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Keywords:
Fermion field
Anti-de Sitter space–time
Hadamard renormalisation

The Schwinger–de Witt and Hadamard methods are used to obtain renormalised vacuum expectation 
values for the fermion condensate, charge current and stress-energy tensor of a quantum fermion field 
of arbitrary mass on four-dimensional anti-de Sitter space–time. The quantum field is in the global 
anti-de Sitter vacuum state. The results are compared with those obtained using the Pauli–Villars and 
zeta-function regularisation methods, respectively.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Quantum field theory on anti-de Sitter space–time (adS) has 
been of particular interest since the formulation of the adS/CFT 
(conformal field theory) correspondence (see [1] for a review). The 
maximal symmetry of adS simplifies many aspects of the study of 
quantum fields on this background. For instance, closed-form ex-
pressions for the Feynman propagator for a quantum field in the 
global adS vacuum state can be derived for both bosonic [2] and 
fermionic fields [3,4]. In quantum field theory on curved space–
time, an object of fundamental importance is the renormalised 
expectation value of the stress-energy tensor, 〈Tμν〉, since this 
governs the backreaction of the quantum field on the space–time 
geometry. Recently, Hadamard renormalisation [5] has been used 
to give closed-form expressions for the renormalised vacuum ex-
pectation value of the stress-energy tensor for a quantum scalar 
field with arbitrary coupling to n-dimensional adS [6].

In this letter, we study a quantum fermion field ψ on four-
dimensional adS space–time and consider the global vacuum state. 
Vacuum expectation values (v.e.v.s) of the stress-energy tensor for 
such a fermion field have been computed previously [7] using 
Pauli–Villars and zeta-function regularisation. Our purpose in this 
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paper is to compare those results with v.e.v.s calculated using two 
alternative approaches to renormalisation, namely the Schwinger–
de Witt method [8] and the Hadamard method [9,10]. For both 
approaches, we find the v.e.v.s of the fermion condensate (FC) 
〈ψψ〉, the charge current (CC) 〈 Jμ〉 and the stress-energy tensor 
(SET) 〈Tμν〉 when the fermion field is in the global adS vacuum 
state.

2. Dirac equation on adS

We consider the vacuum state of Dirac fermions of arbitrary 
mass m on a four-dimensional adS background space–time of in-
verse radius of curvature ω (so that the Ricci scalar curvature is 
R = −12ω2). The space–time metric takes the form

ds2 = 1

cos2 (ωr)

[
−dt2 + dr2

+ sin2 (ωr)

ω2

(
dθ2 + sin2 θ dϕ2

)]
, (1)

where we use the metric signature (−,+,+,+) and units in which 
G = c = h̄ = 1.

The Dirac equation for a fermion field of mass m on an arbitrary 
space–time can be written as:

(iγ μDμ − m)ψ(x) = 0, (2)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where the point-dependent gamma matrices γ μ ≡ γ μ(x) sat-
isfy generalised canonical anti-commutation relations {γ μ, γ ν} =
−2gμν with gμν the inverse of the metric gμν . The spinor co-
variant derivatives Dμ are defined to ensure the covariance of the 
Dirac equation with respect to general coordinate transformations. 
On the adS metric (1), using a suitable choice of tetrad basis vec-
tors, mode solutions of the Dirac equation can be found [11]. In 
this letter, we study only v.e.v.s with respect to the global adS vac-
uum state, for which the Feynman propagator can be found using a 
geometric approach. We therefore do not consider mode solutions 
of the Dirac equation.

3. Feynman propagator for the global adS vacuum

For a general quantum state, the Feynman propagator for the 
fermion field, S F (x, x′), can be determined as a solution of the in-
homogeneous Dirac equation:(
i/D − m

)
S F (x, x′) = 1√−g

δ4(x − x′), (3)

where the Feynman slash notation is used to denote contractions 
with the gamma matrices γ μ (e.g. /D = γ μDμ).

The maximal symmetry of the global adS vacuum state allows 
S F (x, x′) for this state to be written as [4]:

i S F (x, x′) = (αF + βF /n)�(x, x′), (4)

where αF and βF are scalar functions of the geodetic interval s and 
the tangent at x to the geodesic connecting x and x′ is denoted by 
nμ(x, x′) = ∇μs(x, x′). We use the convention that s(x, x′) is real 
if the geodesic connecting x and x′ is time-like or null, implying 
a negative norm for nμ , that is gμνnμnν = −1. The bispinor of 
parallel transport �(x, x′) along the geodesic connecting x and x′
satisfies the parallel transport equation for spinors at both ends of 
the geodesic [4]:

nμDμ�(x, x′) = 0, nμ′
�(x, x′)

←−
Dμ′ = 0, (5)

together with the initial condition �(x, x′)
⌋

x′=x = 1. In the equa-
tions above, unprimed and primed indices denote quantities eval-
uated with respect to x and x′ , respectively. An overbar denotes 
the Dirac adjoint.

On adS, the geodesic tangent nμ and bispinor of parallel trans-
port � satisfy the following equations [2,4]:

∇νnμ = −ω
(

gμν + nμnν

)
cot (ωs) , (6a)

∇ν ′nμ = − ω

sin (ωs)

(
gμν ′ − nμnν ′

)
, (6b)

Dμ�(x, x′) = ω�μνnν�(x, x′) tan
(ωs

2

)
, (6c)

where �μν = 1
4

[
γμ,γν

]
are the anti-Hermitian generators of 

Lorentz transformations and gμν ′ ≡ gμν ′(x, x′) is the bivector of 
parallel transport, which satisfies the parallel transport equations:

nλ∇λgμν ′ = 0, nλ′∇λ′ gμν ′ = 0. (7)

Substituting the ansatz (4) into (3) and using the above proper-
ties of nμ and �(x, x′), the inhomogeneous Dirac equation can be 
reduced to two decoupled equations:

iα′
F − 3iω

2
αF tan

(ωs

2

)
− mβF = 0, (8a)

iβ ′
F + 3iω

βF cot
(ωs )

− mαF = i√ δ(x, x′). (8b)

2 2 −g
These two equations can be combined to form a single second or-
der differential equation for αF :

∂2αF

∂(ωs)2
+ 3 cot (ωs)

∂αF

∂(ωs)
+

[
k2 − 3

4 cos2
(
ωs
2

) − 9

4

]
αF

= − ik

ω

δ(x − x′)√−g
, (9)

where

k = m

ω
. (10)

Changing variable to z = cos2
(
ωs
2

)
and writing αF = z

1
2 α̃F puts 

(9) in the form of the hypergeometric equation (in agreement 
with [4]):[

z(1 − z)
d2

dz2
+ (3 − 5z)

d

dz
+ (k − 2)(k + 2)

]
α̃F

= − ik

ω
√

z

δ(x − x′)√−g
. (11)

For the calculation of v.e.v.s, it is useful to express S F (x, x′) in 
terms of a quantity that goes to 0 in the coincidence limit (i.e. as 
s → 0). Writing (11) in terms of q = sin2 (

ωs
2

)
gives:[

q(1 − q)
d2

dq2
+ (2 − 5q)

d

dq
− (2 − k)(2 + k)

]
α̃F

= − ik

ω
√

1 − q

δ(x − x′)√−g
. (12)

This has the form of a hypergeometric differential equation with 
parameters a = 2 − k, b = 2 + k and c = 2, and its general solution 
can be written in terms of two arbitrary constants λ, λ′ as [12]:

αF = λ

{
− 1

(k2 − 1)q
+ 2 F1(2 − k,2 + k;2;q)[λ′ + ln(−q)]

+
∞∑

n=0

(2 + k)n(2 − k)n

(2)nn! qn�n

}
cos

(ωs

2

)
, (13)

where (z)n = z(z + 1) . . . (z + n − 1) is the Pochhammer symbol 
[12,13] and

�n = ψ(2 + k + n) + ψ(2 − k + n) − ψ(2 + n) − ψ(1 + n) (14)

is defined in terms of the polygamma function ψ(z) = d [ln �(z)]/
dz.

The constant λ can be found by matching the small distance 
behaviour of αF with that of the Minkowski quantity αMink [14]

αMink = im2

8π s
H (2)

1 (ms) ∼
s→0

− m

4π2s2
, (15)

where H (2)
1 is a Hankel function of the second kind. Thus, λ is 

given by:

λ = kω3

16π2

(
k2 − 1

)
. (16)

To fix the remaining constant λ′ , we consider large spatial sep-
arations of the points x and x′ . With our conventions, the geodetic 
interval s is purely imaginary for space-like separated points, so we 
set s = is̃, where s̃ is real. Using properties of the hypergeometric 
functions [13], the function αF can be rewritten in the form [15]
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αF = ω3� (2 + k)

16π
3
2 4k�

(
1
2 + k

) cosh

(
ωs̃

2

)[
sinh2

(
ωs̃

2

)]−2−k

× 2 F1

(
1 + k,2 + k;1 + 2k;−cosech2

(
ωs̃

2

))
+ ω3k

(
k2 − 1

)
16π2

[
λ′ + π cot (πk)

]
cosh

(
ωs̃

2

)
× 2 F1

(
2 + k,2 − k;2;− sinh2

(
ωs̃

2

))
. (17)

For very large spatial separations (as one of the points x, x′ moves 
close to the adS boundary), the first hypergeometric function in the 
expression for αF (17) is regular and multiplied by a very small 
factor. However, the second hypergeometric function is divergent. 
Therefore, in order for αF to remain finite for large spatial separa-
tions, it must be the case that

λ′ = −π cot (πk) . (18)

Thus, the function αF takes the form (13) with λ′ given by (18). 
The function βF is found from αF (13) using (8a) and is given by

βF = − iω3k2(k2 − 1)

16π2

{
− 1

k2(k2 − 1)q2
(1 + k2q)

+ 1

2
[−π cot (πk) + ln(−q)] 2 F1 (2 + k,2 − k;3;q)

+ 1

2

∞∑
n=0

(2 + k)n(2 − k)n

(3)nn! qn
(

�n − 1

2 + n

)}

× sin
(ωs

2

)
. (19)

4. Vacuum expectation values

Vacuum expectation values (v.e.v.s) of the fermion condensate 
(FC) 〈ψψ〉, charge current (CC) 〈 Jμ〉 and stress-energy tensor (SET) 
〈Tμν〉 are calculated from the Feynman propagator derived in the 
previous section using the following results [16]:

〈ψψ〉 = − lim
x′→x

tr
[
i S F (x, x′)�(x′, x)

]
, (20a)

〈 Jμ〉 = − lim
x′→x

tr
[
γ μi S F (x, x′)�(x′, x)

]
, (20b)

〈T can
μν 〉 = i

2
lim

x′→x
tr

{[
γ(ν Dμ)i S F (x, x′)

− i S F (x, x′)
←−
Dλ′γκ ′ gλ′

(μgκ ′
ν)

]
�(x′, x)

}
. (20c)

The superscript on T can
μν indicates that the canonical definition for 

the stress-energy tensor operator is used. If the ansatz (4) is made 
for the form of S F (x, x′), equations (6a) and (6c) can be used to 
write the above v.e.v.s using the functions αF and βF :

〈ψψ〉 = 4 lim
x′→x

αF (s), (21a)

〈 Jμ〉 = 4 lim
x′→x

nμβF (s), (21b)

〈T can
μν 〉 = 4i lim

x′→x

{
−nμnν

[
∂

∂s
− ω

2
cot

(ωs

2

)]
βF

+ gμν
ω

2
βF cot

(ωs

2

)}
. (21c)

The tangents to the geodesic nμ depend on the direction along 
which the points are split. For consistency, their coefficients should 
cancel in the coincidence limit, since the final expressions for the 
v.e.v.s above must be independent of the point-splitting employed. 
Thus, the v.e.v. of the CC 〈 Jμ〉 will vanish identically. Furthermore, 
the adS symmetries imply that the v.e.v. of the FC 〈ψψ〉 must be a 
constant scalar, while the v.e.v. of the SET is a constant multiplying 
the metric tensor gμν , such that

〈T can
μν 〉ren = 1

4
gμν〈T can〉ren, (22)

where T is the trace of Tμν .
The above expressions (21) are all infinite due to the divergence 

of αF and βF in the coincidence limit s → 0. This divergence can 
be seen clearly in the small s behaviour of αF (15) and βF :

αF = − kω

4π2s2
− ω3

16π2

(
1 + 5k

6
− k2 + k3

)
+ ω3k(k2 − 1)

8π2

[
ψ(k) + γ + 1

2
ln

(
−ω2s2

4

)]
+ O (s2), (23a)

βF = i

2π2s3
+ iω2(1 + 2k2)

16π2s

+ iω4s

64π2

(
17

60
+ k + 5k2

6
− k3 + 3k4

2

)
− iω4s

32π2
k2(k2 − 1)

[
ψ(k) + γ + 1

2
ln

(
−ω2s2

4

)]
+ O (s3), (23b)

where γ is Euler’s constant.

5. Regularisation of the Feynman propagator

The renormalisation of the v.e.v.s in (21) can be performed by 
regularising αF and βF , as follows:

α
reg
F = αF − αdiv, β

reg
F = βF − βdiv, (24)

such that αreg
F and βreg

F stay finite as s → 0. The singularity struc-
ture of the fermion propagator can be studied by considering the 
auxiliary propagator GF , defined as [9]:

S F (x, x′) = (
i/D + m

)
GF (x, x′). (25)

From the inhomogeneous Dirac equation (3), the auxiliary propa-
gator GF (x, x′) satisfies the following equation [9]:(� − 1

4 R − m2
)
GF (x, x′) = 1√−g

δ4(x, x′), (26)

where R is the Ricci scalar curvature. It should be emphasised that 
the auxiliary propagator GF , like the Feynman propagator S F , is 
a bispinor. Therefore, the box operator above is understood to be 
written in terms of spinor covariant derivatives. If the Feynman 
propagator S F has the form (4), then (6c) can be used to show 
that:

iGF (x, x′) = αF (s)

kω
�(x, x′). (27)

Thus, the divergent part of the propagator can be written as:

iGdiv(x, x′) = αdiv

kω
�(x, x′). (28)

In the following sections, we use the Schwinger–de Witt and 
Hadamard regularisation methods to find Gdiv and hence the 
renormalised v.e.v.s.
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6. Schwinger–de Witt renormalisation

Using the Schwinger–de Witt expansion, Christensen [8] finds 
the following expression for GSdW

div :

iGSdW
div =

√
�

8π2

{
a0

[
1

σ
+ m2

(
1 + m2σ

4

)
L − m2

2
− 5

16
m2σ

]

− a1

[(
1 + m2σ

2

)
L − m2σ

2

]

+ a2σ

[(
1

2
+ m2σ

8

)
L − 1

4

]}
, (29)

where σ = − s2

2 , the Van Vleck–Morette determinant is denoted �
and

L = γ + 1

2
ln

(
ν2

SdWσ

2

)
(30)

is written in terms of an arbitrary renormalisation mass scale νSdW. 
The coefficients an are bispinors regular as s → 0 and satisfy the 
following differential equation [8]:

σρan+1;ρ + (n + 1)an+1 = 1√
�

(
� − R

4

)(√
�an

)
, (31)

with a0 given for any space–time by [8]:

a0(x, x′) = �(x, x′). (32)

Specialising to adS, the functions an can be written as

an(x, x′) = ω2n An(s)�(x, x′), (33)

where An(s) are scalar functions. Using the explicit expression

�(x, x′) =
( ωs

sinωs

)3
(34)

for the Van Vleck–Morette determinant on adS [6], together with 
(6), the differential equation (31) reduces to:

− 1

(ωs)n

∂

∂(ωs)

[
(ωs)n+1 An+1

]
= ∂2 An

∂(ωs)2
+ 3

ωs

∂ An

∂(ωs)

− 3

4

[
1

sin2 ωs
− 1

(ωs)2
+ 1

cos2 ωs
2

]
An. (35)

The above equation can be solved as a power series in ωs, yielding:

A0 = 1, A1 = 1 + 19

240
(ωs)2 + O (s4),

A2 = 11

60
+ O (s2). (36)

Combining (28) and (29) gives αSdW
div as a power series:

αSdW
div = − kω

4π2s2
− ω3k(1 + k2)

16π2
− kω5s2

64π2

(
9

20
+ 3k2 − 5k4

4

)
+ ω3k(k2 − 1)

2

[
1 + 3 − k2

(ωs)2
]

L + O (s4). (37a)

8π 8
We construct βSdW
div by using αSdW

div in (8a):

βSdW
div = i

2π2s3
+ iω2(1 + 2k2)

16π2s
+ iω4s

64π2

(
1

10
+ k2 + 3k4

2

)
− iω4s

32π2
k2(k2 − 1)L + O (s3). (37b)

Subtracting (37) from (23) and substituting the result in (20)
gives the following renormalised v.e.v.s:

〈ψψ〉SdW
ren = − ω3

4π2

(
1 − k

6
− k2

)
+ ω3k(k2 − 1)

2π2

[
ψ(k) + ln

(
ω

νSdW

)]
, (38a)

〈 Jμ〉SdW
ren = 0, (38b)

〈T can〉SdW
ren = − ω4

4π2

(
11

60
+ k − k2

6
− k3

)
+ ω4k2(k2 − 1)

2π2

[
ψ(k) + ln

(
ω

νSdW

)]
. (38c)

When k = 0, we find the expected trace anomaly for massless 
fermion fields:

〈T 〉k=0 = − 11ω4

240π2
. (39)

The result (38c) can be compared with the trace 〈T 〉P-V
ren of the 

SET obtained using Pauli–Villars regularisation [7]:

〈T 〉P-V
ren = − ω4

4π2

(
11

60
+ k − k2

6
− k3

)
+ ω4k2(k2 − 1)

2π2

[
ψ(k) + ln

(
ω

νP-V

)]
, (40)

where νP-V is an arbitrary renormalisation mass scale. The agree-
ment between (38c) and (40) is excellent, provided that the two 
renormalisation mass scales νSdW and νP-V are equal, νP-V = νSdW.

7. Hadamard renormalisation

7.1. Hadamard form

Hadamard renormalisation is a mathematically rigorous ap-
proach to regularisation of v.e.v.s (see [10,17–20] for mathematical 
details for the fermion case). The divergent part of the auxil-
iary propagator (25) is known as the Hadamard form GHad

div . This 
is purely geometric, depending on the space–time background 
but not the quantum state under consideration. The remainder, 
Greg(x, x′) = GF (x, x′) −GHad

div (x, x′), is regular as x′ → x and depends 
on the quantum state of the fermion field.

The Hadamard form GHad
div (x, x′) of the auxiliary propagator can 

be written as [9,10]:

iGHad
div (x, x′) = 1

8π2

[
U (x, x′)

σ
+ V (x, x′) ln(ν2

Hadσ)

]
, (41)

where νHad is an arbitrary renormalisation mass scale. The bi-
spinors U (x, x′) and V (x, x′) are regular in the coincidence limit 
x′ → x and are determined by the following equations, which fol-
low from substituting (41) into (26):

σλU ;λ + 1
2 (�σ − 4)U = 0, (42a)

σλV ;λ + 1
2 (�σ − 2)V + 1

2 (� − 1
4 R − m2)U = O (σ ), (42b)

(� − 1 R − m2)V = 0. (42c)
4
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We emphasise that all covariant derivatives in (42) are spinor co-
variant derivatives.

On a four-dimensional space–time, the solution of (42a) can be 
found analytically [9]:

U (x, x′) = √
�(x, x′)�(x, x′). (43)

Since V (x, x′) satisfies the homogeneous version (42c) of (26)
which governs the auxiliary propagator, the symmetries of adS al-
low V (x, x′) to be put in a form similar to (27):

V (x, x′) = αV (s)

kω
�(x, x′). (44)

Here αV (s) is the solution of the homogeneous version of (12)
which is regular at the origin:

αV (s) = kω C 2 F1 (2 − k,2 + k;2;q) cos
(ωs

2

)
. (45)

The integration constant C is fixed by imposing (42b). It can be 
seen that the first term in (42b) is of order σ . The second term 
evaluates to:

1

2
[�σ − 2] V = 1

2
[−1 + 3ωs cot (ωs)] V = C� + O (σ ), (46)

while the third term can be shown to equal:

1

2

(
� − 1

4
R − m2

)
U

= 3ω2

8

(
− 1

(ωs)2
+ 1

sin2 (ωs)
+ 1

cos2
(
ωs
2

) − 4k2

3

)
U

= −ω2

2

(
k2 − 1

)
� + O (σ ). (47)

Therefore, the integration constant in αV is given by

C = ω2

2
(k2 − 1). (48)

From the derivation of U and V above, we find that

αHad
div = kω

8π2

{√
�

σ
+ ω2

2
(k2 − 1)2 F1 (2 − k,2 + k;2;q)

× cos
(ωs

2

)
ln(ν2

Hadσ)

}
. (49)

Equation (8a) can be used to find βHad
div :

βHad
div = iω3

8π2

{ √
�

(ωs)3
+ 3

√
�

(ωs)2 sin (ωs)

− 1

4
k2(k2 − 1)2 F1(2 − k,2 + k;3;q) sin

(ωs

2

)
ln(ν2

Hadσ)

+ k2 − 1

ωs
2 F1(2 − k,2 + k;2;q) cos

(ωs

2

)}
. (50)

7.2. Renormalised vacuum expectation values

Renormalised v.e.v.s can be calculated by replacing αF and βF

in (20) by the differences αHad
reg = αF − αHad

div and βHad
reg = βF −

βHad:
div
〈ψψ〉Had
ren = − ω3

4π2

(
1 − k

6
− k2 + k3

)
+ ω3k(k2 − 1)

2π2

[
ψ(k) + ln

(
eγ ω

νHad
√

2

)]
, (51a)

〈 Jμ〉Had
ren = 0, (51b)

〈T can〉Had
ren = − ω4

4π2

(
11

20
+ k − 19k2

6
− k3 + 5k4

2

)
+ ω4k2(k2 − 1)

2π2

[
ψ(k) + ln

(
eγ ω

νHad
√

2

)]
. (51c)

When k = 0, it can be seen that the trace anomaly obtained from 
(51c) does not agree with (39). Furthermore, it is shown in [10]
that the canonical definition (20c) must be modified because the 
regularised propagator i SHad

reg (x, x′) = (αHad
reg + βHad

reg /n)�(x, x′) does 
not satisfy the Dirac equation. Hence, the renormalised v.e.v. of 
the canonical SET is, in general, not conserved. This is in contrast 
to Schwinger–de Witt renormalisation, where both the divergent 
and the finite parts of the SET are conserved, by construction [8]. 
In [10] the conservation of the SET is restored by changing the 
canonical definition of the SET, adding a term proportional to the 
Dirac Lagrangian multiplied by gμν , as follows:

T new
μν = T can

μν − 1

6
gμν

[
i

2
ψ/Dψ − i

2
/Dψψ − mψψ

]
. (52)

Since the Dirac Lagrangian vanishes when solutions of the Dirac 
equation are considered, T new

μν reduces to T can
μν in the classical (un-

renormalised) case. Taking the trace allows the new SET to be 
written in terms of the old one as:

〈T new〉Had
ren = 1

3
〈T can〉Had

ren + 2kω

3
〈ψψ〉Had

ren . (53)

The result is:

〈T new〉Had
ren = − ω4

4π2

(
11

60
+ k − 7k2

6
− k3 + 3k4

2

)
+ ω4k2(k2 − 1)

2π2

[
ψ(k) + ln

(
eγ ω

νHad
√

2

)]
. (54)

Setting k = 0 in (54) gives the expected trace anomaly (39). The 
above result can be compared to that obtained using zeta-function 
regularisation [7]:

〈T 〉ζren = − ω4

4π2

(
11

60
+ k − 7k2

6
− k3 + 3k4

2

)
+ ω4k2(k2 − 1)

2π2

[
ψ(k) + ln

(
ω

νζ

)]
, (55)

where νζ is an arbitrary renormalisation mass scale. Our re-
sult (54) obtained using Hadamard renormalisation is in excellent 
agreement with the zeta-function regularisation result above, pro-
vided that the two renormalisation mass scales are related by:

νζ = e−γ νHad

√
2. (56)

This relationship between the renormalisation mass scales for zeta-
function and Hadamard renormalisation matches that found in the 
case of a quantum scalar field on n-dimensional adS [6,21].

8. Discussion and conclusions

In this letter, we have studied the renormalised vacuum ex-
pectation values (v.e.v.s) of the fermion condensate (FC), charge 
current (CC) and stress-energy tensor (SET) for a quantum fermion 
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field of mass m on four-dimensional anti-de Sitter (adS) space–
time. Due to the maximal symmetry of the space–time, we have 
been able to use a geometric approach to derive closed-form ex-
pressions for the Feynman propagator and the renormalised v.e.v.s. 
We used two methods of regularisation, namely the Schwinger–
de Witt approach [8] and Hadamard renormalisation [9,10], com-
paring these, respectively, with previously published results using 
Pauli–Villars and zeta-function renormalisation [7]. The v.e.v. of 
the SET computed using Schwinger–de Witt renormalisation agrees 
with that found using Pauli–Villars; and the v.e.v. of the SET from 
Hadamard renormalisation agrees with that from the zeta-function 
approach, in each case providing there is a relationship between 
the relevant renormalisation mass scales.

Wald’s axioms [22] uniquely define the v.e.v. of the SET up to 
a local conserved tensor. Since the v.e.v. of the SET computed here 
is a constant multiplied by the metric tensor, whatever the renor-
malisation prescription, the difference in v.e.v.s of the SET com-
puted using Schwinger–de Witt and Hadamard renormalisation is 
trivially a local conserved tensor. The agreement between Pauli–
Villars and Schwinger–de Witt renormalisation is not surprising; 
both methods isolate the purely geometric divergent terms in the 
Feynman propagator by using a large-mass expansion. Their equiv-
alence was shown for a scalar field on two-dimensional space–
time in [23]. For a quantum scalar field, the equivalence of the 
zeta-function and Hadamard renormalisation methods is proven in 
[21] and we would expect a similar result to hold for a quantum 
fermion field. For a quantum scalar field, the Schwinger–de Witt 
representation of the Feynman propagator is a special case of the 
Hadamard representation with additional, finite, renormalisation 
terms [24,25]. Here, we have used an auxiliary propagator which 
satisfies a Klein–Gordon-like equation. Therefore, the additional fi-
nite renormalisation terms in the Schwinger–de Witt method com-
pared with the Hadamard method lead to the discrepancy in the 
corresponding final v.e.v.s.

We now compare our results using the two approaches to 
renormalisation. In both approaches the v.e.v. of the CC vanishes 
identically. The v.e.v. of the FC differs in the two approaches if the 
mass of the fermion field m = kω is nonzero:

〈ψψ〉Had
ren − 〈ψψ〉SdW

ren

= −ω3k3

4π2
+ ω3k(k2 − 1)

2π2
ln

(
eγ νSdW

νHad
√

2

)
. (57)

For the v.e.v. of the SET, when k = 0, using either Schwinger–
de Witt or Hadamard renormalisation we find the expected trace 
anomaly for massless fermion fields (39). We note that the trace 
anomaly is negative, as was the case for a quantum scalar field on 
adS [6]. When k = 0, the two approaches to renormalisation do not 
yield the same answer for the trace:

〈T new〉Had
ren − 〈T can〉SdW

ren

= ω4

4π2

(
k2 − 3k4

2

)
+ ω4k2(k2 − 1)

2π2
ln

(
eγ νSdW

νHad
√

2

)
. (58)

For small values of the fermion mass, the trace of the v.e.v. of the 
SET is negative for both Schwinger–de Witt and Hadamard renor-
malisation. As m increases, the exact behaviour of the trace 〈T 〉
depends on the value of the renormalisation mass scale and the 
renormalisation scheme chosen. There will typically be at least one 
value of m for which the trace vanishes, similar to the behaviour 
seen for a quantum scalar field [6]. For sufficiently large m, the 
trace is always positive for both renormalisation schemes as the 
term ∼ k4ψ(k) in (38c) and (54) becomes dominant. We note that, 
as seen for a quantum scalar field [6], the v.e.v. of the SET grows 
without bound as the mass of the fermion field gets very large. 
This counter-intuitive result is due to the negative curvature of adS 
space–time.

Due to the maximal symmetry of both the underlying space–
time and the global adS vacuum, the v.e.v. of the SET is propor-
tional to the metric tensor gμν regardless of the renormalisation 
method employed. If we consider the back-reaction of the quan-
tum fermion field on the geometry, this is governed by the semi-
classical Einstein equations. As with a quantum scalar field in the 
global adS vacuum [6], the semi-classical Einstein equations in this 
case are readily solved simply by making a one-loop quantum cor-
rection to the cosmological constant.

As can be seen most easily in the Hadamard approach to renor-
malisation, the short-distance singularities of the fermion Feynman 
propagator are independent of the choice of quantum state. There-
fore, since we have now computed renormalised expectation val-
ues when the quantum fermion field is in the global adS vacuum 
state, renormalised expectation values for other quantum states of 
the fermion field can readily be computed by finding differences 
in expectation values between two quantum states. We will apply 
this method in a forthcoming publication [26], where we consider 
thermal states for a massive fermion field on adS.
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