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DIMENSION FORMULAE FOR SPACES OF LIFTED BIANCHI MODULAR

FORMS

MEHMET HALUK ŞENGÜN AND PANAGIOTIS TSAKNIAS

Abstract. In this note, we work out the dimension of the subspace of base-change forms and
their twists inside the space of Bianchi modular forms with fixed (Galois stable) level and weight.
The formulae obtained here have been used for the numerical experiments of [1]. Extended
versions of the formulae obtained in this note, treating CM-forms and spaces with non-trivial
nebentypus, will be employed in the upcoming paper [3].

1. Setting

Let K = Q(
√
−D) be an imaginary quadratic field. Let f ∈ Sk(Γ0(N)) be classical newform. To

such an object one attaches an irreducible automorphic representation π := πf of GL2(AQ). One
then has the so-called Base Change operator:

BCK
Q : An(Q) → An(K)

We would like to understand how the base change operator affects the level of an automorphic
representation. We will in fact restrict our attention to the 2-dimensional case (which will in turn
force us to consider the 1-dimensional case as well).

Let π ∈ An(Q). One can write it as a restricted tensor product of local ones πp ∈ An(Qp), where
p runs through all finite primes and infinity. It is well-known that Base-Change is compatible with
taking local components, i.e for every rational prime p and every prime p of K above it we have:

BCK
Q (π)p = BC

Kp

Qp
(πp)

In light of this it is enough to examine what happens at each prime individually. This allows us
to freely exploit the local Langlands correspondence throughout this note. In fact the base change
operator is the one that corresponds on the restriction operation (locally and globally)

Res
WQ

WK
: Gn(Q) → Gn(K),

Res
WQp

WKp

: Gn(Qp) → Gn(Kp),

on n-dimensional Weil-Deligne representations. We will denote by ArtF : WF → F× the local Artin
map of local class field theory. Then the local Langlands correspondence in the 1-dimensional case
is composition with Art−1

F .
Going back to the automorphic side, if p is finite then one has the following classification of the

types of the πp that can occur:

• Principal series PS(χ1, χ2), where χi ∈ A1(Qp) and χ1/χ2 6= ||.||±1. The corresponding
Weil-Deligne representation WD(πp) = (ρp, Np) is in this case split (decomposable), i.e.
ρp ∼ χ̃1 ⊕ χ̃2 and Np = 0, where χ̃i is the corresponding character of the Weil Group, i.e.
χ̃ = χ ◦Artp . We will study this type in Section 3.1.
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• Special S(χ||.||, χ), where χ ∈ A1(Qp). The corresponding local Galois representation is in

this case reducible but not decomposable: ρπp
∼ χ̃||.|| ⊕ χ̃ and N =

(

0 1
0 0

)

. This will be

the subject of Section 3.2.
• Supercuspidal, which is all the rest. We will describe this type in more detail in section
Section 3.3.

Let now p be a rational prime and p a prime in K above it. We have the following:

• Dp = Dp iff p splits, i.e. p = pp
′.

• Ip = Ip iff p is unramified, i.e p 6= p
2.

This trivial observation tells us that α(ρ|Ip ) = α(ρ|Ip) for all the unramified primes p in K and
therefore the conductor stays the same at these primes. Lets examine what happens for the ramified
primes in K whose (finite) set we will denote by RK .

Remark 1. Since we have established the finiteness of the set of primes where any change in the
conductor can possibly occur one can wlog consider a suitable ℓ-adic representation of GQ instead
of the Weil-Deligne representation of WQ: This follows from the Deligne-Grothendieck classification
of ℓ-adic representations if we pick ℓ big enough so that ℓ not in RK and π is unramified at it. Same
thing goes locally.

In what follows, we will assume for simplicity that 2 is unramified in K. We treat first the case
n = 1, and then in the following three sections we treat the case n = 2, one type at a time. We then
finish with some dimension formulae for spaces of modular forms of a given type. In the future, we
will also consider the Automorphic Induction operator and spaces with non-trivial Nebentypus.

2. The case n = 1

We will work out this case not just for quadratic extensions of Qp but for any quadratic extension
E/F of local fields overQp. Let χ ∈ A1(F ). Let pF and pE be the primes in OF and OE respectively
such that pE|pF |p. We then have an explicit description of the Base Change operator thanks to
local class field theory:

BCE
F (χ) = χ ◦NE/F .

Recall that the conductor of a character η of F ∗ is the smallest integer such that η|Ui
F
is trivial,

with U i
F defined as:

U i
F =

{

O×
F i = 0

1 + p
i
F i > 0

Clearly if χ is unramified, then BCE
F (χ) is unramified too. Assume that χ is tamely ramified

(and therefore p > 2). It then factors through the quotient O∗
F /U

1
F
∼= k∗F . By [2, Lemma 18.1] we

have that BC
Kp

Qp
(χp) can be at most tame. It is unramified if and only if χp|Z∗

p
has order 2.

The following Proposition explains what happens when the conductor of χp is at least 2 in the
case where Kp/Qp is tamely ramified (which is the only possible case since p > 2):

Proposition 2. [2, Proposition 18.1] Assume that Kp/Qp is tamely ramified. Then:

α(BC
Kp

Qp
(χp)) = eKp/Qp

(α(χp)− 1) + 1 ∀m ≥ 2

Remark 3. Bushnell and Henniart use the term level, which is equal to the conductor minus 1.

Putting everything together:
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Proposition 4.

α(BC
Kp

Qp
(χp)) =



















0 α(χp) = 0

0 α(χp) = 1 and χ2
p|Z∗

p
= 1

1 α(χp) = 1 and χ2
p|Z∗

p
6= 1

e(Kp/Qp)(m− 1) + 1 α(χp) = m ≥ 2

Remark 5. Notice that this proposition covers the conductor at all primes ofK, not just the ramified
ones. As we expected, the conductor does not change at the unramified ones though.

3. The case n = 2

3.1. The split case. In this case πp is a principal series I(χ1, χ2) parametrized by two Hecke
characters χ1, χ2 ∈ A1(Qp). Obviously one has (by looking at the Galois side for example) that

BC
Kp

Qp
(I(χ1, χ2)) = I(BC

Kp

Qp
(χ1),BC

Kp

Qp
(χ2)).

Combining this with the conductor formula

α(I(χ1, χ2)) = α(χ1) + α(χ2)

for principal series one then reduces the problem to the 1-dimensional case that we just treated in
the previous Section.

3.2. The Special case. In this case πp is a (twisted) Steinberg representation S(χ||.||, χ) = χ⊗St
parametrized by one Hecke character χ ∈ A1(Qp). We have the following conductor formula:

α(χ||.||, χ) =
{

1 α(χ) = 0

2α(χ) α(χ) > 0.

In order to understand base change in this case we will exploit the Galois side. The base change
corresponds to restriction there and therefore it is easy to see that:

BC
Kp

Qp
(S(χ||.||, χ)) = S(BC

Kp

Qp
(χ)||.||,BCKp

Qp
(χ))

Since the same dimension formula applies for the RHS, we have again reduced the problem to one
in the 1-dimensional case.

3.3. The Supercuspidal case. In this case πp is none of the previous types. Since we have
the ongoing assumption that p > 2, all these local automorphic representations are parametrized
by pairs (E, θ) where E/Qp is quadratic and θ ∈ A1(E)\BCE

Qp
(A1(Q)). We also get that the

corresponding Galois representation looks like

ρπp
∼ Ind

Gp

GE
(θ ◦Artp).

We will write θ̃ for θ ◦Artp. Base change corresponds to restriction on the Galois side so we want

to examine the conductor of Res
Gp

Gp
Ind

Gp

GE
θ. Using [6, Proposition 22] we get:

Res
Gp

Gp
Ind

Gp

GE
θ̃ =

{

θ̃ ⊕ θ̃σ Gp = GE ,

Ind
Gp

GE∩Gp
θ̃|GE∩Gp

Gp 6= GE

.

Here σ is a generator of Gal(Kp/Qp) and θ̃σ(x) = θ̃(g−1xg), for all x ∈ Gp and g ∈ Gp a lift of σ.
Notice that since Kp/Qp is ramified we have that Ip 6⊆ Gp so we can pick g to be in Ip.
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Let’s treat the first case. The conductor of the representation in the Galois side is equal to
α(θ̃) + α(θ̃σ). We also havethat α(θ̃) = α(θ̃σ) so we get that:

α(BC
Kp

Qp
(πp)) = 2α(θ).

For the second case we employ [5, Theorem 8.2] which gives the following formula:

α(Ind
Gp

GEKp

θ̃|GEKp
) = fEKp/Kp

(

dEKp/Kp
+ α(θ̃|GEKp

)
)

Translating it into a statement on the automorphic side gives:

α(BC
Kp

Qp
(πp)) = fEKp/Kp

(

dEKp/Kp
+ α(BC

EKp

Kp
(θ))

)

The conductor on the RHS can then be computed using the formula obtained for the 1-dimensional
case.

4. Dimension formulae for spaces of fixed type

Let N be a positive integer. We will denote the automorphic forms of level N by AN
2 (Q), i.e.

AN
2 (Q) := A2(Q)U1(N). In the same fashion, An

2(K) := A2(K)U1(n) will denote the automorphic
forms over K of level n, where n is an ideal of OK .

Assume for simplicity that K be an imaginary quadratic field with odd discriminant d =

disc(K/Q) and that N is a square-free positive integer that is coprime to d. Let Π ∈ A(N)
2,bc(K)

and π ∈ A2(Q) such that Π is a twist of BCK
Q (π).

Definition 6. For k ≥ 0, let BN
2 (Q, k) denote the set of all cuspidal automorphic representations

π of GL2(AQ) such that

• π∞ is the holomorphic discrete series representation of weight k + 2,
• for every prime p|N , πp is of Steinberg type,

• for every prime ℓ|d, there are three possibilities for πℓ:

(1) unramified principal series,

(2) PS(α, ωK,ℓβ) with α, β unramified characters of Q∗
ℓ and ωK is the quadratic character

associated to K,

(3) AIKℓ/Qℓ
(θℓ)⊗ γ with an unramified chracter γ of Q∗

ℓ .

Assume that Π is of weight k, that is, Π∞ is the principal representation ρk∞ = PS(χk+1
∞ , χ−k−1

∞ )
of GL2(C) with χ∞(z) = z/|z|. Then one can find π ∈ BN

2 (Q, k) such that Π ≃ BC(π) ⊗ χ for
some finite order idele class character χ of K. Conversely, for any non-CM π in BN

2 (Q, k), there
exists a finite order idele class character χ of K such that Π ≃ BC(π) ⊗ χ. Moreover, it is easy to

see that the base change map BN
2 (Q, k) → A(N)

2,bc(K, k) is at most two-to-one.

Remark 7. Assume that ℓ = disc(K/Q) is prime. In this special case, the elliptic modular form
associated to π ∈ BN

2 (Q, k) lives in Sk(Γ0(N))new , Sk(Γ0(Nℓ), ωK)new and SK(Γ0(Nℓ2), ǫ)N-new

depending on whether πℓ has type 1, 2 or 3 as above. The base change map is one-to-one on the
subset of π’s with local type 1 at ℓ, and is two-to-one on the subset of π′s with local type 2 or 3 at
ℓ.

To compute the dimensions of spaces of elliptic modular forms corresponding to π with the local
conditions as above, we use a formula (see [4, Proposition 4.18.]) that computes the multiplicity of
any given representation of SL2(Z/NZ) in the space Sk(Γ(N)) of elliptic modular forms of weight
k for the principal congruence subgroup of level N .
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Proposition 8. Let N ≥ 1 and k ≥ 2 be integers and σ a representation of GN = SL2(Z/NZ)

such that σ(−I2) is (−1)k. Let UN ≤ GN be the subgroup of all upper triangular unipotent elements

and S3 and S4 be the images of elements of SL2(Z) of order 3 and 4, respectively. Then

dimHomGN
(σ, Sk(Γ(N))) =

k − 1

12
dim σ − 1

2
dim σUN + εk trσ(S4) + ρk trσ(S3) + δk,2 dimσGN

where

εk =







(−1)k/2

4
, if k ≡ 0 mod 2,

0, otherwise.

and

ρk =











0, if k ≡ 1 mod 3,

−1/3, if k ≡ 2 mod 3,

1/3, if k ≡ 0 mod 3.

and δk,2 is the Kronecker delta.

Remark 9. Let us assume the situation of the previous remark. Then to compute the dimension
of Sk(Γ0(N))new, we need to consider (the restriction to SL2(Z/NZ) of) the representation σ of
GL2(Z/NZ) which is the tensor product of the representations σp of GL2(Fp) where σp is the
(virtual) representation [St] − [1] where St is the Steinberg representation. Using the character
table of GL2(Fp), we conclude that for even k ≥ 2,

dimSk(Γ0(N))new =
k − 1

12

∏

p|N

(p−1)+εk
∏

p|N

((−4

p

)

− 1

)

+ρk
∏

p|N

((−3

p

)

− 1

)

+δk,2(−1)div(N)

where div(N) is the number of prime divisors of N .
Using Finis-Grunewald-Tirao [4] and Bushnell-Henniart [2], we also compute that for odd k ≥ 3,

dimSk(Γ0(Nℓ), ωK)new =
k − 1

12
(ℓ+ 1)

∏

p|N

(p− 1)

+εk

((−4

ℓ

)

+ 1

)

·
∏

p|N

((−4

p

)

− 1

)

+ρk

((−3

ℓ

)

+ 1

)

·
∏

p|N

((−3

p

)

− 1

)

Finally, to compute the subspace of SK(Γ0(Nℓ2), ǫ)corr of SK(Γ0(Nℓ2), ǫ)N-new that have the
local type 3 at ℓ, we proceed as above and find that for even k ≥ 2,

dimSk(Γ0(Nℓ2), ǫ)corr =
k − 1

12
(ℓ − 1)

∏

p|N

(p− 1)

+εk trσℓ(S4) ·
∏

p|N

((−4

p

)

− 1

)

+ρk

((−3

ℓ

)

− 1

)

·
∏

p|N

((−3

p

)

− 1

)

where

tr σℓ(S4) =

{

2 · (−1)(ℓ−3)/4, if ℓ ≡ 3 mod 4,

0, otherwise.
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Let BSbc
k (Γ0(N))new denote the base-change subspace of space of new cuspidal Bianchi modular

forms over K of weight k for Γ0(〈N〉), that is, the subspace of BSk(Γ0(N))new that is accounted
for by Π’s in AN

bc(K, k). Then for even k ≥ 2, we have

dimBSbc
k (Γ0(N))new = dimSk(Γ0(N))new +

1

2
dimSk(Γ0(Nℓ2), ǫ)corr

and for odd k ≥ 3, we have

dimBSbc
k (Γ0(N))new =

1

2
dimSk(Γ0(Nℓ), ωK)new.
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