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We compute the renormalized expectation value of the square of a massless, conformally coupled,
quantum scalar field on the brane of a higher-dimensional black hole. Working in the AADD brane-world
scenario, the extra dimensions are flat and we assume that the compactification radius is large compared
with the size of the black hole. The four-dimensional on-brane metric corresponds to a slice through a
higher-dimensional Schwarzschild-Tangherlini black hole geometry and depends on the number of bulk
space-time dimensions. The quantum scalar field is in a thermal state at the Hawking temperature. An
exact, closed-form expression is derived for the renormalized expectation value of the square of the
quantum scalar field on the event horizon of the black hole. Outside the event horizon, this renormalized
expectation value is computed numerically. The answer depends on the number of bulk space-time
dimensions, with a magnitude which increases rapidly as the number of bulk space-time dimensions
increases.
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I. INTRODUCTION

Higher-dimensional braneworld models [1–5] have the
consequence that the energy scale of quantum gravity may
be many orders of magnitude smaller than the usual Planck
scale 1019 GeV, and may be as low as the TeV-scale.
This raises the exciting possibility of probing quantum
gravity effects in high-energy collisions, either at the LHC
or in cosmic rays [6]. Of the possible quantum gravity
processes, the creation of microscopic black holes would be
particularly spectacular [7–13].
If such a microscopic, higher-dimensional, black hole

were created, it will be short-lived, decaying rapidly due to
the emission of Hawking radiation. It is expected that for a
significant proportion of the evolution of the black hole it
can be modeled semiclassically [8]. In this regime the
geometry of the black hole is regarded as classical, with
quantum fields propagating on a background space-time
metric. The details of the Hawking radiation emitted by the
black hole as it decays are of particular importance for the
simulation of black hole events at the LHC [14,15]. There
is now a vast literature on Hawking radiation from

higher-dimensional black holes, see [9,12,16–20] for some
reviews on this subject.
The fluxes of energy and angular momentum in the

Hawking radiation are just two components of the expect-
ation value of the stress-energy tensor hT̂μνi for a quantum
field on a black hole background. The other components of
hT̂μνi also contain physical information, and the stress-
energy tensor as a whole governs the backreaction of the
quantum field on the space-time geometry via the semi-
classical Einstein equations

Gμν ¼ 8πGhT̂μνi: ð1:1Þ

The stress-energy tensor T̂μν involves products of a
quantum field operator at the same space-time point and
therefore, in general, requires renormalization. The black
holes of phenomenological interest for high-energy colli-
sions either have a single axis of rotation which lies in the
brane or are nonrotating. In both these cases, the sym-
metries of the brane black hole space-time mean that the
components of hT̂μνi which comprise the Hawking fluxes
of energy and angular momentum on the brane do not
require renormalization [21–23].
Even in four space-time dimensions, computing the full

renormalized expectation value of the stress-energy tensor
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for a quantum field on a background black hole space-time
is a complicated process [24–36]. In more than four space-
time dimensions, Decanini and Folacci [37] have developed
a general formalism for the computation of hT̂μνiren for a
quantum scalar field ϕ̂ based on Hadamard renor-
malization. Some general properties of hT̂μνiren for
higher-dimensional black hole space-times are derived in
[38], but to date no computation of hT̂μνiren on the full
space-time exterior to a higher-dimensional black hole
event horizon has been attempted. A quantum scalar field
is mathematically the simplest type of quantum field, and in
this case the renormalized vacuum polarization hϕ̂2iren is
considerably easier to calculate and shares some features
with the full renormalized stress-energy tensor. The vac-
uum polarization is also of physical significance for
spontaneous symmetry breaking (see, for example, [39]
for a discussion of this in the black hole context).
The vacuum polarization has been computed on a wide

variety of black hole space-times in four dimensions
[40–51]. For higher-dimensional black holes, as well as
the approach of [37] based on Hadamard renormalization, a
general formalism for computing hϕ̂2iren based on de Witt-
Schwinger renormalization has been developed [52]. An
exact expression for the renormalized vacuum polarization
on the event horizon of a five-dimensional asymptotically
flat black hole has been found in [53]. As far as we are
aware, the only complete computation of the renormalized
vacuum polarization everywhere outside the event horizon
of a higher-dimensional black hole is the work of [54] on a
five-dimensional, asymptotically anti-de Sitter black hole.
In this paper we study the vacuum polarization hϕ̂2iren of

a massless, conformally coupled, quantum scalar field on
the brane of a higher-dimensional black hole in the context
of the AADD braneworld scenario [1–3]. In this setup, our
universe is a four-dimensional brane in a D-dimensional
bulk space-time (where D > 4). The D − 4 extra dimen-
sions are flat but compactified. The radius of compactifi-
cation is sufficiently small to avoid contradictions with
experimental searches for deviations from Newton’s law of
gravitation, but is typically large compared with the Planck
length. We use a very simple model of a black hole in this
scenario, assuming that the brane is tensionless and its
thickness negligible. We also assume that the size of the
black hole is very small compared to the compactification
radius of the extra dimensions. With these assumptions, the
black hole can be modeled as a higher-dimensional,
asymptotically flat, solution of the vacuum Einstein equa-
tions. For simplicity, we restrict our attention to static,
spherically symmetric, higher-dimensional black holes
described by the Schwarzschild-Tangherlini metric [55].
In the AADD brane-world scenario, the particles and

forces of the standard model are constrained to live on the
brane, in order to avoid contradictions with precision
particle-physics experiments. Only gravitational degrees of

freedom can propagate in the bulk extra dimensions.While it
is possible to have scalar fields in the gravitational sector of
the theory and therefore in the bulk space-time, studies of
Hawking radiation have revealed that the emission of scalar
fields in the bulk is suppressed relative to the emission on the
brane [23,56,57].With this inmind, in this paper we consider
only the vacuum polarization on the brane. This means that
we can restrict our attention to the four-dimensional on-brane
metric describing the black hole, and therefore use estab-
lished methodology [25,41,51] to compute hϕ̂2iren.
The outline of this paper is as follows. In Sec. II A we

outline the metric of the black hole on the brane, and
construct the point-split Euclidean Green’s function which
will be used to calculate the vacuum polarization when the
quantum scalar field is in the Hartle-Hawking state [58].
We use two different methods for finding hϕ̂2iren outside
and on the event horizon of the brane black hole. In Sec. II
B we follow the approach of [25,51], using timelike point-
splitting, to find an expression for the vacuum polarization
outside the event horizon. The vacuum polarization on the
event horizon is calculated in Sec. II C using radial point-
splitting [41]. On the horizon we have a closed-form
expression for hϕ̂2iren, but away from the horizon numerical
computation is required. The results of this computation are
presented in Sec. III for D ¼ 4…; 11 and our conclusions
are in Sec. IV.

II. METHODOLOGY

A. Setup

We start with the metric for a D-dimensional
Schwarzschild-Tangherlini [55] black hole:

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩD−2 ð2:1Þ

where

fðrÞ ¼ 1 −
�
rh
r

�
D−3

ð2:2Þ

and dΩD−2 is the line element on the (D − 2)-sphere
SD−2. Here and throughout this paper we use Lorentzian
metric signature ð−;þ;…;þÞ and units in which
8πG ¼ c ¼ ℏ ¼ kB ¼ 1. The metric (2.1) represents a
static, spherically symmetric, black hole with mass

M ¼ 1

2
ðD − 2ÞrD−3

h AD−2 ð2:3Þ

where AD−2 ¼ 2πðD−1Þ=2=Γ½ðD − 1Þ=2�, with Γ the Euler
gamma function, is the area of the ðD − 2Þ-sphere.
Labeling the angular coordinates on the ðD − 2Þ-

sphere above by θ;φ; θ3;…; θD−2, the metric of the brane
black hole is constructed by setting θi ¼ π=2 for
i ¼ 3;…; D − 2, giving the on-brane metric
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ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2½dθ2 þ sin2θdφ2�:
ð2:4Þ

In the four-dimensional brane metric (2.4), the function
fðrÞ still has the form (2.2), and so depends on the number
of bulk space-time dimensions D. The brane metric (2.4) is
therefore not a solution of the vacuum Einstein equations
except in the case D ¼ 4, when it reduces to the usual
Schwarzschild form. When D > 4, the metric (2.4) is a
solution of the nonvacuum Einstein equations with an
effective fluid source on the brane [59].
In this paper we consider a massless quantum scalar field

ϕ̂ with conformal coupling to the four-dimensional space-
time geometry (2.4). The scalar field satisfies the Klein-
Gordon equation

½∇μ∇μ − ξR�ϕ̂ ¼ 0; ð2:5Þ

where ξ ¼ 1=6 is the coupling constant for conformal
coupling on the four-dimensional brane black hole space-
time (2.4) and R is the Ricci scalar of the four-dimensional
on-brane metric (2.4), which takes the form

R ¼ ðD − 4ÞðD − 5ÞrD−3
h

rD−1 : ð2:6Þ

The Ricci scalar therefore vanishes for D ¼ 4, 5.
To compute the renormalized vacuum polarization, we

follow [24,25,51] and take a Euclidean approach. Defining
Euclidean time τ ¼ it, the brane metric (2.4) becomes

ds2 ¼ fðrÞdτ2 þ fðrÞ−1dr2 þ r2½dθ2 þ sin2θdφ2�: ð2:7Þ

The point-split Euclidean Green’s function GEðx; x0Þ
satisfies the equation [24,25]

½∇xμ∇μ
x − ξR�GEðx; x0Þ ¼ −g−1=2ðxÞδ4ðx; x0Þ ð2:8Þ

where the covariant derivative is taken with respect to the
Euclidean metric (2.7), which has determinant g. The
unrenormalized expectation value of the vacuum polariza-
tion hϕ̂2iunren is given by the coincidence limit

hϕ̂2iunren ¼ ℜ½ lim
x→x0

GEðx; x0Þ�: ð2:9Þ

We consider the quantum scalar field to be in the thermal
Hartle-Hawking state [58] at temperature T. The four-
dimensional black hole (2.4) has Hawking temperature

T ¼ D − 3

4πrh
ð2:10Þ

which increases linearly with D for fixed rh, and is
inversely proportional to rh for fixed D. For a thermal
state, the point-split scalar Euclidean Green’s function

GEðx; x0Þ is periodic in τ − τ0 with period T−1, and takes
the form [24,25,40]

GEðx; x0Þ ¼
T
4π

X∞
n¼−∞

exp ½iωðτ − τ0Þ�

×
X∞
l¼0

ð2lþ 1ÞPlðcos γÞGωlðr; r0Þ ð2:11Þ

where ω ¼ 2nπT, and Pl is the usual Legendre function
with

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cos ðφ − φ0Þ: ð2:12Þ

The radial Green’s function Gωl takes the form

Gωlðr; r0Þ ¼ Cωlpωlðr<Þqωlðr>Þ ð2:13Þ

where pωlðrÞ and qωlðrÞ are solutions of the radial
equation

0 ¼ f
d2Gωl

dr2
þ
�
2f
r
þ df

dr

�
dGωl

dr

−
�
ω2

f
þ lðlþ 1Þ

r2
þ R

6

�
Gωl ð2:14Þ

which is the homogeneous version of the radial equation for
Gωl arising from separating the inhomogeneous Klein-
Gordon equation (2.8) on the metric (2.7). The function
pωlðrÞ is defined as the solution of (2.14) which is regular
at the event horizon r ¼ rh, while qωlðrÞ is the solution of
(2.14) which is regular as r → ∞. In (2.13), as usual, r< is
the smaller of the two values r, r0, while r> is the greater.
The normalization constant Cωl in (2.13) is determined by
the normalization condition [24,25]

Cωl

�
pωl

dqωl
dr

− qωl
dpωl

dr

�
¼ −

1

r2f
: ð2:15Þ

Before we can bring the space-time points together in
(2.9) by taking the limit x → x0, we need to subtract
divergent terms. For a massless, conformally coupled scalar
field, these take the simple form [60]

hϕ̂2idiv ¼
1

8π2σ
þ 1

96π2
Rαβσ

ασβ

σ
; ð2:16Þ

where σ is one-half the square of the geodesic distance
between the points x and x0 and σα ¼ σ;α with Rαβ the Ricci
tensor. The detailed form of the divergent terms (2.16)
depends on the point-splitting chosen.
For the remainder of this section, our methodology for

computing the renormalized vacuum polarization falls into
two parts: (a) the computation away from the event horizon,
using temporal point-splitting following [25], and (b) the
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computation on the event horizon, using radial point-
splitting following [41]. In the rest of this paper we set
the event horizon radius rh ¼ 1, so that all lengths having
numerical values are in units of the event horizon radius.

B. Outside the event horizon

Outside the event horizon, we follow the standard
methodology developed in [25] to compute the renormal-
ized vacuum polarization hϕ̂2iren. We choose temporal
point-splitting, setting r ¼ r0, θ ¼ θ0 and φ ¼ φ0. Then
cos γ ¼ 1 (2.12) and using the fact that Plð1Þ ¼ 1, the
Euclidean Green’s function (2.11) takes the form

GEðτ; x; τ0; x0Þ

¼ T
4π

X∞
n¼−∞

eiωϵ
X∞
l¼0

ð2lþ 1ÞCωlpωlðrÞqωlðrÞ; ð2:17Þ

where ϵ ¼ τ − τ0. As is well known, the sums over l in
(2.17) do not converge although, by definition, the
Euclidean Green’s function GE must be finite when the
points are separated. This is remedied by subtracting from
(2.17) a suitable multiple of the Dirac delta function, which
vanishes when the points do not coincide, giving [25]

GEðτ;x; τ0;x0Þ

¼ T
4π

X∞
n¼−∞

eiωϵ
X∞
l¼0

�
ð2lþ 1ÞCωlpωlðrÞqωlðrÞ−

1

r
ffiffiffi
f

p
�
:

ð2:18Þ

For temporal point-splitting, the divergent terms (2.16) take
the following form [25] for a massless, conformally
coupled, scalar field:

hϕ̂2idiv ¼
1

4π2fϵ2
þ 1

192π2f

�
df
dr

�
2

−
1

96π2
d2f
dr2

−
1

48π2r
df
dr

: ð2:19Þ

These divergent terms can be written as mode sums by
using standard identities [25], subtracted from (2.18) and
then the limit ϵ → 0 taken. This gives the final renormal-
ized expectation value to be [25]

hϕ̂2iren ¼ hϕ̂2ianalytic þ hϕ̂2inumeric ð2:20Þ

where

hϕ̂2ianalytic ¼
T2

12f
−

1

192π2f

�
df
dr

�
2

þ 1

96π2
d2f
dr2

þ 1

48π2r
df
dr

; ð2:21aÞ

hϕ̂2inumeric

¼ T
2π

X∞
n¼1

�X∞
l¼0

�
ð2lþ1ÞCωlpωlðrÞqωlðrÞ−

1

r
ffiffiffi
f

p
�
þω

f

�

þ T
4π

X∞
l¼0

�
ð2lþ1ÞC0lp0lðrÞq0lðrÞ−

1

r
ffiffiffi
f

p
�
: ð2:21bÞ

The mode functions pωlðrÞ, qωlðrÞ cannot be found in
closed form for ω > 0, so that, as the name suggests,
hϕ̂2inumeric (2.21b) is computed numerically while we have
a closed form expression for hϕ̂2ianalytic (2.21a).
To speed up the convergence of the mode sums in

(2.21b), we follow [51] and subtract a Wentzel-Kramers-
Brillouin (WKB)-like approximation, which encodes the
large ω, l behavior of the mode functions. We define a new
function ζωlðrÞ [61] by

ζωlðrÞ ¼ CωlpωlðrÞqωlðrÞ; ð2:22Þ
which satisfies the following differential equation [31]

1

ζ2ωl
¼ 4χ2ωl

�
1 −

1

χ2ωl

�
r2fffiffiffiffiffiffiffi
ζωl

p d
dr

�
r2f

dð ffiffiffiffiffiffiffi
ζωl

p Þ
dr

�
− η

��
;

ð2:23Þ

where

χωlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2r4 þ

�
lþ 1

2

�
2

r2f

s
; ð2:24aÞ

ηðrÞ ¼ R
6
fr4 −

1

4
fr2; ð2:24bÞ

and the Ricci scalar R is given by (2.6). The WKB
expansion is found by inserting a fictitious parameter ε
in (2.23):

1

ζ2ωl
¼ 4χ2ωl

�
1 −

1

ε2χ2ωl

�
r2fffiffiffiffiffiffiffi
ζωl

p d
dr

�
r2f

dð ffiffiffiffiffiffiffi
ζωl

p Þ
dr

�
− η

��
;

ð2:25Þ
expanding ζωlðrÞ in inverse powers of ε

ζωl ¼ ζ0ωlðrÞ þ ε−2ζ1ωlðrÞ þ ε−4ζ2ωlðrÞ þ ε−6ζ3ωlðrÞ
þ � � � ; ð2:26Þ

and then setting ε ¼ 1 at the end of the calculation. The
WKB terms ζiωlðrÞ have the form

ζiωlðrÞ ¼
X2iþ1

k¼1

Ai;kðω; rÞχ−ð2iþ2k−1Þ
ωl ð2:27Þ

where the functions Ai;kðω; rÞ depend on ω (and r) but
not l. The first of these functions is A0;1ðω; rÞ ¼ 1=2
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and the forms of A1;kðω; rÞ can be found in [51].
To reduce the number of mode functions pωlðrÞ,
qωlðrÞ which have to be found numerically, we used
an expansion (2.26) up to and including ζ3ωlðrÞ; the

remaining functions A2;kðω; rÞ and A3;kðω; rÞ can be found
in [63].
Adding and subtracting the WKB expansion from

(2.21b), we arrive at the expression

hϕ̂2inumeric ¼
T
2π

X∞
n¼1

�X∞
l¼0

ð2lþ 1Þ½CωlpωlðrÞqωlðrÞ − ζ0ωlðrÞ − ζ1ωlðrÞ − ζ2ωlðrÞ − ζ3ωlðrÞ�

þ
X∞
l¼0

ð2lþ 1Þ
�
ζ0ωlðrÞ þ ζ1ωlðrÞ þ ζ2ωlðrÞ þ ζ3ωlðrÞ −

1

r
ffiffiffi
f

p
�
þ ω

f

�

þ T
4π

X∞
l¼0

ð2lþ 1Þ½C0lp0lðrÞq0lðrÞ − ζ00lðrÞ − ζ10lðrÞ − ζ20lðrÞ − ζ30lðrÞ� þ Δ1 þ Δ2 þ Δ3; ð2:28Þ

where

Δ1 ¼
X∞
l¼0

ð2lþ 1Þζ10lðrÞ ¼
π2

r3f
3
2

A1;1ð0; rÞ;

Δ2 ¼
X∞
l¼0

ð2lþ 1Þζ20lðrÞ ¼
π4

3r5f
5
2

A2;1ð0; rÞ;

Δ3 ¼
X∞
l¼0

ð2lþ 1Þζ30lðrÞ ¼
2π6

15r7f
7
2

A3;1ð0; rÞ: ð2:29Þ

The mode sums in the first and third lines of (2.28) are now
rapidly converging. It remains to find the sums over the
WKB expansions in the second line of (2.28). To do this,
we follow [33,43,51] and employ the Watson-Somerfeld
identity

X∞
l¼0

F ðlÞ ¼
Z

∞

λ¼0

F
�
λ −

1

2

�
dλ

−ℜ

�
i
Z

∞

λ¼0

2

1þ e2πλ
F
�
iλ −

1

2

�
dλ

�
ð2:30Þ

which is valid for any function F ðlÞ analytic in the
right-hand half-plane. Using (2.30) we write [51] (for
ω > 0)

X∞
l¼0

ð2lþ 1Þ
�
ζ0ωlðrÞ −

1

r
ffiffiffi
f

p
�

¼ I0ðω; rÞ þ J0ðω; rÞ þ
1

24ωr2
;

X∞
l¼0

ð2lþ 1ÞζkωlðrÞ ¼ Ikðω; rÞ þ Jkðω; rÞ; ð2:31Þ

for k ¼ 1; 2; 3, where the Ikðω; rÞ are the first integrals
coming from (2.30) and the Jkðω; rÞ are the second.

The Ikðω; rÞ integrals are readily computed; the first two
take the following form for a massless, conformally
coupled scalar field [51]

I0ðω; rÞ ¼
Z

∞

λ¼0

�
2λζ0ωl −

1

r
ffiffiffi
f

p
�
dλ ¼ −

ω

f
;

I1ðω; rÞ ¼
Z

∞

λ¼0

2λζ1ωldλ ¼ −
1

24ωr2
: ð2:32Þ

The remaining I2ðω; rÞ and I3ðω; rÞ are straightforward to
find, for example, in Mathematica but the resulting
expressions are sufficiently long that we do not include
them here [63].
To compute the Jk integrals, we first make a change of

variables [51]:

λ ¼ ρq; ρ ¼ ωrffiffiffi
f

p : ð2:33Þ

The integral J0 is analyzed in [51]. After an integration by
parts, it takes the form [51]

J0 ¼
ω

f
−

1

24ωr2
−
4πω

f

Z
ρ

λ¼0

�
1 −

λ2

ρ2

�1
2 e2πλ

ð1þ e2πλÞ2 dλ

ð2:34Þ

which isOðω−3Þ as ω → ∞. For the remaining Jk integrals,
using (2.27), we have

Jk ¼
X2kþ1

j¼1

4ρ2ðρ2r2fÞ−yAk;jðω; rÞ

×ℜ

�Z
∞

q¼0

qð1 − q2Þ−y
1þ e2πρq

dq

�
; ð2:35Þ

for k ¼ 1; 2; 3 where

y ¼ ð2jþ 2k − 1Þ=2: ð2:36Þ
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In [51], the integral over q in (2.35) was performed by
repeated integrations by parts. Here we take an alternative
approach, first defining

gðqÞ ¼ q
1þ e2πρq

ð2:37Þ

and letting gyðqÞ be the Taylor series expansion of gðqÞ
about q ¼ 1 up to order yþ ð1=2Þ. Then, for k ¼ 1; 2; 3,

Jk ¼
X2kþ1

j¼1

4ρ2ðρ2r2fÞ−yAk;jðω; rÞ

×

�Z
1

q¼0

½gðqÞ − gyðqÞ�ð1 − q2Þ−ydq

þℜ

�Z
∞

q¼0

gyðqÞð1 − q2Þ−ydq
��

: ð2:38Þ

The integrand in the first integral in (2.38) is regular at
q ¼ 1 and therefore the first integral is straightforward to
compute numerically. The integrand in the second integral
in (2.38) has a pole at q ¼ 1. Integrating around the pole
using the contour shown in Fig. 1 in [51] is routine in, for
example, Mathematica as gyðqÞ is a polynomial in q, and
yields a finite answer in each case.
Finally, hϕ̂2inumeric defined by Eq. (2.28) takes the form

hϕ̂2inumeric¼
T
2π

X∞
n¼1

�X∞
l¼0

ð2lþ1Þ½CωlpωlðrÞqωlðrÞ

−ζ0ωlðrÞ−ζ1ωlðrÞ−ζ2ωlðrÞ−ζ3ωlðrÞ�

þI2þI3þJ0þJ1þJ2þJ3

�

þ T
4π

X∞
l¼0

ð2lþ1Þ½C0lp0lðrÞq0lðrÞ−ζ00lðrÞ

−ζ10lðrÞ−ζ20lðrÞ−ζ30lðrÞ�þΔ1þΔ2þΔ3:

ð2:39Þ

The results of numerically computing (2.39) will be
discussed in Sec. III C.

C. On the horizon

The method discussed in the previous subsection works
well for any r > 1 but is not well suited to a computation of
hϕ̂2iren on the horizon r ¼ 1 [for example, there are terms
in the Δi (2.29) which diverge as r → 1 and f → 0]. We
therefore take a different approach to computing hϕ̂2iren on
the horizon, following [41] and using radial instead of
temporal point-splitting.
Separating the space-time points along the radial

direction, we may express the unrenormalized vacuum
polarization (2.9) in the form

hϕ̂2iunren
¼ lim

r→r0

�X∞
n¼0

FðnÞ
X∞
l¼0

ð2lþ 1ÞCωlpωlðr<Þqωlðr>Þ
�
;

ð2:40Þ
where r< ¼ minðr; r0Þ, r> ¼ maxðr; r0Þ, and

FðnÞ ¼
�
T=4π n ¼ 0;
T=2π; n > 0:

ð2:41Þ

We now set r> ¼ r, place the inner point, r0, on the horizon
and consider the limit r → 1. In a neighborhood of r0 ¼ 1,
the solution pωlðr0Þ of the radial equation (2.14) which is
regular at the horizon possesses the series expansion [41]

pωlðr0Þ ¼
1ffiffiffiffiffiffiffiffiffi
2πT

p ðr0 − 1Þn2 þO½ðr0 − 1Þ1þn
2�; ð2:42Þ

where ω ¼ 2πnT. Setting r0 ¼ 1 therefore has the effect
that pωlðr0Þ vanishes for n > 0. Therefore (2.40)
reduces to:

hϕ̂2iunren ¼ lim
r→1

ffiffiffiffiffiffiffiffiffiffi
T

32π3

r X∞
l¼0

ð2lþ 1ÞC0lq0lðrÞ: ð2:43Þ

The advantage of using radial point separation is now clear
as we have a sum which involves only the zero frequency
modes. In fact, as argued in [27], we may only choose
radial or angular separation for on-horizon calculations as
temporal separation is meaningless there.
We renormalize (2.43) using the method of Brown and

Ottewill [64], by subtracting off the singular terms in the
Hadamard expansion of the Euclidean Green’s function,
which we denote by hϕ̂2idiv. These have been worked out
explicitly for radial point separation in [41], and for a
conformally coupled massless scalar field [with fðrÞ given
by (2.2) with rh ¼ 1] take the form

hϕ̂2idiv ¼
D − 3

16π2ðr − 1Þ −
D − 3

48π2
þO½ðr − 1Þ lnðr − 1Þ�:

ð2:44Þ
We then have a formal expression for hϕ̂2iren, given by

hϕ̂2iren ¼ lim
r→1

� ffiffiffiffiffiffiffiffiffiffi
T

32π3

r X∞
l¼0

ð2lþ 1ÞC0lq0lðrÞ

−
D − 3

16π2ðr − 1Þ þ
D − 3

48π2

�
: ð2:45Þ

We now need to calculate the sum over the modes q0lðrÞ.
We begin this process by noting that the radial equa-
tion (2.14), for the n ¼ 0 modes, possesses closed-form
solutions in terms of hypergeometric functions. To dem-
onstrate this, we define new independent and dependent
variables as follows:

BREEN et al. PHYSICAL REVIEW D 92, 084039 (2015)

084039-6



x ¼ 1 − rD−3; ZðxÞ ¼ ð1 − xÞαG0l ð2:46Þ

with

α ¼ 3ð4 −DÞ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD − 4ÞðD − 2Þp

6ðD − 3Þ : ð2:47Þ

Under this transformation, (2.14) takes the form

0 ¼ xð1 − xÞZ00ðxÞ

þ
�
1 −

�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 4ÞðD − 2Þp
ffiffiffi
3

p ðD − 3Þ

�
x

�
Z0ðxÞ

þ
�

l
D − 3

þ α

��
lþ 1

D − 3
− α

�
ZðxÞ: ð2:48Þ

We may express (2.48) in the form of the hypergeometric
differential equation [65],

xð1 − xÞZ00ðxÞ þ ½c − ðaþ bþ 1Þx�Z0ðxÞ − abZðxÞ ¼ 0;

ð2:49Þ
by making the following identifications

a¼−
l

D− 3
−α; b¼ lþ 1

D− 3
−α; c¼ 1: ð2:50Þ

It then follows that (2.48) has the following pair of
linearly independent solutions

Z1ðxÞ ¼ 2F1

�
−

l
D − 3

− α;
lþ 1

D − 3
− α; 1; x

�
;

Z2ðxÞ ¼ ð1 − xÞ−lþ1
D−3þα

× 2F1

�
lþD − 3

D − 3
þ α;

lþ 1

D − 3
− α;

2lþD − 2

D − 3
;

1

1 − x

�
: ð2:51Þ

Transforming back to our original variables, and identify-
ing the solutions regular at r ¼ 1 and r ¼ ∞, we find that
the two independent solutions to (2.14), p0lðrÞ and q0lðrÞ,
are given by:

p0lðrÞ¼
1ffiffiffiffiffiffiffiffiffi
2πT

p r−ðD−3Þα

× 2F1

�
−

l
D−3

−α;
lþ1

D−3
−α;1;1−rD−3

�
;

q0lðrÞ¼ r−ðlþ1ÞΓðlþD−3
D−3 þαÞΓðlþ1

D−3−αÞ
2
ffiffiffiffiffiffiffiffiffi
2πT

p
Γð2lþD−2

D−3 Þ

× 2F1

�
lþD−3

D−3
þα;

lþ1

D−3
−α;

2lþD−2

D−3
;r3−D

�
:

ð2:52Þ

The numerical factors in front of p0lðrÞ and q0lðrÞ are
chosen so that their series solutions are in agreement with
the expressions in [41], but this is purely a matter of
convention. We could alternatively have chosen to include
these factors into the constantC0l (which in our convention
is equal to unity).
Returning now to (2.45), while we have a closed form

expression for q0lðrÞ given above (2.52), unfortunately we
are unable to immediately perform the mode sum as, to the
best of our knowledge, no closed-form expression for this
sum is known. We therefore adapt the method developed in
[41] to the case at hand. The procedure in [41] can be
applied to calculate hϕ̂2iren for a general spherically
symmetric black hole space-time (2.7), where the only
constraint on the function fðrÞ is that it has a single zero at
the horizon in question, as is the case here.
We begin by writing the full solution for q0lðrÞ in terms

of an approximation in the following manner

q0lðrÞ ¼ Q0lðrÞ þ βlp0lðrÞ þRlðrÞ; ð2:53Þ
where Q0lðrÞ is some approximation to q0lðrÞ, βl is a
function of l only and RlðrÞ denotes the remainder of
q0lðrÞ not captured by the first two terms. The method of
[41] makes use of a uniform approximation, developed
using extended Green-Liouville asymptotic analysis. This
gives Q0lðrÞ to be

Q0lðrÞ ¼
�

ξðrÞ
r2fðrÞ

�
1=4

K0½k0ξ1=2ðrÞ� ð2:54Þ

where

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ aÞðlþ āÞ

p
ð2:55Þ

with

a ¼ 1

2

�
1þ 1ffiffiffi

3
p i

�
ð2:56Þ

for the case in hand (see [41] for the general form), K0 is a
modified Bessel function of the second kind and

ξðrÞ ¼
�Z

r

1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2fðrÞ

p �
2

¼
�

4

ðD − 3Þ2 ln ðr
ðD−3Þ=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rD−3 − 1

p
Þ
�
2

: ð2:57Þ

In [41] it was shown that, for a general fðrÞ (under the
constraints mentioned previously) the approximation (2.54)
encapsulates enough of the near horizon behavior of q0lðrÞ
in order to capture all of the local contribution (i.e. the
horizon divergence and local finite terms) to the mode sum
in (2.45) in the limit r → 1. In other words, the sum of the
remainder termRlðrÞ does not contribute in this limit. The
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βl terms in (2.53) are determined by the requirement that
q0lðrÞ should vanish as r → ∞.
In the limit r → 1 we then have

1ffiffiffiffiffiffiffiffiffi
2πT

p
X∞
l¼0

ð2lþ 1Þq0lðrÞ

¼ 1

2πT

� ffiffiffiffiffiffiffiffiffi
2πT

p X∞
l¼0

ð2lþ 1ÞQ0lðrÞ þ
X∞
l¼0

ð2lþ 1Þβl
�

þO½ðr − 1Þ lnðr − 1Þ�: ð2:58Þ

Therefore in order to calculate hϕ̂2iren for the space-time
(2.7), we are required to calculate the two summations on
the right-hand side of (2.58) and combine them with the
renormalization subtraction terms, before taking the r → 1
limit, namely

hϕ̂2iren ¼ lim
r→1

� ffiffiffiffiffiffiffiffiffiffi
T

32π3

r X∞
l¼0

ð2lþ 1ÞQ0l −
D − 3

16π2ðr − 1Þ

þD − 3

48π2

�
þ 1

8π2
X∞
l¼0

ð2lþ 1Þβl: ð2:59Þ

A closed form expression for the first term on the right-
hand side of (2.59) has been calculated in [41], which here
reduces to

1

96π2

�
2D − 5 − 2i

ffiffiffi
3

p
ln

�
ΓðaÞ
ΓðāÞ

�

þ 12
d
dx

ζðx; aÞ
				
x¼−1

þ 12
d
dx

ζðx; āÞ
				
x¼−1

�
; ð2:60Þ

where ζðx; aÞ is the generalized Riemann zeta function.
All that remains now is to calculate the βl summation in

(2.59). In general, this must be performed numerically
(indeed in general βl itself must be obtained numerically
for each l), however in this case, primarily because we
have an expression (2.52) for q0lðrÞ in terms of

hypergeometric functions, we may calculate this sum
analytically to give a completely closed form expression
for hϕ̂2iren on the brane for an arbitrary number of bulk
space-time dimensions.
Our first step in this process is to find the βl themselves.

We compare the lowest order terms in the expansions of the
two expressions (2.52) and (2.53) for q0lðrÞ. Expanding
(2.52) gives:

q0lðrÞ ¼ −
1

2
ffiffiffiffiffiffiffiffiffi
2πT

p
�
2γ þ ln ½ðD − 3Þðr − 1Þ�

þ ψ

�
lþD − 3

D − 3
þ α

�
þ ψ

�
lþ 1

D − 3
− α

��
þO½ðr − 1Þ lnðr − 1Þ�; ð2:61Þ

where γ is Euler’s constant and ψ is the digamma function,
while by expanding (2.53) we obtain:

q0lðrÞ¼−
1

2
ffiffiffiffiffiffiffiffiffi
2πT

p
�
2γþ ln

�
r−1

D−3

�
þ ln ½ðlþaÞðlþ āÞ�

�

þ 1ffiffiffiffiffiffiffiffiffi
2πT

p βlþO½ðr−1Þ lnðr−1Þ�: ð2:62Þ

Comparing the two expansions (2.61), (2.62), we arrive at
an expression for βl:

βl ¼ 1

2

�
ln ½ðlþ aÞðlþ āÞ� − 2 lnðD − 3Þ

− ψ

�
lþD − 3

D − 3
þ α

�
− ψ

�
lþ 1

D − 3
− α

��
; ð2:63Þ

which, it is straightforward to show, is Oðl−4Þ as l → ∞.
Therefore the sum

P∞
l¼0 ð2lþ 1Þβl is convergent, and as

it turns out, amenable to direct calculation. This is a
somewhat involved and technical calculation, with details
given in the Appendix. The result of this analysis is

1

8π2
X∞
l¼0

ð2lþ 1Þβl ¼ 1

96π2

�
−1þ 2i

ffiffiffi
3

p
ln

�
ΓðaÞ
ΓðāÞÞ

�
− 12

d
dx

ζðx; aÞ
				
x¼−1

− 12
d
dx

ζðx; āÞ
				
x¼−1

þ 6

D − 3

XD−4

j¼0

jðj −Dþ 4Þ
�
ψ

�
jþD − 3

ðD − 3Þ þ α

�
þ ψ

�
jþ 1

ðD − 3Þ − α

��

þ ðD − 4ÞðD − 5Þfψ ½ðD − 3Þðαþ 1Þ� þ ψ ½1 − ðD − 3Þα� − 2 lnðD − 3Þgg: ð2:64Þ

This result has been confirmed numerically.
By combining (2.64) with (2.59), (2.60), and inserting the expression for α (2.47) we finally arrive at a closed form

expression for the renormalized vacuum polarization hϕ̂2iren of a massless conformally coupled scalar field, valid on the
horizon of the brane black hole
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hϕ̂2iren ¼
D − 3

48π2
þ ðD − 4ÞðD − 5Þ

96π2

"
ψ

 
D − 2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 4ÞðD − 2Þp
2
ffiffiffi
3

p
!

þ ψ

 
D − 2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 4ÞðD − 2Þp
2
ffiffiffi
3

p
!

− 2 lnðD − 3Þ
#

þ 1

16π2ðD − 3Þ
XD−4

j¼0

jðj −Dþ 4Þ
"
ψ

 
6jþ 3ðD − 2Þ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðD − 4ÞðD − 2Þp
6ðD − 3Þ

!

þψ

 
6jþ 3ðD − 2Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðD − 4ÞðD − 2Þp
6ðD − 3Þ

!#
: ð2:65Þ

We analyze this result, together with the renormalized
vacuum polarization away from the horizon, in the next
section.

III. RESULTS

In the previous section, we derived an exact, closed-form
expression (2.65) for the renormalized vacuum polarization
on the event horizon of the brane black hole whose metric is
given by (2.4). Outside the event horizon, the renormalized
vacuum polarization is given as a sum of two terms, the first
of which (2.21a) is given in closed form, while the second
(2.39) requires numerical computation. In this section we
shall discuss our results for hϕ̂2iren both on and outside the
horizon.

A. On the horizon

We begin our discussion by examining the expression
(2.65) for hϕ̂2iren on the event horizon. We see that for
D ¼ 4 and D ¼ 5, the vacuum polarization on the horizon
has the simple form

hϕ̂2iren ¼
D − 3

48π2
; ð3:1Þ

which is in agreement with Candelas’ result for a
Schwarzschild black hole space-time with D ¼ 4 [42].
Indeed, we may extend Candelas’ method to D ¼ 5 by
noting that, for this case, (2.52) reduces to [2πT ¼ 1 (2.10)
for D ¼ 5 with rh ¼ 1] [65]:

p0lðrÞ ¼ PlðrÞ; q0lðrÞ ¼ QlðrÞ; ð3:2Þ
where Pl andQl are Legendre functions. An application of
Heine’s formula [65] then allows us to calculate (2.65),
giving, for D ¼ 5,

hϕ̂2iren ¼
1

24π2
; ð3:3Þ

which is in agreement with (3.1).
The on-horizon values of hϕ̂2iren for D ¼ 4;…; 11 are

given in Table I and the values forD ¼ 4;…; 16 are plotted
in Fig. 1. ForD ≥ 6we give the numerical values of hϕ̂2iren

in Table I as they are more informative than the rather
unwieldy analytic forms (2.65).
From inspecting Table I and Fig. 1 we see that hϕ̂2iren

reaches its maximum value on the horizon when the
number of bulk space-time dimensions D ¼ 8, it then
decreases and first becomes negative at D ¼ 15 (note it
is still positive when D ¼ 14). In fact we can see from
direct consideration of (2.65) that the value of hϕ̂2iren on the
horizon continues to decrease toward −∞ as D → ∞. We
may conclude from this that the magnitude of quantum
effects near the horizon grows as the number of bulk space-
time dimensions increases. We are working in units in
which the event horizon radius rh is fixed to be equal to
unity. In these units, the temperature (2.10) of the brane
black hole increases linearly with the number of space-time
dimensionsD. Therefore, asD → ∞with the event horizon
radius rh fixed, the temperature of the black hole increases
without bound and therefore the vacuum polarization also
increases in magnitude. One can therefore argue that as the
number of extra bulk dimensions increases, the semi-
classical approximation breaks down, at least in the vicinity
of the black hole horizon. When we say that the semi-
classical approximation breaks down, we mean that quan-
tum effects are not small when D is large and the
backreaction of the quantum field on the space-time
geometry can no longer be ignored. Eventually a full
theory of quantum gravity would be required to gain
meaningful physical insights. In an upcoming paper
[66], it will be shown that the same conclusion may be

TABLE I. Values of the renormalized vacuum polarization
hϕ̂2iren on the horizon rh ¼ 1 of a brane black hole for total
number of space-time dimensions D ¼ 4;…; 11.

D hϕ̂2iren at r ¼ 1

4 1=ð48π2Þ
5 1=ð24π2Þ
6 0.0056676345
7 0.0065578987
8 0.0069605128
9 0.0069102842
10 0.0064254379
11 0.0055159981
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drawn for the vacuum polarization on the horizon in the
bulk of the Schwarzschild-Tangherlini black-hole space-
time (2.1).

B. hϕ̂2ianalytic
Next we turn to the renormalized vacuum polarization

away from the horizon. The analytic part hϕ̂2ianalytic
(2.21a), calculated using the metric function (2.2), takes
the form

hϕ̂2ianalytic ¼
D − 3

192π2f

�
D − 3þ 8 − 2D

rD−1 þD − 5

r2D−4

�
: ð3:4Þ

At the horizon r ¼ 1 the expression (3.4) simplifies to

hϕ̂2ianalytic
				
r¼1

¼ D − 3

48π2
: ð3:5Þ

This matches the first term in the exact expression for the
renormalized vacuum polarization on the horizon (2.65).
Furthermore, this is exactly hϕ̂2iren on the horizon when
D ¼ 4 or 5 (3.1). The remainder of (2.65) (which is
nonzero only for D > 5) will come from the numeric part
hϕ̂2inumeric. The expression (3.5) is positive for all D ≥ 4,
and linearly increasing as the number of bulk dimensions
increases. As r → ∞, the expression (3.4) simplifies to

hϕ̂2ianalyticjr→∞ ¼ ðD − 3Þ2
192π2

¼ T2

12
; ð3:6Þ

where T is the Hawking temperature (2.10). The asymp-
totic form (3.6) is simply the vacuum polarization for a
quantum scalar field at temperature T in flat space-time.
Like the renormalized vacuum polarization (3.5) at the
horizon, the form (3.6) at infinity is also positive, but it
increases quadratically as the number of bulk dimensions
increases.

In Fig. 2 we plot hϕ̂2ianalytic (3.4) as a function of the
radial coordinate r for total number of space-time dimen-
sions D ¼ 4;…; 11 (from bottom to top curves in the
figure). It can be seen that hϕ̂2ianalytic is positive everywhere
on and outside the event horizon, for all D. ForD ¼ 4, 5, 6
the maximum of hϕ̂2ianalytic is on the horizon, and it is
monotonically decreasing as r increases. For D ≥ 7 the
maximum of hϕ̂2ianalytic is a little outside the horizon.

In [43] it was found that hϕ̂2ianalytic was the dominant
contribution to the total renormalized vacuum polarization
hϕ̂2iren on a four-dimensional Schwarzschild black hole.
To see if this remains true on the brane when we have
extra bulk dimensions, we now examine the numerical
contribution hϕ̂2inumeric.

C. hϕ̂2inumeric

The first step in calculating hϕ̂2inumeric is to find the mode
functions pωlðrÞ and qωlðrÞ by numerically integrating the
radial equation (2.14). The radial equation (2.14) has a
regular singular point at the event horizon r ¼ 1 and an
irregular singular point as r → ∞.
To find the mode functions pωlðrÞ, which are regular at

the horizon, we start our integration close to r ¼ 1, using
the power series

pωlðrÞ ¼
X∞
j¼0

ajðr − 1Þνþj; ð3:7Þ

where ν ¼ ω=ðD − 3Þ and a0 is set equal to unity, to give
suitable initial values for pωlðrÞ and its derivative at the
starting point.
The modes qωlðrÞ are regular as r → ∞ and have the

following asymptotic series near infinity

FIG. 1 (color online). Renormalized vacuum polarization
hϕ̂2iren on the horizon rh ¼ 1 of a brane black hole for total
number of space-time dimensions D ¼ 4;…; 16.

FIG. 2 (color online). Analytic contribution hϕ̂2ianalytic to the
renormalized vacuum polarization on a brane black hole as a
function of the radial coordinate r. The event horizon is located at
r ¼ 1. The curves (from bottom to top) are for total number of
space-time dimensions D ¼ 4;…; 11.
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qωlðrÞ ∼ e−ωr
X∞
j¼0

bjr−ς−j; ð3:8Þ

where

ς ¼
�
1þ ω; D ¼ 4;
1; D ≥ 5;

ð3:9Þ

and we can set b0 ¼ 1 without loss of generality. To
compute qωlðrÞ numerically, we found it easier to define
a new function ~qωlðrÞ ¼ eωrqωlðrÞ and numerically solve
the resulting differential equation for ~qωlðrÞ, integrating
from large r down to near the horizon.
Since the mode sum in (2.39) involves cancellations

between the product of the mode functions pωlðrÞ, qωlðrÞ
and the WKB expansion terms ζkωlðrÞ, we require the
mode functions to a high degree of precision. All numerical
calculations were performed in Mathematica, in which
computations at the required precision are straightforward
to implement. The accuracy of our numerical integration
was checked by evaluating the normalization constant Cωl
using (2.15) at each value of r in our integration grid. For
all mode functions calculated, Cωl remained constant in r
up to 26 significant figures.
Once the mode functions have been found, the mode sum

in (2.39) is straightforward to compute as the WKB terms
ζkωlðrÞ, while complicated, are algebraic expressions. The
numerical integrals Jk (2.38) are computed using standard
numerical integration routines in Mathematica.
Our results for hϕ̂2inumeric on the brane as a function of

the radial coordinate r are shown in Fig. 3 for total number
of space-time dimensions D ¼ 4;…; 11. In the top plot in
Fig. 3 we show all eight curves for D ¼ 4;…; 11 (from top
to bottom). In this plot, the curves forD ¼ 4, 5 are virtually
superimposed on the horizontal axis. To see these more
clearly, in the bottom plot in Fig. 3 we show just the curves
for D ¼ 4, 5.
For D ¼ 4, in the bottom plot in Fig. 3 hϕ̂2inumeric is

positive everywhere outside the event horizon. We have
compared our numerical values for hϕ̂2inumeric with those
tabulated in [43] and the agreement is excellent. ForD ¼ 4,
it can be shown that the numeric contribution hϕ̂2inumeric
vanishes on the event horizon r ¼ 1. From Fig. 3 it has a
maximum just outside the event horizon and decays to zero
quickly as r increases. Comparing Figs. 2 and 3, for D ¼ 4

the numeric contribution hϕ̂2inumeric to the total renormal-
ized vacuum polarization hϕ̂2iren is negligible compared to
the analytic contribution hϕ̂2ianalytic for all r, again in
agreement with [43].
For D ≥ 5, the numeric contribution hϕ̂2inumeric is

negative for all r > 1. When D ¼ 5, comparing Figs. 2
and 3 again reveals that hϕ̂2inumeric is negligible compared
to hϕ̂2ianalytic, but this is not the case for D ≥ 6. For all

D ≥ 5 we find that hϕ̂2inumeric has a minimum just outside
the event horizon, and increases toward zero as r increases.
We also find that the magnitude of hϕ̂2inumeric for fixed r is
increasing as the number of bulk space-time dimensions D
increases.

D. Total renormalized vacuum polarization

We now combine the results of the previous two
subsections to find the total renormalized vacuum polari-
zation hϕ̂2iren on the brane for a higher-dimensional
Schwarzschild-Tangherlini black hole. Our results are
presented in Fig. 4, where we plot hϕ̂2iren as a function
of the radial coordinate r for (from bottom to top curves)
total number of space-time dimensions D ¼ 4;…; 11. Our
numerical calculations for hϕ̂2inumeric are valid only outside
the horizon, for r > 1. We have extrapolated our numerical
results for hϕ̂2iren for r > 1 to the horizon at r ¼ 1 and find
excellent agreement with the exact results on the horizon
given in Table I.
For D ¼ 4;…; 11 we see from Fig. 4 that the renor-

malized vacuum polarization hϕ̂2iren is positive everywhere
on and outside the event horizon. For D ¼ 4, 5, 6 it has its
maximum value on the horizon, and is monotonically
decreasing as r increases. For D ≥ 7 we find that hϕ̂2iren

FIG. 3 (color online). Numeric contribution hϕ̂2inumeric to the
renormalized vacuum polarization on a brane black hole as a
function of the radial coordinate r. The event horizon is located at
r ¼ 1. (Top plot). The curves (from top to bottom) are for total
number of space-time dimensions D ¼ 4;…; 11. (Bottom plot).
The curves (from top to bottom) are for D ¼ 4, 5 respectively.
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has a minimum value on the horizon and is monotonically
increasing as r increases and we move away from the event
horizon. For all D, the numeric contribution hϕ̂2inumeric
becomes insignificant for large r, and the analytic con-
tribution hϕ̂2ianalytic dominates. However, close to the

horizon the numeric part hϕ̂2inumeric makes a significant
contribution to the total.
Far from the event horizon of the brane black hole, the

vacuum polarization hϕ̂2iren increases rapidly as the num-
ber of bulk space-time dimensions D increases. As
explained earlier, this is to be expected because we are
working in units in which the event horizon radius rh is
fixed to be unity, and in these units the temperature of the
brane black hole (2.10) increases linearly with the number
of bulk space-time dimensions D.
Close to the horizon, due to the significant negative

contribution to the total from the numeric part hϕ̂2inumeric,
the vacuum polarization is rather smaller than it is far from
the black hole. As shown in Fig. 1, for D ¼ 4;…; 11 the
vacuum polarization is always positive on the horizon and
has a maximum when D ¼ 8.

IV. CONCLUSIONS

In this paper we have calculated the renormalized vacuum
polarization hϕ̂2iren for a massless, conformally coupled,
quantum scalar field ϕ̂ propagating on the brane of a higher-
dimensional Schwarzschild-Tangherlini black hole. Our
four-dimensional, on-brane metric, is static and spherically
symmetric and corresponds to a slice of the higher dimen-
sional black hole geometry. The metric functions depend on
the total number of space-time dimensions D, and in this
paper we focus on D ¼ 4;…; 11, in common with the
literature on Hawking radiation from brane black holes
[9,12,16–20]. The Hawking radiation of a scalar field from

such a brane black hole has been studied in depth (see, for
example, [57]) but the Hawking fluxes can be computed
without recourse to renormalization. To the best of our
knowledge, we have presented in this paper the first
computation of an expectation value requiring renormaliza-
tion on a brane black hole space-time.
Since the on-brane metric is four-dimensional, static

and spherically symmetric, we have been able to employ
well-established methodology [24,25,41,51] to compute
the renormalized vacuum polarization. We work on
Euclidean space-time and consider the scalar field to be
in the Hartle-Hawking state [58], a thermal quantum state at
the Hawking temperature T. We use covariant geodesic
point separation to regularize the Euclidean Green’s func-
tion and then the divergent subtraction terms are given by
the Hadamard form. Away from the horizon, the space-time
points are split in the temporal direction. In this case the
renormalized vacuum polarization can be written as the
sum of two terms, the first of which is a simple closed-form
expression, while the second requires numerical computa-
tion. On the horizon, radial point-splitting is used and an
exact (but complicated) closed-form expression for the
renormalized vacuum polarization is found.
For D ¼ 4;…; 11 we find that the renormalized vacuum

polarization is positive everywhere on and outside the event
horizon. Far away from the horizon, its value increases
rapidly as the number of bulk space-time dimensions D
increases. This is because the on-brane temperature of the
black hole increases linearly with increasing D for fixed
event horizon radius rh and we are considering a thermal
quantum state. Ultimately, for D very large (with fixed rh)
the semiclassical approximation used here breaks down in
the sense that quantum effects are no longer small and the
backreaction of the quantum field on the black hole
geometry can no longer be ignored to first order. This is
also the case for very small black holes which have entered
the Planck phase of their evolution [8]. In either of these
regimes (D very large or very small black holes) a full
theory of quantum gravity is required to model the behavior
of the black holes. Close to the horizon, the renormalized
vacuum polarization becomes negative when D ≥ 15 and
decreases rapidly as D increases further. This again
ultimately leads to a breakdown in the semiclassical
approximation when D is very large.
In this paper we have taken the quantum scalar field to be

in the Hartle-Hawking state [58] since this state is the
easiest in which to compute renormalized expectation
values. The quantum state of interest for simulations of
brane black holes at the LHC [14,15] is the Unruh state [67]
since this state represents an evaporating black hole. Since
differences in expectation values between two quantum
states do not require renormalization, it would be com-
paratively straightforward to compute the renormalized
vacuum polarization in the Unruh state using the results
presented here for the Hartle-Hawking state.

FIG. 4 (color online). Total renormalized vacuum polarization
hϕ̂2iren on a brane black hole as a function of the radial coordinate
r. The event horizon is located at r ¼ 1. The curves (from bottom
to top) are for total number of space-time dimensions
D ¼ 4;…; 11.

BREEN et al. PHYSICAL REVIEW D 92, 084039 (2015)

084039-12



We have considered the renormalized vacuum polariza-
tion hϕ̂2iren because it is the simplest nontrivial expectation
value for a quantum scalar field. While it is a scalar (and
hence cannot, for example, distinguish between the future
and past event horizons of a black hole), it nonetheless
shares some physical features with the renormalized stress-
energy tensor hT̂μνiren. The renormalized stress-energy
tensor is of particular interest because it governs the
backreaction of the quantum field on the space-time
geometry via the semiclassical Einstein equations (1.1).
However, since hT̂μνiren is a tensor object and involves
derivatives of the Green’s function, it is more complicated
to calculate than hϕ̂2iren, although the standard methodol-
ogy [25,27] should be applicable for the on-brane metric
considered in this paper. It would be interesting to inves-
tigate whether the effects we have found here for the
renormalized vacuum polarization (increasing magnitude
with increasing bulk dimension D and negative values near
the horizon for large D) are present also in hT̂μνiren.
There are other extensions to this work on the branewhich

would be of interest. In this paper we have considered a
massless, conformally coupled scalar field. It is known that
including a mass suppresses the Hawking radiation on the
brane and so the emission of light quantum fields is of the
greatest interest phenomenologically. For a four-dimensional
Schwarzschild black hole, the Hawking radiation is domi-
nated by scalar fields but as the number of bulk dimensions
increases, the on-brane emission of particles with nonzero
spin becomes of comparable magnitude to scalar emission
[57]. Emission of spin-half quanta has particular phenom-
enological importance given the large number of fermion
degrees of freedom in the standard model. Therefore the
computation of hT̂μνiren for nonzero spin fields, while
technically challenging, would be of interest.
Here we have restricted our attention to static, non-

rotating black holes. Hawking radiation on the brane from
rotating black holes has been extensively studied (see, for
example, [19,20] for reviews) but the computation of
renormalized expectation values everywhere outside the
horizon of a four-dimensional rotating black hole has
proved intractable to date.
Finally we emphasize that our results in this paper are for

the renormalized vacuum polarization on the four-
dimensional brane metric of a higher-dimensional black
hole. For smaller values of D, emission on the brane
dominates that in the bulk [23,56,57], but as the number of
bulk dimensions D increases, Hawking radiation of grav-
itons (and possibly scalar fields) in the bulk does become
significant. While the formalism underlying the renormal-
ization of expectation values for quantum scalar fields on
higher-dimensional space-times is known [37,52], a meth-
odology for detailed computations in the full space-time
exterior to the event horizon has yet to be developed. We
leave these questions for future work.
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APPENDIX: βl SUMMATION

In this Appendix we give the details of the derivation of
(2.64). We begin with (2.63)

βl ¼ 1

2
ln ðlþ aÞ þ 1

2
ln ðlþ āÞ − lnðD − 3Þ

−
1

2
ψ

�
lþD − 3

D − 3
þ α

�
−
1

2
ψ

�
lþ 1

D − 3
− α

�
: ðA1Þ

In order to find the sum
P∞

l¼0 ð2lþ 1Þβl, we consider
instead the sum

ΣðzÞ ¼
X∞
l¼0

βlzl: ðA2Þ

Our strategy is to expand ΣðzÞ and its derivative about
z ¼ 1, which we may then combine to give

X∞
l¼0

ð2lþ 1Þβl ¼ 2Σ0ð1Þ þ Σð1Þ ðA3Þ

upon taking the limit z → 1.
We begin by examining the expression

X∞
l¼0

ψ

�
l
p
þ q

�
zl

¼ 1

1 − zp

�Xp−1
l¼0

ψ

�
l
p
þ q

�
zl

þ
X∞
l¼p

�
ψ

�
l
p
þ q
�
zl − ψ

�
l
p
þ q − 1

�
zl
��

: ðA4Þ

Introducing a new variable k ¼ l − p and making use of
Eq. (8.365.1) of [68]

ψðυþ 1Þ − ψðυÞ ¼ 1

υ
; ðA5Þ

we arrive at

X∞
l¼0

ψ

�
l
p
þ q

�
zl ¼ 1

1 − zp

�Xp−1
l¼0

ψ

�
l
p
þ q

�
zl

þpzp
X∞
k¼0

zk

kþ pq

�
: ðA6Þ
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From Eq. (8.365.6) in [68], we have

Xp−1
l¼0

ψ

�
l
p
þ z

�
¼ p½ψðpzÞ − lnðpÞ�; ðA7Þ

and so the right-hand side of (A6) can be written as

1

1 − zp

�Xp−1
l¼0

ψ

�
l
p
þ q

�
ðzl − 1Þ

þp

�
zp
X∞
l¼0

zk

kþ pq
þ ψðpqÞ − lnðpÞ

��
: ðA8Þ

The definition of the hypergeometric function [65] gives,

1

pq 2F1ð1; pq; 1þ pq; zÞ ¼
X∞
k¼0

zk

kþ pq
: ðA9Þ

Combining the above work, we may split our sum ΣðzÞ
(A2) into three separate parts

ΣðzÞ ¼ S1 þ S2 þ S3; ðA10Þ

where

S1 ¼
1

2

X∞
l¼0

½lnðlþ aÞ þ lnðlþ āÞ�zl;

S2 ¼ −
1

2ð1 − zD−3Þ
XD−4

l¼0

�
ψ

�
l

D − 3
þ αþ 1

�
þ ψ

�
lþ 1

D − 3
− α

��
ðzl − 1Þ;

S3 ¼ −
D − 3

2ð1 − zD−3Þ
�

zD−3

ðD − 3Þðαþ 1Þ 2F1ð1; ðD − 3Þðαþ 1Þ; 1þ ðD − 3Þðαþ 1Þ; zÞ þ ψ ½ðD − 3Þðαþ 1Þ�

þψ ½1 − ðD − 3Þα� þ zD−3

1 − ðD − 3Þα 2F1ð1; 1 − ðD − 3Þα; 2 − ðD − 3Þα; zÞ
�
−
lnðD − 3Þ
1 − z

þ ðD − 3Þ lnðD − 3Þ
1 − zD−3 :

ðA11Þ

We now proceed to expand about z ¼ 1, retaining the Oðz − 1Þ terms as we will eventually be taking the derivative of the
resulting expressions with respect to z. We will deal with S2 and S3 first as they are the most straightforward to work with.
The required expansions are readily obtained using Mathematica:

S2 ¼
1

2ðD − 3Þ
XD−4

l¼0

l
�
ψ

�
l

D − 3
þ αþ 1

�
þ ψ

�
lþ 1

D − 3
− α

��

þ z − 1

4ðD − 3Þ
�XD−4

l¼0

lðlþ 3 −DÞ
�
ψ

�
l

D − 3
þ αþ 1

�
þ ψ

�
lþ 1

D − 3
− α

���
þOðz − 1Þ2; ðA12Þ

and

S3 ¼
1

2
fðD − 3Þαψ ½ðD − 3Þðαþ 1Þ� − ½ðD − 3ÞαþD − 4�ψ ½1 − ðD − 3Þα� þ ðD − 4Þ½lnðD − 3Þ − 1�g

þ z − 1

24
f½ðD − 4ÞðD − 5Þ − 6ðD − 3Þα�ψ ½ðD − 3Þðαþ 1Þ�þ½ðD − 4ÞðDþ 1Þ

þ 6ðD − 3Þα�ψ ½1 − ðD − 3Þα� þ 6ðD − 4Þ − 2ðD − 2ÞðD − 4Þ lnðD − 3Þg − lnð1 − zÞ þ γ

z − 1
þO½ðz − 1Þ2�: ðA13Þ

Returning to S1, from Eq. (9.550) in [65] we have that

X∞
l¼0

zl

ðυþ lÞs ¼ Φðz; s; υÞ; jzj < 1; ðA14Þ

whereΦðz; s; υÞ is Lerch’s transcendent function. Therefore

X∞
l¼0

zl ln ðlþ υÞ ¼ d
ds

Φðz; s; υÞjs¼0 ðA15Þ
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and so we can express S1 in the form

S1 ¼ −
1

2

�
d
ds

Φðz; s; aÞj
s¼0

þ d
ds

Φðz; s; āÞj
s¼0

�
: ðA16Þ

To expand this expression about z ¼ 1 we make use of the following result for Φðz; s; υÞ (see Sec. 1.11 in [69])

Φðz; s; υÞ ¼ Γð1 − sÞ
zυ

�
ln

�
1

z

��
s−1

þ z−υ
X∞
k¼0

ζðs − k; υÞ ðln zÞ
k

k!
: ðA17Þ

Taking derivatives of both sides with respect to s and setting s ¼ 0 yields

d
ds

Φðz; s; υÞjs¼0 ¼
1

zυ

�
lnðΓðυÞÞ − lnð

ffiffiffiffiffiffi
2π

p
Þ þ γ þ lnðlnð1=zÞÞ

lnð1=zÞ þ
X∞
k¼1

d
ds

ζðs − k; υÞjs¼0

ðln zÞk
k!

�
; ðA18Þ

where we have used the result [65]

d
ds

ζðs; υÞj
s¼0

¼ lnðΓðυÞÞ − lnð
ffiffiffiffiffiffi
2π

p
Þ: ðA19Þ

Expanding (A18) about z ¼ 1 and inserting the resulting expression into (A16) yields:

S1 ¼
1

2
½lnð2πÞ − 1 − lnΓðaÞ − lnΓðāÞ� þ z − 1

24

�
5 − 6 lnð2πÞ þ 12½a lnΓðaÞ þ ā lnΓðāÞ�

− 12

�
d
ds

ζðs − 1; aÞj
s¼0

þ d
ds

ζðs − 1; āÞj
s¼0

��
þ lnð1 − zÞ þ γ

z − 1
þO½ðz − 1Þ2�: ðA20Þ

Combining (A12), (A13), (A20) yields

ΣðzÞ ¼ F1 þ F2ðz − 1Þ þO½ðz − 1Þ2�; ðA21Þ

where

F1 ¼
1

2

��
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�
2π
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�
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�
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XD−4
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ψ
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l
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�
þ ψ
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lþ 1

D − 3
− α

��
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F2 ¼
1

24

�
6D − 19þ 2 lnðD − 3Þ − 6 lnð2πÞ − 2ðD − 3Þ2 lnðD − 3Þ þ 12a lnΓðaÞ þ 12ā lnΓðāÞ
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þ 1
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D − 3
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�
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D − 3
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��
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Finally, by taking the derivative of (A21) with respect to z and setting z ¼ 1 we obtain:

X∞
l¼0

ð2lþ 1Þβl ¼ 2F2 þ F1; ðA23Þ

which simplifies to the expression contained in (2.64).
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