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A menagerie of hairy black holes

Elizabeth Winstanley

Abstract According to the no-hair conjecture, equilibrium black éehre simple
objects, completely determined by global charges whictbeameasured at infinity.
This is the case in Einstein-Maxwell theory due to beautifuiqueness theorems.
However, the no-hair conjecture is not true in general, &edetis now a plethora
of matter models possessing hairy black hole solutionisriote we focus on one
such matter model: Einstein-Yang-Mills (EYM) theory, amdtrict our attention to
four-dimensional, static, non-rotating black holes fangiicity. We outline some
of the menagerie of EYM solutions in both asymptotically #ad asymptotically
anti-de Sitter space. We attempt to make sense of this blalekzoo in terms of
Bizon’s modified no-hair conjecture.

1 The “no-hair” conjecture

Static, spherically symmetric, asymptotically flat, falimensional black hole so-
lutions of the Einstein equations in vacuum or coupled tolanteomagnetic field
are very simple (see, for example, [15] for a review). Therioehust be a mem-
ber of the Reissner-Nordstrom family, determined by jusi parameters. These
parameters correspond to the mass and charge of the blazkwitth are global
conserved quantities, measurable (at least in principlejrébm the black hole. A
natural question is whether this simplicity remains wheme®f the assumptions
leading to the electrovac uniqueness theorems are relsd¥eghrase this question
as the following conjecture, known as the “no-hair conjeet{23]:

A static, spherically symmetric, four-dimensional blaakénhis uniquely determined by
global charges.

Elizabeth Winstanley
Consortium for Fundamental Physics, The University of Sélef Hicks Building, Hounsfield
Road, Sheffield. S3 7RH United Kingdom, e-m&l:W nst anl ey@heffi el d. ac. uk


http://arxiv.org/abs/1510.01669v1
E.Winstanley@sheffield.ac.uk

2 Elizabeth Winstanley

In this note we explore this conjecture when the matter adrgéthe theory is
no longer simply an electromagnetic field. We consider Eins¥ang-Mills (EYM)
theory, which has been extensively studied over the pasityfeve years. This the-
ory is sufficiently complicated to have a rich space of blaglefsolutions, yet sim-
ple enough that it is possible to analytically prove at lesashe results concerning
these black holes.

2 su(N) Einstein-Yang-Mills theory

We consider the following action for four-dimensional Baia gravity, with a cos-
mological constanf\, coupled to amu(N) nonabelian gauge field:

S— %/d“x\/—_g[R—z/\—TrFaBF“ﬂ, (1)

whereR is the Ricci scalarF,g is the Yang-Mills (YM) gauge field strength and
we have set the gauge coupling equal to unity. Varying thiemagfl) gives the field
equations

1
RaB - éRgaB ‘|’AgaB = Tan
DGFaB:DGFaB—"[AGaFaB} :Oa (2)

whereA, is the YM gauge field potential and the stress-energy tenistireoY M
field is
Tog = TrFg F? —}g TrF) o FA° (3)
ap aA B 4 af Ao .

We consider static, spherically symmetric, black hole$wiite element
ds* = —v(r)S(r)?dt?+ [v(r)] *dr? +r2 (d6?+ sir? 6d¢?) , (4)

where the metric functions(r) andS(r) depend on the radial co-ordinatenly
andv(r) has the following form, in terms of an alternative metricétianm(r),
2m(r)  Ar?

r 3

v(iry=1- (5)

With a suitable choice of gauge, an appropriate static, iy symmetric ansatz
for thesu(N) YM gauge potential is [20]

Aq dx? = o7 dt + % (C—CH)dG—I—2 [(C+CM)sine+Dcosd]dgp,  (6)

where.o/, C andD areN x N matrices. The matrix7 depends o — 1 electric
gauge field functions(r); the matrixC depends ofN — 1 magnetic gauge field
functionswj(r) and the matriD is constant.
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There is now an extensive literature on the EYM system argdsthdrt note can-
not do justice to all aspects, nor make reference to all aglearticles. Instead we
focus on work of the author and collaborators and a few sateather papers. We
refer the reader to the reviews [29,] 31] for wider coveragéheffield and more
complete bibliographies.

Let us for the moment restrict attention to purely magnetinfigurations for
which all electric gauge field functiortg(r) vanish identically. We will return to
solutions with nontriviah; (r) in sectior{ 3.2. The first EYM black holes to be found
were asymptotically flat, with vanishing cosmological dam$ A = 0 and gauge
groupsu(2), and are known as “coloured black holels!' [9]. With this gaggeup,
the purely magnetic YM field is described by a single functayr), which has at
least one zero. The requirement that the space-time is deyinglly flat constrains
oy (r) to tend tot-1 asr — . As a result, the “coloured” black holes have no global
magnetic charge (see section]3.1). They are thereforetimglisshable at infinity
from a Schwarzschild black hole, although the metric eatdd the event horizon is
not the same. Thus the “coloured” black holes are countamgikes to the “no-hair”
conjecture as stated above. However, there is a very gems@t that all purely
magnetic, spherically symmetric, asymptotically flat(N) EYM black holes are
unstable[[1B]. Physically, it is natural to focus on stalgjeibrium configurations,
so we consider the following modification of the “no-hair'ngecture [10]:

For a fixed matter model,stable static, spherically symmetric, four-dimensional blackeho
is uniquely determined by global charges.

The “coloured” black holes do not contradict this conjeetdue to their instability.

If we include a positive cosmological constaht> 0 in the action[{lL), then “cos-
mic coloured black holes” exist [27] when the gauge groupui€?). Like their
asymptotically flat counterparts, these too are unstablé,sa the modified “no-
hair” conjecture holds, at least for the EYM model with> 0.

3 Asymptotically adSsu(N) EYM black holes

In this section we consider whether the modified “no-hairijeature also holds for
EYM black holes when the cosmological constans negative, and the space-time
is asymptotically anti-de Sitter (adS).

3.1 Purely magnetic black holes

Static, spherically symmetric, asymptotically adS blaciehsolutions ofsi(2)
EYM with a purely magnetic gauge field have been found nuratyil1,[12,30].
In addition, a very rich phase space of asymptotically a@8khole solutions has
been found when the largen(N) gauge group is considered [4, 5].
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These asymptotically adS solutions differ significantynfrthose in asymptoti-
cally flat space. Notably, there exist black hole solutiarsahich all the magnetic
gauge field functionsvj(r) have no zeros, provideld\| is sufficiently large[[6],
which have no counterpart in asymptotically flat space. €hesdeless solutions
are of particular interest because it can be proven thatat #ame of them are lin-
early stable under spherically symmetric perturbatiofs\fthen the gauge group
is su(N), the gauge field is described by— 1 independent functiors(r), corre-
sponding toN — 1 matter degrees of freedom. Since there are stable satufiion
any N, there is therefore no limit on the amount of stable gaugd filehir” with
which a black hole in adS can be dressed.

The question is then whether these stable EYM black holésfhs#ttie modified
“no-hair” conjecture, in other words, are stable, asympatly adS,su(N) EYM
black holes uniquely determined by global charges? To an#vig question, we
first define magnetic YM charges as follows|[16]

QX) = %f%/ (x/&) F) , (7)

whereF is the YM field strengthS. the two-sphere at space-like infiniy, is an
element of the Cartan subalgebra of the YM Lie algebra,.#nik the Lie algebra
Killing form. Sincesu(N) has rankN — 1, the definition[(I7) givesl — 1 independent
magnetic charge®;. The charge®); depend on the values of the magnetic gauge
field functionswj (r) asr — . For example, fosu(2), the single charg®, is given
by

Q1 =1-wf(w), (8)

and forsu(3), the two charges are
1 1
Q1=1—w12(°°)+§w22(°°), Q2:\/§[ —éwzz(m)} (9)

The asymptotically flat “coloured” black holes$mn(2) EYM must havew, — +1
asr — o in order that the space-time is asymptotically Minkowskikading to
vanishing magnetic charge. However, in asymptotically sppie-time, the bound-
ary conditions as — c imply that each magnetic gauge field functi@n(r) must
tend towards a constant, but do not constrain the valuesgéthonstants. In gen-
eral, asymptotically adS EYM black holes have nonzero magebargesQ;. In
[24], we presented numerical evidence and an analytic aegtithat at least a sub-
set of thesu(N) EYM black hole solutions which are linearly stable are ueigu
characterized by the cosmological constAnblack hole mas# (which is the fi-
nite limit asr — o of the functionm(r) in the metric[(b)) and the set &f— 1 global
nonabelian magnetic charg@s.

Therefore stable black holessn(N) EYM in adS, while possessing potentially
unlimited amounts of stable gauge field hair, satisfy the ifremi“no-hair” conjec-
ture as they are uniquely determined by global charges.
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3.2 Dyonic black holes

So far we have considered only purely magnetic gauge fieldigumations. For
su(2) EYM in asymptotically flat space-time, nontrivial black Bslmust have a
purely magnetic gauge field [II7,118]; the only black hole Sotuhaving a nontriv-
ial electric gauge field component being the embedded abRkgssner-Nordstrom
solution. This is no longer the case when the space-timg/mptotically adS.

Dyonic (that is, having nontrivial electric and magnetiaiga field components)
black hole solutions ofu(2) EYM in adS were found numerically soon after the
corresponding purely magnetic black holes [11, 12]. Thémsekiholes have a single
electric gauge field functioly (r) and a single magnetic gauge field functiofir).
The electric gauge field functidm (r) is always nodeless, and there exist solutions
for which the magnetic gauge field function(r) also has no zeros [11,112,]21]. As
in the purely magnetic case, at least a subset of these sdautions are stable
under linear, spherically symmetric perturbations whtefis sufficiently large[[2P].

Enlarging the gauge group #u(N), a rich phase space of dyonic black hole
solutions is found[25]. As with theu(2) solutions, the electric gauge field functions
hj(r) always have no zeros, and, for sufficiently latge, there are solutions for
which the magnetic gauge field functioas(r) are all nodeles$[3]. The stability of
dyonic black holes with the larger gauge group remains am gpestion, but one
might conjecture the existence of stable dyonic black h@desufficiently large
|/A|. The question of whether these dyonic black holes are uhjigimracterized
by global charges also remains uninvestigated at the timeitihg.

4 Topological black holes

In four-dimensional adS, black hole event horizons do noessarily have spheri-
cal topology, which is the only possibility in asymptotigelat space-time. We now
consider statieu(N) EYM black holes in adS having event horizons with nonspher-
ical topology. In this case the metric takes the form

ds® = —v(r)S(r)?dt>+ [v(r)] "dr?+r? (d6?+ f2(6) d¢?) (10)
and the metric functiom(r) is modified to be

2m(r)  Ar?

v(r)=k— ; 3

(11)

In (I0), the form of the functiori(6) depends on the constdnas follows:

sing, k=1,
fk(@) =10, k=0, (12)
k
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wherek = 1 denotes spherical event horizon topology; O for planar event hori-
zon topology, and fok = —1 the event horizon is a surface of constant negative
curvature. For topological black holes wikh# 1 the gauge potential ansalz (6) is
generalized td’[1, 28]

dfy(6)
de

Aadx“:ddt+:—2L(C—CH)d9—l—2 (C+C") f(6)+D do.  (13)

Purely magnetic topological black holes with gauge grew(®) were found in
[28]. All the solutions are such that the single magneticggafield functionc (r)
has no zeros ik # 1. This is in contrast to the situation whkr= 1 and the black
hole is spherically symmetric, when, as described in seldi), there exist solutions
for which (1) is nodeless, but there are also black holes for whigi) has zeros.

Enlarging the gauge group ta(N), it is no longer the case that all the magnetic
gauge field functionsvj(r) are nodeless for purely magnetic configuratids [8],
although it can be shown for any that there are purely magnetic black holes for
which all thewj(r) have no zeros [1], ifA| is sufficiently large.

Dyonic topological black holes also exist. Those with plaegent horizons
(k = 0) have attracted great attention in the recent literatarmadels ofp-wave
holographic superconductors (s€el[14] for a review andreafses). Planar black
holes withsu(2) gauge group have been found numerically [19], as have thaitc
terparts with the largesu(N) gauge group[26]. For botk= 0 andk = —1, there
exist topological dyonic black hole solutions for which timagnetic gauge field
functionswj(r) have no zeros, for any value Nfand|A| sufficiently large([3].

The stability of topological EYM black holes has been inigeted thus far only
in the purely magnetic case. As might be anticipated frondtkeussion in section
[33, there exist nodeless purely magnetic topologicalkdfextes insu(N) EYM in
adsS are which stable under linear perturbatibhs [2, 28].téreor not it is possible
to uniquely characterize these stable topological bladkshby global charges at
infinity has yet to be investigated.

5 Understanding the EYM adS black hole menagerie

In this note we have briefly reviewed some aspects of theal@eizoo of hairy black
hole solutions obu(N) EYM in adS, restricting our attention to four-dimensional,
static, spherically symmetric and topological black hol&s have considered solu-
tions with a purely magnetic gauge field, and also dyonicklasles whose gauge
field has nontrivial electric and magnetic components. #literature, the existence
of nontrivial black hole solutions has been proven forN\liwith the rich solution
space explored numerically for smaller valuesNofGiven the abundance of so-
lutions, we have explored whether these black holes satisfynodified “no-hair”
conjecture, namely whether stable black holes in this madaliniquely determined
by global charges.
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Table 1 Summary of theu(N) EYM adS black hole menagerie

Existence of stable Characterization by

solutions? global charges?
Spherically symmetric, purely magnetic YEs$ [7] Yesl[24]
Spherically symmetric, dyonic Ye4§22] ?
Topological, purely magnetic Yes|[2] ?
Topological, dyonic ? ?

2 results only forsu(2)

In table[d, we have listed the different types of solutionssidered in this note,
and summarized what is known about their stability and dtar&ation by global
charges. A question mark ? means that this aspect has yeintedstigated in the lit-
erature. Most is known about spherically symmetric, puragnetic black holes,
for which there is analytic and numerical evidence that asti@ subset of stable
hairy black holes are characterized by global chargesfpNsand|A | sufficiently
large [24]. Recently the existence of stable topologicatklholes with purely mag-
neticsu(N) gauge field has been provén [2], but it is not known whethesettoan
be characterized by global charges. For dyonic black holgsmnentrivial electric
and magnetic gauge field components, rather less is knowtin,the existence of
stable spherically symmetric dyonic black holes witl{2) gauge group only re-
cently proven[[22]. Characterization by global chargeshim dyonic case remains
an open question.

To conclude, stable black hole solutionssafN) EYM theory in adS can be
arbitrarily complicated, in the sense that they are dressttdgauge field hair with
unbounded numbers of degrees of freedom. However, work teiddicates that
despite their complexity, these black holes can be unigeciedyacterized by global
charges defined at infinity. Hence the modified “no-hair” echjre [10] seems to
be valid for black holes iau(N) EYM in adS.
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