley / Physics Letters B 740 (2015) 188–191
in global CadSn . Computing their Klein–Gordon inner product (15), 
we find

〈Φr�,Φr′�′ 〉KG = ω

|ω|δrr′δ��′ . (19)

Therefore modes with positive ω have positive Klein–Gordon 
norm, while those with negative ω have negative norm. We there-
fore take ω > 0 as our definition of positive frequency. With this 
assumption, for n ≥ 4 the frequency ω is given in terms of the 
radial and angular quantum numbers [4]:

ω = k + � + 2r, (20)

which is manifestly positive as k (13), �, r are all positive. We dis-
cuss the n = 3 case in the next section.

The quantum scalar field is expanded in terms of these modes 
as

Φ =
∞∑

r=0

∞∑
�=0

∑
m,m1,...,mn−4

[
br�Φr� + b†

r�

(
Φr�

)∗]
, (21)

where m1, . . . , mn−4 are additional quantum numbers arising in 
the spherical harmonics (10). We have suppressed the dependence 
of Φr� and br� on these additional quantum numbers just to keep 
the notation compact. Quantizing the field, the coefficients br� and 
b†

r� are promoted to operators satisfying the usual commutation 
relations:[
br�,b†

r′�′
] = δrr′δ��′δ

(
m,m′),[

br�,br′�′
] = 0 = [

b†
r�,b†

r′�′
]
, (22)

where we have introduced the notation

δ
(
m,m′) = δmm′δm1,m′

1
. . . δmn−4,m′

n−4
. (23)

The global nonrotating vacuum state |0〉 is then defined as that 
state annihilated by all the br� operators:

br�|0〉 = 0. (24)

This vacuum state has been studied in detail in [9], where the ex-
pectation values of the renormalized quadratic field fluctuations 
and stress-energy tensor are computed.

5. Defining a global rotating vacuum

Now we turn to the definition of a global rotating vacuum state. 
Scalar field modes on the rotating global CadSn metric (4) are eas-
ily found from those on the nonrotating metric (2) by making the 
coordinate transformation (3) in the modes (8), yielding

Φ̃r�(x) = Nr�e−iω̃τ̃ R(ρ)eimϕ̃Θ�m(θ), (25)

where

ω̃ := ω − Ωam. (26)

An observer rotating about the polar axis with angular velocity Ω
measures the frequency of the modes (8) to be ω̃ (26). In this case, 
it is natural to consider the modes in the alternative form (25). 
However, our choice of positive frequency is restricted by the fact 
that positive frequency modes must have positive Klein–Gordon 
norm. From (19), the only possible choice of positive frequency 
is ω > 0. We therefore expand the field as in the nonrotating case 
(21), and end up with the global nonrotating vacuum |0〉 (24).

In Minkowski space, the set of modes with positive Klein–
Gordon norm always contains some modes which have negative 
frequency as seen by an observer rotating about the polar axis. This 
has serious consequences for the construction of states containing 
particles, and, in particular, rotating thermal states. The rotating 
observer measures energy ω̃ for the field modes, and so the natu-
ral definition of a rotating thermal state will have energy ω̃ in the 
Planck factor [10]. However, this definition leads to rotating ther-
mal states for a quantum scalar field being ill-defined everywhere 
in Minkowski space–time [2,10,11]. The only solution to this prob-
lem is to enclose the system inside a time-like boundary which is 
sufficiently close to the axis of rotation [2,10]. The inclusion of the 
boundary solves the problem by ensuring that modes with posi-
tive Klein–Gordon norm also have positive frequency as seen by 
the rotating observer.

Given that CadSn has a time-like boundary at ρ = π
2 , the ques-

tion arises as to whether modes with positive Klein–Gordon norm 
on CadSn can have negative frequency as seen by an observer rotat-
ing about the polar axis with angular velocity Ω . In other words, 
are there field modes (25) which have ω > 0 but ω̃ < 0? For n ≥ 4, 
we note that ω > 0 is given in terms of the quantum numbers 
r and � (20), and from this the inequalities (12) imply that, for 
ω > 0, we have

ω ≥ k + 2r + m > m, (27)

since k > 0 (13). Hence, from (26)

ω̃ = ω − Ωam > m(1 − Ωa). (28)

Therefore, if Ωa < 1, it will be the case that modes with positive 
Klein–Gordon norm also have positive frequency as seen by the 
rotating observer. If Ωa < 1, then, from the discussion in Section 2, 
the rotating space–time does not have a SOL.

Our results on global CadSn for n ≥ 4 therefore agree with those 
in rotating Minkowski space [2,10]: if there is no SOL, then modes 
with positive Klein–Gordon norm have positive frequency as seen 
by the rotating observer. In Minkowski space showing this re-
sult depends on the properties of the zeros of Bessel functions 
[2], whereas in CadSn it comes from the relationship between the 
mode frequency and the quantum numbers, and the inequalities 
(12) satisfied by the angular quantum numbers.

The situation on global CadS3 is slightly different. In order that 
positive frequency modes have positive Klein–Gordon norm, we 
must still have ω > 0 as the definition of positive frequency. This 
means that the only choice of global vacuum state remains the 
global nonrotating vacuum. However, for n = 3 the frequency ω
depends on the azimuthal quantum number m ≥ 0 as follows [12]:

ω = k + 2r ± m, (29)

so that

ω̃ = ω − maΩ = k + 2r − m(aΩ ∓ 1). (30)

Therefore there exist, for sufficiently large m, counter-rotating 
modes (corresponding to the lower signs in (29), (30)) which have 
ω > 0 but ω̃ < 0 [12]. Such modes have negative frequency as seen 
by the rotating observer and, as discussed above, are anticipated 
to render rotating thermal states ill-defined. In [12] an alternative 
vacuum state is defined when n = 3 for a rotating anti-de Sitter 
space–time which has a cylindrical region near the axis of rotation 
removed. There is also a family of alternative vacua on rotating 
Rindler-adS3 space–time [12]. Rotating Rindler-adS3 possesses an 
event horizon and corresponds to a portion of the global adS3
space–time in the same way that the usual Rindler space–time is 
only a part of global Minkowski space–time. In this paper we are 
considering the entire global CadSn space–time and the alternative 
vacuum states from [12] cannot be defined in this case.
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6. Conclusions

In this paper we have studied a quantum scalar field on global 
CadSn as seen by an observer rotating about the polar axis with 
angular velocity Ω . We found that the requirement that positive 
frequency modes must have positive Klein–Gordon norm (to en-
sure that the particle annihilation and creation operators satisfy 
the correct commutation relations) restricts our choice of vacuum 
state, so that the only possibility is the global nonrotating vacuum. 
If n ≥ 4 and the angular velocity satisfies the inequality Ωa < 1
(where a is the radius of curvature of adSn), then scalar field 
modes with positive Klein–Gordon norm also have positive fre-
quency as seen by the rotating observer. In this case the global 
nonrotating vacuum is the natural state to use for constructing 
states which contain particles as seen by the rotating observer. It 
is of note that if Ωa < 1 then the rotating CadSn space–time does 
not have a speed-of-light surface (SOL).

Our results are in accordance with previous work on quantum 
scalar fields on rotating Minkowski space–time, in particular (i) the 
global rotating vacuum is identical to the global nonrotating vac-
uum, and (ii) if the space–time does not have a SOL (in Minkowski 
space this is achieved by enclosing the system in a boundary suf-
ficiently close to the axis of rotation) then modes with positive 
Klein–Gordon norm have positive frequency as seen by the rotat-
ing observer.

In Minkowski space, if the boundary is inside the SOL, then it 
is possible to define rotating thermal states for a quantum scalar 
field, but such states are ill-defined everywhere if the boundary is 
either outside the SOL or absent [2]. We expect that similar results 
will be true in CadSn with n ≥ 4: that if Ωa < 1 then rotating ther-
mal states are well-defined for a quantum scalar field, but they are 
not if Ωa ≥ 1. We will investigate this in detail in a future publi-
cation [13].

Acknowledgements

The work of C.K. is supported by EPSRC UK, while that of E.W. is 
supported by the Lancaster–Manchester–Sheffield Consortium for 
Fundamental Physics under STFC grant ST/L000520/1.

References

[1] J.R. Letaw, J.D. Pfautsch, Quantized scalar field in the stationary coordinate sys-
tems of flat spacetime, Phys. Rev. D 24 (1981) 1491–1498.

[2] G. Duffy, A.C. Ottewill, Rotating quantum thermal distribution, Phys. Rev. D 67 
(2003) 044002.

[3] V.E. Ambrus, E. Winstanley, Dirac fermions on an anti-de Sitter background, 
arXiv:1405.2215.
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