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Abstract. We investigate the stability of four-dimensional dyonic soliton and black

hole solutions of su(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove

that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter

solution, there exist non-trivial dyonic soliton and black hole solutions of the field

equations which are stable under linear, spherically symmetric, perturbations of the

metric and non-Abelian gauge field.

PACS numbers: 04.40Nr, 04.70Bw

1. Introduction

Since the discovery of non-trivial soliton [1] and black hole [2] solutions of the four-

dimensional su(2) Einstein-Yang-Mills (EYM) equations in asymptotically flat space-

time, the EYM system has been studied extensively (see [3] for a review). For su(2)

gauge group, the gauge field of non-trivial solutions in four-dimensional asymptotically

flat space-time is purely magnetic [4] and, furthermore, these solutions are unstable

under linear, spherically symmetric, perturbations [5].

The properties of EYM solutions in asymptotically anti-de Sitter (adS) space-time

are very different from those in asymptotically flat space-time. The first difference is

the existence of four-dimensional, spherically symmetric, purely magnetic soliton [6] and

black hole [7] solutions of su(2) EYM in adS which are stable under linear, spherically

symmetric, perturbations. Subsequently it was shown that there exist both soliton and

black hole solutions which are stable under general linear perturbations of the metric

and gauge field [8]. If the gauge group is enlarged to su(N), purely magnetic, spherically

symmetric, soliton and black hole solutions with N − 1 gauge field degrees of freedom

exist [9]. It can be proven that at least some of these are stable under linear, spherically

symmetric perturbations [10].

http://arxiv.org/abs/1507.08915v2
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The second surprising feature of solutions of su(2) EYM in adS is the existence

of non-trivial, spherically symmetric, dyonic solitons and black holes [6, 11]. For these

solutions the gauge field has a non-trivial electric part as well as a magnetic part.

Properties of these spherically symmetric dyonic solitons and black holes were explored

numerically in [6]. The existence of non-trivial dyonic solutions in a neighbourhood of

the trivial (embedded Schwarzschild-adS) solution was proven in [11]. Although these

dyonic solutions were discovered numerically over fifteen years ago, their stability has

remained an open question which we address in this paper.

We consider static, spherically symmetric, dyonic soliton and black hole solutions of

su(2) EYM in adS. In section 2 we introduce the action and field equations, and briefly

review some of the properties of the static equilibrium solutions [6, 11]. Next, in section

3, we derive the equations governing time-dependent, linear, spherically symmetric

perturbations of the static equilibrium solutions. The analysis results in a pair of

coupled Schrödinger-like equations for two of the perturbations. The third independent

perturbation is governed by a constraint equation which does not involve any derivatives

with respect to time. Section 4 contains our proof of the existence of non-trivial dyonic

solitons and black holes, in a neighbourhood of the embedded trivial solution, which are

stable under the linear perturbations. Finally we present our conclusions in section 5.

2. Dyons and dyonic black holes in su(2) Einstein-Yang-Mills theory

In this section we introduce the action and field equations for su(2) Einstein-Yang-

Mills theory with a negative cosmological constant. We also briefly review some of the

properties of the static, spherically symmetric, dyon and dyonic black hole solutions of

this theory, which were found numerically in [6] and whose existence was proven in [11].

2.1. Ansatz and field equations

We begin with the action for Einstein-Yang-Mills theory in four-dimensional space-time

with a cosmological constant Λ:

SEYM =
1

2

∫

d4x
√
−g [R− 2Λ− Tr FτνF

τν ] , (2.1)

where R is the Ricci scalar, g is the metric determinant and Fτν is the Yang-Mills gauge

field. Tr denotes a Lie algebra trace. Here and throughout this paper, the space-time has

signature (−,+,+,+), we use units in which 4πG = 1 = c and we have fixed the gauge

coupling constant to be equal to unity. We consider a negative cosmological constant

Λ < 0 and the gauge Lie algebra is su(2).

Varying the action (2.1) we obtain the field equations

2Tτν = Rτν −
1

2
Rgτν + Λgτν , (2.2a)

0 = DτFν
τ = ∇τFν

τ + [Aτ , Fν
τ ] , (2.2b)
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where the Yang-Mills field strength tensor takes the form

Fτν = ∂τAν − ∂νAτ + [Aτ , Aν ] , (2.3)

with Aτ the Yang-Mills gauge potential, and [Aτ , Aν ] denoting the Lie algebra

commutator. The stress energy tensor is

Tτν = TrFτλFν
λ − 1

4
gτν TrFλρF

λρ. (2.4)

In this paper we are interested in the stability of static, spherically symmetric, dyon

and dyonic black hole solutions of the field equations (2.2a–2.2b). In the next section we

shall consider time-dependent, linear, spherically symmetric perturbations of the static

equilibrium solutions, so we consider a time-dependent, spherically symmetric metric as

follows

ds2 = −µ(t, r)S(t, r)2 dt2 + µ(t, r)−1 dr2 + r2
(

dθ2 + sin2 θ dφ2
)

, (2.5)

where the metric functions µ(t, r) and S(t, r) depend on time t and the radial co-ordinate

r. We may write the metric function µ(t, r) in the alternative form

µ(t, r) = 1− 2m(t, r)

r
+
r2

ℓ2
, (2.6)

where the adS radius of curvature ℓ is given by

ℓ2 = − 3

Λ
. (2.7)

The time-dependent, spherically symmetric su(2) Yang-Mills gauge potential Aτ

can be written as follows, after an appropriate choice of gauge [12]:

A = A dt+B dr+ 1

2

(

C − CH
)

dθ− i

2

[(

C + CH
)

sin θ +D cos θ
]

dϕ, (2.8)

where A, B, C and D are 2× 2 matrices, given by

A =
i

2

(

α(t, r) 0

0 −α(t, r)

)

, B =
i

2

(

β(t, r) 0

0 −β(t, r)

)

,

C =

(

0 ω(t, r)eiγ(t,r)

0 0

)

, D =

(

1 0

0 −1

)

. (2.9)

Here, α(t, r), β(t, r), γ(t, r) and ω(t, r) are real functions of time t and the radial co-

ordinate r. The matrix CH is the Hermitian conjugate of the matrix C.

2.2. Static, spherically symmetric, dyons and dyonic black holes

For static equilibrium solutions of the field equations, the metric functions m = m0(r)

and S = S0(r) now depend only on the radial co-ordinate r. By a choice of gauge [12],

the gauge field function β can be set to zero, and then one of the Yang-Mills equations

reduces to γ = 0. The remaining gauge field functions, α = α0(r) and ω = ω0(r), are

also functions of r only.
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The field equations (2.2a, 2.2b) then reduce to the following static field equations:

m′
0 =

r2α′2
0

2S2
0

+
α2
0ω

2
0

µ0S2
0

+ µ0ω
′2
0 +

1

2r2
(

1− ω2
0

)2
, (2.10a)

S ′
0

S0
=

2ω′2
0

r
+

2α2
0ω

2
0

rµ2
0S

2
0

, (2.10b)

0 = µ0α
′′
0 +

(

2µ0

r
− µ0S

′
0

S0

)

α′
0 −

2α0ω
2
0

r2
, (2.10c)

0 = µ0ω
′′
0 +

(

µ′
0 +

µ0S
′
0

S0

)

ω′
0 +

ω0

r2
(

1− ω2
0

)

+
α2
0ω0

µ0S
2
0

, (2.10d)

where a prime ′ denotes differentiation with respect to r. The static field equations

(2.10a–2.10d) possess the following symmetries. Firstly they are invariant under the

transformation α0 → −α0; secondly the transformation ω0 → −ω0 also leaves them

unchanged; and finally they are preserved by the scaling symmetry:

S0 → λS0, α0 → λα0, (2.11)

for any constant λ. The scaling symmetry (2.11) arises due to the invariance of the

static metric and gauge potential under rescalings of the time co-ordinate t → λ−1t.

When the metric and gauge potential are time-dependent, the gauge freedom remaining

in rescaling the time co-ordinate is discussed in section 3.2.

The static field equations (2.10a–2.10d) have three singular points of interest. These

are located at the origin r = 0 (relevant only for soliton solutions), at the black hole

horizon (corresponding to zeros r = rh of the metric function µ, if there are any), and

as r → ∞. As pointed out in [11], while zeros of the metric function S yield a fourth

possible singular point, these are not of relevance to the classes of solutions considered

here. Suitable boundary conditions therefore have to be imposed on the field variables

at the singular points r = 0, r = rh and r → ∞. Near the origin, the field variables take

the form [6, 11]

m0(r) =

(

α2
1

2S2
1

+ 2ω2
2

)

r3 +O(r4),

S0(r) = S1 +

(

α2
1

S1
+ 4S1ω

2
2

)

r2 +O(r3),

α0(r) = α1r +
α1

5

(

2α2
1

S2
1

+ 8ω2
2 + 2ω2 −

1

ℓ2

)

r3 +O(r4),

ω0(r) = 1 + ω2r
2 +O(r3), (2.12)

and the solutions are parameterized by the constants S1, α1, ω2 and the adS radius

of curvature ℓ. In a neighbourhood of the black hole event horizon, the corresponding

expansion of the field variables is [6, 11]

m0(r) =
rh
2

+
r3h
2ℓ2

+m′
h (r − rh) +O(r − rh)

2,

S0(r) = Sh + S ′
h (r − rh) +O(r − rh)

2,

α0(r) = α′
h (r − rh) +O(r − rh)

2,
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ω0(r) = ωh + ω′
h (r − rh) +O(r − rh)

2, (2.13)

where m′
h, S

′
h and ω′

h are given by the field equations (2.10a–2.10d) in terms of Sh, α
′
h

and ωh:

m′
h =

r2hα
′2
h

2S2
h

+
(1− ω2

h)
2

2r2h
,

S ′
h =

2α′2
h ω

2
h

Shrhµ′(rh)2
+

2Shω
′2
h

rh
,

ω′
h =

ωh

r2hµ
′(rh)

(

ω2
h − 1

)

, (2.14)

where

µ′(rh) =
1

rh
− 2m′

h

rh
+

3rh
ℓ2

> 0, (2.15)

so that the constants Sh, αh and ωh, together with the adS radius of curvature ℓ,

parameterize the solutions. At infinity the field variables have the following behaviour

[6, 11]:

m0(r) =M − 1

r

[

d21
2

+ α2
∞ω

2
∞ℓ

2 +
c21
ℓ2

+
(1− ω2

∞)
2

2

]

+O(r−2),

S0(r) = 1− 1

2r4
(

α2
∞ω

2
∞ℓ

4 + c21
)

+O(r−5),

α0(r) = α∞ +
d1
r

+O(r−2),

ω0(r) = ω∞ +
c1
r
+O(r−2), (2.16)

where M , α∞, ω∞, c1 and d1 are arbitrary constants. The fact that S0(r) → 1 as

r → ∞ fixes the parameters S1 and Sh in the expansions of S0 near the origin (2.12)

and event horizon (2.13), respectively. In practice, however, we can regard S1 and Sh

as free parameters, since, if S∞ 6= 1, a scaling transformation (2.11) with λ = S−1
∞ can

always be applied.

The field equations (2.10a–2.10d) possess a trivial solution given by

α0(r) ≡ 0, ω0(r) ≡ ±1, m0(r) ≡M, S0(r) ≡ 1. (2.17)

For M > 0 this is the Schwarzschild-adS black hole; for M = 0 this is pure adS

space-time. There are also embedded (electrically and magnetically charged) Abelian

Reissner-Nordström-adS solutions of the static field equations [11], but we shall not

consider these further in this paper. Purely magnetic solutions, whose properties are

discussed in [6, 7, 13], arise on setting α0 ≡ 0.

In [11] we have proven, for any value of the adS radius of curvature ℓ, the existence

of dyonic soliton and black hole solutions of the field equations (2.10a–2.10d) in a

neighbourhood of the trivial (Schwarzschild-)adS space-time (2.17). Providing the non-

trivial solution is sufficiently close to the trivial solution, the magnetic gauge field

function ω0(r) will have no zeros. In figures 1 and 2 we show two typical nodeless

solutions: a soliton and a black hole solution respectively.
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Figure 1. Typical dyonic soliton solution with ℓ = 1, α1 = 0.08715 and ω2 = 0.2. We

plot the electric gauge field function α0(r) (blue, solid), magnetic gauge field function

ω0(r) (red, dotted) and metric function S0(r) (purple, dashed). Both the electric gauge

field function α0(r) and the magnetic gauge field function ω0(r) are monotonically

increasing and neither has any zeros for r > 0. The metric function m0(r) is not

shown - it too is monotonically increasing.

Figure 2. Typical dyonic black hole solution with ℓ = 1, rh = 1, α′

h
= 0.09974

and ωh = 0.9. We plot the electric gauge field function α0(r) (blue, solid), magnetic

gauge field function ω0(r) (red, dotted) and metric function S0(r) (purple, dashed).

The electric gauge field function α0(r) is monotonically increasing and the magnetic

gauge field function ω0(r) is monotonically decreasing. Neither gauge function has any

zeros for r > rh. The function S0(r) varies only a little: its value on the horizon is

0.9974, while at infinity S0(r) → 1. The metric function m0(r) is not shown - it is

monotonically increasing as r increases.



Stability of dyons in EYM 7

More detailed properties of the space of dyonic solutions of su(2) EYM in adS can be

found in [6, 14]. Our focus in this paper is the nodeless dyonic solitons and black holes. In

the case of purely magnetic solutions, it has been proven [6, 7] that at least some nodeless

solitons and black holes are stable under linear, spherically symmetric, perturbations

of the metric and gauge field. We therefore expect that at least some nodeless dyonic

solutions will also be stable under linear, spherically symmetric, perturbations. In the

next section we derive the equations governing such perturbations before proving the

existence of stable dyonic solutions in section 4.

3. Perturbation equations

We now derive the equations satisfied by linear, time-dependent, spherically symmetric

perturbations of the static equilibrium dyonic solitons and black holes discussed in the

previous section.

3.1. Linearized perturbation equations

We begin with the time-dependent field equations (2.2a–2.2b) for the metric (2.5) and

gauge potential (2.8). The appropriateness of the form (2.5) for studying perturbations

of the static equilibrium solutions is discussed in section 3.2. The Einstein equations

(2.2a) are

m′ =
r2

2S2

(

β̇ − α′
)2

+
1

µS2

[

ω̇2 + ω2 (γ̇ + α)2
]

+ µ
[

ω′2 + ω2 (γ′ + β)
2
]

+
1

2r2
(

1− ω2
)2
, (3.1a)

ṁ = 2µ
[

ω̇ω′ + ω2 (γ̇ + α) (γ′ + β)
]

, (3.1b)

S ′

S
=

2

r

[

ω′2 + ω2 (γ′ + β)
2
]

+
2

rµ2S2

[

ω̇2 + ω2 (γ̇ + α)2
]

, (3.1c)

and the Yang-Mills equations (2.2b) take the form

0 = r2µ
(

α′′ − β̇ ′
)

+

(

2rµ− r2µS ′

S

)

(

α′ − β̇
)

− 2ω2 (α + γ̇) , (3.1d)

0 = r2
(

β̈ − α̇′
)

− r2Ṡ

S

(

β̇ − α′
)

+ 2µS2ω2 (β + γ′) , (3.1e)

0 = − ω (γ̈ + α̇)− 2ω̇ (γ̇ + α) +
(µS)˙

µS
ω (γ̇ + α) + (µS)2 ω (γ′′ + β ′)

+
[

2 (µS)2 ω′ + µS (µS)′ ω
]

(γ′ + β) , (3.1f)

0 = − ω̈ +
(µS)˙

µS
ω̇ + ω (α + γ̇)2 + (µS)2 ω′′ + µS (µS)′ ω′

− µ2S2ω (β + γ′)
2
+
µS2

r2
(

1− ω2
)

ω, (3.1g)

where a dot ˙ denotes partial differentiation with respect to time t and a prime ′ denotes

partial differentiation with respect to the radial co-ordinate r.
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The ansatz for the gauge potential Aτ (2.8) possesses a residual su(2) Lie algebra

gauge freedom. If g(t, r) is a diagonal 2 × 2 matrix depending on t and r, then the

following gauge transformation leaves the form of the YM gauge potential (2.8) invariant,

but changes the matrices A, B and C:

A → A+ g−1ġ, B → B + g−1g′,

C − CH → g−1
(

C − CH
)

g, C + CH → g−1
(

C + CH
)

g. (3.2)

Under this gauge transformation the YM gauge field strength Fτν transforms as

Fτν → g−1Fτνg. (3.3)

In studies of the stability of purely magnetic su(N) EYM solitons and black holes

(see, for example, [10]), the matrix A is identically equal to zero for the equilibrium

solutions, and in this case the residual gauge freedom (3.2) is used to set A ≡ 0 for the

time-dependent perturbations as well. Such a choice of gauge simplifies the analysis of

the resulting perturbation equations in that case.

Here we are interested in dyonic equilibrium solutions for which the matrix A
does not vanish. In this case the most appropriate choice of Lie algebra gauge is

not immediately apparent. Instead of choosing a gauge, we consider gauge-invariant

variables which do not change under the Lie algebra gauge transformation (3.2). The

gauge-invariant variables we use are:

ψ = α′ − β̇ ξ = γ̇ + α, η = γ′ + β, (3.4)

together with the variable ω which is unchanged by the gauge transformation (3.2). We

can also eliminate the gauge-invariant variable ψ since

ψ = ξ′ − η̇. (3.5)

With these new variables, the Einstein equations (3.1a–3.1c) take the more compact

form

m′ =
r2

2S2
(ξ′ − η̇)

2
+

1

µS2

(

ω̇2 + ω2ξ2
)

+ µ
(

ω′2 + ω2η2
)

+
1

2r2
(

1− ω2
)2
, (3.6a)

ṁ = 2µ
(

ω̇ω′ + ω2ξη
)

, (3.6b)

S ′

S
=

2

r

(

ω′2 + ω2η2
)

+
2

rµ2S2

(

ω̇2 + ω2ξ2
)

, (3.6c)

and the Yang-Mills equations (3.1d–3.1g) also simplify:

0 = µ (ξ′′ − η̇′) +

(

2µ

r
− µS ′

S

)

(ξ′ − η̇)− 2ω2

r2
ξ, (3.6d)

0 = − η̈ + ξ̇′ − Ṡ

S
(ξ′ − η̇)− 2µS2ω2

r2
η, (3.6e)

0 = − ωξ̇ − 2ω̇ξ + (µS)2 (ωη′ + 2ω′η) +
(µS)˙

µS
ωξ + µS (µS)′ ωη, (3.6f)
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0 = − ω̈ +
(µS)˙

µS
ω̇ + ωξ2 + (µS)2 ω′′ + µS (µS)′ ω′ − (µS)2 ωη2

+
µS2ω

r2
(

1− ω2
)

. (3.6g)

We now consider linearized perturbations about the static equilibrium solutions

discussed in section 2.2. The field variables are written as sums of the time-independent

equilibrium quantities (denoted by a subscript 0, for example µ0(r)) and small time-

dependent perturbations (denoted by a δ, for example δµ(t, r)). For the static

equilibrium solutions, we have β0 = γ0 = 0 and hence, for the gauge-invariant variables

(3.4), we have

ξ0(r) = α0(r), η0(r) = 0. (3.7)

The time-dependent field variables are therefore written as follows

µ(t, r) = µ0(r) + δµ(t, r), S(t, r) = S0(r) + δS(t, r),

ξ(t, r) = α0(r) + δξ(t, r), η(t, r) = δη(t, r),

ω(t, r) = ω0(r) + δω(t, r). (3.8)

The field variables (3.8) are substituted into the field equations (3.6a–3.6g), working

to first order in the perturbations. The resulting equations are simplified using the

equilibrium field equations (2.10a–2.10d). The linearized perturbed Einstein equations

are then

δµ′ =
1

r

(

2α2
0ω

2
0

µ2
0S

2
0

− 2ω′2
0 − 1

)

δµ+
2

S3
0

(

2α2
0ω

2
0

rµ0
+ rα′2

0

)

δS

− 4µ0ω
′
0

r
δω′ +

4ω0

r

(

1− ω2
0

r2
− α2

0

µ0S2
0

)

δω − 2rα′
0

S2
0

(δξ′ − δη̇)

− 4α0ω
2
0

rµ0S2
0

δξ, (3.9a)

δµ̇ = − 4µ0

r

(

ω′
0δω̇ + α0ω

2
0δη
)

, (3.9b)

δS ′ = − 4α2
0ω

2
0

rµ3
0S0

δµ+
2

r

(

ω′2
0 − α2

0ω
2
0

µ2
0S

2
0

)

δS +
4S0ω

′
0

r
δω′ +

4α2
0ω0

rµ2
0S0

δω

+
4α0ω

2
0

rµ2
0S0

δξ, (3.9c)

and the perturbed Yang-Mills equations take the form

0 = µ0 (δξ
′′ − δη̇′) +

2α0ω
2
0

r2µ0
δµ− µ0α

′
0

S0
δS ′ +

µ0α
′
0S

′
0

S2
0

δS − 4α0ω0

r2
δω

+ µ0

(

2

r
− S ′

0

S0

)

(δξ′ − δη̇)− 2ω2
0

r2
δξ, (3.9d)

0 = − δη̈ + δξ̇′ − α′
0

S0

δṠ − 2µ0S
2
0ω

2
0

r2
δη, (3.9e)

0 = ω0δξ̇ + 2α0δω̇ − α0ω0

(

δµ̇

µ0

+
δṠ

S0

)

− µ2
0S

2
0ω0δη

′
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− µ0S0

[

2µ0S0ω
′
0 + (µ0S0)

′ ω0

]

δη, (3.9f)

0 = − δω̈ + µ2
0S

2
0δω

′′ + µ0S0 (µ0S0)
′ δω′ + µ0S0ω

′
0 (S0δµ

′ + µ0δS
′)

− S2
0

(

µ′
0ω

′
0 +

ω0 (1− ω2
0)

r2
+

2α2
0ω0

µ0S2
0

)

δµ−
(

2α2
0ω0

S0
+ µ2

0S
′
0ω

′
0

)

δS

+

(

α2
0 +

µ0S
2
0 (1− 3ω2

0)

r2

)

δω + 2α0ω0δξ. (3.9g)

3.2. Space-time diffeomorphism gauge transformations

In addition to gauge invariance with respect to representations of the su(2) Lie algebra

as discussed above, we must also consider the question of gauge invariance with respect

to space-time diffeomorphisms. This is relevant when dealing with perturbations of

a space-time, as we must ensure that the quantities encountered are indeed genuine

perturbations, and not just artefacts of an infinitesimal co-ordinate transformation

carried out on the background space-time. The key idea is to consider the effect of

such an infinitesimal co-ordinate transformation generated by the vector field V τ , such

that

xτ → xτ + V τ . (3.10)

Under such a transformation, the metric perturbation δgτν changes according to

δgτν → δgτν + L~V gτν , (3.11)

where L~V is the Lie derivative along ~V . Likewise, the gauge potential perturbation (an

su(2)-valued one-form) undergoes the transformation

δAτ → δAτ + L~VAτ . (3.12)

We are considering time-dependent, spherically symmetric perturbations of the

static, equilibrium configurations. Unlike the situation that holds for non-spherical

perturbations (decomposed into multipoles of appropriate valence), we do not have a

complete set of gauge-invariant quantities to work with [15]. We must therefore be

cautious in identifying genuine perturbations, and perturbations which are pure gauge.

We must also ensure that we are considering perturbations of maximal generality. In

the co-ordinates (t, r), the most general bare spherically symmetric perturbation of the

metric has the form

δgτν =











δg00 δg01
δg01 δg11

02

02
δg22 0

0 δg22 sin
2 θ











, (3.13)

where 02 is the 2× 2 zero matrix. Under the gauge transformation (3.11) generated by

V τ = (x(t, r), y(t, r), 0, 0), (3.14)

we have

δg01 → δg01 − µ0S
2
0x

′ + µ−1
0 ẏ, (3.15a)

δg22 → δg22 + 2ry. (3.15b)
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We exploit these to simplify the form of the perturbation as follows. We begin with

the completely general perturbation (3.13). We then make a diffeomorphism gauge

transformation generated by (3.14), choosing

y = −δg22
2r

. (3.16)

This brings us to a gauge in which

δg22 = 0. (3.17)

This condition is preserved by further gauge transformations provided that y = 0 in

(3.14). We then apply such a further transformation, choosing ~V so that

x′ =
δg01
µ0S

2
0

. (3.18)

This yields a gauge in which

δg01 = δg22 = 0, (3.19)

which is preserved by further gauge transformations generated by gauge vectors of the

form

V τ = (x(t), 0, 0, 0) . (3.20)

This represents the generator of the only gauge freedom that remains in the problem,

and corresponds to a redefinition of the time co-ordinate via (3.10). We will refer to the

gauge condition (3.19) as the diagonal gauge, and we note that the perturbed metric

now has the form

δgτν = Diag(δg00, δg11, 0, 0). (3.21)

Thus the metric perturbation may be represented by a perturbation of the background

metric functions:

µ0(r) → µ0(r) + δµ(t, r), S0(r) → S0(r) + δS(t, r), (3.22)

as assumed in the previous subsection.

For perturbations of static, spherically symmetric space-times, the choice of

diagonal gauge (and the reasons behind this choice) are standard and well-known.

However, for our analysis it is important to understand the residual diffeomorphism

gauge freedom given by (3.20), in particular its effect on the metric and matter

perturbations. These are summarized in the following lemma.

Lemma 1. The most general spherically symmetric perturbation of the metric (2.5)

may be written in the diagonal gauge (3.21) where

δg00 = −S2
0δµ− 2µ0S0δS, δg11 = −µ−2

0 δµ. (3.23)

Under the remaining gauge freedom of infinitesimal co-ordinate transformations

generated by (3.20), the metric perturbation functions transform as

δµ→ δµ, δS → δS + S0ẋ. (3.24a)

Furthermore, we can deduce from (3.12) that the matter perturbations transform as

δω → δω, δψ → δψ + α′
0ẋ, δξ → δξ + α0ẋ, δη → δη. (3.24b)
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The results of this lemma, in particular the behaviour of δS (3.24a) and δξ (3.24b),

will be useful in the next subsection for understanding the final form of the linearized

perturbation equations.

3.3. Linearized perturbation equations in standard form

We now seek to set the linearized perturbation equations (3.9a–3.9g) into a form

amenable to proving the existence of stable equilibrium solutions. From (3.9b, 3.9e, 3.9f)

it can be seen that the perturbation δη is out of phase with the other perturbations:

when this quantity appears in the perturbation equations with an even (respectively,

odd) number of time derivatives, all other variables appear with an odd (respectively,

even) number of time derivatives. (In physical terms, this means that if δη follows a

sine wave, the other variables follow a cosine wave, and vice versa.) We therefore define

a new quantity δκ by

δη(t, r) =
δκ̇(t, r)

µ0S0ω0
. (3.25)

We note that δκ is defined only up to an arbitrary function of the radial co-ordinate

r, and this freedom in defining δκ will be useful in our later analysis. The equilibrium

functions of r are introduced in (3.25) because they will enable us to ultimately set the

perturbation equations into a standard form. With the substitution (3.25), equations

(3.9b, 3.9e, 3.9f) then take the form

δµ̇ = − 4

rS0
(µ0S0ω

′
0δω̇ + α0ω0δκ̇) , (3.26a)

0 =
δ
...
κ

µ0S0ω0
+

2S0ω0

r2
δκ̇+

α′
0

S0
δṠ − δξ̇′, (3.26b)

0 = δκ̇′ +
ω′
0

ω0

δκ̇+
α0ω0

µ0S0

(

δµ̇

µ0

+
δṠ

S0

)

− 2α0

µ0S0

δω̇ − ω0

µ0S0

δξ̇. (3.26c)

Integrating (3.26a) with respect to time gives the metric perturbation δµ(t, r) to be

δµ = − 4

rS0

(µ0S0ω
′
0δω + α0ω0δκ) + δF(r), (3.27)

where δF(r) is an arbitrary function of r. For purely magnetic background solutions

with α0 ≡ 0, the expression (3.27) reduces to that in [10] for this metric perturbation.

Substituting for δµ(t, r) (3.27) in (3.26c) and integrating with respect to time gives

the other metric perturbation δS(t, r):

δS = − µ0S
2
0

α0ω0

δκ′ +

(

4α0ω0

rµ0

− µ0S
2
0ω

′
0

α0ω
2
0

)

δκ+ 2S0

(

1

ω0

+
2ω′

0

r

)

δω

+
S0

α0
δξ + δG(r), (3.28)

where δG(r) is another arbitrary function of r. We note that this expression is not valid

for purely magnetic background solutions with α0 ≡ 0. When the background solutions
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are purely magnetic, the perturbed Einstein equations can be used to find an expression

for δS ′ but not δS [10].

Substituting for δS(t, r) in (3.26b) and integrating with respect to time gives the

following:

0 = δκ̈− (µ0S0)
2 α′

0

α0
δκ′ − µ0S0ω0δξ

′ + 2µ0S0α
′
0

(

1 +
2ω0ω

′
0

r

)

δω

+
µ0S0α

′
0ω0

α0

δξ +

(

2µ0S
2
0ω

2
0

r2
+

4α0α
′
0ω

2
0

r
− µ2

0S
2
0α

′
0ω

′
0

α0ω0

)

δκ+ δH(r),

(3.29)

where δH(r) is a third arbitrary function of r. A second equation involving δκ̈ can be

derived from (3.9a), substituting in for δη̇ using (3.25), for δµ using (3.27) and for δS

using (3.28). Subtracting the resulting equation from (3.29) gives a constraint on the

arbitrary functions δF(r), δG(r) and δH(r):

0 = δF ′ −
(

2α2
0ω

2
0

µ2
0S

2
0

− 1− 2ω′2
0

)

δF
r

− 2rα′
0

µ0S
3
0

(

µ0α
′
0 +

2α2
0ω

2
0

r2α′
0

)

δG

+
2rα′

0

µ0S3
0ω0

δH. (3.30)

A second, independent, constraint on the functions δF(r), δG(r) and δH(r) is

derived from (3.9d) as follows. First rearrange the equation resulting from integrating

(3.26b) with respect to time to give an expression for δS, which involves both δG and

δH. Next differentiate this with respect to r and then substitute into (3.9d), simplifying

using the forms (3.27, 3.28) of the metric perturbations. Using (3.29) to eliminate δκ̈

from the resulting equation gives the constraint, whose most compact form reads

0 =
2S0α0ω

2
0

r2µ2
0α

′
0

δF − δG ′ +
S ′
0

S0

δG +
1

µ0α
′
0ω0

δH′

+
1

µ0α′
0ω0

(

2

r
− µ′

0

µ0
− 2S ′

0

S0
− ω′

0

ω0

)

δH. (3.31)

Next we use the remaining perturbed Einstein equation (3.9c) to give a first order

equation for δξ, which involves only derivatives with respect to r:

0 = δξ′ − α′
0

α0
δξ − µ0S0

ω0
δκ′′ +

2α0

ω0
δω′ +

µ0S0

ω0

(

α′
0

α0
− µ′

0

µ0
− S ′

0

S0

)

δκ′

− 4α0ω
′
0

r

(

ω0 (1− ω2
0)

r2µ0ω
′
0

+
1

r
+

r

2ω2
0

+
µ′
0

µ0

+
S ′
0

S0

)

δω

+
4α2

0ω0

rµ0S0

(

r

4ω2
0

+
µ0S

2
0 (1− ω2

0)

4rα2
0ω

2
0

− 1

r
+
α′
0

α0

− µ′
0

µ0

− S ′
0

S0

+
rµ2

0S
2
0α

′
0ω

′
0

4α3
0ω

3
0

+
rµ2

0S
2
0ω

′2
0

2α2
0ω

4
0

)

δκ+
4α3

0ω
2
0

rµ3
0S

2
0

δF +
α0

S0
δG ′

+
2α0

rS0

(

α2
0ω

2
0

µ2
0S

2
0

− ω′2
0

)

δG. (3.32)
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We use (3.32) to eliminate δξ from (3.29) and the remaining perturbed Yang-Mills

equation (3.9g). In terms of the usual “tortoise” co-ordinate r∗, defined by

dr∗
dr

=
1

µ0S0
, (3.33)

the resulting pair of coupled perturbation equations takes the form

− δκ̈ = − ∂2r∗δκ+ 2α0∂r∗δω + E1δκ + E2δω +
4α3

0ω
3
0

rµ2
0S0

δF

+ µ0α0ω0δG ′ +
2µ0α0ω0

r

(

α2
0ω

2
0

µ2
0S

2
0

− ω′2
0

)

δG + δH, (3.34a)

−δω̈ = − ∂2r∗δω − 2α0∂r∗δκ+ E3δκ+ E4δω

− µ0S
2
0ω

′
0δF ′ +

2α2
0ω0

rS0

(r + 2ω0ω
′
0) δG

+

[

S2
0ω0 (1− ω2

0)

r2
+

2α2
0ω0

rµ0

(r + 2ω0ω
′
0) + µ′

0S
2
0ω

′
0

]

δF , (3.34b)

where a prime ′ denotes differentiation with respect to the radial co-ordinate r, and the

coefficients E1, E2, E3 and E4 are given by

E1 = α2
0 +

µ0S
2
0 (1 + ω2

0)

r2
+

2µ2
0S

2
0ω

′2
0

ω2
0

+
4α2

0ω
2
0

r

(

2α′
0

α0
− 1

r
− µ′

0

µ0
− S ′

0

S0

)

,

(3.35a)

E2 = 2µ0S0α
′
0 −

4S0α0ω
2
0 (1− ω2

0)

r3

+
4µ0S0α0ω0ω

′
0

r

(

α′
0

α0
− 1

r
− r

2ω2
0

− µ′
0

µ0
− S ′

0

S0

)

, (3.35b)

E3 = E2 − 2µ0S0α
′
0, (3.35c)

E4 = 3α2
0 −

µ0S
2
0 (1− 3ω2

0)

r2
− 4µ2

0S
2
0ω

′2
0

r

(

µ′
0

µ0

+
S ′
0

S0

)

− 4µ0S
2
0ω

′
0

r3
[

2ω0

(

1− ω2
0

)

+ rµ0ω
′
0

]

. (3.35d)

For purely magnetic background solutions with α0 ≡ 0, we have E2 ≡ 0 ≡ E3 and the

equations (3.34a, 3.34b) are no longer coupled, instead giving separate equations for δκ

and δω. In this case E1 reduces to the potential in [7] for sphaleronic sector perturbations

of the purely magnetic background solutions, while E4 reduces to the potential in [7]

for gravitational sector perturbations of the purely magnetic background solutions. For

black hole solutions, the boundary conditions (2.13) ensure that Ei, i = 1, . . . 4 all vanish

as r → rh. For soliton solutions, as r → 0 the functions E2 and E3 tend to constants;

however E1 and E4 diverge like a positive constant multiplied by r−2. At infinity, they

all tend to constants. The functions Ei, i = 1, . . . 4 are all regular for r > 0 or r ≥ rh,

as applicable, provided that the equilibrium magnetic gauge field function ω0(r) has no

zeros. Our stability analysis in the next section will be applicable only to equilibrium

solutions for which this is the case.

Returning to the case of dyonic background solutions with nontrivial α0, we have

two coupled, dynamical, perturbation equations (3.34a, 3.34b) for the perturbations δκ
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and δω, together with a constraint equation (3.32) for δξ, which does not contain any

time derivatives. We also have in our system three arbitrary functions of the radial

co-ordinate r only, namely F , G and H, which are constrained by the equations (3.30,

3.31). We now argue that all three of these can, without loss of generality, be set equal

to zero.

We start by noting that the variable δκ is defined by (3.25) only up to an arbitrary

function of r. This freedom in the definition of δκ can be used, via (3.27), to set δF ≡ 0.

The first constraint equation (3.30) then gives δH in terms of δG:

δH =

(

2α2
0ω

3
0

r2α′
0

+ µ0α
′
0ω0

)

δG. (3.36)

Substituting for δH from (3.36) into the second constraint equation (3.31) then gives a

first order differential equation for δG:

0 = δG ′ +

(

2

r
− µ′

0

µ0
− 3S ′

0

S0
+

3α′
0

α0
+

2ω′
0

ω0
− 2α0ω

2
0

r2µ0α′
0

)

δG, (3.37)

which can be readily integrated to give

δG(r) = G0µ0S
3
0e

I

r2α3
0ω

2
0

, (3.38)

where G0 is an arbitrary constant and

I =

∫ r

r′=r0

2α0(r
′)ω0(r

′)2

r′2µ0(r′)α′
0(r

′)
dr′. (3.39)

The lower limit r0 in (3.39), and the consequences for δG, depend on whether we are

considering soliton or black hole solutions.

For black hole solutions, the expansions (2.13) mean that the integrand in (3.39) is

regular as r → rh. In this case we set the lower limit of integration r0 to be rh and then

I = O(r− rh) as r → rh. At the black hole event horizon, we require δµ = 0 and δω to

be finite: we note by Lemma 1 that this statement is gauge invariant. Therefore, from

(3.27), recalling that we have already set δF ≡ 0, it must be the case that (r−rh)δκ→ 0

as r → rh, so that both δκ and (r − rh)δκ
′ are integrable at the horizon. We also

require the perturbations δS, δψ and δξ to be finite at the event horizon. While these

quantities change under an infinitesimal co-ordinate transformation generated by (3.20),

from (3.24a, 3.24b) we can see that such a transformation maintains the finiteness of

these perturbations at the horizon. Considering the first YM perturbation equation

(3.9d) as an ODE in r for δψ = δξ′−δη̇, carrying out a formal integration, and imposing

the condition that δψ remains finite at the horizon, we find that (r − rh)
−1δξ must be

integrable at r = rh. Therefore, from (3.28), we see that δG must also be integrable at

the horizon. However, from the definition (3.38), the properties of I as r → rh and the

boundary conditions (2.13), we see that

δG =
2G0S

3
h

(r − rh) r4hα
′3
h

+O(1) (3.40)

as r → rh. Thus δG fails to be integrable at the horizon unless G0 = 0. Therefore both

δG and δH must vanish identically in the black hole case.
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For soliton solutions, from the expansions (2.12) we see that the integrand in (3.39)

is O(r−1) as r → 0. In this case we choose the lower limit of integration to be r0 = 1.

With this choice, as r → 0 we have I = 2 log r+O(1) and therefore eI = O(r2) as r → 0.

Substituting this and the expansions (2.12) into (3.38), it can be seen that δG = O(r−3)

as r → 0 unless G0 = 0. In order to keep the origin regular, the perturbation δω must

remain finite at r = 0, and we must also have δµ → 0 as r → 0 to avoid a curvature

singularity. As in the black hole case, these are diffeomorphism-invariant statements.

From (3.27) and the boundary conditions (2.12) we see that δκ also remains finite as

r → 0, and, as a consequence, rδκ′ → 0 as r → 0. We also require δS, δψ and δξ to

be finite at the origin. As in the black hole case, using the results of Lemma 1, this

requirement does not change if an infinitesimal co-ordinate transformation generated by

(3.20) is applied. With this assumption and the above behaviour of δκ and its derivative

as r → 0, equation (3.28) then implies that, at worst, r2δG → 0 as r → 0. Therefore,

as in the black hole case, the only possibility is G0 = 0, so that both δG and δH vanish

identically.

Setting δF ≡ 0, δG ≡ 0 and δH ≡ 0, the perturbation equations (3.34a, 3.34b)

simplify to

− δκ̈ = − ∂2r∗δκ+ 2α0∂r∗δω + E1δκ + E2δω, (3.41a)

−δω̈ = − ∂2r∗δω − 2α0∂r∗δκ+ E3δκ+ E4δω, (3.41b)

which do not involve the perturbation δξ. Once perturbations δκ, δω solving (3.41a,

3.41b) have been found, the perturbation δξ is computed by solving the constraint

equation (3.32), which now simplifies to
(

1

α0

δξ

)′

= F(δκ, δω)

=
µ0S0

α0ω0
δκ′′ − 2

ω0
δω′ − µ0S0

α0ω0

(

α′
0

α0
− µ′

0

µ0
− S ′

0

S0

)

δκ′

+
4ω′

0

r

(

ω0 (1− ω2
0)

r2µ0ω′
0

+
1

r
+

r

2ω2
0

+
µ′
0

µ0
+
S ′
0

S0

)

δω

− 4α0ω0

rµ0S0

(

r

4ω2
0

+
µ0S

2
0 (1− ω2

0)

4rα2
0ω

2
0

− 1

r
+
α′
0

α0
− µ′

0

µ0
− S ′

0

S0

+
rµ2

0S
2
0α

′
0ω

′
0

4α3
0ω

3
0

+
rµ2

0S
2
0ω

′2
0

2α2
0ω

4
0

)

δκ, (3.42)

where we have defined a new quantity F(δκ, δω) which depends on δκ, δω and the

equilibrium solutions.

The fact that we do not have a dynamical equation for δξ can be understood from

the analysis of section 3.2. As discussed in that section, we have a residual infinitesimal

diffeomorphism gauge freedom generated by (3.20), which corresponds to a redefinition

of the time co-ordinate. Such a gauge transformation changes δξ according to (3.24b).

Since this is a gauge transformation, the perturbation equations should be independent

of the choice of the gauge function x(t). When δξ changes as in (3.24b), the quantity
(

α−1
0 δξ

)′
does not change, and so the equation (3.42) remains invariant. If we had a
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dynamical equation for δξ involving time derivatives of δξ, such an equation would not

be invariant under the gauge transformation (3.24b). Since we have already eliminated

δψ, the only other perturbation which changes under the residual diffeomorphism gauge

transformation is δS (3.24a). However, the changes in δξ (3.24b) and δS (3.24a) mean

that the equation (3.28) for δS remains invariant under the gauge transformation.

Our purpose in this paper is to prove the existence of dyonic equilibrium soliton

and black hole solutions of the static EYM field equations which are stable under linear

perturbations satisfying (3.41a, 3.41b, 3.42). We turn to this proof in the next section.

4. Existence of stable dyonic solitons and black holes

4.1. General argument

The perturbation equations (3.41a, 3.41b) can be written in the compact form

− v̈ = −∂2r∗v +D∂r∗v + Ev = Uv, (4.1)

where v = (δκ, δω)T is the vector of perturbations, and the matrices D and E are given

by

D =

(

0 2α0

−2α0 0

)

, E =

(

E1 E2
E3 E4

)

, (4.2)

with E1, . . . , E4 given in (3.35a–3.35d). We restrict our attention to static equilibrium

solutions for which the magnetic gauge field function ω0(r) has no zeros. In this case

the functions E1, . . . , E4 are regular for all r > 0 in the soliton case and all r ≥ rh in the

black hole case. They diverge as r → 0 for soliton equilibrium solutions, but this is not

an issue, as discussed after (4.39) below.

In (4.1) we have defined an operator U by

U = −∂2r∗ +D∂r∗ + E . (4.3)

The operator U will be symmetric if

DT = −D and ET = E − ∂r∗D. (4.4)

The first of these conditions is clearly satisfied. With the form of D in (4.2), the second

condition is satisfied if

E2 − E3 = ∂r∗ (2α0) = 2µ0S0α
′
0, (4.5)

which can be seen to be the case from (3.35c). Therefore U is a symmetric operator.

To derive sufficient conditions for U to be a positive operator, we first write it in

the form

U = χ†χ+ V, (4.6)

where the operator V does not contain any derivatives,

χ = ∂r∗ −Z, (4.7)
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and Z is a 2× 2 matrix with entries

Z =

(

0 Z12

Z21 0

)

. (4.8)

We choose the functions Z12 and Z21 such that

∂r∗Z12 = E2, ∂r∗Z21 = E3. (4.9)

Then the matrix V takes the form

V =

(

E1 −Z2
21 0

0 E4 − Z2
12

)

. (4.10)

Therefore the operator U will be a positive symmetric operator if the functions K1 and

K2 are positive everywhere, where

K1 = E1 − Z2
21, K2 = E4 − Z2

12. (4.11)

If U is a positive symmetric operator then the static equilibrium solutions will be stable

under linear, spherically symmetric perturbations. It turns out that there are three

related stability properties: these will be described in detail in section 4.4.

For the moment, let us assume that to prove the stability (as will be characterized in

section 4.4) of the static equilibrium solutions it is sufficient to prove that the functions

K1, K2 (4.11) are positive everywhere and, in addition, have the asymptotic and other

properties used in the stability arguments in section 4.4. Before proving the existence of

dyonic solutions for which this is the case, we present a couple of numerical examples,

considering the static equilibrium solutions shown in figures 1 and 2. Having found an

equilibrium solution by integrating the static field equations (2.10a–2.10d), the first step

in showing that they are stable is to numerically integrate (4.9) to find the functions Z12

and Z21. In figures 3 and 4 we show the results of these integrations for the equilibrium

solutions presented in figures 1 and 2 respectively. Note that the equations (4.9) only

define the functions Z12 and Z21 up to the addition of an arbitrary constant. This

constant is chosen so that the functions vanish at either the origin, or the black hole

event horizon, as applicable.

Once we have the functions Z12 and Z21, we then compute the quantities K1 and K2

(4.11). If we can show that K1 and K2 are positive for all r, then the operator U (4.6) is

a positive symmetric operator and hence, as argued above, the equilibrium solutions are

stable. In figures 5 and 6 respectively we present the results of calculating K1 and K2

for the dyonic soliton and black hole solutions shown in figures 1 and 2. In both figures

5 and 6, it can be seen that the two functions K1 and K2 are positive everywhere.

We now turn to the proof of the existence of dyonic soliton and black hole solutions

which are stable under linear, spherically symmetric, perturbations of the metric and

gauge field. The stability criterion that we apply is that the operator U governing

the evolution of the perturbations (4.6) is a symmetric, positive operator. As we have

seen, this condition reduces to establishing that the functions K1 and K2 are positive

everywhere - that is, for all r > rh in the black hole case, and for all r > 0 in the soliton



Stability of dyons in EYM 19

Figure 3. Functions Z12 (blue, solid) and Z21 (red, dotted) defined by (4.9) for a

typical nodeless dyonic soliton solution with ℓ = 1, α1 = 0.08715 and ω2 = 0.2. The

additive constant of integration has been chosen so that both functions vanish at the

origin. For this example, Z12 is monotonically increasing with r; on the other hand

Z21 has a maximum and is negative for sufficiently large r.

Figure 4. Functions Z12 (blue, solid) and Z21 (red, dotted) defined by (4.9) for

a typical nodeless dyonic black hole solution with ℓ = 1, rh = 1, α′

h
= 0.09974

and ωh = 0.9. The additive constant of integration has been chosen so that both

functions vanish on the horizon. As in the example shown in figure 3, in this case Z12

is monotonically increasing as r increases. The other function, Z21, has a minimum

just outside the event horizon and then slowly increases as r increases.
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Figure 5. Functions K1 (blue, solid) and K2 (red, dotted) defined by (4.11) for a

typical nodeless dyonic soliton solution with ℓ = 1, α1 = 0.08715 and ω2 = 0.2. Both

functions are positive for all r. For small r, they exhibit very similar behaviour, only

becoming distinguishable for r ≈ 1. As r → 0, both functions diverge, in accordance

with (4.35). They both have a minimum, and then tend to (positive) constants as

r → ∞.

Figure 6. Functions K1 (blue, solid) and K2 (red, dotted) defined by (4.11) for a

typical nodeless dyonic black hole solution with ℓ = 1, rh = 1, α′

h
= 0.09974 and

ωh = 0.9. Both functions are positive for all r ≥ rh. Both vanish on the horizon, then

rapidly increase to maximum values, before tending to (positive) constants as r → ∞.
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case. We establish this in each of these cases by recalling some of the results from [11],

in which we proved the existence of the background space-times being studied here. We

consider the black hole case first.

4.2. Existence of stable dyonic black holes

In [11], we proved the existence of static, spherically symmetric, asymptotically adS

black hole solutions of the su(2) EYM equations for which the metric and gauge field

functions µ0, S0, α0 and ω0 have the following properties:

(i) (µ0, S0, α0, ω0) ∈ C1([rh,+∞),R2)× C2([rh,+∞),R2);

(ii) µ0(rh) = 0 and µ0(r) > 0, ω0(r) > 0 and S0(r) > 0 for all r > rh;

(iii) there is a continuous mapping of the initial data (imposed at the horizon)

(Sh, ωh, α
′
h) ∈ R

3 to the solution (µ0, S0, α0, ω0) ∈ C1([rh,+∞),R2) ×
C2([rh,+∞),R2);

(iv) this continuous mapping yields a unique global solution of the field equations in a

neighbourhood of the trivial datum (Sh, ωh, α
′
h) = (1, 1, 0) ∈ R

3 which gives rise

to Schwarzschild-adS space-time as an embedded solution of the system. We will

refer to this as the trivial solution: it nevertheless plays an important role in what

follows.

The trivial solution is characterized by (2.17), so that

µ0(r) = 1− 2M

r
− Λ

3
r2. (4.12)

A simple calculation using (3.35a–3.35d) then yields E2 = E3 = 0 and

E1 = E4 =
2

r2

(

1− 2M

r
− Λ

3
r2
)

. (4.13)

By a choice of constant of integration, we can then take Z12 = Z21 = 0, and so

K1 = K2 =
2

r2

(

1− 2M

r
− Λ

3
r2
)

. (4.14)

It is then immediate that both K1 and K2 are positive outside the horizon.

For the non-trivial background solutions, we can use the asymptotic forms (2.13)

to establish that

Ei(r) = O(r − rh), r → rh, i = 1, 2, 3, 4, (4.15)

and

Ei(r) = Ei,∞ +O(r−1), r → +∞, i = 1, 2, 3, 4. (4.16)

Then

Ei(r)
µ0S0

= O(1), r → rh, i = 2, 3, (4.17)

and so we can take

Z12(r) =

∫ r

r′=rh

E2(r′)
µ0(r′)S0(r′)

dr′, Z21(r) =

∫ r

r′=rh

E3(r′)
µ0(r′)S0(r′)

dr′, (4.18)



Stability of dyons in EYM 22

giving

Z12(r) = O(r − rh), Z21(r) = O(r − rh), r → rh, (4.19)

and

Z12(r) = O(r−1), Z21(r) = O(r−1), r → +∞. (4.20)

It follows that, as r → rh,

K1(r) = E1(r) +O([r − rh]
2), K2(r) = E4(r) +O([r − rh]

2), (4.21)

and, at infinity,

K1(r) = E1(r)+O(r−2), K2(r) = E4(r)+O(r−2), r → +∞.(4.22)

Therefore Ki, i = 1, 2 are continuous as r → rh. It follows from (3.35a–3.35d, 4.18) and

from points (i) and (ii) in the list above that the Ki are continuous on (rh,+∞). Thus

Ki ∈ C0[rh,+∞), i = 1, 2. (4.23)

Furthermore, it follows from this observation and from point (iii) above that for each

rh > 0, the Ki depend continuously on the initial data (Sh, ωh, α
′
h) ∈ R

3. Thus we can

conclude the following:

Proposition 2. For each Λ < 0 and rh > 0, there exists a neighbourhood U of the trivial

initial data point (Sh, ωh, α
′
h) = (1, 1, 0) ∈ R

3 such that for all (Sh, ωh, α
′
h) ∈ U , the

corresponding unique black hole solution of the static EYM equations, whose existence

is guaranteed by Proposition 7 of [11], satisfies

Ki(r) > 0 for all r > rh, i = 1, 2, (4.24)

and thus is linearly stable under spherically symmetric perturbations.

From (4.15, 4.19), the functions Ki, i = 1, 2 vanish at the event horizon. We note

that a necessary condition for them to be positive outside the horizon is that

k1 := K′
1(r)|r=rh

= E ′
1(r)|r=rh

> 0,

k2 := K′
2(r)|r=rh

= E ′
4(r)|r=rh

> 0. (4.25)

Using the expressions (3.35a, 3.35d), we find that

k1 =
1

r5h

{

α′2
h r

4
h(3ω

2
h − 1) + S2

h(1 + ω2
h)
[

r2h − Λr4h − (1− ω2
h)

2
]}

,

k2 =
1

r5h

{

−α′2
h r

4
h(3ω

2
h − 1) + S2

h

[

1− ω2
h + ω4

h − ω6
h

+r2h(1− Λr2h)(3ω
2
h − 1)

]}

. (4.26)

Expanding (4.26) about the trivial data shows how a neighbourhood of allowed values

of the initial data for which ki, i = 1, 2 are positive may arise:

k1 =
2

r3h

(

1 + 3
r2h
ℓ2

)

S2
h +O(α′

h)
2 +O(ωh − 1),

k2 =
2

r3h

(

1 + 3
r2h
ℓ2

)

S2
h +O(α′

h)
2 +O(ωh − 1). (4.27)
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4.3. Existence of stable dyons

Positivity of the Ki in the soliton case follows by a similar argument.

In [11], we proved the existence of static, spherically symmetric, asymptotically

adS, soliton solutions of the su(2) EYM equations for which the metric and gauge field

functions µ0, S0, α0 and ω0 have the following properties:

(i) (µ0, S0, α0, ω0) ∈ C1([0,+∞),R2)× C2([0,+∞),R2);

(ii) µ0(r) > 0, ω0(r) > 0 and S0(r) > 0 for all r ≥ 0 and these functions satisfy the

asymptotic behaviour of (2.12) at the origin;

(iii) there is a continuous mapping of the initial data (imposed at the origin)

(S1, ω2, α1) ∈ R
3 to the solution (µ0, S0, α0, ω0) ∈ C1([0,+∞),R2) ×

C2([0,+∞),R2);

(iv) this continuous mapping yields a unique global solution of the field equations in a

neighbourhood of the trivial datum (S1, ω2, α1) = (1, 0, 0) ∈ R
3 which gives rise to

adS space-time as an embedded solution of the system. This is the trivial solution

in the solitonic case.

For the trivial solution, we find E2 = E3 = 0 and

E1(r) = E4(r) =
2

r2

(

1 +
r2

ℓ2

)

. (4.28)

Then as in the black hole case, we can take Z12 = Z21 = 0 in the trivial background,

and positivity of K1 = E1 and K2 = E4 on (0,+∞) is immediate.

For the non-trivial background space-times, we can use (2.12, 3.35b, 3.35c) to

establish that

E2(r) = 2α1S1(1 + 4ω2) +O(r), E3(r) = 8α1S1ω2 +O(r), (4.29)

as r → 0. The general form of the functions E2 (3.35b), E3 (3.35c) and the properties

of the background metric functions listed above, along with the limiting behaviour at

the origin, then shows that E2 and E3 are continuous on [0,+∞). The same is true of

Ei/(µ0S0) for i = 2, 3 (again appealing to (2.12) and the properties listed above) and so,

from (4.9) we can take

Z12(r) =

∫ r

r′=0

E2(r′)
µ0(r′)S0(r′)

dr′ ∈ C1[0,+∞), (4.30)

which yields

Z12(r) = 2α1(1 + 4ω2)r +O(r2), r → 0. (4.31)

Likewise,

Z21(r) =

∫ r

r′=0

E3(r′)
µ0(r′)S0(r′)

dr′ ∈ C1[0,+∞), (4.32)

with

Z21(r) = 8α1ω2r +O(r2), r → 0. (4.33)
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We note also that the asymptotic behaviour at infinity as described by (2.16) yields

Z12 = O(r−1), Z21 = O(r−1), r → +∞. (4.34)

At the origin, Z12 and Z21 are dominated by E1, E4, and we find that

K1 =
2S2

1

r2
+O(1), K2 =

2S2
1

r2
+O(1), r → 0, (4.35)

and so the Ki, i = 1, 2 are clearly positive in a (one-sided) neighbourhood of the origin.

At infinity, we find

K1 = O(1), K2 = O(1), r → +∞. (4.36)

With these details in place, positivity of the Ki, i = 1, 2 on (0,+∞) follows in this

case in exactly the same way as the black hole case, giving:

Proposition 3. For each Λ < 0, there exists a neighbourhood U of the trivial initial data

point (S1, ω2, α1) = (1, 0, 0) ∈ R
3 such that for all (S1, ω2, α1) ∈ U , the corresponding

unique soliton solution of the static EYM equations, whose existence is guaranteed by

Proposition 9 of [11], satisfies

Ki(r) > 0 for all r > 0, i = 1, 2, (4.37)

and thus is linearly stable under spherically symmetric perturbations.

4.4. Nature of the stability

In the previous section we have proven the existence of dyonic soliton and black hole

solutions of su(2) EYM such that the functions K1 and K2 (4.11) are positive everywhere.

Therefore the operator U (4.6) is a positive symmetric operator. In this case we have

three related stability properties, which we now discuss in detail.

4.4.1. Mode stability. First, we consider time-periodic perturbations with frequency σ,

so that

δκ(t, r) = eiσtδκ(r), δω(t, r) = eiσtδω(r), (4.38)

(we return to δξ shortly). Then the perturbation equations (4.1) for v = (δκ(r), δω(r))T

take the form of a standard Schrödinger-like eigenvalue problem:

Uv = σ2
v. (4.39)

To establish that all the eigenvalues σ2 must be positive, we need to impose suitable

boundary conditions on the perturbations. We set δκ(r) and δω(r) to vanish at the

origin (for soliton solutions), event horizon (for black hole solutions) and at infinity.

With these conditions on δκ(r) and δω(r), the inner products 〈v, v〉 and 〈v,Uv〉 are

finite. As usual, the inner products are defined by integrals over the range of the

tortoise co-ordinate r∗: for solitons this is r∗ ∈ [0, r∗max] for some constant r∗max while

for black holes it is r∗ ∈ (−∞, 0]. The only issue that may be of concern is the form

of the zero-order terms in (4.1) in the soliton case, which diverge as r−2 at the origin
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(4.35). However the coefficient of r−2 is sufficiently large and positive to ensure that

solutions vanishing at the origin decay rapidly enough to yield integrable terms in the

inner products.

With suitable boundary conditions in place, the positivity of the operator U implies

that all the eigenvalues σ2 are positive, so that σ is real and the perturbations do

not grow exponentially with time. There is one further remaining subtlety, namely

that we do not have a dynamical equation for δξ(t, r). Suppose however that we have

perturbations δκ(t, r), δω(t, r) of the form (4.38) which satisfy (4.39) with σ2 > 0. Then,

by integrating (3.42), we find

δξ(t, r) = α0(r)X(t) + α0(r)

∫ r

r′=r0

F(δκ, δω) dr′, (4.40)

where X(t) is an arbitrary function of time t and the quantity F(δκ, δω) depends linearly

on the perturbations (δκ, δω) and can be found in full in (3.42). Since the perturbations

(δκ, δω) are time-periodic (4.38), and given the form of F(δκ, δω) in (3.42), the second

term in (4.40) does not grow exponentially with time. The first term corresponds to

an infinitesimal diffeomorphism generated by (3.20), and by a suitable choice of x(t) in

(3.24b) can be transformed away. Therefore δξ(t, r) is also time-periodic with σ2 > 0

and does not grow exponentially with time. The fact that the metric perturbations δµ

and δS also do not grow exponentially with time can be deduced from their explicit

forms (3.27, 3.28) in terms of the matter perturbations.

4.4.2. Finite energy. Next, we note that the form (4.6) of the perturbation equations,

with V positive, gives rise to a positive, conserved energy for the system. That is,

defining

E[v](t) =
1

2
〈v̇, v̇〉+ 1

2
〈v,Uv〉, (4.41)

we have

E[v](t) ≥ 0 for all v;

= 0 ⇔ v = 0. (4.42)

Positivity follows from the decomposition (4.6), the definition of the adjoint operator

χ† and positivity of V:

E[v](t) =
1

2
‖v̇‖2 + 1

2
‖χv‖2 + 1

2
〈v,Vv〉, (4.43)

where the norm is that associated with the inner product. We note that the factor 1
2

appearing in (4.41) is conventional, to make the link with the conserved energy of a

particle in classical mechanics. Conservation of the energy corresponds to the fact that

d

dt
{E[v](t)} = 0. (4.44)

The derivation of this equation is straightforward, relying on the symmetry of V in

(4.10), and on the identity

〈v̇, χ†χv〉 = 〈χv̇, χv〉 = 1

2
(〈χv̇, χv〉+ 〈χv, χv̇〉) . (4.45)
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It follows that

E[v](t) = E[v](0) =: E0 for all t ≥ 0. (4.46)

Thus a second stability property holds: the system gives rise to a positive definite energy,

which is conserved by the evolution. In particular, no blow-up of the energy is possible.

4.4.3. Pointwise bounds. Conservation of the positive definite energy can be used to

show that the perturbation v is bounded throughout the evolution. The argument that

follows applies to those background solutions described by Propositions 2 and 3 above.

These solutions give rise to functions Z12,Z21,K1 and K2 with the properties required

for the arguments below.

It follows from (4.43) and (4.46) that

‖∂r∗v − Zv‖2 ≤ 2E0, 〈v,Vv〉 ≤ 2E0. (4.47)

We note that E0 is the energy of the initial configuration and that we have used (4.7). We

can deduce a pointwise stability result using these bounds. Slightly different arguments

are required in the soliton and black hole cases.

Solitons. In the case of solitonic dyons, we show that (4.47) enables us to obtain an

a priori bound on the H1 norm of v. Then Sobolev embedding leads to a pointwise

bound. To see this, we note that

‖v‖2 =
∫ r∗max

r∗=0

v21 + v22 dr∗

=

∫ r∗max

r∗=0

K−1
1 K1v

2
1 +K−1

2 K2v
2
2 dr∗

≤ C1
∫ r∗max

r∗=0

K1v
2
1 +K2v

2
2 dr∗

= C1〈v,Vv〉
≤ 2C1E0, (4.48)

where

C1 = max{ sup
r∈[0,∞)

K−1
i (r), i = 1, 2}, (4.49)

whose existence and positivity is guaranteed by the argument of Section 4.3 above, where

we show that the Ki are positive and continuous for r ∈ (0,+∞), and satisfy (4.35, 4.36).

Note that the Ki depend only on the background solution functions. Similarly,

‖Zv‖ ≤ C2‖v‖, (4.50)

where

C2 = max{ sup
r∈[0,∞)

|Za(r)|, a = 12, 21}. (4.51)
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Again, the argument of Section 4.3 shows that this term is finite - see (4.30 – 4.34).

Then

‖∂r∗v‖ = ‖∂r∗v − Zv + Zv‖
≤ ‖∂r∗v − Zv‖+ ‖Zv‖
≤
√

2E0 + C2
√

C1
√

2E0, (4.52)

where we have used (4.47, 4.48, 4.50). Thus we have an a priori bound for the H1 norm

‖v‖1 of v:

‖v‖21 := ‖∂r∗v‖2 + ‖v‖2 ≤ 2C2
3E0, (4.53)

where the positive constant C3, determined by C1 and C2, depends only on the

background solution. Then the Sobolev inequality [16]

|v(t, r)|2 ≤ 1

2

{

‖∂r∗v‖2 + ‖v‖2
}

(4.54)

yields a pointwise bound for the perturbation v:

|v(t, r)| ≤ C3
√

E0 for all t ≥ 0, r ∈ [0,+∞). (4.55)

We note that in these inequalities, | · | is the Euclidean norm in R
2, and so (4.55)

expresses a pointwise bound on the soliton perturbation v.

Black holes. A slightly different argument is required in the black hole case, due to the

different behaviour of the functionsKi, i = 1, 2 at the horizon. The general mathematical

argument is the same, relying on the Sobolev inequality to derive a pointwise bound

from a bound on the H1 norm. First, we note that

‖∂r∗v‖ ≤ ‖∂r∗v − Zv‖+ ‖Zv‖
≤
√

2E0 + C4(〈v,Vv〉)1/2

≤ (1 + C4)
√

2E0, (4.56)

where

C4 = max

{

sup
r∈[rh,∞)

Z2
21

K1

, sup
r∈[rh,∞)

Z2
12

K2

}

, (4.57)

which is positive and finite by virtue of the properties listed in (4.15 – 4.22). Of particular

importance is positivity of the Ki, and the finite limits of the relevant ratios at both the

horizon r = rh and at infinity.

Next, we introduce the positive matrix

W = V1/2 =

( √
K1 0

0
√
K2

)

, (4.58)

and we define

w = Wv. (4.59)
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Notice then

‖w‖2 = 〈v,Vv〉 ≤ 2E0. (4.60)

Also,

‖∂r∗w‖ ≤ ‖W∂r∗v‖+ ‖(∂r∗W)v‖
≤ C5‖∂r∗v‖+ C6‖w‖, (4.61)

where

C5 = max

{

sup
r∈[rh,∞)

√

K1, sup
r∈[rh,∞)

√

K2

}

, (4.62)

and

C6 = max

{

sup
r∈[rh,∞)

∣

∣

∣

∣

∂r∗
√
K1√

K1

∣

∣

∣

∣

, sup
r∈[rh,∞)

∣

∣

∣

∣

∂r∗
√
K2√

K2

∣

∣

∣

∣

}

=
1

2
max

{

sup
r∈[rh,∞)

∣

∣

∣

∣

µ0S0
K′

1(r)

K1

∣

∣

∣

∣

, sup
r∈[rh,∞)

∣

∣

∣

∣

µ0S0
K′

2(r)

K2

∣

∣

∣

∣

}

, (4.63)

both of which are positive and finite by virtue of (4.15 – 4.22). Then (4.56, 4.60, 4.61)

establish an a priori bound for the H1 norm of w, and the Sobolev inequality (4.54)

applied to w yields

|Wv| ≤ C7
√

E0, (4.64)

where the constant C7 is constructed from C4−C6, and depends only on the background

solution functions. Let us recall certain properties of the Ki established in Section 4.2

above: these functions are positive and continuous on r ∈ (rh,+∞), with finite limits

as r → +∞. They vanish at the horizon, with the asymptotic behaviour Ki = O(r−rh)
as r → rh. It follows from (4.58) and (4.64) that v is bounded on any interval of the

form [rh + ǫ,+∞) with ǫ > 0. The boundary condition limr→rh v = 0 ensures that this

pointwise bound extends to the entire interval [rh,+∞). This establishes a pointwise

bound for v(t, r) for all t ≥ 0.

5. Conclusions

In this paper we have proven the existence of dyonic soliton and black hole solutions

of four-dimensional su(2) Einstein-Yang-Mills theory in asymptotically anti-de Sitter

space which are stable under linear, spherically symmetric, perturbations of the metric

and gauge field. Although the static, dyonic, equilibrium solutions of the field equations

were found numerically over fifteen years ago [6], their stability has not been investigated

until now.

The perturbation equations for linear, spherically symmetric, perturbations of the

dyonic equilibrium solutions are much more complicated than those for purely magnetic

equilibrium solutions, which is perhaps why the stability question has not been explored

previously in the literature. In the purely magnetic case, with a suitable choice of



Stability of dyons in EYM 29

Lie algebra gauge, the perturbation equations decouple into two sectors, known as

the “sphaleronic” (odd-parity) and “gravitational” (even-parity) sectors [17]. This

decoupling of the equations for odd- and even-parity perturbations greatly simplifies

the analysis (see, for example, [5] for the su(2) case and [10] for the larger su(N)

gauge group). In the purely magnetic case this decoupling arises because the static

equilibrium solutions are both spherically symmetric and invariant under a parity

reflection x → −x of the space co-ordinates and the purely magnetic gauge field.

Therefore the perturbations which are odd and even under the parity reflection can

be considered separately. While the dyonic static solutions considered here are still

spherically symmetric, the gauge field is not invariant under a parity transformation

(see, for example, the discussion in section 2 of [3]) and so the perturbation equations

for the odd- and even-parity perturbations no longer decouple.

We have therefore taken an alternative approach in this paper, and considered

perturbations which are invariant under Lie algebra gauge transformations. The

perturbations of the metric functions can be found in terms of the gauge field

perturbations and hence eliminated. After some manipulation, the equations for the

remaining three gauge field perturbations can be cast into a pair of coupled Schrödinger-

like equations (4.39) involving just two of the perturbations (δκ and δω) and a single

constraint equation (3.42) which does not contain any time derivatives and determines

the third perturbation (δξ) once the other two are known. The lack of a dynamical

equation for δξ is due to a remaining diffeomorphism gauge freedom, corresponding to

a redefinition of the time co-ordinate.

In [11] we proved the existence of static, spherically symmetric, dyonic soliton and

black hole solutions of the su(2) EYM equations in adS for which the single magnetic

gauge field function ω0 has no zeros. These nodeless solutions exist for any value of the

negative cosmological constant Λ < 0, in a neighbourhood of the trivial (Schwarzschild-

adS) embedded solution. By analysing the afore-mentioned pair of coupled Schrödinger-

like perturbation equations, we have been able to prove that nodeless dyonic solutions

sufficiently close to the embedded trivial solution are stable under linear, spherically

symmetric, perturbations of the metric and gauge field. This extends the proof of the

existence of stable purely magnetic solutions [6, 7] to the dyonic case.

It would be interesting the explore the consequences of the existence of stable dyonic

black holes for the “no-hair” conjecture, in the form stated by Bizon [18], namely

Within a given matter model, a stable stationary black hole is uniquely

determined by global charges.

Combining the results of [10, 19], we have evidence that the above conjecture is true for

purely magnetic black holes in su(N) EYM in adS. To investigate whether the stable

dyonic black holes, whose existence we have proven here, satisfy the above conjecture,

appropriate electric and magnetic charges would need to be defined, and then one would

need to determine whether these charges uniquely characterize the black holes. We hope

that this question will be the subject of further research.
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Dyonic black hole solutions of EYM in adS have received a great deal of attention

recently in the literature when the event horizon, rather than being topologically

spherical as considered in this paper, has planar topology. In [20] it was found that

there is a second order phase transition from the embedded planar Reissner-Nordström-

adS solution to a black hole with a non-trivial dyonic YM condensate. There is now

a substantial literature on such planar dyonic EYM black holes as models of p-wave

holographic superconductors (see, for example, [21] for a selection of references, and

[22] for a recent review). The thermodynamic behaviour of these planar dyonic EYM

black holes has been studied extensively (this is the key aspect of their interpretation

as holographic superconductors) but little is known about their classical stability. At

least some purely magnetic topological black holes in su(2) [23] and su(N) [24] EYM

in adS have been proven to be stable when the magnetic gauge field functions have no

zeros. In this paper we have considered the stability of spherically symmetric dyonic

solutions of su(2) EYM, and a natural question would be to extend this to topological

black holes, or to a larger gauge group (the existence of dyonic solitons and black holes

in su(N) EYM in adS having recently been established [25]). However, our results in

this paper are for dyonic solutions where the magnetic gauge field function ω0 has no

zeros, whereas for the solutions of relevance for holographic superconductors ω0 has a

single zero, located on the adS boundary. This will complicate the classical stability

analysis and therefore we leave this as an open question for future investigation.
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