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Abstract 

This study investigated speaker sex differences in the temporal and spectro-temporal parameters 

of English monosyllabic words spoken by thirteen women and eleven men. Vowel and utterance 

duration were investigated. A number of formant frequency parameters were also analysed to 

assess the spectro-temporal dynamic structures of the monosyllabic words as a function of 

speaker sex. Absolute frequency changes were measured for the first (F1), second (F2) and third 

(F3) formant frequencies (ΔF1, ΔF2, and ΔF3, respectively). Rates of these absolute formant 

frequency changes were also measured and calculated to yield measurements for rF1, rF2 and 

rF3. Normalised frequency changes (normΔF1, normΔF2, and normΔF3), and normalised rates 

of change (normrF1, normrF2, and normrF3) were also calculated. F2 locus equations were then 

derived from the F2 measurements taken at the onset and temporal mid points of the vowels. 

Results indicated that there were significant sex differences in the spectro-temporal parameters 

associated with F2: ΔF2, normΔF2, rF2, and F2 locus equation slopes; women displayed 

significantly higher values for ΔF2, normΔF2 and rF2, and significantly shallower F2 locus 

equation slopes. Collectively, these results suggested lower levels of coarticulation in the speech 

samples of the women speakers, and corroborates evidence reported in earlier studies. 
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1 Introduction 

1.1 Sex differences in speech production 

Speaker sex differences in adults have been reported in the temporal domain of speech. For 

example, faster speaking rates (Jacewicz, Fox & Wei 2010) and shorter acoustic vowel durations 

(e.g. Simpson 1998, Whiteside 1996) have previously been attributed to male speakers. 

However, there is also evidence to suggest that sex differences in vowel durations are complex, 

and these differences are context dependent (Simpson & Ericsdotter 2003). In addition, there are 

reports of speaker sex differences in the spectral parameters of speech. For example, a more 

distinct and larger vowel space has been found for women’s formant data (e.g. Lee, Potamianos, 

& Narayanan 1999, Simpson 2009, Traunmüller 1988, Whiteside 2001). These speaker sex 

differences in vowel spaces could be attributed to the sexual dimorphism in supralaryngeal 

dimensions (i.e. the oral cavity to pharynx ratio). However, evidence suggests that some sex 

differences in speech production might also be a function of sociocultural factors (e.g. Byrd 

1992, 1994; Henton & Bladon 1985; Whiteside 2001). The sex differences in speaking style in 

more formal settings observed by Byrd (1992, 1994), the fuller phonetic forms displayed by 

women (Whiteside 1996), as well as the greater phonetic distinctiveness of vowels (e.g. a larger 

vowel space for women) found in Lee et al.’s 1999 database (Whiteside 2001), suggest that 

lower degrees of coarticulation might also be a feature of women’s speech. This suggestion is 

supported by McLeod, Baillargeon, Metz, Schiavetti & Whitehead (2001), who found 

significantly steeper second formant (F2) locus equation slopes for male than for female 

speakers, thereby suggesting higher levels of coarticulation for male speakers. Considering these 

previously reported speaker sex differences, the following hypotheses were investigated in this 

study. Firstly, female speakers were expected to exhibit longer utterance and vowel durations 
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than male speakers. Secondly, it was predicted that male speakers would show greater degrees of 

coarticulation than female speakers. The faster speaking rates attributed to male speakers may 

suggest faster mean rates of formant change. However, differences in vocal tract dimensions 

(Fitch & Giedd 1999) and the more peripheral and larger vowel space of female speakers 

(Whiteside 2001) may contribute to larger changes in formant frequencies over time. On this 

basis, an additional hypothesis was that male speakers would exhibit slower mean rates of 

formant change in the acoustic signal, despite articulatory movements which cover a greater 

distance. 

 

1.2 Temporal and spectro-temporal measures of speech 

The focus of this study was on spectro-temporal measures which may hypothetically vary as a 

function of speaker sex. In addition to measuring utterance and vowel durations, this study 

quantified the degree of coarticulation by calculating the absolute formant frequency changes in 

the first three formants between vowel onset and temporal midpoint for each participant (see 

Equation 1). 

(Eq. 1) ΔFn = ||Fnmidpoint – Fnonset|| 

Smaller absolute formant changes (e.g. smaller ΔF2 values) have been associated with greater 

degrees of coarticulation, because smaller differences between vowel onset and midpoint 

formant values may indicate an approximation of both vowel and consonant targets (e.g. 

Brancazio & Fowler 1998, Fowler 1994). In order to control for sex differences in vocal tract 

dimensions, the absolute formant frequency changes were also normalised for each participant 

(see Equation 2). 

(Eq. 2) normΔFn = [2ΔFn/(Fnonset + Fnmidpoint)] 
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As a measure of dynamic changes in the formant frequencies, mean rates of formant frequency 

change were calculated based on the absolute formant changes and vowel durations for each 

participant (see Equation 3) where tvowel is the duration of the vowel.  

 

 (Eq. 3) rFn = ΔFn / (0.5 × tvowel) 

 

During the production of CV sequences, these have been shown to indirectly correlate with the 

mean velocity of the active articulators while moving from the release of the preceding 

consonant to the vowel target (e.g. Chang, Ohde & Conture 2002, Simpson 2001). Greater mean 

rates of formant change may be interpreted as being indicative of faster movements of the active 

articulators. To allow for direct comparisons between the male and female data, mean rates of 

formant frequency change were also normalised for each participant (see Equation 4). 

 

(Eq. 4) normrFn = [2 rFn /(Fnonset + Fnmidpoint)] 

 

In addition to absolute formant changes, F2 locus equations were derived to gauge the degree of 

coarticulation (see Equation 5). These are linear regression functions based on the F2 values at 

vowel midpoint (independent variable), and F2 values at vowel onset (dependent variable). 

 

(Eq. 5) F2onset = slope × F2midpoint + y-intercept 
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The linear relationship of the second formant in vowel onset and target position was first 

observed by Lindblom (1963). Later studies, such as Krull (1987), applied F2 locus equations to 

quantify coarticulation by analysing the slope of the linear regression function; steeper slopes 

(and corresponding lower y-intercept values) were associated with greater degrees of 

coarticulation and shallower slopes (and corresponding higher y-intercept values), with the 

converse. Although the relationship between articulatory data and F2 locus equations is not 

linear, it has been shown to be lawful (Löfqvist 1999; Tabain 2000, 2002). In addition, more 

recently, Iskarous, Fowler & Whalen (2010) and Lindblom & Sussman (2012) have 

demonstrated the link between articulatory data and F2 locus equations. 

 

Studies on F2 locus equations for CV sequences have consistently reported place of articulation 

effects. For example, slopes for the bilabial plosives such as /b/ are consistently steeper and 

corresponding y-intercepts, lower, compared to those observed for the alveolar cognate /d/ (e.g. 

Fowler 1994, McLeod et al. 2001, Sussman, Bessell, Dalston & Majors 1997, Sussman, Dalston 

& Gumbert 1998). These observations suggest that /b/ in CV sequences has the highest levels of 

coarticulation with the ensuing vowel, and therefore the lowest levels of articulatory resistance 

due to the independence between the main articulators involved in the production of /bV/; the 

lips and the lingual system. However, while bilabials display the steepest slopes across different 

places of articulation, the slope values for /bilabial plosive V/ sequences vary across a range of 

studies (see Table 1 for examples). 
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In addition to place of articulation effects on F2 locus equations (e.g. Sussman et al. 1997, 1998), 

studies have also found evidence for allophonic variation and vowel context effects (Sussman et 

al. 1991, 1997, 1998; Fowler 1994). While numerous studies report vowel context effects in 

locus equations between front (shallower slopes and higher y-intercept values) and back vowels 

(steeper slopes and lower y-intercept values) for velar plosives (Sussman et al. 1991, 1997, 

1998), others report on similar, if less marked, effects for both bilabial and alveolar plosives 

(Fowler 1994). Taken together, the place of articulation and vowel context effects on F2 locus 

equations provide evidence for phonetic context effects on coarticulation effects indexed by F2 

locus equations. 

 

This additional measure of coarticulation was used in the current study because F2 locus 

equations preserve the phonetic context (F2 values at onset and midpoint), whereas the absolute 

formant changes merely encode the differences. F2 locus equation slopes can be compared using 

a large sample Z-test for parallelism (Kleinbaum & Kupper 1978) based on all individual data 

points (multiple repetitions/contexts), while comparisons of absolute formant changes are based 

on mean values per speaker group and subtle effects may not be detected. Lastly, as the phonetic 

context is largely preserved in F2 locus equations, and onset values are plotted as a function of 

vowel midpoint/target values, they have the capacity to encode the degree of anticipatory (right-

to-left) coarticulation, which has been attributed to speech planning processes (e.g. Fowler & 

Saltzman 1993), while absolute formant changes encode both anticipatory and perseverative 

(left-to-right) coarticulation simultaneously.  

 

2 Methods 
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2.1 Stimuli 

The stimuli used in the current investigation formed part of a larger study on syllable frequency 

and speaker sex effects on speech production (Herrmann 2011). The aim of the current study was 

to focus specifically on the effects of speaker sex on the temporal and spectro-temporal 

parameters of speech in the production of the following monosyllabic words by twenty-four 

native speakers of British English: /bɪz, bɪs, bɪt, bɪb, bɛd, bɛk, bɛst, buːst/. The original primary 

selection criteria for these stimuli were their frequency of occurrence (per million words, pmw) 

in spoken language (Baayen, Piepenbrock, & van Rijn 1993) and a matched phonetic makeup 

across two narrow frequency bands (325–56 pmw and 1–7 pmw). Other places of articulation for 

the word-initial plosive were not considered, as no further stimuli could be phonetically matched 

across frequency categories (Herrmann 2011). However, frequency effects are not the focus of 

this analysis. 

 

2.2 Speakers 

Eleven male and thirteen female native speakers of English (mean age: 20;1 years; SD: 1;8; 

range: 18 – 24) participated in the study. None of the participants had a known speech or 

language impairment and all passed a hearing test prior to the experiment using a Kamplex 

Screening Audiometer (AS7) with an upper hearing level of 20 dB. 

 

2.3 Data Collection 

Speech accommodation in interactional settings is a well-established phenomenon; speakers have 

been found to adjust their speech and vocal patterns to accommodate to those of their 

interlocutors (Giles, Coupland & Coupland 1991). Furthermore, behavioural studies have found 
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strong links between perception and behaviour in face-to-face social interactions with evidence 

for ‘chameleon effects’ (the unintentional, non-conscious mimicry of others) between individuals 

(Chartrand & Bargh 1999). Moreover, there is also evidence for individual differences in these 

effects where those who are profiled as displaying higher levels of empathy also appear to 

exhibit higher levels of mimicry (Chartrand & Bargh 1999). Therefore, in order to limit the 

effects of speech accommodation and mimicry which might occur in a social interactional face-

to-face setting, the list of speech stimuli were presented to individual participants auditorily as a 

series of recorded prompts. A single-walled sound attenuating booth was used to secure high 

quality recordings. Furthermore, no experimenter was present within the sound booth during the 

recording sessions. While it is acknowledged that some speech accommodation and mimicry 

might occur when only auditory information is presented, the same fixed protocol for speech 

data collection was adopted for each of the 24 participants to control for these effects across 

speakers. The speech stimuli were presented to each participant via loudspeakers to avoid the 

Lombard effect (Lombard 1911, Junqua 1993). All the prompt speech stimuli were produced by 

a single adult male speaker and were presented in a randomised order. Participants were required 

to listen to a stimulus, repeat it during a constant 2.5 second inter-stimulus interval, listen again, 

repeat again, and so forth for ten repetitions of the same stimulus; a tone after the tenth repetition 

signalled the presentation of a new stimulus. For example: the stimulus /bɛst/ would be presented 

to be repeated by the participant during a 2.5 s inter-stimulus interval. This would be repeated 

until ten instances of /bɛst/ were recorded. A tone would then alert the participant that the next 

stimulus would be a new word, e.g. /bɪs/. The recorder used to collect the speech samples was a 

Marantz PMD670, and its settings were: mono at a sampling frequency of 22.05 kHz and a 16-
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bit amplitude resolution. The microphone was a Sennheiser MD425, and was placed on a 

microphone stand at a distance of approximately 20 cm from each participant’s mouth. For each 

participant 80 sound files were recorded (8 monosyllables x 10 repetitions), yielding a potential 

total of 1,920 sound files (80 x 24 participants) for analysis. Incorrect or incomplete productions 

(truncated by the inter-stimulus interval) were discarded, as well as a number of productions, 

which did not warrant an acoustic analysis due to voice quality (whisper/breathy). These 

amounted to 119 sound files, leaving a total of 1,801 sound files for acoustic analysis. 

 

2.4 Data Analysis 

The acoustic analyses were carried out with Praat (Boersma & Weenink 2008). TextGrid files 

were used to mark the acoustic onset and offset of the speech productions in order to calculate 

the utterance duration. Utterances with unreleased plosives in word-final position were 

measured to the acoustic offset of the speech signal; e.g. to the end of the final glottal pulse or to 

the breathy vowel offset. The vowel duration was measured between the first glottal pulse and 

the final glottal pulse. This interval was also used to calculate the temporal midpoint of the 

vowel. 

Figure 1 shows an overview of these points for the stimulus /bɛst/. The start point of the vowel 

interval was marked at the first glottal pulse as seen in the spectrogram; the peak of the first 

excitation within the sound pressure waveform was selected. The end point was similarly marked 

based on the visual examination of both spectrogram and sound pressure waveform: after the last 

glottal pulse as seen in the spectrogram, the end of the last periodic excitation of the sound 

pressure waveform was selected. In cases where the final consonant was voiced, visual 
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examination was extended to the acoustic energy distribution of higher frequencies, in particular 

around the second formant and its end. 

 

<Figure 1 about here> 

 

The frequencies of the first three formants were measured at the vowel onset and the calculated 

temporal midpoint. Based on these measures, the absolute formant frequency change in F1, F2, 

and F3 (see Eq. 1) as well as the mean rate of formant frequency change in F1, F2, and F3 (see 

Eq. 3) were calculated. Absolute formant frequency changes and the mean rates of change for 

F1, F2 and F3 were also normalised (see Eq. 2 and Eq. 4, respectively). F2 locus equations (e.g. 

Sussman 1994; Sussman et al. 1991, 1997, 1998; Iskarous et al. 2010; Lindblom & Sussman 

2012) were derived from the F2 measurements obtained at the vowel onset (first glottal pulse) 

and the temporal midpoint of the vowel (see Eq. 5). This method of measuring the F2 midpoint 

at the temporal midpoint varies from those adopted in other investigations. For example, some 

studies have adopted visual inspection methods to determine steady state vowel midpoints or the 

maxima/minima points within a vowel’s formant structure (e.g. Fowler 1994; Lindblom et al. 

2007; Sussman et al. 1991; Sussman 1994), while others have measured vowel targets at a 

specified time point from the first glottal pulse/plosive release of a CVC syllable (e.g. Nearey & 

Shammass 1987; McLeod et al. 2001). It also varies from a hybrid approach which is based on 

both visual inspection and the use of temporal vowel midpoints (e.g. Sussman et al. 1991; Fowler 

1994). One advantage of the adopted method is the increased consistency in conducting 

measurements across different CV contexts. Linear regression analyses based on the vowel 

midpoints and vowel onsets yielded slope, y-intercept, and R2 values for all speech tokens. 
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2.5 Intra-rater reliability 

All measures were subjected to an intra-rater reliability test. A data sample (ca. 10 %) of the 

recordings was analysed by the first author for a second time approximately one year after the 

first measurements were taken. One year was considered to be a significant time lapse to ensure 

robust intra-rater reliability measurements. Table 2 summarises the mean and standard deviation 

values of utterance and vowel duration, as well as the first three formants at both vowel onset 

and temporal midpoint. The Pearson correlation values (between 0.945 and 0.998) indicate high 

levels of agreement between the two sets of measurements. 

 

<Table 2 about here> 

 

2.6 Statistical Analysis 

The temporal and spectro-temporal measures investigated in the study were analysed statistically 

using analysis of variance with speaker sex as the between subjects factor. The linear regression 

analyses representing the F2 locus equations yielded slope, y-intercept, and R2 values for all 

speech tokens. The slope values for the F2 locus equations were tested for statistical sex 

differences using a ‘large-sample Z test for parallelism’ (Kleinbaum & Kupper 1978: 101-102), 

and the y-intercept values were tested for statistical sex differences using a ‘large-sample Z test 

for common intercept’ (Kleinbaum & Kupper 1978: 103-105). The former of these two statistical 

methods tests whether the slopes of two linear regression lines are the same or different, and the 

latter, whether their y-intercepts are the same or different. If the slopes are the same (i.e. not 

statistically significantly different), they are described as parallel if they do not share the same 
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intercept, or as coincident lines if they share the same slope and intercept. Two linear regression 

lines can share the same intercept but have different slopes, and intersecting regression lines 

have different slopes and different intercepts (see Kleinbaum & Kupper 1978: 97-98). The 

difference in the correlation coefficients underlying the R2 values of the F2 locus equations was 

tested using Fisher’s zr transformation test (e.g. Ferguson 1959: 195-6; Fisher 1950).  

 

 

3 Results 

3.1 Utterance and Vowel Duration 

Tables 3 and 4 summarise the mean and standard deviation values for utterance and vowel 

duration by stimulus item and speaker sex, as well as by speaker sex across all stimuli. The 

differences between the male and female data were not significant for either utterance duration 

(mean difference: 9.48 msec; [F(1,22) = 0.309, p > .05]) or vowel duration (mean difference: 

10.57 msec; [F(1,22) = 0.951, p > .05]).  

 

<Tables 3 & 4 about here> 

 

3.2 Absolute formant frequency and normalised frequency changes 

Table 5 summarises the mean values of the absolute formant frequency changes ΔF1, ΔF2, and 

ΔF3, and corresponding normalised values by speaker sex. There was no significant speaker sex 

effect for either ΔF1 (mean difference: 16.77 Hz; [F(1,22) = 1.901, p > .05]) or ΔF3 values 

(mean difference: 21.97 Hz; [F(1,22) = 1.040, p > .05]), which were lower for male speakers. 

However, male speakers displayed significantly lower ΔF2 values than female speakers (mean 
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difference: 84.96 Hz; [F(1,22) = 10.609, p < .005]). The pattern of speaker sex effects was 

replicated across the normalised values for the three formant frequencies (normΔF1 – mean 

difference: 0.007 [F(1,22) = .148, p > .05]; normΔF2 – mean difference: 0.032 [F(1,22) = 6.069, 

p < .05]; normΔF3 – mean difference: 0.000 [F(1,22) = .001, p > .05]). 

 

<Table 5 about here> 

 

3.3 Mean rate of formant frequency change and normalised rates of frequency change 

Table 6 summarises the mean values of the mean rate of formant frequency changes for rF1, rF2, 

and rF3, and corresponding normalised values by speaker sex. There was a significant effect of 

speaker sex on rF2, where female speakers showed faster mean rates of formant change than 

male speakers (mean difference: 0.68 Hz/msec; [F(1,22) = 8.657, p < .01]). There were no 

significant sex differences for either rF1 (mean difference: 0.10 Hz/msec; [F(1,22) = 1.321, p > 

.05]) or  rF3 (mean difference: 0.12 Hz/msec; [F(1,22) = 0.326, p > .05]). The pattern of speaker 

sex effects was broadly similar across the normalised values for the three formant frequencies. 

However, the sex effects for F2 were diminished, and only approached significance (normrF1 – 

[F(1,22) = 0.000, p > .05]; normrF2 – [F(1,22) = 4.003, p =.058]; normrF3 – [F(1,22) = 0.209, p 

> .05]). 

 

<Table 6 about here> 

 

3.4 F2 locus equation data 
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Figure 2 displays the F2 locus equations of the monosyllables grouped by speaker sex. The males 

showed a significantly steeper slope (0.661) than the females (0.598) [Z = 2.84, p < .005].  The 

y-intercept for the men’s data samples (503 Hz) was found to be significantly lower compared to 

the women’s (645 Hz) [Z = -3.27, p < .001]. The correlation coefficients underlying the R2 

values for the male (r = 0.819) and female (r = 0.785) data were also significantly different [zr = 

2.02, p < .05]. 

 

<Figure 2 about here> 

 

3.5 Post-hoc analysis of vowel effects 

There is evidence to suggest that vowel quality plays some role in speaker sex differences 

(Simpson & Ericsdotter 2003). Therefore, a post-hoc analysis examining vowel effects was also 

conducted. Vowel duration, ΔF2 and normΔF2 values were examined as a function of vowel 

quality for men and women. Firstly, ΔF2 and vowel duration values for all stimuli except /buːst/ 

were examined using Pearson’s product moment correlation test. This was done separately for 

the men and women. This was repeated for the normΔF2 and vowel duration values. Secondly, 

the whole set of the aforementioned analyses was repeated for the data solely representing /buːst/.  

This yielded eight sets of correlation coefficients, which are provided in Table 7. 

 

<Table 7 about here> 

 

The results summarised in Table 7 suggest a vowel quality x speaker sex interaction. The 

correlation between vowel duration and ΔF2 values was significant for the female speakers for 
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all stimuli combined except /buːst/ (r = 0.646, p < .05), but not for male speakers (r = -0.010, p > 

.05). This sex difference was replicated for the correlation between vowel duration and normΔF2 

values. However, when considering solely the data obtained for /buːst/, the correlations between 

vowel duration and ΔF2 values or vowel duration and normΔF2 values were not significant for 

either women or men. 

 

4 Discussion 

Female speakers exhibited trends for longer utterance and vowel durations than male speakers, 

but these differences were not significant. This provides only weak support for the first 

hypothesis and some of the temporal sex differences reported in the literature, where female 

speakers have been found to exhibit significantly longer vowel and utterance durations (Simpson 

1998, 2001; Whiteside 1996). As mentioned in section 2.3, the data elicitation method may have 

been a contributing factor to this result. Participants listened to the audio recordings of a male 

speaker and may have accommodated their speech productions to some degree to his 

productions. Nevertheless, when Simpson & Ericsdotter (2003) analysed sex-specific durational 

differences in American English and Swedish their results revealed more complex 

interdependencies. While the mean durations of a series of sentences did not vary as a function 

of speaker sex for either English or Swedish, a plot of the percentage differences in segment 

durations revealed quite systematic sex differences. In those syllables which carried ‘a degree of 

stress’ (Simpson & Ericsdotter 2003: 1114), female vowel durations trended for longer values. 

On the other hand, many of the back vowels trended for longer durations when produced by male 

speakers. Male speakers also trended for longer consonant productions than female speakers. The 

stimuli in the current study contained predominantly intrinsically short front vowels and one long 
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back vowel (/uː/) as opposed to Simpson (2001), who analysed diphthongs, and Whiteside (1996) 

and Jacewicz et al. (2010), who analysed a range of vowels. For one long back vowel (/uː/) male 

speakers may have exhibited longer vowel durations, which may have diminished the overall sex 

difference. Further investigation was conducted as a function of the different stimulus items to 

investigate this, and an analysis of /buːst/ found this to be the case; males exhibited the trend of a 

longer mean vowel duration value than the females (see Table 4). In contrast, the remaining set 

of short front vowels displayed the reverse pattern; females displayed a trend for longer vowel 

duration values for all stimuli and a longer mean vowel duration value (219.72 msec) than the 

males (207.91 msec). These results corroborate those of Simpson & Ericsdotter (2003) 

suggesting that sex differences in temporal parameters such as vowel duration are determined by 

an intricate interaction between factors such as linguistic stress, vowel quality and phonetic 

context, and might therefore explain the results reported here. 

 

There were no significant sex differences in the spectral and spectro-temporal parameters 

associated with F1 and F3 (see Tables 5 and 6). However, significant sex differences were found 

for the spectro-temporal parameters associated with F2: ΔF2 and corresponding normalised 

values (see Table 5), the rate in the absolute change in F2 (see Table 6), and the slope of the F2 

locus equations representing the speech samples of the women and men (Figure 2). Here women 

displayed higher values for ΔF2, normalised ΔF2 and rF2, and shallower slopes for the F2 locus 

equations. The higher values for ΔF2 and normalised ΔF2, and the shallower slopes of the F2 

locus equations are both indicative of lower degrees of coarticulation in the women’s speech 

samples.  
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Concerning the sex differences found in the distribution of F2 related parameters, the stimuli 

used in this study may provide some further insights, as they contained mainly high front and 

mid front vowels /ɪ, ɛ/, and one back vowel /uː/. Hillenbrand, Getty, Clark, & Wheeler (1995) 

and Traunmüller (1988) found that sex differences in high front vowels are particularly 

prominent in F2 (see also Lee et al. 1999; Whiteside 2001). In comparison, the differences in F2 

are much smaller for high back vowels, for which female and male values are relatively close to 

each other (e.g. Simpson 2009). Whiteside (2001), who further investigated the data collected by 

Lee et al. (1999), reported that data for the back vowel (/uː/) was indicative of a more fronted 

(palatalized) quality for the female speakers when compared to their male peers. These sex 

differences in the second formant, as well as the predominantly high front vowels in the data set 

investigated here, may explain the consistent speaker sex effects found for the F2 related data 

(absolute and normalised formant frequency changes, mean rate of formant change, and F2 locus 

equations). Female speakers showed patterns of higher mean values of the absolute formant 

change in F1, F2, and F3 than male speakers, which was significant for ΔF2. The higher absolute 

formant changes for female speakers provide some support to the hypothesis of lower degrees of 

coarticulation. However, Simpson (2001) compared acoustic and articulatory data and found that 

although the articulatory distances covered by the female speakers during the production of the 

diphthong /aɪ/ in ‘light’ are smaller for female than for male speakers, the absolute formant 

changes were larger. A similar discrepancy was observed for the articulatory speeds seen in the 

mean rates of the formant changes. This suggests that the lower degrees of coarticulation, as 
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indicated by the higher absolute formant change values, may be in part attributed to the different 

vocal tract dimensions of male and female speakers. 

Female speakers displayed faster mean rates of formant change in F1 (rF1), F2 (rF2), and F3 

(rF3). This difference was significant for rF2, marginally significant for normalised rF2, and 

mirrors the results of the absolute formant changes in F2 (ΔF2). However, these faster mean rates 

of formant change do not necessarily imply faster articulatory movements for female speakers, 

but may be an acoustic dynamic consequence of different vocal tract dimensions (see Simpson 

2001). On the basis of differences in vocal tract dimensions and the different articulatory 

postures involved in the production of different vowels, the links between absolute formant 

changes and mean rates of formant change need to be interpreted in the context of vowel 

duration and vowel quality. There were no significant sex differences in vowel duration. 

However, when the data were probed further, there was some indication that the women and men 

exhibited different patterns of vowel duration as a function of vowel quality; women trended for 

longer durations for the front vowels, whereas men displayed a pattern of longer vowel durations 

for the back vowel /uː/. When the ΔF2 data were analysed further in a post-hoc analysis as a 

function of vowel quality, a significant sex difference emerged which might explain why the ΔF2 

values were higher for the women (see Table 7). When ΔF2 and vowel duration data were 

examined for all stimuli except /buːst/ using Pearson’s product moment correlation test for each 

sex group, the women’s data displayed a significant correlation (n = 13, r = 0.646, p < .05). This 

was in contrast to the men’s data which displayed no significant correlation (n = 11, r = -0.010, 

ns). When the correlations between ΔF2 and vowel duration data were examined only for /buːst/ 

neither the women (n = 13, r = 0.239, ns) nor the men (n = 11, r = -0.560, ns) displayed 
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significant correlations. These results were replicated when normalised ΔF2 and vowel duration 

data were examined (see Table 7). These data provide further support for the complex interaction 

between vowel quality and the spectro-temporal dynamics observed for men and women 

speakers; the data set with the high front vowels displayed higher ΔF2 and higher normalised 

ΔF2 values for the women which appeared to be a function of vowel duration and vowel quality. 

The fact that the stimuli in the current study were dominated by high/front vowels might go some 

way to explain the sex differences reported here. 

 

For the F2 locus equations, women displayed a significantly higher y-intercept value which can 

be explained by vocal tract differences (e.g. Fitch & Giedd 1999, Lee et al. 1999, Whiteside 

2001), and will not be discussed further. The correlation coefficients underlying the R2 values for 

the men were significantly higher than those for the women, but will not be discussed further as 

they are not the focus of this study. The F2 locus equations data in the current study centred on 

the slope values as a measure of coarticulation, and were used to assess the pattern and extent of 

sex differences, which was the focus of this study. Results indicated significantly steeper slope 

values for men (0.661) compared to the women (0.598) (see Figure 2). The mean slope values 

reported here are lower than those reported in other studies (see Section 1.2 above). There are 

several possible explanations for this difference. One reason could be the method which was 

used in the current study to measure the F2 vowel midpoint; this varied from those of earlier 

reports (see Section 2.3 above). The temporal midpoint of the vowel was used to measure the F2 

vowel midpoint in the current study. It is therefore possible that temporal midpoint 

measurements did not always coincide with the vowel nucleus (steady state, or maxima/minima 

points) for all data samples. In cases where the vowel nucleus was temporally surpassed, it is 
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therefore possible that the word final velar and alveolar consonants, and consonant clusters (e.g. 

/k/, /s/, /z/, /st/, /t/, /d/) might have had some influence on the temporal midpoint values which 

might have resulted in shallower slopes. Another possible source of variation is individual 

speaker differences; this suggestion is supported by the range and variation in slope values 

reported across different speakers in different studies (see Table 1). However, another possible 

source for the difference could be vowel context. The majority of vowels in the current study 

were high/front vowels. Some studies have systematically investigated the F2 locus equations of 

velar plosives as a function of vowel context (e.g. [ɡ]̟ palatal (front) versus [ɡ]̠ velar (back) vowel 

contexts) where shallower slopes for /ɡ/ have been reported for front/palatal vowel contexts 

compared to back/velar contexts (Fowler 1994; Sussman et al. 1997, 1998). However, there is 

also evidence to suggest that vowel context also affects the F2 locus equation slopes of /bV/ 

sequences, and that /bV/ sequences in front vowel contexts have shallower slopes (e.g. 

approximately 0.65 – estimated from Figure 3, Fowler 1994: 602) compared to those produced in 

back vowel contexts (approximately 0.8 – estimated from Figure 3, Fowler 1994: 602). What is 

worth noting here is that the aforementioned slope value for the front vowel context (0.65) is 

closer to the values reported in this study (0.661 and 0.598 for males and females respectively). 

 

The steeper slope for the male speakers found in this study is in line with McLeod et al. (2001), 

who reported significantly steeper F2 locus equation slopes for male than female speakers (see 

also the trends reported by Löfqvist (1999)). This suggests greater degrees of anticipatory 

coarticulation for male than for female speakers in the current study, as the F2 values at 

consonantal release were closer to and varied more systematically with the F2 values at vowel 
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midpoint. The greater degree of anticipatory coarticulation for male speakers may be indicative 

of a different pattern of movement synchronisation; the data suggest that male speakers may 

have initiated the vowel gesture earlier than female speakers (Simpson 2003), which would also 

contribute to smaller absolute formant change values in speech stimuli of the current data set 

which predominantly consisted of high front vowels. 

 

The current study examined /bV/ sequences which, in theory, allow for maximum degrees of 

coarticulation between the voiced bilabial plosive and the ensuing vowel due to the 

independence of the labial and lingual articulators. Therefore, in light of the predominantly high 

front vowels in the current data set, it might be argued that the results are not truly sex-specific 

differences in coarticulation, but merely consequences of differences in vowel space sizes 

between women and men. While there may be some degree of influence on the absolute formant 

change in F2 given the overall higher F2 values and their wider distribution for the female data, 

the latter of which may be caused by greater interharmonic spacing (e.g. Diehl, Lindblom, 

Hoemeke & Fahey 1996, Simpson 2011), these effects are attenuated when analysing F2 locus 

equations. The higher F2 values at both vowel onset and midpoint are largely contextually 

preserved in F2 locus equations, but are removed when calculating the absolute formant change 

in F2. Higher F2 onset and F2 midpoint pairs for front vowels are represented as data points 

further along the linear regression line of the F2 locus equations, but do not affect the steepness 

of the slope (see Figure 2: the data points for the female speakers in the left panel are distributed 

further along the regression line towards the higher F2 values). As the F2 locus equations of this 

data set exhibited lower degrees of coarticulation for the women (shallower slope values), which 

complements the effect found in the absolute formant change in F2, this suggests that the effects 
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reported for ΔF2 may be similarly attributed to sex-specific differences in coarticulation and are 

not exclusively a consequence of differences in vowel space sizes.  

 

 

5 Conclusions 

The sex differences previously reported in the literature were corroborated in the current study: 

although there was only weak support for the first hypothesis, men trended for shorter acoustic 

vowel durations (e.g. Simpson 2003, Whiteside 1996), and this appeared to be interacting with 

vowel quality differences (e.g. Simpson & Ericsdotter 2003). In addition, women displayed 

significantly faster mean rates of formant change for F2 (e.g. Simpson 2001), and significantly 

lower degrees of coarticulation than men as indexed by ΔF2, normalised ΔF2 and shallower F2 

locus equation slopes (e.g. McLeod et al. 2001, and see trends in Löfqvist 1999), thereby 

supporting both the second and third hypotheses. The sex differences in the formant frequency 

changes, and the higher levels of systematic variation between vowel onsets and vowel 

midpoints in the data were interpreted as in part, being indicative of differences in the 

synchronisation of articulatory gestures: it was suggested that male speakers may initiate the 

vowel gesture earlier relative to the release of the consonant (see Simpson 2002, 2003). The 

predominantly high front vowels used in the current data set may also explain the significant sex 

differences found in this investigation. In order to further elucidate the role of factors such as 

sex-determined biological differences in the spectro-temporal dynamics of speech and in 

coarticulation, further systematic acoustic and articulatory investigations with a range of stimuli 

and phonetic contexts are warranted. 
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