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Geological records from the Antarctic margin offer direct evidence
of environmental variability at high southern latitudes and provide
insight regarding ice sheet sensitivity to past climate change. The
early to mid-Miocene (23 to 14 million years ago) is a compelling
interval to study as global temperatures and atmospheric CO,
concentrations were similar to those projected for coming cen-
turies. Importantly, this time interval includes the Miocene Climatic
Optimum (MCO), a period of global warmth during which average
surface temperatures were 3 to 4°C higher than today. Miocene
sediments in the AND-2A drill core from the Western Ross Sea,
Antarctica indicate that the Antarctic Ice Sheet (AIS) was highly
variable through this key time interval. A multi-proxy dataset de-
rived from the core identifies four distinct environmental “motifs”
based on changes in sedimentary facies, fossil assemblages, geo-
chemistry, and paleotemperature. Four major disconformities in
the drill core coincide with regional seismic discontinuities and
reflect transient expansion of grounded ice across the Ross Sea.
They correlate with major positive shifts in benthic oxygen isotope
records and generally coincide with intervals when atmospheric
CO, concentrations were at or below pre-industrial levels (~280
ppm). Five intervals reflect ice sheet minima and air temperatures
warm enough for substantial ice mass loss during episodes of high
(~500 ppm) atmospheric CO,. These new drill core data and asso-
ciated ice sheet modelling experiments indicate that polar climate
and the AIS were highly sensitive to relatively small changes in
atmospheric CO, during the early to mid-Miocene.

Antarctica | Ice Sheet | Climate Optimum | RossSea | Miocene

Introduction

Knowledge regarding Antarctic Ice Sheet (AIS) response to
warming climate is of fundamental importance due to the role
ice sheets play in global sea level change. Paleoenvironmental
records from Earth’s past offer a means to examine AIS variability
under past climatic conditions that were similar to today and
those projected for the next several decades (1, 2). In this respect,
the early to mid-Miocene is a compelling interval to study as
proxy reconstructions of atmospheric CO», albeit uncertain, sug-
gest that concentrations generally varied between pre industrial
levels (PAL=280ppm) and values at or above 500ppm (3-9). Ad-
ditionally, global mean surface temperature during peak Miocene
warmth was up to 3 to 4 degrees higher than today (10), similar to
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‘best-estimate’ temperatures expected by 2100 under the highest
projected greenhouse gas concentration pathway (RCP 8.5) (1, 2).
Finally, Miocene geography was similar to today (11) and major
circum-Antarctic oceanic and atmospheric circulation patterns
that dominate the modern Southern Ocean were well established
(12, 13).

Much of our understanding regarding AIS history through
the early to mid-Miocene comes from far field records from
deep ocean basins. Benthic oxygen and carbon isotope proxies
for global paleoclimate suggest that early to mid-Miocene climate
and glacial environments were highly variable (14-19). These
records include evidence for major transient glacial episodes and
sea level fall, intervals of relative ice sheet stability, and periods
of climatic warmth with major ice sheet retreat and sea level rise.
Furthermore, reconstructions from sedimentary sequences on the
Marion Plateau, offshore NE Australia (20), and New Jersey
margin (21) suggest sea level varied by up to 100 m. Episodes of
sea level maxima (+40 m) suggest loss of Antarctica’s marine-

Significance

New information from the AND-2A drill core and a comple-
mentary ice sheet modelling study, show that polar climate
and Antarctic Ice Sheet (AIS) margins were highly dynamic
during the early to mid-Miocene. Changes in extent of the
AlS inferred by these studies suggest that high southern lati-
tudes were sensitive to relatively small changes in atmospheric
CO, (between 280 and 500 ppm). Importantly, reconstructions
through intervals of peak warmth indicate that the AIS re-
treated beyond its terrestrial margin under atmospheric CO,
conditions that were similar to those projected for the coming
centuries.
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Fig. 1. A. Map showing Ross Sea area (inset) and AND-2A drill site (white box indicates approximate area for schematic reconstructions shown below). B.
Stratigraphic summary of lower 925 m of AND-2A (214.13 to 1138.54 mbsf) showing 61 sedimentary cycles. Glacial proximity curve tracks relative position of
the grounding line through ice-contact (1), ice-marginal (IM), ice-proximal (P), ice-distal (D) and open marine (O) environments. Continuously acquired data
sets include magnetic susceptibility and Niobium (Nb) XRF-CS counts. Chemical Index of Alteration (CIA) (curve and bar) indicates arid (< 50, blue) and less
arid (> 60, green) conditions. Intervals of peak palynomorph concentration shown by orange boxes. Foraminifera assemblages include cold water/ice marginal
benthic species (red circles) and cool water planktonic species (blue circles). Blue bars = sea-ice diatoms. M=intervals with well-preserved molluscs. Sea water
temperature estimates based on TEXgGL(bIack circles) and A47 (blue circles, open = less well preserved specimens). Environmental Motif curve based on the
proxy environmental data set. C. Schematic reconstructions of region around AND-2A showing likely conditions for each Environmental Motif (I-1V).

based ice sheets that, at present, occupy much of West Antarctica  loss of mass from Antarctica’s terrestrial ice sheets. Episodes
and large portions of East Antarctica (22), as well as substantial
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Fig. 2. Mid-Miocene section of AND-2A (557.35 to 214.13 mbsf) correlated to the Geomagnetic Polarity Timescale (46) and selected data sets. See Fig. 1 caption
for description of AND-2A data. Letters A-Q indicate position of key age model constraints (see Sl text, Fig. 52, and Table S1 for details). Benthic 5'80 and
53¢ isotope data with moving averages (thick lines) from IODP Sites U1338 and U1337 (14, 15). Mi events after (19) and E3 oxygen isotope excursion after
(16). CM = carbon isotope maxima (18, 39). Asterisks = carbon minima events and intervals of major shoaling of the carbonate compensation depth in the
eastern equatorial Pacific (15). Bottom water temperature reconstructions from (17) with 30 pt spline smooth (red line)(note: age model from (17) adjusted
by ~+50kyrs for section between 15.5 and 17Ma). Sea level data from the Marion Plateau (20). Proxy atmospheric CO, data include boron isotopes (3-5) (blue
circles), alkenones (3, 6) (black triangles), stomata (7) (green diamonds), and paleosols (orange squares). Thick grey line = 21 point weighted average. Grey
shaded ‘boxes’ = time missing in unconformities; MISA (blue dashed line) = maximum ice sheet advance (EMI); blue shaded ‘zones’ = cold polar intervals (EMII);
PW (green dashed line) = Peak Warm intervals (EMIV). Orbital eccentricity and obliquity from (48). Ice sheet simulations after (25).

of maximum sea level fall (up to -60m) suggest that the AIS
occasionally grew and advanced across continental shelves.

Geological records proximal to Antarctica’s coastal margin
provide direct evidence of past ice sheet variability in response to
changing global climate. The AND-2A drill core, a 1,138 meter-
long stratigraphic archive of climate and ice sheet variability from
the McMurdo Sound sector of the western Ross Sea (77°45.488’S,
165°16.613'E), was recovered by drilling from an ~8.5 m thick
floating sea-ice platform in 380 m of water, located ~30 kilome-
tres off the coast of Southern Victoria Land (SVL) (Fig. 1A) (23).
The drill core comprises lower Miocene to Quaternary glacial-
marine strata deposited in the steadily subsiding Victoria Land
Basin (VLB)(24). Paleogeography was broadly similar to today
although continental shelves in the Ross and Weddell seas were
likely shallower (SI text). Recovered core sediments, and proxies
they contain, allow us to assess past ice sheet dynamics along a
coastal margin influenced by ice flowing from East Antarctica
and across the West Antarctic continental shelf. Through analysis
of an integrated proxy environmental data set we derive a new
environmental reconstruction, and combine this with a suite of
global environmental data to establish a history of AIS response
to global climate events and episodes during the early to mid-
Miocene. This integrated data set allows us to evaluate key drivers
of high latitude climate and ice sheet variability between 21 and
13 Ma. Outcomes from research reported here and in a com-
panion ice sheet modelling study (25) suggest the AIS advanced
across continental shelves during cold orbital configurations and
retreated well inland of the coast under warm orbits. This large
range of AIS variability occurred under a relatively low range in
atmospheric CO; concentration (~280 to 500 ppm) and indicates
the Antarctic environment was highly sensitive during the early to
mid-Miocene.

Footline Author

Results

A near-continuous record spanning 20.2 to ~15 Ma is preserved
in the lower 925 meters of AND-2A (Figs. 1B; S2; S3; Table S1). A
diverse range of geological information including physical proper-
ties and sedimentological, paleontological, and geochemical data
were collected (summarised in SI text and published (23, 26-33)).
Here we present new data including sea surface water (upper 200
m) temperatures (SWTs) derived from archaeal lipids (TEX"ss)
and carbonate isotopes (A47), whole rock inorganic geochemical
data, and an integrated age model, and offer the first analysis of
a combined proxy environmental data set derived from AND-
2A (Figs. 1B; S3). These paleoenvironmental data are used to
define four characteristic environmental motifs (EM) (Table S2)
that reflect distinct climatic and glacial regimes (Fig. 1A and B).

Intervals of maximum ice sheet extent and cold polar condi-
tions are assigned to EM I (maximum ice) and are characterised
in AND-2A by four major disconformities. These disconformities
are relatively rare and represent distinct and discrete times of
major ice sheet advance beyond the drill site onto the continental
shelf (Fig. 1Ci). Three disconformities AND2A-U1 (965.43 me-
ters below sea floor, mbsf); -U2 (774.94 mbsf); and -U3 (262.57
mbsf) span the time intervals ~ 20 to 19.8 Ma, ~ 18.7 to 17.8 Ma,
and ~15.8 to 14.6 Ma, respectively (Fig. S2). A fourth major dis-
conformity AND2A-U4 (214.13 mbsf) separates middle Miocene
rocks (> ~14.4 Ma, Fig. S2) from 214 meters of overlying upper
Miocene to Quaternary strata.

Eight stratigraphic intervals in AND-2A are assigned to EM
II (cold polar), as characterised by high magnetic susceptibility
(MS), high Niobium (Nb) content, and low Chemical Index of
Alteration (CIA), all of which reflect sediment derived from local
volcanic centers and unweathered outcrop in proximal regions
of the Transantarctic Mountains (TAM). We infer that relative
increases in local sediment are due to advance of ice from ex-
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panding ice caps on nearby Mount Morning and the Royal Society
Range under a cold polar climate. Five of the eight intervals are
dominated by massive to stratified diamictite facies that often
contain debris derived from local volcanic sources and were prob-
ably deposited beneath a floating ice tongue or ice shelf proximal
to the grounding line of outlet or piedmont glaciers (Fig. 1Cii).
Each of these intervals is typically fossil-poor. TEX"g-derived
SWT’s range between -1.4 and 2.6 +2.8°C and are supported by a
Ay7 derived value of 2.1 £3.7°C at 366 mbsf. We infer that proxies
in EM II reflect cold polar conditions with minimum grounding-
line variability and persistent floating ice shelves and/or coastal
fast ice.

Twelve stratigraphic intervals are assigned to EM III (cold
temperate) as characterised by low to moderate MS, low to
moderate Nb content and moderate to high CIA. These data
indicate variable sediment provenance and periodic input from
local volcanic sources and/or unweathered outcrop. EM III is
divided into sub-types ‘a’ and ‘b’ based on variations in lithofacies
and fossil content. EM Illa is dominated by stratified diamictite
and gravel with variable clast composition but including a high
proportion of rock fragments sourced from the region south of
Skelton and Mulock glaciers. Foraminifera vary in abundance and
are absent in many intervals but include up to ten species in others
(30). Marine diatoms and terrestrial palynomorphs are usually
absent but occur in low abundance in several discrete intervals.
Mollusc-bearing intervals are uncommon. TEX gs-derived SWTs
range between 2.2 and 5.4°C +2.8°C. Intervals characterised by
EM Illa likely reflect a sub polar climate and glacial regime with
tidewater glaciers. Periodic increase in gravel clasts derived from
regions south of Mount Morning reflect an increase in ice flux
through major East Antarctic Ice Sheet (EAIS) outlet valleys into
fjords under warmer conditions. During these intervals, calving
rates at the grounding-line increased and debris-laden icebergs
delivered sediment to the drill site as they drifted northwards
along the SVL coast (Fig. 1Ciii).

EM IIIb has persistently low Nb and MS, reflecting minimal
input from local volcanic sources. Lithofacies are diverse and
include massive and stratified diamictite and gravel; clast com-
position is mixed, with a high proportion of lithologies derived
from the Skelton and Mulock glaciers and as far south as the
Carlyon and Byrd glaciers. Intervals of mudrock dominated se-
quences are more common in EM IIIb than in EM Illa. Terrestrial
palynomorphs are more abundant in several intervals of EMIIIb
(e.g., 947.54; 922.61; and 593.29 mbsf) and discrete intervals
bearing mollusc fossils occur occasionally (Figs. 1B; S3). TEX" -
derived SWTs range from 0.2 to 6.7°C £2.8°C. We infer that EM
IIIb reflects a depositional setting similar to EM IlIa but with a
generally warmer climate, particularly during periods when SWTs
were 6-7°C £2.8°C and local ice cap margins retreated to the coast
and had limited influence on marine sedimentation at the drill
site. Coarse clastic sediment was primarily delivered to the drill
site by debris-rich icebergs derived from large fast flowing outlet
glaciers to the south. Increased abundance of Podocarpites spp.
and Nothofagidites spp. pollen (Figs. 1B; S3) indicates local tundra
occupied ice-free regions along the coastal margin (Fig. 1Civ).

Five relatively short, lithologically diverse, stratigraphic inter-
vals are assigned to EM IV (minimum ice) as characterised by
low MS, low Nb content and high CIA, which indicate minimal
sediment input from local volcanic sources and/or unweathered
outcrop. Lithofacies are variable but sequences are usually dom-
inated by mudrock, sandstone, and thin diamictite. A 46 meter-
thick section between 996.69 and 1042.55 mbsf incorporates five
sequences dominated by sediments deposited within a marine-
deltaic setting distal to the glacial margin (27). The interval
between 428.28 and 436.18 mbsf incorporates a single sequence
comprising a basal diamictite overlain by a sandstone unit with
relatively abundant marine bivalves. Thick-shelled costate scal-
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lops as well as venerid clams recovered from this interval indicate
that water temperatures were at least 5°C warmer than in the
Ross Sea today (29). Relatively warm water temperatures are
supported by TEXgs" and A4; data, which indicate SWT at the
coastal margin reached a maximum between 7.0 £2.8°C and 10.4
+2.5°C. In-situ pollen and spores are abundant in this interval
and indicate a coastal vegetation of mossy tundra with shrub
podocarps and southern beech and suggest a cool terrestrial
climate (10°C January mean air temperature) (31-33). Evidence
for another interval of ‘warm’ climate is also preserved in a unique
diatom-rich unit at ~310 mbsf. This unit contains a ‘typical’
tundra pollen assemblage recovered from other EM IV units but
also includes freshwater algae and cosmopolitan dinoflagellate
taxa that indicate much warmer temperatures than occur in the
Ross Sea today (32). Furthermore, TEXgs" analyses from the
diatomite unit indicate maximum surface water temperatures of
~6 to 7°C £2.8°C, which is consistent with values inferred from
the fossils (29, 32) (SI text). EM IV records times when the AIS
margin retreated well inland and tundra occupied ice free regions
from the coast to at least 80 km inland (34)(Fig. 1Cv).

Discussion

Proxy environmental data derived from AND-2A indicate coastal
environments in SVL were highly variable throughout the early to
mid-Miocene (Figs. 1B; 1C). A robust age model for the AND-
2A core (see methods and SI text) allows us to integrate envi-
ronmental data from the Antarctic coastal margin with regional
seismic data from the Ross Sea continental shelf (35), deep sea
oxygen and carbon isotope data (14, 15), sea level records (20),
and atmospheric CO; reconstructions (3-9)(Figs. 2; S5). We ac-
knowledge that the age model for each data set has uncertainties
and caution that both proxy CO, reconstructions and sea level
records are presently limited in temporal resolution and subject
to large uncertainties. Despite these limitations, our correlation
framework (Figs. 2; S5) highlights several distinct episodes of:
(1) cold climate and marine-based ice sheet advance, (2) peak
warmth and maximum ice sheet retreat, and (3) cold climate with
relatively stable terrestrial ice sheets, which are discussed in detail
below.

Four episodes of Maximum Ice Sheet Advance in the Ross
Sea (MISA-1 to MISA-4) are documented between 21 and 13
Ma (Figs. 2; S5). MISA episodes are recorded by stratigraphic
gaps in AND-2A that correlate approximately in time with one
of the major Ross Sea Unconformities (RSU’s) that formed
during ice sheet advance across the continental shelf (35). Each
MISA episode also correlates generally with an interval of global
sea level fall, enrichment in deep-sea benthic 5180, increase in
benthic 8°C values, and decrease in bottom water temperature
(BWT) (Figs. 2; S5). These patterns suggest episodes of maxi-
mum ice sheet advance were not restricted to the Ross Sea but
represent continental scale expansion of the AIS. Importantly,
our correlation model suggests that these MISA episodes co-
incided generally with eccentricity minima and intervals when
atmospheric CO, concentrations were below 300 ppm (4, 5).
MISA-3 (~14.6 - 14.7 Ma) best illustrates these associations (Fig.
2) and is characterised by a ~30 m drop in sea level (20), a 2
to 3°C decrease in BWT in the Southern Ocean (17), a 0.75%o
enrichment in 5'%0, a major increase in 8'*C (CM 5 of (18)) and
a decrease in atmospheric CO; concentration to ~300 ppm (4,
5). MISA-4 (~13.7 —14.1 Ma)(Fig. S5) coincides with the major
Mi-3/E3 oxygen isotope excursion (16, 19), a drop in sea level of
~60 m (20), a 2 to 3°C decrease in BWT (17), and a drop in CO,
below 300 ppm (3, 5)(Fig. 2; Fig. S5). MISA-3 and -4 correspond
in time with RSU 4, a surface that displays erosional features
with relief similar to bathymetric troughs that formed beneath
ice streams during recent glaciations (36). RSU 4 likely formed
during a phase of ice sheet advance and retreat that began ~14.6
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Ma and culminated in the Miocene Climate Transition (MCT)
and maximum ice sheet advance at 13.8 Ma. This phase of cold
climate and persistent marine based ice sheets ended at ~10 Ma
when ice retreated to the terrestrial margins as revealed by upper
Miocene mud-rich sediments in AND-1B (37).

Five episodes of Peak Warmth (PW-1 to PW-5), during which
AIS grounding-lines retreated inland of the coastal margin, are
also recorded. PW episodes are characterised by warm climate
indicators in AND-2A (EM IV) that coincide generally with times
of elevated BWT, depleted 580 values, eccentricity maxima, low
33 C values, and relatively high atmospheric CO, concentrations
(Figs. 2; S5). Intervals PW-3, -4, and -5 occurred between 16.4 and
15.8 Ma (Fig. 2) and offer insight into AIS response during the
MCO. Ice-distal sediments in these intervals are relatively rich in
terrestrial palynomorphs, and proxies indicate that SWTs in the
Ross Sea were 6-10°C warmer than today. PW-4 (16 Ma) best
illustrates these relationships as it correlates with a major (~0.5
%o) decrease in 580, a 0.4%o decrease in 5'°C, a 2 to 3°C increase
in BWT at ODP Site 1171 (17), and a 10 to 20 m rise in sea level
across the Marion Plateau (20). Importantly, proxy data show
that atmospheric CO; concentrations were >500 ppm during this
warm episode (4, 7) (Fig. 2), which suggests that high latitude
climate and Antarctica’s terrestrial ice sheets were sensitive to
CO; levels much lower than climate models suggest (38).

An unusual period of cold and relatively stable climate is
suggested by proxies in the prominent thick interval of fine-
grained sediments between 901.54 to 774.94 mbsf in AND-2A
(Sequence 18, Fig. 1B; S3). This unique stratigraphic interval
is characterised by very low amounts of pollen and spores and
persistently low SWTs (-1.3 to 2.6°C). Foraminifera and diatoms
are rare to absent. We infer the mudstone accumulated in a dark
environment beneath semi-permanent sea ice or an ice shelf.
Interestingly, this interval correlates to upper Chron Cbén, a time
interval characterised by stable sea level (21) and low variability
in orbital eccentricity (Fig. S2). Collectively these data suggest
that global climate and the AIS remained relatively stable through
several glacial-interglacial cycles spanning at least 500 kyrs.

We conclude that environmental data from AND-2A and key
far-field records suggest that Antarctica’s climate and ice sheets
were highly variable during the early to mid-Miocene. Whereas
orbital variations were the primary driver of glacial cycles (28,
33, 39), atmospheric CO; variations modulated the extent of ice
sheet advance and retreat. Specifically, coldest conditions and
maximum ice sheet growth (MISA episodes and EM II) occurred
generally during eccentricity minima and when atmospheric CO,
was low (<400 ppm). Peak warmth and maximum AIS retreat
occurred during eccentricity maxima and intervals of high CO,
(2500 ppm). Numerical climate and ice sheet model simula-
tions produced in our companion study (25) (Fig. 2) support
these observations and simulate grounding line advance across
Antarctica’s continental shelves under cold orbits and low CO,
(280 ppm) but maximum retreat under warm orbital configura-
tion and high CO; (500 ppm). Together, these studies suggest that
polar climate and the AIS were highly sensitive to relatively small
changes in atmospheric CO, during the early to mid-Miocene.

Summary

Our analysis of the AND-2A drill core and synthesis with
regional and global data show that the early to mid-Miocene
Antarctic coastal climate was highly variable. During relatively
short-lived intervals of peak warmth summer land surface air
temperature was at least 10°C, tundra vegetation extended to

1. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working
Group 1 to the Fifth A Report Intergover | Panel on Climate Change, (Cam-
bridge University Press).

2. Meinshausen M, et al. (2011) The RCP greenhouse gas concentrations and their extensions
from 1765 to 2300. Climatic Change 109(1-2):213-241.
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locations 80 km inland (34, 40), surface water temperatures in
the Ross Sea were between 6 and 10°C, and the AIS retreated
inland. During intermittent intervals of peak cold climate, vege-
tation vanished and the AIS grew and advanced into the marine
environment, expanding across the continental shelf.

Whereas glacial cycles were paced by orbital variability
through the early to mid-Miocene, maximum ice sheet retreat
occurred when atmospheric CO, was 2500 ppm and maximum
advance when CO, was <280 ppm (Figs. 2; S5) (4). New nu-
merical ice sheet simulations (25) also show that the Miocene
AIS expanded across the continental shelf when atmospheric
CO, was low (280 ppm) and retreated well inland of the coast
when CO, was high (500 ppm). These ice sheet proximal data
and model simulations support inferences from benthic deep sea
records that suggest the global climate system and AIS were
highly sensitive during the mid-Miocene (14-16). These results
are consistent with observations and numerical climate and ice
sheet simulations based on the warm Pliocene (41-44), which
indicate that sustained levels of atmospheric CO, >400 ppm may
represent a stability threshold for marine-based portions of the
West and East Antarctic ice sheets. Furthermore, outcomes from
our complementary drill core analysis and ice sheet modelling
indicate that Antarctica’s terrestrial ice sheets were vulnerable
when atmospheric CO; concentrations last exceeded 500 ppm.
Given current atmospheric CO; levels have risen above 400 ppm
(45) and are projected to go higher (2), paleoclimate reconstruc-
tions such as this one for the early to mid-Miocene imply an
element of inevitability to future polar warming, Antarctic ice
sheet retreat, and sea level rise.

Methods and Materials

Methods are presented in detail in SI text and (23). AND-
2A was described using standard sedimentological techniques
to produce detailed stratigraphic logs (27). An age model for
the core (SI text, Fig. S2) utilises magnetostratigraphy, bios-
tratigraphy, 8’Sr/*6Sr dating of macrofossils, and “*Ar-* Ar ages
on lava clasts and tephra layers to correlate rock units to the
Global Polarity Timescale (46). Assemblages of fossil pollen,
dinoflagellates, diatoms, foraminifera, and molluscs were used
to constrain paleoenvironmental conditions. A standard suite of
continuous physical properties was collected on whole and split
core and in the borehole. Whole rock inorganic geochemical data
were collected at high sampling resolution using an X-ray fluo-
rescence core scanner (XRF-CS). Additional chemical data were
collected from discrete bulk sediment samples at lower resolution
to provide calibration points for near-continuous non-invasive
sampling obtained via XRF-CS. Concentrations of Al,O3, Na,O,
CaO, K,O, P,0s, and total organic carbon (TOC) from bulk
sediment samples were used to calculate the CIA (47). Samples
for TEX g were prepared at Utrecht University and LC-MS
analyses performed at the Royal Netherlands Institute for Sea
Research. Samples for Ay7 (clumped isotopes) were prepared and
analysed at the California Institute of Technology.
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