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Abstract 

The methanation of CO2 was investigated over a wide range of partial pressures of 

products and reactants using a gradientless, spinning-basket reactor operated in batch mode. 

The rate and selectivity of CO2 methanation, using a 12 wt% Ni/-Al 2O3 catalyst, were 

explored at temperatures 453 – 483 K and pressures up to 20 bar. The rate was found to 

increase with increasing partial pressures of H2 and CO2 when the partial pressures of these 

reactants were low; however, the rate of reaction was found to be insensitive to changes in 

the partial pressures of H2 and CO2 when their partial pressures were high. A convenient 

method of determining the effect of H2O on the rate of reaction was also developed using the 

batch reactor and the inhibitory effect of H2O on CO2 methanation was quantified. The 

kinetic measurements were compared with a mathematical model of the reactor, in which 

different kinetic expressions were explored. The kinetics of the reaction were found to be 

consistent with a mechanism in which adsorbed CO2 dissociated to adsorbed CO and O on 

the surface of the catalyst with the rate-limiting step being the subsequent dissociation of 

adsorbed CO.  

 

Keywords: methanation of CO2; kinetic measurements; nickel/alumina catalyst; modelling 

  

*Manuscript
Click here to view linked References

http://ees.elsevier.com/ces/viewRCResults.aspx?pdf=1&docID=23033&rev=0&fileID=889749&msid={62B02AFC-2BB7-45F0-84B8-D1C33061FF30}


2 
 

1. Introduction 
In response to anthropogenic climate change, it is expected that the number of carbon-

capture schemes is expected to increase. As a result, the increased availability of CO2 is 

likely to drive its cost down, so that heterogeneous catalysis could be used to convert CO2 to 

various chemicals such as methane, methanol, formic acid and dimethyl carbonate (Aresta et 

al., 2007; Ma et al., 2009). Of course, CO2 is thermodynamically very stable and the main 

challenge in converting it to other organic products is providing the free energy needed. In 

particular, the production of methane by reacting CO2 with H2 (CO2 methanation) has the 

potential for producing synthetic natural gas (SNG), which could be distributed using the 

existing infrastructure for the distribution of natural gas (Kopyscinski, 2010). Furthermore, 

the study of the chemistry of CO2 in methanation could provide insights into related 

reactions, such as the Fischer-Tropsch synthesis and CO methanation.  

Various transition metals are active in catalysing the methanation of CO2, i.e.  

 2 2 4 2CO 4H CH 2H O   . (R1) 

A number of previous investigations of CO2 methanation, particularly over Co and Fe 

catalysts, have arisen as a result of research designed to study, primarily, the conversion of 

CO2 to long-chain paraffins or olefins via Fischer-Tropsch synthesis, where methane is 

inevitably produced as a major product (Zhang et al., 2002; Riedel et al., 2003). Ruthenium-

based catalysts have received much attention, owing to their high reactivity and selectivity for 

the methanation of CO2 (Kowalczyk et al., 2008; Zaۜli and Falconer, 1981; Marwood et al., 

1997). Supported Rh catalysts have been investigated because of their ability to catalyse the 

methanation of CO2 at very low temperatures, viz. below 100°C (Jacquemin et al., 2010). The 

field has been reviewed recently by Gao et al. (2015). Mixed Ni/Pt or Ni/Pd catalysts have 

also received attention (Porosoff and Chen, 2013) in batch reactor studies. 

Although catalysts based on either Ru or Rh have been shown to be more active than 

nickel-based catalysts, the cost of such metals is prohibitive for their widespread use in 

industry. Nickel-based catalysts remain the most widely-studied materials owing to the 

abundance of Ni and its low cost. For the methanation of CO2, nickel catalysts are often 

active at temperatures above 150°C, but the exact reaction mechanism is still subject to 

debate. The key question is whether the reaction occurs (i) by the dissociative adsorption of 

CO2 to form CO and O on the surface of the catalyst (Falconer and Zaۜli, 1980; Weatherbee 

and Bartholomew, 1981; Fujita et al., 1991; Fujita et al., 1993), or (ii) by the conversion of 
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CO2 to methane via carbonate or formate intermediates which do not involve CO, as 

suggested by Aldana et al. (2013). 

It has become increasingly clear that the reaction pathway depends on the nature of the 

support. Whilst a number of studies have been performed on various types of supported 

nickel catalysts by characterising the structure and phases of the synthesised material 

(Aksoylu et al., 1996; Liu et al., 2013; Du et al., 2007), only a few investigations have 

performed rigorous kinetic studies on the rate and selectivity of CO2 methanation at different 

temperatures, overall pressures and partial pressures of reactants and products. Given that the 

mechanistic pathways could differ for different catalysts, it is not unreasonable to expect that 

rate expressions differ for different catalysts, with important implications in reactor operation 

and design in industry.  

The primary objective of this work was to investigate the kinetics of the methanation of 

CO2 over nickel supported on Al2O3 over a wide range of partial pressures of reactants and 

products, and at relatively low temperatures < 210C, to determine if the kinetics and rate 

expressions were consistent with previously-proposed theories. Only a few previous studies 

have proposed rate expressions for the methanation of CO2 (e.g. Weatherbee and 

Bartholomew, 1982; van Herwijnen et al., 1973). The conclusions of these researchers were 

based on experiments which were performed on continuous, flow reactors. One way of 

validating the rate expressions is to examine their applicability over a wide range of partial 

pressures of reactants and products, conveniently achieved by conducting the reaction in a 

batch reactor. Here, we have undertaken a study of the kinetics of the methanation of CO2 in 

a gradientless, spinning-basket reactor operating in batch.  

2. Experimental 

2.1. Catalyst and characterisation 

A 12 wt% Ni catalyst was prepared by the incipient wetness impregnation of pellets of -

alumina (Saint Gobain – SA 62125, 3 mm dia. spheres) using Ni(NO3)2·6H2O as the 

precursor salt (Sigma-Aldrich). The pore volume of the support was reported to be 0.64 ml/g, 

experimentally verified by adding de-ionised (DI) water dropwise to the pellets until they had 

a glistening appearance, indicating that the pores were fully filled, and measuring the total 

volume of water used.  
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The impregnated catalyst was dried for 24 hours at 120°C in a hotbox oven prior to 

calcination at 450°C for 4 hours in 150 ml/min (as measured at 293 K and 1 bara) of air in a 

tubular quartz reactor and heated by a furnace at atmospheric pressure. Subsequently, H2 was 

introduced at a flowrate of 100 ml/min (as measured at 293 K and 1 bara) at 700°C for 6 

hours to reduce the calcined catalyst to metallic Ni. A temperature of 700°C was used to 

ensure that all available nickel oxide could be reduced to metallic nickel. The reduced 

catalyst was passivated in a mixture of 5 vol% O2 and N2 at 25°C, before being transferred to 

a Carberry spinning-basket reactor (described below) to investigate different reactions. Prior 

to each experiment in the Carberry reactor, the passivated catalyst was reduced in situ by 

hydrogen at 250°C overnight, for approximately 12 hours.  

The catalyst was characterised by a BET surface area of 155 m2 g-1 and BJH pore volume 

of 0.46 cm3 g-1.A dispersion of 12 % was obtained, based on pulse H2 chemisorption 

experiments. Temperature programmed reduction was performed in a Hiden CATLAB 

microreactor, where the composition of the off-gas was measured by a mass spectrometer 

(Hiden QIC-20). The evolution of H2O from the reduction of NiO to Ni by H2 was used to 

study the reducibility of the different samples. The profiles of temperature programmed 

reduction (TPR) of the different samples are illustrated in Figure 1. In general, the 

investigations monitoring the off-gas of the reactor were consistent with the observations 

from a thermogravimetric analyser (TGA) (Mettler Toledo TGA/DSC 1 STARe system). For 

the calcined NiO/Al2O3 and the passivated Ni/Al2O3, two main H2O peaks were observed, 

one at 280°C and another at 570°C. The H2O peak at 180°C was attributed to evolution of 

moisture on the surface of the samples because no corresponding consumption of H2 was 

observed (not shown). Figure 1 also shows that the passivated Ni/Al2O3 has significantly less 

NiO reduced at temperatures above 450°C, implying that the procedure for reduction at 

700°C in the synthesis process had converted most of this NiO to metallic Ni. The 

passivation process appeared to have given rise to the NiO peak at 280°C. The passivated 

Ni/Al 2O3 catalyst had to be reduced in situ in the Carberry reactor before catalytic reactions 

could be performed. The efficacy of this protocol was confirmed through temperature 

programmed reduction studies, the results of which are shown in Figure 1, where it is clear 

that negligible amounts of the ‘low temperature’ NiO remained after an isothermal reduction 

at 250°C for 9 hours.  
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Figure 1. H2O signal versus temperature for a temperature programmed reduction on calcined 
NiO/Al 2O3, passivated Ni/Al2O3 and passivated Ni/Al2O3 which was pre-treated with an isothermal 
reduction at 250°C for 9 hours. 

The CATLAB apparatus was also used to perform temperature-programmed desorption 

of the spent catalyst following the reaction studies in the batch reactor: this will be elaborated 

on in Section 2.2. In-situ diffuse reflectance infrared spectroscopy (DRIFTS) was also 

performed on 50 mg of the catalyst in a flow of CO2 and H2 at 463 K under atmospheric 

pressure (Praying Mantis, Harrick Scientific). For each measurement, a series of 128 scans 

was performed with spectral resolution of 2 cm-1 and a final spectrum was obtained by 

averaging the 128 scans. For every measurement a background spectrum was collected and 

automatically subtracted from the sample spectrum. 

2.2. Studies of methanation in a batch reactor 

A spinning-basket reactor was used to study the kinetics of CO2 methanation, using the 

12 wt% Ni/-Al 2O3 catalyst. A schematic diagram of the experimental arrangement is shown 

in Figure 2. The reactor, made of 316 stainless steel (Carberry reactor, i.d. 75 mm, 401A-

8801, Autoclave Engineers, USA), had a maximum operating temperature and pressure of, 

respectively, 250°C and 50 bar. The volume of the reactor was reported by the manufacturers 

to be 2.95 × 10-4 m3, which was confirmed by measuring the drop in the pressure of the 

sealed reactor after the removal, by the use of a syringe, of a known volume of gas at room 

temperature and elevated pressure. The reactor was equipped with a removable basket, which 

had a mesh size of 1.3 mm, connected to a rotating shaft. The baffles and impeller helped to 



6 
 

ensure that the reactor volume was gradientless in terms of heat and mass transfer external to 

the catalyst particles. All connections in the apparatus, including tubes and fittings, were 

made of 316 stainless steel. The reactor was heated externally by two band heaters 

(Me5J1JP1, Watlow) with a total power output of 1 kW, capable of controlling the 

temperature of the reactor to a precision of ± 0.1 K when steady-state was achieved. 

 In a typical experiment, the basket in the reactor was first loaded with a known 

amount of catalyst and packed with a non-porous inert material, glass beads (1.4 mm diam.), 

such that about 5.0 g of catalyst pellets were mixed with an equal mass of glass beads in the 

basket. The reactor was sealed and the vacuum pump was turned on, with the valve to the 

vent closed, to evacuate the gaseous content of the reactor. The reactor was heated to 250°C 

and the catalyst was then subjected to a flow through the reactor of 100 ml/min (at room 

temperature and pressure) of H2 with a stirring at 1.7 Hz for 12 hours at 1 bar. The flow of H2 

was controlled by a rotameter and a needle valve. Following the reduction in H2, the reactor 

was evacuated once again using the vacuum pump and the internal temperature of the reactor 

brought to the desired reaction temperature. The rate of the reaction of interest was studied in 

batch by bringing the reactor to a desired initial pressure and composition, using gas supplied 

from the cylinders connected to the reactor. During this period, the three-way valve was used 

to isolate the rotameter for hydrogen, shown in Figure 2, in order to prevent its exposure to 

pressures above atmospheric pressure. Gas cylinders with pre-mixed gases were normally 

used and the reactor could be brought to the desired pressure using one cylinder only. The 

initial total pressure of the reactor was typically 10 – 20 bar. In order to raise the pressure of 

the reactor, the pressure regulator on the gas cylinder of interest was first adjusted to about 2 

bar higher than the desired pressure of the reactor. This was followed by fully opening the 

needle valve at the inlet of the reactor and then opening the plug valve, raising the pressure of 

the reactor. While the pressure was being raised, the flow of the gas from the cylinder into the 

reactor was controlled by progressively closing the needle valve. As the pressure approached 

the desired value, the needle valve would be almost fully closed. The plug valve of the 

corresponding line was closed when the reactor reached the desired pressure. With this 

procedure, the final pressure of the reactor could be consistently achieved to a precision of 

± 0.1 bar, which was approximately the precision of pressure gauge PG1. The accuracy of the 

measurement of pressure was confirmed by good agreement between the readings of the two 

pressure gauges, PG1 and PG2. If the desired starting composition in the reactor was different 

from that in any gas cylinder, different gases were introduced into the reactor in stages. This 

was achieved by monitoring the total pressure, recorded by the two pressure gauges, of the 
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reactor after successive additions of gas from the various cylinders. A stirrer speed of 9.2 Hz 

was always used. The entire process of bringing the reactor to the desired pressure and 

starting the stirrer after the introduction of the gases typically took 10 – 15 s. 

After the reactive gases were introduced, the changes in the composition of the reactor 

volume were measured over time. This was performed by taking volumes of 4 ± 0.2 ml (at 

atmospheric temperature and pressure) from the reactor using a gas-tight sampling syringe. 

Prior to the removal of the sample by the syringe, the gaseous contents of the lines after 

needle valve ‘A’ in Figure 2 were evacuated by the vacuum pump. The plug valves ‘B’ and 

‘C’ were then closed and the volume enclosed by valves ‘A’, ‘B’ and ‘C’ was brought to 3 

bar using the needle valve ‘A’ and monitored by pressure gauge PG3. The gas collected here 

was purged through the vent and the space evacuated once again before the actual sample 

was taken. The latter operation was performed as a precaution to minimise the effect of dead 

volume in the section of the reactor which might not have mixed well with the bulk phase of 

the reactor volume, i.e. within the connection through the walls of the reactor to the outlet at 

valve ‘A’. This procedure ensured that the composition of the sample of gas obtained from 

the reactor was representative of the contents of the bulk phase of the reactor volume. Only 

about 6 – 10 samples were taken for each experiment so as to minimise the errors incurred 

from the removal of gaseous contents from the reactor. The composition of the sample was 

analysed using off-line gas chromatography (Agilent 7890 GC Extended Refinery Gas 

Analysis) by passing the sample in the syringe through the sampling loop in the gas-

chromatograph. The sampling loop in the gas chromatograph was evacuated using a vacuum 

pump before the gaseous contents of the syringe were introduced.  

The composition of the gas given by off-line gas chromatography would only be equal to 

that in the bulk phase of the reactor if all species in the gas phase were above their dew point 

at room temperature and pressure. This was not the case for most reactions performed in this 

study because water was involved as a product or a reactant. Water was found to condense in 

the tubes before reaching the syringe. Furthermore, higher hydrocarbons might also have 

been produced in some experiments, evident from the detection of hydrocarbons heavier than 

pentane in the gas phase. The low temperature of the dew point of these heavy species would 

imply that some heavy hydrocarbons would have condensed and existed in the liquid phase. 

Since the analysis by gas chromatography provided a water-free composition of the gas, the 

partial pressures of different species in the gas phase of the reactor were determined by using 

argon as an internal standard, such that 
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 Ar,0
Ar

i
i

x
p p

x
   (1) 

where ip  is the partial pressure of species i, ix  is the mole fraction of species i in the 

syringe, Arx  is the mole fraction of Ar in the syringe and Ar,0p  is the partial pressure of argon 

at the start of the reaction. In most experiments, gas cylinders (of different mixtures of H2, 

CO2 and CO) contained 4% Ar. Hence,Ar,0p  could be easily determined by measuring the 

total pressure of the reactor and multiplying with the known composition of the cylinder. This 

method of analysis allowed the measurement of the partial pressure of different species in the 

reactor over time. 
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Figure 2. Schematic diagram of the Carberry, spinning-basket reactor. The solid arrows represent the direction of flow of the gases and the red dotted lines 
represent transmissions of electrical or electronic signals. 
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3. Results 

3.1. Parameters affecting the measurement of kinetics 

3.1.1. Control experiment 

To determine whether the high-surface area -Al 2O3 (3 mm dia. SA-62125 alumina 

spheres, Saint-Gobain), used as the support material, was active in the methanation of CO2, 

the basket of the reactor was packed with 5.0 g of the support and 5.0 g of non-porous glass 

beads. The Carberry reactor was sealed and emptied, as described in Section 2.2, and then the 

pressure was raised to 10 bar absolute by admitting 7.2 bar of H2, 2.4 bar CO2 and 0.4 bar Ar 

into the evacuated vessel, so that the initial partial pressures were 
2CO ,0 2.4 barp   and 

2H ,0 7.2 barp  . Samples from the contents of the reactor were removed periodically using a 

gas-tight syringe and analysed using offline gas chromatography as described above. At both 

293 K and 463 K, no significant decreases in 
2COp  and 

2Hp  were observed, indicating that the 

rate of any reaction was negligible. Therefore, the support material used in the synthesis of 

the Ni/Al2O3 catalyst, the interior surface of the reactor and the nickel oxides present in the 

catalyst could collectively be taken as inert compared to the reduced nickel catalyst.  

3.1.2. Catalyst deactivation 

It would be challenging to obtain accurate kinetic measurements if the characteristic time 

for the rate of deactivation of the catalyst were comparable to the rate of methanation in each 

experiment. Furthermore, significant deactivation would also mean that each batch of catalyst 

could only be used once and would have to be replaced for each new experiment by a fresh 

batch of catalyst, which would have go through the reduction process before experimental 

measurements could be taken. Figure 3 illustrates the change in the partial pressures of CO2, 

CH4, H2 and C2H6 over time for five consecutive, replicate methanation experiments, where 

the same batch of catalyst was used for the repeated runs. It is clear that the catalyst does not 

undergo significant deactivation over the total time of the experiments, with a total time-on-

stream of about 4.5 × 104 s. Figure 3 (d) shows a small increase in the amount of C2H6 

produced as the experiment was repeated. This observation was difficult to explain, but the 

apparent activation of the catalyst towards the production of C2H6 could be a result of small 

changes to the surface of the catalyst after its initial exposure to H2 and CO2. Nevertheless, 
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the amount of C2H6 is very much smaller than that of CH4, which is the primary product, and 

no significant influence of this change was observed in the profiles of the reactants. 

Thus, the insignificant rate of deactivation and good reproducibility meant that 

experiments could be performed on the same batch of catalyst. As a precaution, the same 

batch of catalyst was used for no more than 10 experiments before being replaced by a fresh 

batch. The final experiment on a batch of catalyst was always performed at the same initial 

conditions, to provide a standard reference point in this study, viz. as shown in Figure 3 with 

initial partial pressures 
2CO ,0 2.4 barp  , 

2H ,0 2.4 barp  , T = 463 K and mcat = 5.0 g, in order 

to verify that no deactivation has occurred over the length of the past experiments. 

Figure 3. The partial pressure of (a) CO2, (b) CH4, (c) H2 and (d) C2H6 as a function of time for five 
consecutive, replicate batch experiments using the same catalyst. In all experiments, the initial partial 

pressures of CO2 and H2 were 
2CO ,0 2.4 barp  , 

2H ,0 7.2 barp  , with T = 463 K and mcat = 5.0 g. 

 

 
 

(a) (b) 

  
(c) (d) 
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3.1.3. Heat and mass transfer considerations 

Figure 4 shows the experimental results when methanation of CO2 was undertaken in the 

batch reactor at different impeller speeds. This was to investigate if there existed significant 

external gradients of concentration and, or, temperatures between the bulk gaseous phase of 

the reactor and the external surface of the catalyst pellets. At the extremes, the initial rate of 

production of methane when the impeller was stationary was about 20% faster than at 9.2 Hz, 

the maximum speed used in the experiments. Each experiment was repeated twice for each 

impeller speed. The rate of reaction decreased asymptotically as the impeller speed was 

increased. At spinning speeds higher than 4.9 Hz, very little difference could be observed 

between the initial rates. All measurements of kinetics in this study were obtained with a 

stirrer speed of 9.2 Hz and the results shown in Figure 4 consequently suggest that negligible 

heat and mass transfer effects were present with the experimental conditions employed.  

Figure 4. The change in the partial pressure of (a) CH4 and (b) CO2 over time for different stirrer 

speeds. In all experiments 
2CO ,0 2.4 barp  , 

2H ,0 7.2 barp  , T = 463 K and mcat = 5.0 g. 

The Weisz-Prater number, NWP, was used to estimate any potential influence of diffusion 

within the pores of the catalyst pellet (Weisz and Prater, 1954). The Weisz-Prater criterion 

states that the value of NWP < 0.3 if internal mass transfer limitations are negligible where 

 
2

cat
WP

' P

s eff

r R
N

C D


 ,  (2) 

 Cs being the concentration of CO2 in mol m-3 and Deff the effective diffusivity.  NWP was 

evaluated for CO2 methanation at 463 K based on the reference conditions of Section 3.1.2. 

The average pore diameter, dpore, was taken to be 8.9 nm, as determined by BJH analysis and 

calculated using  

  
(a) (b) 
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 pore,tota
pore

pore,total

4 lV
d

A
   (3) 

where Vpore,total is the total pore volume obtained and Apore,total is the corresponding surface 

area of the pores, assuming that they are cylindrical. Given the small pore diameter, the 

effective diffusivity, Deff, was taken to be the product of the Knudsen diffusivity of H2 and 

(2), with  = 0.60 and 2 assumed to be 3. Here,  was determined from the cumulative 

pore volume of the Al2O3 support, accounting for pores ranging from 17 to 300 nm in 

diameter, of 0.55 cm3 g-1. The group (2) is appropriate for use with the model of Young 

and Todd (2005) to model diffusion within the particle of catalyst. NWP was thus 0.09, much 

smaller than the value at which intra-particle mass transfer is important. Furthermore, the 

apparent activation energy, as discussed later, was 95 ± 10 kJ mol-1, which is in agreement 

with previous investigations of CO2 methanation (Weatherbee and Bartholomew, 1982; van 

Herwijnen et al., 1973). If significant intraparticle mass transfer had been present, the 

apparent activation energy would have been significantly smaller. (Levenspiel, 1972). 

3.1.4. Effect of total pressure 

The stoichiometry of Reaction (1) is such that in a batch reaction the total pressure in the 
vessel will decrease with progress of reaction. In order to examine the effects of total pressure 
on the rate of reaction, the reaction was performed for different initial partial pressures of N2 

at T = 463 K, 
2CO ,0 2.4 barp  , 

2H ,0 7.2 barp   for 5.0 g of catalyst. Figure 5 (a) shows that 

the total pressure of the system does not affect the rate because the profiles of H2 with time 

essentially overlap for different initial partial pressures of N2. Figure 5 (b) illustrates how 
4CHS , 

the selectivity for CH4, varies with 
2COX , the conversion of CO2 at a given time. Here, 

2COX  is 

defined as 

 2

2

2

CO

CO
CO ,0

1
p

X
p

   (4) 

and 

 4

4

CH
CH 5

,HC
1

i
i

p
S

p





, (5) 

where ,HCip  is the partial pressure of hydrocarbons with carbon number i. The sum of the partial 

pressures of paraffins from carbon number 1 to 5 was evaluated in the denominator of Eq. (5). In all 

experiments, 
4CHS  did not vary with 

2COX  and was found to be 0.995 at all conversions. Figure 5 (b) 
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also shows that total pressure did not affect the selectivity of the reaction. The values of 
4CHS  at 

2CO 0X   were found to be slightly lower because 
4CHp  was small at the start of the reaction and the 

error incurred by trace hydrocarbons being in the lines of the sampling port or the syringe was 
relatively large.  

 

Figure 5. (a) Partial pressure of H2 over time and (b) the selectivity of CH4 as a function of the 

conversion of CO2 for different initial partial pressures of N2. In all experiments, 
2CO ,0 2.4 barp  , 

2H ,0 7.2 barp  , T = 463 K and mcat = 5.0 g. 

3.2. Measurements of kinetics 

The following Sections describe the kinetic measurements performed to elucidate the 

effects of H2, CO2, CH4 and H2O on the rate and selectivity of the reaction for the 

temperature range 443 – 483 K. These experiments were performed by changing the initial 

partial pressures from the reference initial composition, i.e. 
2CO ,0 2.4 barp   and 

2H ,0 7.2 barp  , total pressure 10 bar (balance being Ar) and reference temperature, 463 K. 

The changes in the rate and selectivity were compared by observing the changes in the partial 

pressures of the reactants and the products.  

The experimental results for the reference condition have already been illustrated in 

Figure 3 for five consecutive, replicated experiments. In Figure 3, CO2 is in excess, evident 

from the remaining 0.5 bar of
2COp  after 

2Hp  was depleted. The total amount of 
4CHp  formed 

was 1.8 bar. It has already been established that for these conditions, the methane selectivity 

was very close to unity. Hence, the carbon balance for the experiments could be estimated 

  
(a) (b) 
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from the sum of 
4CHp  and 

2COp  at each measurement. This is shown in  Figure 6, in which 

there is seen to be an overall decrease of about 0.1 bar over the length of the experiment, 

indicating that the maximum error from the removal of the contents of the reactor from 

sampling was approximately ± 0.1 bar, corresponding to a relative error of 4%.  

 
Figure 6. Sum of 

4CHp  and 
2COp over time for five consecutive, replicated batch experiments using 

the same catalyst. In all experiments, 
2CO ,0 2.4 barp  , 

2H ,0 7.2 barp  , T = 463 K and mcat = 5.0 g. 

3.2.1. Effect of pH2 

The effect of 
2Hp  was investigated by performing CO2 methanation with different initial 

partial pressures of H2, 
2H ,0p , at temperatures 453, 463 and 473 K. To compare the 

measurements with the reference initial condition of 
2CO ,0 2.4 barp   and 

2H ,0 7.2 barp  , the 

reactor was first filled with an additional quantity of H2, typically 4 bar H2, before a mixture 

of 2.4 bar CO2 and 7.2 bar H2 was introduced. This minimised the zero error on the time axis 

caused by initiating the reaction if the additional H2 were introduced after the mixture of CO2 

and H2 had already been admitted to the reactor. Figure 7 illustrates the profiles of CO2 and 

CH4 over time for different initial partial pressures of H2. Figure 7 (a) shows that the addition 

of H2, while keeping 
2CO ,0p  constant at 2.4 bar, meant that H2 was in stoichiometric excess 

compared to CO2 for experiments with 
2H ,0p  = 11.2 and 15.2 bar. Hence, for these initial 

conditions,
2COp  eventually dropped to zero. Figure 7 (a) shows that the final amount of 

4CHp  

increased to approximately 2.4 bar, consistent with the total loss of 
2COp . The carbon balance, 

as determined by the sum of 
2COp  and 

4CHp  and illustrated in Figure 8 (a), was within 5 % of 

the original 
2COp , i.e. 2.4 bar. Figure 8 (b) shows that the selectivity of methane remained at 
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0.995 for different 
2H ,0p . The initial rate of methanation, deduced either from the rate of 

increase of 
4CHp  or the decrease in 

2COp  with time, was found to be unaffected by changes in 

2Hp  for 7.2 bar < 
2H ,0p  < 15.2 bar. This can be seen in Figure 7 (a) where the profiles of H2 

and CH4 overlap at low conversions levels, i.e. at the start of the reaction when t < 1800 s. 

However, the profiles of 
2COp  and 

4CHp  for different 
2H ,0p  begin to deviate during the later 

stages of the reaction, at 1800 < t < 5000 s, during which period the rate was faster for 

experiments starting with a higher 
2H ,0p . The deviation in the rate of reaction occurred when 

2Hp  dropped below 6 bar, as observed in Figure 7 (c).  

 

Figure 7. Partial pressures of (a) CO2, (b) CH4 and (c) H2 with time for different initial partial 

pressures of H2, i.e 
2H ,0p  = 7.2, 11.2 and 15.2 bar. In all experiments, 

2CO ,0p  = 2.4 bar, T = 463 K and 

mcat = 5 g. 

  
(a) (b) 

 
(c) 
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These observations suggest that at high partial pressures of H2, the rate of reaction was not 

affected by changes in 
2Hp . Increases in the rate with increase in 

2Hp only appeared at values 

of
2Hp  < 6 bar. If the rate of reaction was invariant in 

2Hp  for all values of
2Hp , the profiles of 

2COp  and 
4CHp  would overlap for 

2H ,0p  = 11.2 and 15.2 bar, which would be in conflict with 

the experimental observations here. 

Figure 8. (a) The sum of 
4CHp  and 

2COp over time and (d) selectivity of CH4 as a function of 
2COX  

for different initial partial pressures of H2, i.e 
2H ,0p  = 7.2, 11.2 and 15.2 bar. In all experiments, 

2CO ,0p  = 2.4 bar, T = 463 K and mcat = 5 g. 

3.2.2. Effect of pCO2 

The effect of 
2COp  was studied using the same method as outlined in Section 3.2.1, i.e. by 

first introducing additional CO2 before the introduction of the mixture of CO2 and H2. The 

value of 
2H ,0p  was maintained at 15.2 bar and values of 

2CO ,0p  of 2.4, 2.9 and 3.4 bar were 

explored at T = 453 – 473 K, with 5.0 g of catalyst. Results are shown in Figure 9. There is 

good evidence that at high 
2COp , as well as high 

2Hp , the rate is insensitive to changes in 

2COp . This is illustrated in the profiles of H2, CH4 and CO2 in Figure 9 when t < 2400 s. 

However, for low partial pressures of CO2, i.e. when 
2COp  < ~0.2 bar, the rate was greater for 

higher partial pressures of CO2. In these experiments, 
4CHS  at complete conversion, i.e. 

2CO 1X  , only decreased from 0.996 for 
2CO ,0 2.4 barp  to 0.994 for 

2CO ,0 3.4 barp  . A 

slight overestimation in the measurement of 
2COp  was observed at t = 0 s for 

2CO ,0p = 2.4 and 

2.9 bar. This error occurred because CO2 was introduced first into the reactor, filling all the 

  
(a) (b) 
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available evacuated space including the sampling lines. Because sampling lines were located 

a distance away from the impeller, when the reaction was initiated by adding H2 and further 

CO2 and the impeller being turned on, the volume of the sampling line, which had been filled 

with CO2, was not mixed well with the bulk phase. The composition of the sample taken at 

this time did not therefore reflect the true composition of the bulk phase because the sample 

would have had a higher composition of CO2. The sampling lines were purged three times 

before the actual sample was taken but the effect of the dead volume in the sampling lines 

was not completely eliminated. No such problems were observed for subsequent 

measurements at later times.  

Figure 9. The partial pressure of (a) H2, (b) CH4 and (c) CO2 versus time for different initial partial 
pressures of CO2. (d) The selectivity of CH4 as a function of the conversion of CO2. Here, 

2H ,0p  = 15.2 bar, T = 463 K and mcat = 5.0 g. 

3.2.3. Effect of pCH4 

Running the reaction in batch means that the products accumulate in the reactor. Hence, it 

is important to determine whether the main products, i.e. CH4 and H2O, have any effect on 

  
(a) (b) 

  
(c)  
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the rate and selectivity of the reaction. As before, it is easiest to elucidate the effect of CH4 by 

performing batch reactions with various initial partial pressures of CH4. The observations are 

illustrated in Figure 10, where CH4 is shown to have no effect on the rate of reaction. For the 

purpose of comparison of measurements from different experiments, the profile of the net 

change in the partial pressure of CH4, 
4CHp , defined as the difference between the measured 

pCH4 at a given time t and that at t = 0, is plotted in Figure 10 (b). Furthermore, no change in 

selectivity was observed when additional CH4 was introduced and it is clear that CH4 simply 

acts as a spectator molecule in the bulk phase. 

Figure 10. The partial pressure of (a) CO2 and (b) H2 over time for different initial partial pressures of 

CH4. In all experiments, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar, T = 463 K and mcat = 5.0 g. 

3.2.4. Effect of pH2O  

Varying the amounts of H2O present before the start of the CO2 methanation reaction is 

difficult experimentally. The introduction of liquid H2O via one of the inlet ports was found 

to be challenging because the H2O would vaporise immediately on contact with the hot walls 

of the reactor and heated lines. The high expansion ratio of H2O, where 1 ml of H2O could 

lead to about 7.2 bar at 473 K if fully vaporised in the reactor, meant that such a procedure 

was not only operationally dangerous but also it was difficult to obtain a desired partial 

pressure of H2O, 
2H Op . 

It has already been established that the CO2 methanation reaction over the 12 wt% Ni/-

Al 2O3 has a high selectivity for CH4. This means that performing a batch reaction to 

completion with a stoichiometric ratio of H2 to CO of 4:1 would yield a reactor containing 

mainly CH4 and H2O. Since CH4 was had no effect on the rate and selectivity of the reaction, 

  
(a) (b) 
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if additional CO2 and H2 were introduced into the reactor, the subsequent measurements 

would account for the effect of H2O on the reaction. In this study, 1 bar of CO2 was added to 

4 bar of H2 in order to obtain a nominal 
2H O,0p , the initial partial pressure of H2O, of 2 bar. A 

2H O,0p  of 4 bar was obtained with 2 bar CO2 and 4 bar H2. The reaction was deemed complete 

when no further drop in the total pressure was observed on the pressure gauge. This was also 

verified by checking that negligible amounts of H2 and CO2 were present in the gas 

chromatogram in a separate experiment with the same initial partial pressures of CO2 and H2. 

In order to decrease the errors introduced from sampling, for the experimental results 

presented here, no samples were taken from the reactor before additional CO2 and H2 were 

introduced. 

 

Figure 11. Partial pressure of (a) CO2 and (b) CH4 versus time for different initial partial pressures of 

H2O. In all experiments, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar, T = 463 K and mcat = 5.0 g. 

In this way, it was found that H2O inhibited the rate of methanation of CO2 significantly. 

This is illustrated in the profiles of CO2 and CH4 in Figures 11 (a) and (b). Figure 12 shows 

no observable change in CH4 selectivity as partial pressures of H2O are increased. Unlike the 

effect of CO2 and H2, the effect of H2O on the rate of reaction could be seen from the 

beginning of the reaction. The initial rate of production of CH4 decreased from 2.0 × 10-6 

molCH4 s
-1 g-1 when 

2H O,0p  = 0 to 1.4 × 10-6 molCH4 s
-1 g-1 with 

2H O,0p  = 2 bar, a decrease of 

30 %. However, the rate only fell to 1.0 × 10-6 molCH4 s-1 g-1, a further decrease of only 20% 

when 
2H O,0p  = 4 bar, suggesting that the rate is less sensitive to the presence of water at 

higher 
2H Op . It is evident that the gradual decrease in the rate of CO2 methanation, as 

observed in a batch reactor, is not only because of the decreasing partial pressures of the 

  
(a) (b) 
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reactants but also because of the increase in 
2H Op . Since even small levels of H2O were found 

to inhibit the rate of reaction, it is important that this effect is accounted for when interpreting 

the measurements at higher conversions in the batch reactor.  

 

 
Figure 12. The selectivity CH4 as a function of the conversion of CO2 for different initial partial 

pressures of H2O. In all experiments, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar, T = 463 K and mcat = 5.0 g. 

3.2.5. Effect of temperature 

Figure 13 shows the variation of CO2, H2 and CH4 over time for 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar at different reaction temperatures, i.e. from 443 – 483 K. Figure 14 (a) shows 

a small change in selectivity of CH4 over the temperature range , increasing from 0.990 at 

443 K to about 0.997 at 483 K, at 
2COX  = 0.8. However, the effect of this increase in the 

selectivity of CH4 with temperature on the overall consumption ratio of H2 to CO2 is 

negligible. This is evident from Figure 13 (a), where the excess 
2COp  remained at ~0.5 bar, at 

all temperatures, after 
2Hp  was depleted. The sum of 

2COp  and 
4CHp accounted for the 

majority of the carbon balance at all temperatures explored, as shown in Figure 14 (b). The 

sum of 
2COp  and 

4CHp  generally increased with temperature because of the slight shift in CH4 

selectivity at higher temperatures. Nevertheless, even at the lowest temperature of 443 K, the 

sum of 
2COp  and 

4CHp  still accounted for 92% of the initial
2COp .  
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Figure 13. Partial pressure of (a) H2, (b) CO2 and (c) CH4 versus time at different reaction 

temperatures. In all experiments, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar and mcat = 5.0 g. 

  

  
(a) (b) 

 
(c) 
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Figure 14. (a) Selectivity of CH4 as a function of the conversion of CO2 and (b) the sum of 
4CHp  and 

2COp for different temperatures. In all experiments, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar and mcat = 5.0 g. 

3.3. Temperature-programmed studies 

Following the batch reactions in the Carberry reactor, the spent sample of catalyst was 

removed and stored in a capped glass jar. Temperature programmed desorption (TPD) was 

performed on the stored catalyst in the CATLAB apparatus, where 40 ml/min (measured at 

room temperature and pressure) of He was passed through 50 mg of the spent catalyst in a 

cylindrical tubular reactor. The sample was held at 120°C for 1 hour under He before the 

temperature was increased at a ramp rate of 10°C/min. Figure 15 shows the evolution of H2O, 

CO2 and CH4 in the off-gas, measured by a mass spectrometer, as a function of temperature. 

The calibration of the signals of the mass spectrometer was challenging because the absolute 

values of the signals are dependent on parameters other than the quantity of material, e.g. the 

total pressure within the spectrometer. As such there was a day-to-day variation in the signal 

intensity. The interpretation of the results from CATLAB was therefore performed by 

comparing the rate of change of the signals. There appeared to be three main regions for the 

evolution of CO2: a shoulder at 200°C, a main peak at 300°C and a smaller peak at 350°C. 

The profile of water is extremely broad, as seen. The rate of evolution of methane was rather 

similar to that of water but its measurement was unlikely to have been accurate since the 

atomic mass of methane is identical to that of an oxygen fragment. No significant evolution 

of H2 was observed between 100 and 700°C. 

  
(a) (b) 
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Figure 15. The profiles of H2O, CO2 and CH4 versus temperature in a temperature-programmed 

desorption of the spent 12 wt% Ni/-Al 2O3 after CO2 methanation reaction in the batch reactor. 
Following a drying period at 120°C, the temperature was increased at a rate of 10°C/min under a flow 
of 40 ml/min (measured at room temperature and pressure) He. 

3.4. DRIFTS measurements 

Here, 50 mg of fresh, passivated 12 wt% Ni/-Al 2O3 catalyst was packed as a differential 

bed and reduced at 450°C for 2 hours under 100 ml/min (at room temperature and pressure) 

of H2. Following the reduction, a mixture of 24 vol% CO2, 72 vol% H2 and 4 vol% Ar was 

passed across the differential bed at a flow rate of 100 ml/min (at room temperature and 

pressure). Figure 16 illustrates the main features of the IR spectrum obtained at 463 K at 

steady-state under reaction conditions. The identification of the species was based on Fujita et 

al. (1993), who studied supported Ni on alumina using DRIFTS. The absorbance bands at 

2050, 1920 and 1840 cm-1 were attributed to straight and bridged carbonyl groups on the 

surface of the catalyst. The presence of formates was also detected, reflected in the large 

peaks at 1620, 1590, 1390, 1350, 1330 and 2890 cm-1. Following the reaction at 463 K under 

CO2 and H2, the inlet flow was changed to 100 ml/min (at room temperature and pressure) of 

H2 and spectra of the surface of the catalyst were obtained periodically. The carbonyl peaks at 

2050, 1920 and 1840 cm-1 decreased in magnitude very quickly and disappeared after 

approximately 5 mins. However, the formate groups persisted even after 40 minutes under a 

flow of H2, indicating that they were bound more strongly to the surface of the catalyst than 

the carbonyl groups and were less reactive than the carbonyl species with H2.  
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Figure 16. Infrared spectra of the adsorbed species in the range from (a) 1100 – 2200 cm-1 and (b) 
2500 – 3300 cm-1 formed on reduced 12 wt% Ni/Al2O3 in flow of 100 ml/min (at room temperature 
and pressure) of 24 vol% CO2, 72 vol% H2 and 4 vol% Ar at 463 K. The spectrum of the catalyst 
under He was used as the background. 

4. Modelling 

4.1.1. Reactor model 

Reaction (1) has been established as the main reaction in CO2 methanation over the 

temperature range 443 – 493 K. Negligible levels of CO were detected in the bulk phase and 

the reaction was found to be at least 99.0% selective for methane. Therefore, it is reasonable 

to develop the model of the reactor based on the stoichiometry of the single Reaction (1). It 

has already been established in the above that there were no significant intra-particle or extra-

particle gradients in concentration and temperature in the catalyst pellets. Hence, the transient 

changes of 
2COp , 

2Hp , 
4CHp  and 

2H Op  in the Carberry spinning-basket reactor could be 

modelled as a set of four ordinary differential equations: 

 2CO cat
5

reactor

'
10

dp m RT
r

dt V
 


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 2H cat
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
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where 
2COp , 

2Hp , 
4CHp  and 

2H Op  are the partial pressures of CO2, H2, CH4 and H2O 

respectively in bar,  r' is the rate of Reaction (1) in mol s-1 gcat
-1, t is time in seconds, mcat is 

the mass of the catalyst in the reactor in grams and Vreactor is the volume of the reactor in m3. 

The initial conditions for the experiments were  

 for t = 0,  .0i ip p . (10) 

where pi is the partial pressure of component i in bar and pi0 is the initial partial pressure of 

species i. Given a rate expression for r', which could be a function of 
2COp , 

2Hp , 
4CHp  and 

2H Op  at a given temperature, Equations (6) to (10) were solved using the MATLAB solver 

ode45 to give the variation of the partial pressure of CO2, H2, CH4 and H2O over time for 

comparison with the experimental results. 

4.1.2. Kinetic modelling 

This Section investigates the validity of different rate expressions for CO2 methanation 

using kinetic models based on a Langmuir-Hinshelwood approach. The active sites for the 

reaction were assumed to be identical and their distribution uniform throughout the catalyst. 

It was assumed that CO2 methanation occurred via the dissociative adsorption of CO2 

(Weatherbee and Bartholomew, 1982). The sequence of elementary steps is outlined in 

Reactions (2) to (8):  

  
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where ki and k-i are the forward and reverse rate of reaction for the specified elementary step 

and i  presented adsorbed species i on an active site  . Further steps include hydrogenation 

of the CO  and the subsequent desorption of 
4CH  to form CH4 and H2O in the gas phase.  

A number of different rate expressions were derived from this sequence of elementary 

steps, depending on assumptions about the rate-limiting step and the most abundant species 

on the surface of the catalyst. Table 1 gives four examples of rate expressions derived based 

on different rate-limiting steps and the most abundant surface species. It should be noted that 

some of the kinetic parameters in Eqs. (11)-(14) are a composite of a number of rate and 

equilibrium constants, produced during the derivations. It is beyond the scope of this study to 

determine the values of all of the individual constants and the investigation is limited to the 

evaluation of the four main kinetic parameters a, b, c and d. Three other rate expressions for 

CO2 methanation, proposed by other investigators, are given in Table 2. The derivations of 

Eqs. (11) and (12) were largely based on the study by Weatherbee and Bartholomew (1982). 

However, in this study, H2O was included as a dominant surface species in order to account 

for its inhibition on the rate of reaction, as observed in the experiments.  

4.1.3. Model discrimination 

Of course, not all the rate expressions in Tables 1 and 2 agree with the experimental 

results obtained in the present research. Equations (13) and (14) predict a finite rate when 

respectively either 
2COp  or 

2Hp  is zero. This is in conflict with the experimental evidence 

here. Figure 7 clearly illustrates that there was no further decrease in 
2COp  when H2 was 

depleted and, similarly, Figure 9 shows no decrease in 
2Hp  when CO2 was depleted. The 

same argument applies to Eq. (16).  

The power law expression proposed by Chiang and Hopper (1983), Eq. (15), predicts that 

the rate of reaction would continue to increase indefinitely with 
2Hp  and 

2COp . This is 

contrary to the experimental results in Sections 3.2.1 and 3.2.2, where the rate of reaction was 

not affected by 
2Hp  and 

2COp  after values of 
2Hp  and 

2COp  exceeded certain threshold 

values. The inhibition of the rate of reaction by steam, evident in Section 3.2.4, was also not 

accounted for by Eqs. (13) – (17).  
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Table 1. Rate expressions based on different assumptions of the rate limiting step and the most 
abundant surface species. pi is the partial pressure of component i and rCH4 is the rate of production of 
CH4.  

Model Rate expression 
Rate-

limiting 
step 

Most 
abundant 
surface 
species 

 

I  
2 2

2 2 2 2

0.5 0.5
I CO H

2
0.5 0.5

I H I CO H I H O1

a p p

b p c p p d p  
 CO 

dissociation 
H, CO  

and H2O 
(11) 

II  

2 2

2

2 2 2

2

0.5 0.5
II CO H

20.5

CO 0.5 0.5
II II CO H II H O

H

1

a p p

p
b c p p d p

p

          

 
CO 

dissociation 
CO, O  

and H2O 
(12) 

III   
2

2 2

III H

2

III CO III H1

a p

b p c p 
 Adsorption 

of H2 
H, CO  
and O 

(13) 

IV   
2

2 2

VI CO

2

VI CO VI H1

a p

b p c p 
 Adsorption 

of CO2 
H, CO  
and O 

(14) 

 
Table 2. Some rate expressions proposed by other investigators for CO2 methanation. 

Rate expression Reference  

2 2

0.21 0.66
H CO'r kp p   Chiang and Hopper 

(1983) 
(15) 

2

CO2

CO CO2

'
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1 2 CO H 3 CO
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'
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r

p
K K p p K p

p


 
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 
 

 Weatherbee and 
Bartholomew  

(1982) 
(17) 

 

The two most plausible rate expressions are those of Model I and II, i.e. Eqs. (11) and 

(12). Further comparison of these two models was performed here by substituting the rate 

expressions into the model of the reactor, given in Section 4.1.1, and comparing the 

predictions with the experimental measurements at different conditions. To do this, the 
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parameters, a, b, c and d for each model were estimated based on a least-squares 

minimisation developed in MATLAB. Thus, the agreement between the model and the 

experimental results was studied by comparing the solution of the system of ODEs with the 

temporal variation of the partial pressures of the various species measured in the batch 

experiments. In the minimisation routine, the difference,  id t , between these values were 

compared for each iteration at time t with the experimental measurements for 
2COp , 

2Hp  and 

4CHp , such that 

      ,model ,expi i id t p t p t   (18) 

where  ,modelip t  is the partial pressure of species i determined by the solution of the ODEs 

and  ,expip t  is the partial pressure of species i measured experimentally. The sum of all the 

squares of each component was evaluated at a given time, t, such that 

   2

i
i

D d t . (19) 

The values of the parameters a, b, c and d of Model I and II, were obtained by minimising the 

value D using the MATLAB optimisation routine lsqnonlin. 

4.1.4. Model I 

The derivation of Model I was based on the assumption that the rate-determining step is 

the dissociation of the CO and that the most abundant species on the surface of the catalyst 

are adsorbed H, CO and H2O. Since, the parameter bI is, in fact, the adsorption equilibrium 

constant of hydrogen on the surface of the catalyst, its value was obtained from Sehested et 

al. (2005), who studied the methanation of CO over a Ni/MgAl2O4 catalyst, thus 

 





 

RT
bI

43000
exp107.7 4 . (20) 

consistent with partial pressures expressed in bar. Alstrup (1995) and Aparicio (1997) have 

also reported values of bI. There is good agreement between the bI obtained by Alstrup (1995) 

and Sehested (2005). The values of bI obtained by Aparicio (1997) were an order of 

magnitude larger than those given by Eq. (20). However, the values of the heat of adsorption 

determined by Aparicio (1997) were found by to be in good agreement with Eq. (20) with the 

pre-exponential factor being responsible for the discrepancy between the reported values of 

bI. With the value of bI predetermined, only three parameters were left to be determined using 
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the optimisation routine. Figure 17 compares the result of the least-squares minimisation 

routine for different initial 
2Hp . It is clear that, because of the high value of bI, the model 

predicts an increase in the rate of reaction at low 
2Hp . The modelling results for 

2H ,0p  = 7.2 

bar show that the profile of 
2Hp  is approximately linear with time, in stark contrast with the 

experimental measurements where the rate decreased at higher conversions. Furthermore, the 

least-squares minimisation routine resulted in negative values of cI, which have no physical 

interpretation.  

 

Figure 17. Comparison between the modelling results (Model I, Eq. (20)) and the experimental results 
for different initial partial pressure of H2. (a) shows the partial pressure of H2 with time and (b) the 

partial pressure of CH4 with time. T = 463 K, 
2H ,0 7.2 barp  , 

2CO ,0 2.4 barp   and mcat = 5 g.. 

To proceed, the pre-exponential value of bI was allowed to vary in the least-squares 

minimisation routine. Table 3 gives the results of the optimisation. Figure 18 shows that by 

relaxing the pre-exponential term of bI, a much better agreement was obtained with the 

experimental measurements. The agreement was verified with measurements taken from 443 

– 483 K and the values of the kinetic constants are given in Table 3. Assuming that these 

parameters follow the Arrhenius relationship, the values of activation energy and heat of 

adsorption were obtained, given in Table 4. While the agreement with the experimental 

results was good, the pre-exponential factor b0 was found to be 5 × 10-7 bar-0.5, very much 

smaller than that reported by Sehested et al. (2005). It could be argued that the surface of the 

catalyst in this study is different to that in other investigations, which were mainly studies 
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where high 
2COp  were involved. Alternatively, atomic H might not be one of the most 

abundant species on the surface of the catalyst under conditions for CO2 methanation, which 

would explain the low level of affinity for the surface suggested by the value of bI determined 

here.  

Table 3. Values of parameters from a fit of Model I to the experimental results. 

Temp / K aI / mol bar-1 s-1 bI / bar-0.5 cI / bar-1 dI / bar-1 
443 (2.2 ± 0.2) ×10-5 0.059 ± 0.006 0.101 ± 0.002 0.20 ± 0.01 
453 (3.8 ± 0.1) × 10-5 0.046 ± 0.002 0.091 ± 0.002 0.16 ± 0.01 
463 (6.1 ± 0.3) × 10-5 0.036 ± 0.004 0.082 ± 0.003 0.12 ± 0.03 
473 (9.0 ± 0.5) × 10-5 0.028 ± 0.004 0.074 ± 0.008 0.12 ± 0.02 
483 (2.0 ± 0.3) ×10-4 0.023 ± 0.011  0.067 ± 0.022 0.10 ± 0.01 

 

Table 4. Values of the activation energy, heat of adsorption and the corresponding pre-exponential 
factors of the parameters for Model I. 

a0 b0 c0 d0 
49.4 × 106 mol bar-1 s-1

 5.0 × 10-7 bar-0.5 5.6 × 10-2 bar-1 4.6 × 10-4 bar-1 
    

Ea Hb Hc Hd 
92 kJ mol-1 - 43 kJ mol-1 - 1.5 kJ mol-1 - 21.5 kJ mol-1 

 

Figure 18. Comparison of the modelling results (Model I, with pre-exponential for Eq. 920) allowed 
to vary) and the experimental results for different initial partial pressure of H2. (a) shows the partial 

pressure of H2 with time and (b) the partial pressure of CH4 with time. T = 463 K, 
2H ,0 7.2 barp  , 

2CO ,0 2.4 barp   and mcat = 5 g. The parameters in the kinetic model are given in Table 4. 
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4.1.5. Model II 

The main difference between Model II and Model I is that Model II, given by Eq. (12), 

assumes that the most abundant species on the surface of the catalyst are H2O, O and CO. 

The rate-limiting step of the reaction remains the dissociation of CO. As noted above, the 

derivations of these equations were largely based on Weatherbee and Bartholomew’s (1982) 

investigation but were extended in this research to account for the inhibitory effect of H2O on 

the rate of reaction. Weatherbee and Bartholomew (1982) obtained values of bII over the 

range 500 – 600 K, and summarised their findings by 

 7
II

46000
4.27 10 expb

RT
     

 
. (21) 

Given that their experiments were performed using a differential reactor, the conversion 

of CO2, 
2COX , was low. Hence, it is reasonable to assume that the effect of H2O in their 

experiments was negligible because 
2H Op  could be taken to be small. In the present work, the 

values of bII at different temperatures were based on the extrapolation of Eq. (21) to 

temperatures of 443 – 483 K. The other parameters aII, cII and dII were obtained by the least-

squares fit algorithm, as described previously. The modelling results showed that cII was 

largely invariant over the range 443 – 483 K, with an average of 0.16 ± 0.02 bar-1. It should 

be noted that cII is a composite of a number of kinetic and equilibrium constants: it is 

interesting that the resulting net “activation energy”, although not a true activation energy in 

the kinetic sense, appeared to be zero. In fact, the values of cII obtained by Weatherbee and 

Bartholomew (1982) did not show a clear trend with temperature, with a maximum value of 

0.143 at 550 K. The values of the various kinetic constants obtained in the present work for 

Model II are given in Table 5 and the estimated values of activation energies, heats of 

adsorption and pre-exponential factors in Table 6. 

Table 5. Values of parameters from the least-squares fit of Model II to the experimental results. 

Temp / K aII / mol bar-1 s-1 bII / - dII / bar-1 
443 (3.54 ± 0.07) × 10-5 0.039  0.23 ± 0.01 
453 (4.92 ± 0.05) × 10-5 0.051  0.19 ± 0.01 
463 (8.38 ± 0.08) × 10-5 0.066  0.16 ± 0.01 
473 (1.31 ± 0.07) × 10-4 0.085  0.13 ± 0.02 
483 (2.88 ± 0.08) × 10-4 0.110 0.11 ± 0.02 
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Table 6. Values of the activation energy, heat of adsorption and the corresponding pre-exponential 
factors for the parameters in Model II. 

aII ,0 bII ,0 cII,0 dII ,0 bar-1 
2.3 × 106 mol bar-1 s-1 4.3 × 10-7 0.16 bar-1 3.4 × 10-5 bar-1 

    
Ea Hb Hc Hd 

95 kJ mol-1 -46 kJ mol-1 - -32 kJ mol-1 

For each set of initial conditions explored, all the experimental and modelling profiles of 

the three components, i.e. CO2, H2 and CH4, were compared. For illustration, Figure 19 

shows 
2Hp  and 

4CHp  as a function of time at T = 473 K for different initial partial pressures 

of H2 while Figure 20 illustrates 
2COp  and 

4CHp  versus time at T = 463 K for different initial 

partial pressures of H2O. It is clear that Model II correctly predicts a number of experimental 

observations. At high 
2COp  and 

2Hp , the rate is largely unaffected by changes in 
2COp  and 

2Hp , which is clearly observed in Figure 19 (a) and (b) at t < 1000 s. Furthermore, the rate 

decreased at higher conversions, depicting a positive order on both 
2COp  and 

2Hp  on the rate 

of reaction at lower values of 
2COp  and 

2Hp . Figure 20 shows the decrease in the rate of 

reaction with higher partial pressures of H2O.  

Figure 19. Comparison between the modelling results and the experimental results for different initial 
partial pressures of CO2. (a) shows the partial pressure of H2 with time and (b) the partial pressure of 

CH4 with time. T = 473 K, 
2CO ,0p  = 2.4 bar and mcat = 5.0 g. Solid lines are the predictions of Model 

II and the symbols illustrate the corresponding experimental measurements. 
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Figure 20. Comparison between the modelling results and the experimental results for different initial 
partial pressures of H2O. (a) shows the partial pressure of H2 with time and (b) the partial pressure of 

CH4 with time. T = 463 K, 
2CO ,0p  = 2.4 bar, 

2H ,0p  = 7.2 bar and mcat = 5.0 g. Solid lines are the 

predictions of Model II and the symbols illustrate the corresponding experimental measurements. 

5. Discussion 
It has already been established in Section 4.1.3 that some of the rate expressions proposed 

by other studies, such as Eqs. (15) and (16), were not suitable for describing the experimental 

measurements obtained in the present research. Equation (16) was proposed by van 

Herwijnen et al. (1973), who performed the reaction over a similar temperature range to the 

present investigation. However, the experiments by van Herwijnen et al. (1973) only 

explored 
2COp  up to 0.02 bar. They found that the rate followed a first-order dependence on 

2COp  at pCO2 < 0.004 bar changing to zero order at higher 
2COp , in agreement with the 

observations in this study. The low threshold of 
2COp  when the dependence on 

2COp  changed 

to zero order is likely to the result of a very high ratio of H2 to CO2 exceeding 50:1 in their 

work. While the general trends in the study by van Herwijnen et al. (1973) were consistent 

with those in this study, Eq. (16) did not account for the effects of 
2Hp  and 

2H Op . Rate 

expressions based on a power law, such as Eq. (15), were also found to be unsuitable for the 

modelling of the different species in the present research. Weatherbee and Bartholomew 

(1982) also observed that the reaction orders, based on power law expressions, changed 

significantly with temperature. Hence, the use of power law expressions for CO2 methanation 
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is only suitable, at best, over a small range of temperature and partial pressures of reactants 

and products.  

Good agreement between the experimental results and the predictions of Model I was 

only possible with a very small value of bI, the adsorption equilibrium of H2, compared to 

values reported in the literature (Sehested et al., 2005; Alstrup, 1995; Aparicio, 1997). This 

contradicts the assumption in Model I that atomic H from the dissociative adsorption of H2 is 

one of the most abundant species on the surface of the catalyst. Weatherbee and 

Bartholomew (1982) also derived an expression similar to Model I, albeit not accounting for 

H2O on the surface of the catalyst, and obtained negative parameters. Temperature-

programmed desorption studies in the present work performed on the spent catalyst following 

CO2 methanation in the Carberry reactor showed no significant evolution of H2 above 100°C, 

suggesting that H is not one of the main species on the surface under reaction conditions. 

Therefore, Model I was rejected on the basis of the evidence from the modelling efforts and 

experimental measurements. 

When the value of bII from Weatherbee and Bartholomew (1982) was used, excellent 

agreement was obtained between Model II and the experimental results for different 
2COp , 

2Hp , 
2H Op  and temperatures. It has already been noted that Model II was based on a similar 

derivation to that of Eq. (17) but was extended to account for the effect of 
2H Op , which 

cannot be neglected in the present work because the batch operation performed as an integral 

reactor and the accumulation of H2O in the reactor was significant. Equation (17) also 

features an inhibition term involving CO. Weatherbee and Bartholomew (1982) consistently 

observed a small partial pressure of CO at the outlet of their reactor and attributed it to its 

being in equilibrium with the adsorbed CO, originating from the dissociative adsorption of 

CO2 on the catalyst. However, their reactions were performed at a higher temperature than 

those described in this work. At 500 K, their lowest temperature, the amount of CO was only 

0.003 mol%. Given that the temperature range in the present study was 443 – 483 K, it is 

likely that COp  was very much smaller because the adsorption of CO2 is an activated process 

(Falconer and Zagli, 1980), viz. less CO2 is adsorbed at lower temperatures. This was 

confirmed by the analysis of the gas samples in the present study, where no CO was detected 

at all. Furthermore, the thermodynamics of the reaction at such temperatures dictate that COp  

is negligible. Therefore, the term involving CO was dropped in the derivation of Model II. 

This does not contradict the proposed rate mechanism where CO2 dissociates into CO and O. 
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The absence of CO is most likely owing to the equilibrium lying heavily on the side of the 

adsorbed species and the detection limit of the gas chromatograph, approximately 0.05 bar.  

The derivation of Model II assumed that CO2 methanation involves the dissociative 

adsorption of CO2 to form surface CO and O. TPD analysis on the spent catalyst following 

CO2 methanation, illustrated in Figure 15, showed the evolution of CO2 and CH4 from 200 – 

350°C, indicating the presence of some carbonaceous species on the catalyst. IR spectra 

obtained from in-situ DRIFTS analysis of the catalyst at 463 K, illustrated in Figure 16, 

clearly showed the presence of straight and bridged carbonyl groups. The high activity of 

these groups, evident from the fast decrease in the intensity of their corresponding IR bands 

when pure H2 was passed through the catalyst, suggests the involvement of the carbonyl 

groups in the reaction pathway to form CH4. The DRIFTS analysis also revealed the presence 

of formate species, presumably from the hydrogenation of carbonyl and carbonate species. 

However, the DRIFTS measurements found that formate groups persisted even after 40 

minutes under a flow of H2, indicating that they were bound much more strongly to the 

surface of the catalyst than the carbonyl groups, which decreased very rapidly. This provides 

further evidence that while hydrogen-modified groups were tightly bound to the surface, their 

reactivity is low and so they might not participate in the pathway to form CH4. These 

observations are consistent with those of Fujita et al. (1993), Jacquemin et al. (2010) and 

Aldana et al. (2013), who obtained similar spectra on Ni/SiO2 and Ni/Al2O3 to those observed 

in this study. Their studies also supported the dissociation of CO2 followed by the subsequent 

hydrogenation of adsorbed C species for nickel supported on Al2O3 or SiO2.  

Finally, the derived model, with the accompanying parameters for Model II, was 

compared against additional independent experiments performed in the Carberry reactor. In 

Figure 21, CO2 methanation was performed at 463 K with an initial inventory of 2.4 bar CO2 

and 7.2 bar H2. At 3180 s, additional CO2 and H2 were introduced and the composition of the 

bulk phase of the reactor was analysed periodically. In general, there is good agreement 

between the results predicted by the model and the measurements obtained from the batch 

reactor. It is noted that the rate of reaction after the introduction of additional reactants, viz. 

CO2 and H2, was predicted to be slightly faster by the model than was the case in practice. 

This suggests that the inhibition term for H2O is slightly underestimated in Model II. 

Nevertheless, there is excellent agreement in Figure 22, where only additional H2 was 

introduced at 3780 s. Kinetic expressions proposed by other studies, given in Table 2, were 

also compared against the experimental results in this study. They consistently predicted a 
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much faster rate of reaction after the introduction of additional reactants in Figure 21 and 22. 

This is probably the result of the absence of an inhibition term for H2O, which limits their 

accuracy under conditions where 
2H Op  is high.  

Figure 21. (a) Partial pressure of CO2 and CH4 and (b) partial pressure of H2 versus time. Additional 
CO2 and H2 was introduced in a ratio of 3:1 at t = 3180 s. T = 463 K and mcat = 5.0 g. 

 

Figure 22. (a) Partial pressure of CO2 and CH4 and (b) partial pressure of H2 versus time. Additional 
4.5 bar of H2 was introduced at t = 3780 s. T = 463 K and mcat = 5.0 g. 
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6. Conclusions 
An investigation of the methanation of CO2 methanation was performed in a gradientless, 

spinning-basket reactor at temperatures of 443 – 483 K and pressures of up to 20 bar. The 

reactor was operated in batch and the composition of its contents was determined 

periodically. Additional analysis was performed using temperature-programmed studies and 

DRIFTS analysis in order to probe the surface of the catalyst.  

The conclusions were as follows. At low 
2Hp  and 

2COp , the rate increases with the partial 

pressure of the reactants. At high 
2Hp  and 

2COp , the rate of reaction has a zeroth order 

relationship with the partial pressure of the reactants. H2O has a significant inhibitory effect 

on the rate of CO2 methanation. Several rate expressions were tested against the experimental 

measurements and Eq. (12) was found to be the most satisfactory. It assumes a mechanism in 

which CO2 dissociates to adsorbed CO and O on the surface of the catalyst. The rate-limiting 

step was taken to be the dissociation of adsorbed CO and the most abundant species were 

CO, O and H2O. The resulting adsorbed carbon on the surface would be further hydrogenated 

to form CH4. Temperature-programmed studies of the spent catalyst showed the presence of 

some carbonaceous species on the catalyst. Their presence was not sufficient to cause any 

deactivation but were consistent with the dissociation of CO2 on the surface of the catalyst. 

The presence of carbonyl groups from in-situ DRIFTS analysis is also in agreement with this 

observation.  

Overall, it has been demonstrated that the study of CO2 methanation in batch has led to 

experimental measurements consistent with investigations, described in the literature, 

performed in reactors operated in continuous flow. Furthermore, the validity of different rate 

expressions could be easily determined over a wide range of partial pressures by using a 

batch reactor. A convenient method of determining the effect of H2O on the rate of reaction 

was discovered and the inhibitory effect of H2O was quantified. 
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