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Abstract

We review infinite divisibility and Lévy processes in Banach spaces
and discuss the relationship with notions of type and cotype. The
Lévy-Itô decomposition is described. Strong, weak and Pettis-style
notions of stochastic integral are introduced and applied to construct
generalised Ornstein-Uhlenbeck processes.

1 Introduction

This review article has several interlocking themes - Lévy processes, geometry
and probability in Banach spaces, stochastic integration, stochastic evolution
equations, Ornstein-Uhlenbeck processes and self-decomposability. We dis-
cuss each of these in turn.

Infinitely divisible distributions and Lévy processes, their dynamic coun-
terpart, have been the subject of intense activity in recent years. This is
partly because their path decomposition into a continuous Gaussian part
plus an independent superposition of jumps of all possible sizes makes them
ideally suited for modelling random phenomena which manifest discontinu-
ity. This is particularly pertinent for models of the stock market and indeed
this has become a major area of application for Lévy processes (see e.g. [11],
[25], [19], Chapter 5 of [3] and Chapter 7 of [7]).
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All of the above references use finite-dimensional (and often real-valued)
Lévy processes. Many workers in the field have recognised that the complex-
ity of the market is often captured more effectively using infinite dimensional
stochastic analysis, particularly in the realm of interest rates [9], and it is
likely that Lévy processes will play a major role in this direction.

In this paper we review and survey results about Lévy processes in Banach
spaces with particular emphasis on the stochastic integrals which are used
to construct the stochastic evolution equations which are of use in finance.
A key feature of probability in Banach spaces is the role of geometry. In the
Hilbert space case, these finer aspects do not come into play as the underlying
geometry is so well-behaved. After reviewing some basic facts about Lévy
processes in section 2.2, we describe the relationship between Lévy measures
and the geometric notions of type and cotype in section 2.3.

In section 2.4, we describe the Lévy-Itô decomposition alluded to above
which gives the sample path structure of a generic Lévy process in terms
of Gaussian and jump components. Following Dettweiler [13], we give an
account of “strong” stochastic integration in section 2.4. Geometric consid-
erations again play a role in limiting the types of Banach spaces in which
such integrals can be defined and despite the beautiful mathematics which
so arises, this might be seen as a major drawback for stochastic evolution
equations. In section 2.5, we indicate how recent work on weaker types of
stochastic integration can overcome this obstacle, as they are not tied to the
Banach space geometry.

Lévy-driven stochastic evolution equations are introduced in section 2.6.
Most of the work on these has been in the case where the driving process is
a Brownian motion [12]. One particular example which has seen some atten-
tion (at least in the Hilbert space context) and where the driving process is
genuinely Lévy, leads to the infinite-dimensional Ornstein-Uhlenbeck process.
Stationary solutions of this equation have the nice property that the random
variables which comprise the process are operator self-decomposable in the
sense of K.Urbanik [28].

Preliminaries. Let (Ω,F , (Ft, t ≥ 0), P ) be a stochastic base wherein the
filtration (Ft, t ≥ 0) satisfies the usual hypotheses of completeness and right
continuity. Let E be a separable Banach space with dual E ′. Duality between
E and E ′ is expressed by means of 〈·, ·〉. B(E) will denote the σ-algebra of
all Borel sets in E. The open ball in E of radius r and centered on x is
denoted as Br(x). We write B1 := B1(0). If E and F are Banach spaces,
then L(E, F ) denotes the linear space of all bounded linear operators from
E to F . It is itself a Banach space with respect to the supremum norm. We
write L(E) = L(E, E).
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If Y is an E -valued random variable defined on (Ω,F , P ), its law is

denoted by pY . We write X
d
= Y , whenever X and Y are E-valued random

variables for which pX = pY . If a sequence of probability measures (ρn, n ∈
N) converges weakly to ρ, we write ρn ⇒ ρ, as n →∞.

M(E) is the set of all σ-finite Borel measures on E. For each µ ∈M(E),
we define µ(A) = µ(−A). µ is symmetric if µ = µ.

MF (E) is the subset of M(E) comprising finite Radon measures. If
µ ∈MF (E), its characteristic function is the map µ̂ : E ′ → C where µ̂(a) =∫

E
ei〈x,a〉µ(dx), for each a ∈ E ′.
We will employ the notation Lp(Ω; E) := Lp(Ω,F , P ; E), for each p ≥ 1.

Lebesgue measure on R+ is denoted by Leb, when convenient.

2 Lévy measures and Lévy processes

ν ∈M(E) is a symmetric Lévy measure if it is symmetric and satisfies

(i) ν({0}) = 0,

(ii) The mapping from E ′ to R given by

a → exp

{∫

E

[cos(〈x, a〉)− 1]ν(dx)

}

is the characteristic function of a measure in MF (E).

ν ∈ M(E) is a Lévy measure if ν + ν is a symmetric Lévy measure. We
gather together some useful facts about Lévy measures in the next propo-
sition. Full proofs can be found in [20], pp.69 - 75 (see also [14], section
3.4).

Proposition 2.1 If ν is a Lévy measure on E then

(i) For each a ∈ E ′,
∫

E

|ei〈x,a〉 − 1− i〈x, a〉1B1(x)|ν(dx) < ∞.

(ii) The mapping from E ′ to C given by

a → exp

{∫

E

[ei〈x,a〉 − 1− i〈x, a〉1B1(x)]ν(dx)

}

is the characteristic function of a probability measure in MF (E).
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(iii) ν(Bδ(0)c) < ∞, for all δ > 0.

(iv) sup
||a||≤1

∫

||x||≤1

|〈x, a〉|2ν(dx) < ∞.

Let X = (X(t), t ≥ 0) be a Lévy process defined on (Ω,F , (Ft, t ≥ 0), P )
and taking values in E. This means that

1. Each X is adapted to the filtration (Ft, t ≥ 0).

2. For each 0 ≤ s < t ≤ ∞, X(t) − X(s) is independent of Fs and its
distribution depends only on t− s.

3. X has càdlàg paths with X(0) = 0 (a.s.).

4. t → X(t) is stochastically continuous.

We then have the Lévy-Khinchine formula: for each t ≥ 0

E(ei〈X(t),a〉) = e−tη(a),

for all a ∈ E ′, where η : E ′ → C is a continuous, hermitian, negative definite
function for which η(0) = 0, which takes the form

η(a) = −i〈m, a〉+
1

2
〈Ra, a〉

+

∫

E

[1− ei〈x,a〉 + i〈x, a〉1B1(x)]ν(dx), (2.1)

wherein m ∈ E, R is a positive symmetric linear operator from E ′ to E and
ν is a Lévy measure. The triple (m,R, ν) is called the characteristics of X.
It uniquely determines the law of each X(t).

Examples.(1) Brownian motion with covariance R is the Lévy process BR

with characteristics (0, R, 0). It has continuous sample paths (a.s.) and each
BR(t) is centered Gaussian with

E(〈BR(s), a〉〈BR(t), b〉) = 〈Ra, b〉s ∧ t for each a, b ∈ E ′.

(2) If (Yn, n ∈ N) is a sequence of i.i.d. random variables with common
law µ, and (N(t), t ≥ 0) is an independent Poisson process of intensity c,

then X is a compound Poisson process, wherein each X(t) :=
∑N(t)

i=1 Yi. It

has characteristics
(
−c

∫
B1

xµ(dx), 0, cµ
)
.

Note that when E is a Hilbert space, the covariance operator of any
E-valued Brownian motion is always trace class (see e.g. [12], p.55).
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3 Type, Cotype and Lévy Measure

In Euclidean space, a Borel measure ν which has mass zero at the origin is
a Lévy measure if and only if

∫
(||x||2 ∧ 1)ν(dx) < ∞. In a general Banach

space, this may not be sufficient, but it is of interest to try to identify some
types of spaces for which it is. This is intimately tied up with Banach space
geometry - specifically the notions of “type” and “cotype”. We give a rapid
review of these ideas in this section. [26] is an excellent reference for the
main concepts. The connection with Lévy measures can be found in [6] (see
also [5] and [1]).

Let (εn, n ∈ N) be a Rademacher sequence, i.e. the εns are i.i.d symmetric
Bernoulli random variables each having range {−1, 1}. E is said to be of type
p if for every sequence (xn, n ∈ N) of elements of E

( ∞∑
n=1

||xn||p
) 1

p

< ∞⇒
∞∑

n=1

εnxn converges a.s. (3.2)

Every Banach space is of type 1 and only E = {0} has type p > 2 so we
assume that 1 < p ≤ 2. If Lr := Lr(M,A, µ) where (M,A, µ) is an arbitrary
σ-finite measure space, then Lp is of type p for 1 < p ≤ 2 and of type 2 for
p > 2.

A Banach space E is of cotype p if the implication in (3.2) is reversed. For
cotype we can only have p ≥ 2. Every Banach space is of cotype ∞ (where
the left hand side of (3.2) is interpreted as a supremum). For 1 ≤ p ≤ 2, Lp

is of cotype 2. Some useful relations between type and cotype are

• If E is of type 2 then E ′ is of cotype 2.

• If E is of both type and cotype 2, then it is isometrically isomorphic
to a Hilbert space.

A useful alternative characterisation of type and cotype is as follows:
E is of type p iff there exists C > 0 such that given any n ∈ N and any

set {X1, . . . , Xn} of independent random variables in Lp(Ω; E)

E

(∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣

∣∣∣∣∣

p)
≤ C

n∑
i=1

E(||Xi||p). (3.3)

E is of cotype p iff the inequality in (3.3) is reversed.
Now let ν be a Borel measure on E and define γp(x) := ||x||p∧1, for each

x ∈ E and each p ≥ 1, so that
∫

E
γp(x)ν(dx) ∈ [0,∞]. In the following we

will say that ν integrates γp if
∫

E
γp(x)ν(dx) < ∞.
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Theorem 3.1 (Araujo/Giné) 1. E is of cotype 2 iff every Lévy mea-
sure on E integrates γ2.

2. E is of type p iff every Borel measure which integrates γp and assigns
zero mass to {0} is a Lévy measure.

From this and the remarks made above we deduce the following

Corollary 3.1 The following are equivalent

1. ν is a Lévy measure iff ν integrates γ2 and assigns zero mass to {0}.
2. E is isometrically isomorphic to a Hilbert space.

Dynamical versions of the above results are due to Dettweiler ([13]).

Theorem 3.2 (Dettweiler) 1. If E has cotype p, then the Lévy measure
of any Lévy process integrates γp.

2. If E is of type p and ν is a Borel measure which integrates γp and
assigns zero mass to {0}, then there exists a Lévy process having Lévy
measure ν.

4 The Lévy-Itô Decomposition

Let X = (X(t), t ≥ 0) be an E-valued Lévy process with characteristics
(b, R, ν). The jump at time t is ∆X(t) := X(t) − X(t−). We obtain a
Poisson random measure N on R+× (E−{0}), which has intensity measure
Leb ⊗ν, by the prescription

N(t, A) := #{0 ≤ s ≤ t, ∆X(t) ∈ A},

for each A ∈ B(E).The associated compensator is denoted by Ñ , so

Ñ(dt, dx) = N(dt, dx)− dtν(dx).

We say that A ∈ B(E) is bounded below if 0 /∈ Ā. Arguing as in section 2.3
of [3], we see that if A is bounded below, for each t ≥ 0

YA(t) :=
∑

0≤s≤t

∆X(s)1{∆X(s)∈A} =

∫

A

xN(t, dx) is finite a.s.

In fact (YA(t), t ≥ 0) is a compound Poisson process.
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If A is bounded below and A ⊆ Br(0) for some r > 0, we may define

ZA(t) := YA(t)−
∫

A

xν(dx) =

∫

A

xÑ(t, dx).

Following arguments due to Dettweiler ([13]), we let (An, n ∈ N) be a
sequence of Borel sets in B1 such that each Ac

n := B1 − An is bounded
below and An ↓ {0} as n → ∞ (e.g. we may take each An = B 1

n+1
(0)).

Each ZAc
n
(t) = ZAc

1
(t) +

∑n−1
j=1 ZAc

j+1−Ac
j
(t) is a sum of independent random

variables. Then for each a ∈ E ′

Φn,t(a) : = E(ei〈ZAc
n
(t),a〉)

= exp

{
t

∫

Ac
n

(ei〈y,a〉 − 1− i〈y, a〉)ν(dy)

}

→ exp

{
t

∫

B1

(ei〈y,a〉 − 1− i〈y, a〉)ν(dy)

}
=: Φt(a),

as n → ∞. By a slight variation of the proof of Proposition 2.1 (ii), we
see that Φt is the characteristic function of an infinitely divisible probability
measure ρ(t). By the Banach space version of Glivenko’s theorem, pZAc

n
(t) ⇒

ρ(t) as n →∞, and hence by the Itô-Nisio theorem, ZAc
n
(t) converges a.s. to

a random variable Z(t) whose law is ρ(t). We write

Z(t) =

∫

B1

xÑ(t, dx),

and note that it is independent of the choice of approximating sequence.
We then obtain

Theorem 4.1 (Lévy Itô Decomposition) If X = (X(t), t ≥ 0) is an E-
valued Lévy process with characteristics (b, R, ν), there exists a Brownian
motion BR with covariance R and an independent Poisson random measure
N on R+ × (E − {0}, with intensity measure Leb⊗ν so that for each t ≥ 0,

X(t) = bt + BR(t) +

∫

B1

xÑ(t, dx) +

∫

Bc
1

xN(t, dx).

An alternative proof of the Lévy-Itô decomposition is given in the recent
paper [2] which is based on a different approach to defining the compensated
integral. Let f : E → E be a simple function, i.e f(x) =

∑n
j=1 cj1Aj

, for
some n ∈ N, A1, . . . , An disjoint Borel sets which are bounded below and
c1, . . . , cn ∈ E. Let f : E → E be measurable with

∫
E
||f(x)||pν(dx) < ∞ ,

for some p ≥ 1. We say that f is p-approximable if there exists a sequence
(fn, n ∈ N) of simple functions such that
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1. (fn, n ∈ N) converges to f pointwise ν a.e.

2. limn→∞
∫

E
||f(x)− fn(x)||pν(dx) = 0.

Now suppose that f is p-approximable by (fn, n ∈ N). For any B ∈
B(E − {0}), define∫

B

f(x)Ñ(t, dx) := lim
n→∞

∫

B

fn(x)Ñ(t, dx),

whenever the right hand side exists in Lp(Ω,F , P ) and the limit is indepen-
dent of the choice of approximating sequence. In this case,

∫
B

f(x)Ñ(t, dx) is
called the strong p-integral of f . In [2], the Lévy -Itô decomposition is estab-
lished wherein

∫
B1

xÑ(t, dx) is a strong 2-integral, but such a decomposition
only holds under the constraint that either γ1 is ν-integrable or E is type 2
and γ2 is ν-integrable.

Note that both [13] and [2] obtain the Lévy-Itô decomposition for the
more general class of additive processes, i.e. those which have independent
but not necessarily stationary increments.

5 Strong Stochastic Integration

In this section, we closely follow the beautiful survey paper by Dettweiler [13].
Let X = (X(t), t ≥ 0) be an E-valued Lévy process and let F be another
separable Banach space. Fix T > 0. P will denote the predictable σ-algebra
on [0, T ]×Ω. We fix a subspace Υ of L(E, F ) and equip Υ with a norm such
that its embedding into L(E, F ) is continuous. Let E(Υ) denote the space
of all simple predictable mappings from R+ × Ω into E(Υ), so Φ ∈ E(Υ) if
there is a partition 0 = t0 < t1 < · · · < tn < tn+1 = T and Υ-valued random
variables Φ0, . . . , Φn with each Φj being Ftj -measurable (1 ≤ j ≤ n) such
that

Φ =
n∑

j=0

Φj1]tj ,tj+1].

For such a process we define its strong stochastic integral via the usual pre-
scription:

IT (Φ) :=

∫ T

0

Φ(s)dX(s) :=
n∑

j=0

Φj(X(tj+1)−X(tj)).

The process X is said to be Lp-primitive where 1 ≤ p < ∞, if there exists a
measure λ on (Ω× [0, T ],P) and a constant C > 0 such that

E
(∣∣∣∣

∣∣∣∣
∫ T

0

Φ(s)dX(s)

∣∣∣∣
∣∣∣∣
p

F

)
≤ C

∫

Ω×[0,T ]

||Φ(ω, s)||pΥλ(dω, ds),
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for all T ≥ 0. Since E(Υ) is dense in Hp(λ; T ) := Lp(Ω × [0, T ],P , λ), we
see that IT extends by continuity to a bounded map from Hp(λ; T ) into
Lp(Ω,F , P ), and this gives us the required extension of the strong stochastic
integral.

The requirement that X be Lp-primitive imposes geometric constraints
on the Banach space F and probabilistic constraints on the process X. To
appreciate these, we need some definitions.

The Banach space F is said to be p-uniformly smooth if there exists K > 0
such that

||x + y||p + ||x− y||p ≤ 2||x||p + K||y||p,
for all x, y ∈ F , and it is p-smoothable if it is p-uniformly smooth with respect
to an equivalent norm. In fact we must take 1 < p ≤ 2. The p-smoothable
property is equivalent to a number of other interesting geometric Banach
space properties (see e.g. theorem 18.7 in [26], p.91). The spaces Lr, r > 1
are all p-smoothable for some 1 < p ≤ 2.

Let πT be a partition of [0, T ] taking the form 0 = t0 < t1 < · · · <
tn < tn+1 = T . We define the p-integrable variation Var(p)(X; πT ) of X with
respect to this partition to be

Var(p)(X; πT ) :=
n∑

i=0

E(||X(ti+1)−X(ti)||p),

where p > 1, so Var(p)(X; πT ) ∈ [0,∞]. We say that X is of p-integrable
variation if

Var
(p)
T (X) := sup

πT

Var(p)(X; πT ) < ∞,

for all T > 0.

• Let E be a Hilbert space and X be a Lévy process having the Lévy-
Itô decomposition X(t) = BR(t) +

∫
B1

xÑ(t, dx) for all t ≥ 0. X has
integrable 2-variation, in fact

Var
(2)
T (X) =

(
tr(R) +

∫

B1

||x||2ν(dx)

)
T.

• If E has cotype p and X is centred with E(||X(t)||p) < ∞, then X is
of integrable p-variation [13].

We have the following beautiful result which shows the importance of
these ideas in establishing Lp-primitivity.
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Theorem 5.1 (Dettweiler) If F is p-smoothable and X is of integrable
p-variation for some 1 < p ≤ 2, then X is Lp-primitive for every Υ with
λ = P ⊗ α, where for each 0 ≤ s < t < ∞,

α(]s, t]) := lim inf
πt

Var(p)(X; πt)− lim inf
πs

Var(p)(X; πs).

If we drop the condition that F be p-smoothable, Dettweiler has shown
that there is no natural theory of strong stochastic integration for any Υ
which is sufficiently rich so as to contain all finite rank operators. For full
details see theorem 3.2 in [13] p.70.

In the above discussion, we have given a “holistic” construction of
∫ T

0
Φ(s)dX(s).

An alternative approach is to make direct use of the Lévy-Itô decomposition
and try to define

∫ T

0

Φ(s)dX(s) = b

∫ T

0

Φ(s)ds +

∫ T

0

Φ(s)dBR(s)

+

∫ T

0

∫

B1

Φ(s)xÑ(ds, dx) +

∫ T

0

∫

Bc
1

Φ(s)xN(ds, dx)

(5.4)

The first term in (5.4) is a (pathwise) Bochner integral (provided Φ is
sufficiently regular) and the last term is just a random finite sum, in fact

∫ T

0

∫

Bc
1

Φ(s)xN(ds, dx) :=
∑

0≤s≤t

Φ(s)∆X(s)1{∆X(s)∈Bc
1}.

The difficulty is then reduced to the definition of the two middle terms and
these will be subject to the constraints described above.

The most intensive development of this approach has been in the case
where E = F is a Hilbert space and Υ = L(E) (see [4], [27], [17, 18]). In this
case, we may consider more general stochastic integrals which are of the form∫ t

0

∫
B1

Φ(s, x)M(ds, dx), where M is the martingale-valued measure defined
on [0, T ]×B1 given by

M(]0, t], A) = BR(t)δ0(A) +

∫

A−{0}
xÑ(ds, dx), (5.5)

for each 0 < t ≤ T and each A ∈ B(B1). It is shown in [4] that this stochastic
integral can be defined, by a natural extension from simple functions, to the
real Hilbert space of all P ⊗ B(B1) measurable Φ for which

E
(∫ T

0

∫

B1

tr(Φ(s, x)T (x)Φ(s, x)∗)ν(dx)ds

)
< ∞,
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where

T (x) =

{
R if x = 0

〈x, ·〉x if x 6= 0.

This recipe coincides with that of [12] for strong stochastic integrals with
respect to Brownian motion if Φ(s, x) ≡ 0, whenever x 6= 0.

Finally, we remark that B.Rüdiger [24] has extended the work of [2] to
define strong p-integrals

∫ t

0

∫
E−{0} f(x, s)Ñ(ds, dx), for suitable predictable

mappings f : E×R+×Ω → F , where E and F are separable Banach spaces.

6 Weak and Pettis-Style Stochastic Integra-

tion

In this section, we continue to deal with stochastic integration with respect to
martingale-valued measures of the form (5.5), but these are now taking values
in a separable Banach space E. We denote by ι the isometric embedding of
E into E ′′ given by ι(x)(a) = 〈x, a〉, for each x ∈ E, a ∈ E ′. Generalising
section 2 of [4], we define a field (Qx, x ∈ E) of positive, symmetric operators
from E ′ to E by the prescription

Qx =

{
R if x = 0

ι(x)(·)x if x 6= 0.

Now we extend the construction of [21]. Let F = (F (t, x), t ≥ 0, x ∈ B1)
be P ⊗ B(B1)-measurable L(E)-valued random variables. We say that F is
Q-weakly L2 if for each x ∈ B1, a ∈ E ′, T > 0

1. t → F (t, x)QxF (t, x)∗a is weakly measurable.

2.
∫ T

0

∫
B1
〈F (t, x)QxF (t, x)∗a, a〉ν(dx)dt < ∞.

Let A = A0 ∪ {0}, where A0 = {A ∈ B(B1); 0 /∈ A} and let S(T ) be the
space of all F for which

F =

N1∑
i=0

N2∑
j=0

Fij1]ti,ti+1]1Aj
,

where N1, N2 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T, A0, . . . , AN2 are disjoint
sets in A and each Fij is a bounded Fti-measurable L(E)-valued random
variable. For F ∈ S(T ), and for each a ∈ E ′, we define

∫ T

0

∫

B1

〈F (t, x)M(dt, dx), a〉 :=

N1∑
i=0

N2∑
j=0

〈FijM(ti+1 − ti, Aj), a〉. (6.6)
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Standard calculations lead to

E

(∣∣∣∣
∫ T

0

∫

B1

〈F (t, x)M(dt, dx), a〉
∣∣∣∣
2
)

=

∫ T

0

∫

B1

〈F (t, x)QxF (t, x)∗a, a〉ν(dx)dt,

and this enables us to extend the construction of the weak stochastic inte-
gral

∫ T

0

∫
B1
〈F (t, x)M(dt, dx), a〉 to arbitrary F which are Q-weakly L2 by a

standard limiting argument.
We say that an F which is Q-weakly L2 is stochastically Pettis integrable

if there exists an E-valued stochastic process (Y (t), t ≥ 0) such that

〈Y (t), a〉 =

∫ T

0

∫

B1

〈F (t, x)M(dt, dx), a〉,

for each a ∈ E ′.
The stochastic Pettis integral has been introduced and studied in some

detail by van Neerven and Weiss [21] (see also [23]) in the case where M
reduces to a Brownian motion. It generalises the original construction of
Pettis [22] to a random framework and appears to be independent of geo-
metric constraints.

7 Lévy-Driven Ornstein-Uhlenbeck Processes

In recent years there has been a great deal of interest in stochastic evolution
equations of the form

dY (t) = JY (t)dt + B(Y (t))dM(t) (7.7)

whose solution, subject to the initial condition Y (0) = Y0 (a.s.), is a sto-
chastic process Y = (Y (t), t ≥ 0) taking values in a Banach space E. Here
J is the infinitesimal generator of a C0 semigroup of linear operators on E,
M = (M(t), t ≥ 0) is a semimartingale taking values in another separable
Banach space F and B is a suitable Lipschitz mapping from E to L(F, E).
Of course solutions to (7.7) may not exist in general. The most extensive
studies have been in the case where E and F are Hilbert spaces and M is
a Brownian motion or a cylindrical Wiener process in the sense of [12], pp
96-8. Recently there has begun to be some interest in the generalisation to
Lévy processes (but still in a Hilbert space context) - see e.g. [4], [17, 18],
[27]. One of the simplest examples of (7.7), which has itself been the object
of extensive study, is

dY (t) = JY (t)dt + BdX(t). (7.8)
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Here we have taken B to be a fixed operator in L(F, E) and X = (X(t), t ≥ 0)
to be an F -valued Lévy process. The equation (7.8) has a weak solution if
we can find Y for which

〈Y (t), a〉 = 〈Y0, a〉+

∫ t

0

〈Y (s), J∗a〉ds + 〈BX(t), a〉,

for all a ∈ Dom(J∗), t ≥ 0. Necessary and sufficient conditions are known
for a unique weak solution to (7.8) to exist when F is a Hilbert space and
X is an F -valued Brownian motion, or more generally, a cylindrical Wiener
process (see [8], [21]). The construction of [21] utilises the stochastic Pettis
integral to construct this weak solution in a direct and appealing way.

From now on we will take E = F to be a Hilbert space and X to be a
general Lévy process. In this case, there is a unique weak solution to (7.8)
and it coincides with the mild solution given by

Y (t) = S(t)Y0 +

∫ t

0

S(t− s)dX(s). (7.9)

The stochastic integral appearing in (7.9) is sometimes called a stochastic
convolution. It is constructed in a strong sense in [10] and [4], in the former
case holistically and in the latter case via the Lévy-Itô decomposition as
outlined in section 2.5 above. The process Y = (Y (t), t ≥ 0) as given in (7.9)
is called a Lévy-driven Ornstein-Uhlenbeck process. It clearly generalises the
well-known real-valued process obtained by taking E = R and each S(t) =
e−λt, for some λ > 0 (see e.g. section 4.3.5 of [4] and references therein). Y
is a Markov process. If (S(t), t ≥ 0) is “stable”, i.e. limt→∞ S(t)u = 0 for all
u ∈ E, then Y is strictly stationary if and only if [10]

(A) limt→∞
∫ t

0
S(t)bdx exists.

(B)
∫∞

0
tr(S(t)RS(t)∗)dt < ∞.

(C)
∫∞

0

∫
E−{0}(||S(r)x||2 ∧ 1)ν(dx)dr < ∞

(D) limt→∞
∫ t

0

∫
E−{0} S(r)x[1B1(S(r)(x))− 1B1(x)]ν(dx)ds exists.

In the exponentially stable case where for all t ≥ 0 ||S(t)|| ≤ Ce−λt for
some C ≥ 1, λ > 0 :

• (A) and (B) always hold.

• ∫∞
0

S(t)dX(t) exists in distribution iff
∫∞

0

∫
Bc

1
S(u)xN(du, dx) exists in

distribution.
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A sufficient condition for stationarity is
∫
||x||≥1

log(1 + ||x||)ν(dx) < ∞ and

it is well-known that this is also necessary when dim(E) < ∞ (see e.g. the-
orem 4.3.17 in [3] and references therein). We say that an E-valued random
variable Z is operator self-decomposable if and only if for each t > 0, there
exists a random variable Zt which is independent of Z and for which

Z
d
= S(t)Z + Zt. (7.10)

From (7.9) we see that Y0 is operator self-decomposable with each Zt
d
=∫ t

0
S(t − s)dX(s) if and only if Y is strictly stationary. Indeed in this case

we have from (7.9)

Y (0)
d
= Y (t) = S(t)Y (0) + Zt.

We remark that operator self-decomposability for Banach space valued
random variables was first introduced by K.Urbanik in [28] (see also [15],
[16]).
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and their applications in finance, Diplomarbeit Universität Bielefeld
(http://www.physik.uni-bielefeld.de/bibos/start.html) (2005)
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