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Supplementary Appendix A10

Here, we explain how to move from a description of the 1D system’s dynamics in discrete space11

and time (Equations 1 and 3 from the Main Text) to the continuum PDE model (Equations 412

and 5 from the Main Text).13

A.1 The conflict zone14

Let Ui(n, s) be the probability of agent i being at lattice site n at time-step s and 〈Ki(n, s)〉15

be the expectation of Ki(n, s). Then, taking expectations on each side of Equation (1) from16

the Main Text, and neglecting covariances (i.e. taking a mean-field approximation), we find17

〈Ki(n, s+ 1)〉 =(1− µτ)ρτ,lU1(n, s)U2(n, s)18

+ [1− ρτ,lU1(n, s)U2(n, s)]Ui(n, s)[1− (µ+ βl)τ ]〈Ki(n, s)〉19

+ [1− ρτ,lU1(n, s)U2(n, s)][1− Ui(n, s)](1− µτ)〈Ki(n, s)〉20

=(1− µτ)ρτ,lU1(n, s)U2(n, s)21

+ [1− ρτ,lU1(n, s)U2(n, s)]〈Ki(n, s)〉[1− µτ − Ui(n, s)βlτ ] (1)22

23

Now we take the continuum limit, using x = nl and t = sτ to denote continuous space and24

time respectively. Let ki(x, t) be the probability that position x is part of the conflict zone at25

time t and ui(x, t) be the position probability density for agent i at time t. Taking the limit as26

l, τ → 0 and βl, n, s → ∞ such that x = nl, t = sτ , ρ = ρτ,ll
2/τ , and β = lβl remain constant,27

we arrive at the following differential equation describing the evolution of the conflict zone28

∂ki
∂t

= ρu1u2(1− ki)− ki(µ+ uiβ), (2)29

30

dropping the explicit dependence of ki and ui on x and t for ease of notation.31
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A.2 A model of agent movement32

To find a continuous space-time description of agent movement, we start by using the movement33

kernel from Equation (3) from the Main Text to describe how the probability distribution,34

Ui(n, s) of agent i evolves over time. This is done via the following master equation35

Ui(n, s+ 1) =
∑

n′∈Ω

Ui(n
′, s)fi(n|n

′, h, d)36

=
1

2
Ui(n− 1, s)

[

1 + qK̄i(n+ 2d, s|h)− qK̄i(n, s|h)
]

37

+
1

2
Ui(n− 1, s)

[

1− qK̄i(n, s|h) + qK̄i(n− 2d, s|h)
]

. (3)38

39

Equation (3) rearranges to give the following equation40

Ui(n, s+ 1)− Ui(n, s)

τ
=

l2

2τ

{

Ui(n+ 1, s)− 2Ui(n, s) + Ui(n− 1, s)

l2
41

+ 4dq
1

2l

[

Ui(n+ 1, s)
K̄i(n+ 2d, s|h)− K̄i(n, s|h)

2dl
42

− Ui(n− 1, s)
K̄i(n, s|h)− K̄i(n− 2d, s|h)

2dl

]

}

. (4)43

44

As in section A.1, we now take the limit as l, τ → 0 and n, s, h → ∞ such that x = nl, t = sτ ,45

D = l2/(2τ) and δ = lh are kept constant at non-zero, finite values. We also let c = 4dqD.46

This leads to the following advection-diffusion equation47

∂ui
∂t

= D
∂2ui
∂x2

+ c
∂

∂x

[

ui
∂k̄i
∂x

]

, (5)48

49

where50

k̄i(x, t) =
1

2δ

∫ δ

−δ

ki(x+ z, t)dz. (6)51

52

For a detailed explanation of the limit result K̄i(n, s) → k̄i(x, t), see Potts and Lewis (2015).53
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We model agents as moving on the interval [0, L]. Therefore we need to impose a boundary54

condition on Equation (5). A biologically realistic choice is a zero-flux boundary condition,55

meaning that the migration rate into [0, L] is equal to the migration rate out of [0, L]. This is56

given as follows57

[

D
∂ui
∂x

+ cui
∂k̄i
∂x

] ∣

∣

∣

∣

x=0

=

[

D
∂ui
∂x

+ cui
∂k̄i
∂x

] ∣

∣

∣

∣

x=L

= 0. (7)58

59

Since ui(x, t) is a probability density function, the initial conditions must integrate to 1 over60

the spatial domain. In other words61

∫ L

0

ui(x, 0)dx = 1. (8)62

63

Equations (7) implies that the time-derivative of
∫ L

0
ui(x, t)dx is zero. This, combined with64

Equation (8), implies that65

∫ L

0

ui(x, t)dx = 1, (9)66

67

for any t ≥ 0. To account for the boundaries in the spatial averaging (Equation 6), we need to68

modify Equation (6) as follows69

k̄i(x, t) =































1

δ+x

∫ δ

−x
ki(x+ z, t)dz if 0 < x < δ,

1

2δ

∫ δ

−δ
ki(x+ z, t)dz if δ < x < L− δ,

1

δ+L−x

∫ 1−x

−δ
ki(x+ z, t)dz if L− δ < x < L.

(10)70

71

Then Equations (7), (9) and (10) are equivalent to Equations (7), (8) and (6) from the Main72

Text, respectively.73
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Supplementary Appendix B74

Here we give some mathematical analysis of the dispersion relations shown in Figure 1 from75

the Main Text. The dispersion relation plots the dominant eigenvalues. For each κ, this is76

the value of σ with the greatest real part such that det(A − σI) = 0. To determine whether77

patterns may form, we need to find out the parameter values for which there is some pair (κ, σ),78

with Re(σ) > 0, that solves det(A− σI) = 0. The function det(A− σI) is given as follows79

det(A− σI) = a4σ
4 + a3σ

3 + a2σ
2 + a1σ + a0,80

a4 = 1,81

a3 = 2

(

m+ b+ 1

a
+ κ2

)

,82

a2 =
(m+ b+ 1)2

a2
+

4κ2(m+ b+ 1)

a
+ κ4 +

2γκm sin(κδ)

δa(m+ b+ 1)
,83

a1 =
2κ2(m+ b+ 1)2

a2
+

2κ4(m+ b+ 1)

a
+

2γκ3m sin(κδ)

δa(m+ b+ 1)
+

2γκm sin(κδ)

δa2
,84

a0 =
δ2κ4(m+ b+ 1)4 + 2γδκ3m(m+ b+ 1)2 sin(κδ)− γ2κ2b(b+ 2m) sin2(κδ)

δ2a2(m+ b+ 1)2
.

(11)

85

86

The Routh-Hurwitz formulae (Routh, 1877; Hurwitz, 1895) give the following necessary and87

sufficient criteria for the real parts of σ to be below zero88

ai > 0, for all i = 0, 1, 2, 3, 4,89

a3a2 > a4a1,90

a3a2a1 > a4a
2
1 + a23a0. (12)91

92

In fact, for all the plots in Figure 1 from the Main Text, the dominant eigenvalues are real.93

In such cases, σ ∈ R≤0. Therefore it makes sense to analyse the places where σ = 0. Here,94

equation (11) becomes det(A) = a0, so we look for the places where a0 > 0.95

First note that we cannot have κ = 0 if a0 > 0. Dividing a0 by κ2, and noting that the96
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denominator of a0 is positive, we have97

δ2κ2(m+ b+ 1)4 + 2γδκm(m+ b+ 1)2 sin(κδ)− γ2b(b+ 2m) sin2(κδ) > 0. (13)98

99

This rearranges to give the following (using the fact that κ, δ 6= 0)100

−
(m+ b+ 1)2

γ(b+ 2m)
<

sin(κδ)

κδ
<

(m+ b+ 1)2

γb
, (14)101

102

where the right-hand inequality is only valid when b 6= 0.103

In the case b = 0, examined in Figure 1f from the Main Text, the only valid inequality from104

(14) is105

sin(κδ)

κδ
> −

(m+ 1)2

2γm
. (15)106

107

Since the minimum of sin(x)/x is −2/(3π), obtained where x = 3π/2, we only obtain values108

of κ for which Equation (15) holds when (m + 1)2/(2γm) > 2/(3π). Away from this, there109

may exist eigenvalues with non-negative real parts. In other words, patterns may only form if110

(m+ 1)2/(2γm) < 2/(3π).111

The set of κ for which Equation (15) fails to hold (i.e. patterns may form) is a subset of112

the set S = {κ : sin(κδ) < 0}. Since S = {κ : (2n + 1)π < κδ < (2n + 2)π n ∈ Z}, the lowest113

possible wavenumbers at which patterns may form if b = 0 (if they form at all) must be within114

the range κ ∈ (π/δ, 2π/δ).115

Patterns that correspond to territories (i.e. with u1∗(x) concentrated mainly on the left-116

hand side of [0, 1] and u2∗(x) on the right-hand side) occur in the range of wavenumbers κ ∈117

[π, 2π]. Hence δ must be close to 1 for such territorial patterns to form. In other words, agents118

must respond to a spatial averaging across almost the entire terrain for territorial patterns to119

form when b = 0. This is likely to be biologically unrealistic, so we conclude that b > 0 is120

necessary for territorial patterns to form in realistic scenarios.121
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Supplementary Appendix C122

A feature of the plots in figure 1f from the Main Text is that patterns (albeit biologically123

unrealistic ones) may form for a set of wavenumbers that is bounded below by a non-zero value124

of κ. Here we examine the nature of the bifurcations suggested by figure 1f from the Main125

Text. Bifurcations occur when the following all hold126

det(A− σI) = 0, (16)127

Re(σ′) ≤ Re(σ), for all eigenvalues σ′ (17)128

Re(σ) = 0, (18)129

σ is a local maximum, (19)130

131

where A is as in Equation (21) from the Main Text. Condition (16) just says that σ is an132

eigenvalue, and (17) that σ is the dominant eigenvalue. Condition (18) says that σ lies on the133

horizontal axis of the dispersion relation curve (e.g. Figure 1 from the Main Text). Together134

with conditions (16-18), Condition (19) means that σ is at the bifurcation point between135

stability and instability of the constant solution to Equations (10-13) from the Main Text.136

The full expression for det(A− σI) is given in Equation (11). Differentiating this by κ and137

setting dσ/dκ = 0 (to partially fulfill Condition 19), we have138

0 =4κσ3 +

{

4κ3 + 8κ
m+ b+ 1

a
+

2γm

δa(m+ b+ 1)
[sin(κδ) + κδ cos(κδ)]

}

σ2
139

+

{

8κ3
m+ b+ 1

a
+ 4κ

(

m+ b+ 1

a

)2

+
4γκ2m sin(κδ)

aδ(m+ b+ 1)
140

+

[

2γκ2m

aδ(m+ b+ 1)
+

2γm

a2δ

]

[sin(κδ) + κδ cos(κδ)]

}

σ141

+

{

4κ3
(

m+ b+ 1

a

)2

+
4γκ2m sin(κδ)

a2δ
−

2κγ2 sin2(κδ)(2mb+ b2)

a2δ2(m+ b+ 1)2
142

−
γ2κ2 sin(2κδ)(2mb+ b2)

a2δ(m+ b+ 1)2
+

2γmκ2

a2δ
[sin(κδ) + κδ cos(κδ)]

}

. (20)143

144
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Fig. 1. Bifurcation points when b = 0. Parameter values for which the system described
by Equations (10-13) from the Main Text goes through a bifurcation, in the case when b = 0,
γ = 100, and a = 0.1. The value of m is determined by the other parameters (see
Supplementary Appendix C) and is equal to 0.024, to two significant figures, for each of the
pairs (κ, δ) plotted here. Insets show the dispersion relations for δ = 0.1, 0.5, 1 from top to
bottom, respectively.
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We wish to show that the bifurcation points implied by Figure 1f from the Main Text occur145

where Im(σ) = 0, so that the unstable range does not have oscillatory solutions. In other146

words, the Turing bifurcations are not also Hopf bifurcations [see e.g. Baurmann et al. (2007)147

for explanation of this terminology]. In this case, Equation (18) means that σ = 0, so we148

require the following to hold149

0 =4κ3(m+ b+ 1)2 +
4γκ2m sin(κδ)

δ
−

2κγ2 sin2(κδ)(2mb+ b2)

δ2(m+ b+ 1)2
150

−
γ2κ2 sin(2κδ)(2mb+ b2)

δ(m+ b+ 1)2
+

2γmκ2

δ
[sin(κδ) + κδ cos(κδ)] . (21)151

152

Notice that Equation (21) is independent of a, which explains why all the dispersion relations153

in Figure 1d from the Main Text cross the horizontal axis at the same point.154

One (trivial) solution to Equation (21) is κ = 0. Away from this, and in the case b = 0,155

pertinent to Figure 1f from the Main Text, Equation (21) becomes156

4κδm2 + [6γ sin(κδ) + 2γκδ cos(κδ) + 8κδ]m+ 4δκ = 0. (22)157

158

To apply condition (16), we use Equation (11) and set b = 0 and σ = 0. Assuming κ, γ, δ,m 6= 0,159

this rearranges to give160

sin(κδ)

κδ
= −

(m+ 1)2

2γm
. (23)161

162

Bifurcation points then arise when (i) both Equations (22) and (23) are satisfied, (ii) the163

turning point on the graph of Re(σ) against κ is a maximum, (iii) there are no other eigenvalues164

with larger real part. Since the aim is to understand Figure 1f from the Main Text, we fix165

γ = 0 and a = 0.1 then search for values of κ and m that satisfy Equations (22) and (23)166

for δ = 0.01, 0.02, . . . , 1. Conditions (ii) and (iii) are then checked numerically. The resulting167

curve of κ versus δ is shown in Figure 1.168



10

Supplementary Appendix D169

The numerical algorithm from section 3.2 from the Main Text uses a forward-difference ap-170

proximation for time and central difference for space. The interval [0, 1] is divided into 100171

equal and non-overlapping sections and iterations are performed every 10−5 time steps. The172

algorithm is stopped when all the values of u1(x, t) and u2(x, t) are increasing by less than 10−8
173

each iteration. At time t = 0, u1(x, 0) = 100 for x ∈ [0.25, 0.26] and u1(x, 0) = 0 elsewhere.174

Also, u2(x, 0) = 100 for x ∈ [0.75, 0.76] and u1(x, 0) = 0 elsewhere.175
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Supplementary Appendix E176

Here, we examine whether there are non-constant solutions to Equations (22-25) from the Main177

Text. We prove mathematically that they do not exist when m = 0 and give numerical evidence178

to show that this holds for m > 0.179

Equations (22-25) from the Main Text lead to the following equations for the steady-states180

ui∗ and ki∗ of ui and ki respectively181

0 = u1∗u2∗(1− ki∗)− ki∗(m+ bui∗), (24)182

0 =
dui∗
dx

+ γui∗
dki∗
dx

. (25)183

184

Henceforth in this section we drop the asterisks and, unless necessary, drop the explicit depen-185

dence upon x for ease of notation. Equation (24) implies that186

ki =
u1u2

m+ bui + u1u2
. (26)187

188

Differentiating equation (26) with respect to x, rearranging so that dki/dx is the subject, and189
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plugging the result into equation (25) gives the following190

Bu̇ = 0,191

B =







b11 b12

b21 b22






,192

b11 = (m+ bu1 + u1u2)
2 + γu1u2(m+ bu1 + u1u2)− γu21u2(b+ u2),193

b12 = γu21(m+ bu1 + u1u2)− γu31u2,194

b21 = γu22(m+ bu2 + u1u2)− γu1u
3
2,195

b22 = (m+ bu2 + u1u2)
2 + γu1u2(m+ bu2 + u1u2)− γu1u

2
2(b+ u1),196

u̇ =







du1/dx

du2/dx






. (27)197

198

E.1 The case m = 0199

First, we analyse Equations (27) exactly in the case m = 0. In this case, we have200

b11 = u21(b+ u2)
2,201

b12 = γbu31,202

b21 = γbu32,203

b22 = u22(b+ u1)
2, (28)204

205

Then det(B) = 0 means that u1 = 0 or u2 = 0 or206

(b+ u2)
2(b+ u1)

2 − γ2b2u1u2 = 0. (29)207

208
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We claim that the Equation (29) has no real-valued solutions. Placing u1 as the subject, we209

have210

u1 =
γ2b2u2

2(b+ u2)2
− b±

√

−D1D2D3,211

D1 =
γ2b3u2

4(b+ u2)4
,212

D2 =

[

u2 +
(8− γ2)b

8
+

b
√

(8− γ2)2 − 64

8

]

,213

D3 =

[

u2 +
(8− γ2)b

8
−

b
√

(8− γ2)2 − 64

8

]

. (30)214

215

D1 is always real and positive, by construction. If (8− γ2)2 − 64 ≥ 0 then D2 and D3 are real216

and positive, so the solutions for u1 are not real. If (8− γ2)2 − 64 < 0 then217

D2D3 =

(

u2 +
(8− γ2)b

8

)2

+
b2

64
[64− (8− γ2)2]. (31)218

219

Since 64− (8− γ2)2 > 0, the right-hand side of Equation (31) is positive. Hence D1D2D3 > 0220

so solutions for u1 are not real, as claimed. Thus either u1 = 0, u2 = 0 or u̇ = 0, so that when221

m = 0, the only classical solutions to Equation (27) are constant.222

E.2 The case m > 0223

Here, we analyse the phase plane of Equation (27) to give evidence for lack of non-constant224

steady-state solutions. Notice that either det(B) = 0 or u̇ = 0. In the latter case, the arrows225

on the phase portrait denoting u̇ vanish. We therefore plot the curves det(B) = 0 (Figure 2)226

for the same sets of parameter values (b, γ,m) as examined in Figure 2 from the Main Text.227

We overlay arrows denoting the possible directions of u̇ at various points on these curves, were228

classical solutions to exist.229

Notice that these arrows are almost never tangential to the curve. Assuming that this230

observation is true in general, the implication is that if a solution to Equation (27) has a point231
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Fig. 2. Phase portraits in the case δ → 0. The curves denote the places where
du1/dx, du2/dx 6= 0. The arrows denote the directions of the vector (du1/dx, du2/dx) at
certain places on these curves.

x where [u1(x), u2(x)] is on the curve det(B) = 0 then there is some c such that the points232

[u1(x ± c′), u2(x ± c′)] do not lie on the curve det(B) = 0, for any 0 < c′ < c. In other words233

the curves u1 and u2 must have zero gradient almost everywhere (i.e. except possibly on a set234

of measure zero). No non-constant continuous functions have this property. It follows that any235

classical solution to the system in Equation (27) must be constant, as long as the observations236

from Figure (2) hold in general.237
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Supplementary Figures238

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Fig. 3. Effect of increased time on territorial patterns in 2D IBM. In all of these
plots, d = 5, h = 5, q = 3, ρ = 1, β = 0.1 and µ = 0. The left-hand panel displays utilisation
distributions found by averaging over 100,000 timesteps (after 100,000 burn-in, see Main
Text). The middle panel uses 500,000 timesteps. The right-hand panel uses 1,000,000 time
steps. Though some small change is observed, the territories are qualitatively similar after
100,000 timesteps.
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Fig. 4. Effect of increasing q on territorial patterns in 2D IBM. In all of these plots,
d = 5, h = 5, ρ = 1, β = 0.1 and µ = 0. The left-hand plot has q = 1, the middle has q = 2,
and in the right-hand q = 3. As q is increased, we go from no clear territories to well-defined
territories.
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Fig. 5. Effect of increasing spatial averaging on territorial patterns in 2D IBM. In
all of these plots, q = 3, ρ = 1, β = 0.1 and µ = 0. The left-hand plot has d, h = 1, the middle
has d, h = 2, and in the right-hand d, h = 5. As d and h decrease, the territorial structure
becomes more fragmented. This concurs with the observation from figure 1c from the Main
Text that lower spatial averaging means that instability is greatest at higher wave numbers.



17

References239

Baurmann, M., T. Gross, and U. Feudel. 2007. Instabilities in spatially extended predator–prey240

systems: spatio-temporal patterns in the neighborhood of turing–hopf bifurcations. Journal241

of Theoretical Biology, 245:220–229.242

Hurwitz, A. 1895. Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit243

negativen reellen theilen besitzt. Mathematische Annalen, 46:273–284.244

Potts, J. R. and M. A. Lewis. 2015. Territorial pattern formation in the absence of an attractive245

potential. Journal of Mathematical Biology, 72:25–46.246

Routh, E. J. 1877. A treatise on the stability of a given state of motion: particularly steady247

motion. Macmillan and Company.248


