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Abstract

The combinatorial space of translation

derivations in phrase-based statistical ma-

chine translation is given by the intersec-

tion between a translation lattice and a tar-

get language model. We replace this in-

tractable intersection by a tractable relax-

ation which incorporates a low-order up-

perbound on the language model. Exact

optimisation is achieved through a coarse-

to-fine strategy with connections to adap-

tive rejection sampling. We perform ex-

act optimisation with unpruned language

models of order 3 to 5 and show search-

error curves for beam search and cube

pruning on standard test sets. This is the

first work to tractably tackle exact opti-

misation with language models of orders

higher than 3.

1 Introduction

In Statistical Machine Translation (SMT), the task

of producing a translation for an input string x =
〈x1, x2, . . . , xI〉 is typically associated with find-

ing the best derivation d∗ compatible with the in-

put under a linear model. In this view, a derivation

is a structured output that represents a sequence of

steps that covers the input producing a translation.

Equation 1 illustrates this decoding process.

d∗ = argmax
d∈D(x)

f(d) (1)

The set D(x) is the space of all derivations com-

patible with x and supported by a model of trans-

lational equivalences (Lopez, 2008). The func-

tion f(d) = Λ · H(d) is a linear parameteri-

sation of the model (Och, 2003). It assigns a

real-valued score (or weight) to every derivation

d ∈ D(x), where Λ ∈ R
m assigns a relative

importance to different aspects of the derivation

independently captured by m feature functions

H(d) = 〈H1(d), . . . ,Hm(d)〉 ∈ R
m.

The fully parameterised model can be seen as

a discrete weighted set such that feature func-

tions factorise over the steps in a derivation. That

is, Hk(d) =
∑

e∈d
hk(e), where hk is a (local)

feature function that assesses steps independently

and d = 〈e1, e2, . . . , el〉 is a sequence of l steps.

Under this assumption, each step is assigned the

weightw(e) = Λ ·〈h1(e), h2(e), . . . , hm(e)〉. The

set D is typically finite, however, it contains a very

large number of structures — exponential (or even

factorial, see §2) with the size of x — making

exhaustive enumeration prohibitively slow. Only

in very restricted cases combinatorial optimisation

techniques are directly applicable (Tillmann et al.,

1997; Och et al., 2001), thus it is common to resort

to heuristic techniques in order to find an approxi-

mation to d∗ (Koehn et al., 2003; Chiang, 2007).

Evaluation exercises indicate that approximate

search algorithms work well in practice (Bojar

et al., 2013). The most popular algorithms pro-

vide solutions with unbounded error, thus pre-

cisely quantifying their performance requires the

development of a tractable exact decoder. To

date, most attempts were limited to short sentences

and/or somewhat toy models trained with artifi-

cially small datasets (Germann et al., 2001; Igle-

sias et al., 2009; Aziz et al., 2013). Other work

has employed less common approximations to the

model reducing its search space complexity (Ku-

mar et al., 2006; Chang and Collins, 2011; Rush

and Collins, 2011). These do not answer whether

or not current decoding algorithms perform well at

real translation tasks with state-of-the-art models.

We propose an exact decoder for phrase-based

SMT based on a coarse-to-fine search strategy

(Dymetman et al., 2012). In a nutshell, we re-

lax the decoding problem with respect to the Lan-

guage Model (LM) component. This coarse view

is incrementally refined based on evidence col-
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lected via maximisation. A refinement increases

the complexity of the model only slightly, hence

dynamic programming remains feasible through-

out the search until convergence. We test our de-

coding strategy with realistic models using stan-

dard data sets. We also contribute with optimum

derivations which can be used to assess future im-

provements to approximate decoders. In the re-

maining sections we present the general model

(§2), survey contributions to exact optimisation

(§3), formalise our novel approach (§4), present

experiments (§5) and conclude (§6).

2 Phrase-based SMT

In phrase-based SMT (Koehn et al., 2003), the

building blocks of translation are pairs of phrases

(or biphrases). A translation derivation d is an

ordered sequence of non-overlapping biphrases

which covers the input text in arbitrary order gen-

erating the output from left to right.1

f(d) = ψ(y) +
l

∑

i=1

φ(ei) +
l−1
∑

i=1

δ(ei, ei−1) (2)

Equation 2 illustrates a standard phrase-based

model (Koehn et al., 2003): ψ is a weighted tar-

get n-gram LM component, where y is the yield

of d; φ is a linear combination of features that

decompose over phrase pairs directly (e.g. back-

ward and forward translation probabilities, lexi-

cal smoothing, and word and phrase penalties);

and δ is an unlexicalised penalty on the num-

ber of skipped input words between two adjacent

biphrases. The weighted logic program in Figure

1 specifies the fully parameterised weighted set of

solutions, which we denote 〈D(x), f(d)〉.2

A weighted logic program starts from its ax-

ioms and follows exhaustively deducing new items

by combination of existing ones and no deduction

happens twice. In Figure 1, a nonteminal item

summarises partial derivation (or hypotheses). It is

denoted by [C, r, γ] (also known as carry), where:

C is a coverage vector, necessary to impose the

non-overlapping constraint; r is the rightmost po-

sition most recently covered, necessary for the

computation of δ; and γ is the last n − 1 words

1Preventing phrases from overlapping requires an expo-
nential number of constraints (the powerset of x) rendering
the problem NP-complete (Knight, 1999).

2Weighted logics have been extensively used to describe
weighted sets (Lopez, 2009), operations over weighted sets
(Chiang, 2007; Dyer and Resnik, 2010), and a variety of dy-
namic programming algorithms (Cohen et al., 2008).

ITEM
[

{0, 1}I , [0, I + 1],∆n−1
]

GOAL
[

1I , I + 1, EOS
]

AXIOM

〈BOS→ BOS〉

[0I , 0, BOS] : ψ(BOS)
EXPAND
[

C, r, yj−1
j−n+1

]

〈

xi
′

i
φr−−→ yj

′

j

〉

[

C′, i′, yj
′

j′−n+2

]

: w

⊕i′

k=i ck = 0̄

where c′k = ck if k < i or k > i′ else 1̄

w = φr ⊗ δ(r, i)⊗ ψ(yj
′

j |y
j−1
j−n+1)

ACCEPT
[

1I , r, γ
]

[1I , I + 1, EOS] : δ(r, I + 1)⊗ ψ(EOS|γ)
r ≤ I

Figure 1: Specification for the weighted set of

translation derivations in phrase-based SMT with

unconstrained reordering.

in the yield, necessary for the LM component. The

program expands partial derivations by concatena-

tion with a translation rule
〈

xi
′

i
φr−−→ yj

′

j

〉

, that is, an

instantiated biphrase which covers the span xi
′

i and

yields yj
′

j with weight φr. The side condition im-

poses the non-overlapping constraint (ck is the kth

bit in C). The antecedents are used to compute the

weight of the deduction, and the carry is updated

in the consequent (item below the horizontal line).

Finally, the rule ACCEPT incorporates the end-of-

sentence boundary to complete items.3

It is perhaps illustrative to understand the set of

weighted translation derivations as the intersection

between two components. One that is only locally

parameterised and contains all translation deriva-

tions (a translation lattice or forest), and one that

re-ranks the first as a function of the interactions

between translation steps. The model of transla-

tional equivalences parameterised only with φ is

an instance of the former. An n-gram LM compo-

nent is an instance of the latter.

2.1 Hypergraphs

A backward-hypergraph, or simply hypergraph,

is a generalisation of a graph where edges have

multiple origins and one destination (Gallo et al.,

1993). They can represent both finite-state and

context-free weighted sets and they have been

widely used in SMT (Huang and Chiang, 2007).

A hypergraph is defined by a set of nodes (or ver-

3Figure 1 can be seen as a specification for a weighted
acyclic finite-state automaton whose states are indexed by
[l, C, r] and transitions are labelled with biphrases. However,
for generality of representation, we opt for using acyclic hy-
pergraphs instead of automata (see §2.1).
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tices) V and a weighted set of edges 〈E,w〉. An

edge e connects a sequence of nodes in its tail

t[e] ∈ V ∗ under a head node h[e] ∈ V and has

weight w(e). A node v is a terminal node if it

has no incoming edges, otherwise it is a nontermi-

nal node. The node that has no outgoing edges,

is called root, with no loss of generality we can

assume hypergraphs to have a single root node.

Hypergraphs can be seen as instantiated logic

programs. In this view, an item is a template

for the creation of nodes, and a weighted deduc-

tion rule is a template for edges. The tail of

an edge is the sequence of nodes associated with

the antecedents, and the head is the node associ-

ated with the consequent. Even though the space

of weighted derivations in phrase-based SMT is

finite-state, using a hypergraph as opposed to a

finite-state automaton makes it natural to encode

multi-word phrases using tails. We opt for rep-

resenting the target side of the biphrase as a se-

quence of terminals nodes, each of which repre-

sents a target word.

3 Related Work

3.1 Beam filling algorithms

Beam search (Koehn et al., 2003) and cube prun-

ing (Chiang, 2007) are examples of state-of-the-art

approximate search algorithms. They approximate

the intersection between the translation forest and

the language model by expanding a limited beam

of hypotheses from each nonterminal node. Hy-

potheses are organised in priority queues accord-

ing to common traits and a fast-to-compute heuris-

tic view of outside weights (cheapest way to com-

plete a hypothesis) puts them to compete at a fairer

level. Beam search exhausts a node’s possible ex-

pansions, scores them, and discards all but the k
highest-scoring ones. This process is wasteful in

that k is typically much smaller than the number of

possible expansions. Cube pruning employs a pri-

ority queue at beam filling and computes k high-

scoring expansions directly in near best-first order.

The parameter k is known as beam size and it con-

trols the time-accuracy trade-off of the algorithm.

Heafield et al. (2013a) move away from us-

ing the language model as a black-box and build

a more involved beam filling algorithm. Even

though they target approximate search, some of

their ideas have interesting connections to ours

(see §4). They group hypotheses that share partial

language model state (Li and Khudanpur, 2008)

reasoning over multiple hypotheses at once. They

fill a beam in best-first order by iteratively vis-

iting groups using a priority queue: if the top

group contains a single hypothesis, the hypothesis

is added to the beam, otherwise the group is parti-

tioned and the parts are pushed back to the queue.

More recently, Heafield et al. (2014) applied their

beam filling algorithm to phrase-based decoding.

3.2 Exact optimisation

Exact optimisation for monotone translation has

been done using A∗ search (Tillmann et al., 1997)

and finite-state operations (Kumar et al., 2006).

Och et al. (2001) design near-admissible heuris-

tics for A∗ and decode very short sentences (6-

14 words) for a word-based model (Brown et al.,

1993) with a maximum distortion strategy (d = 3).

Zaslavskiy et al. (2009) frame phrase-based de-

coding as an instance of a generalised Travel-

ling Salesman Problem (TSP) and rely on ro-

bust solvers to perform decoding. In this view,

a salesman graph encodes the translation options,

with each node representing a biphrase. Non-

overlapping constraints are imposed by the TSP

solver, rather than encoded directly in the sales-

man graph. They decode only short sentences

(17 words on average) using a 2-gram LM due to

salesman graphs growing too large.4

Chang and Collins (2011) relax phrase-based

models w.r.t. the non-overlapping constraints,

which are replaced by soft penalties through La-

grangian multipliers, and intersect the LM com-

ponent exhaustively. They do employ a maximum

distortion limit (d = 4), thus the problem they

tackle is no longer NP-complete. Rush and Collins

(2011) relax a hierarchical phrase-based model

(Chiang, 2005)5 w.r.t. the LM component. The

translation forest and the language model trade

their weights (through Lagrangian multipliers) so

as to ensure agreement on what each component

believes to be the maximum. In both approaches,

when the dual converges to a compliant solution,

the solution is guaranteed to be optimal. Other-

4Exact decoding had been similarly addressed with Inte-
ger Linear Programming (ILP) in the context of word-based
models for very short sentences using a 2-gram LM (Ger-
mann et al., 2001). Riedel and Clarke (2009) revisit that for-
mulation and employ a cutting-plane algorithm (Dantzig et
al., 1954) reaching 30 words.

5In hierarchical translation, reordering is governed by a
synchronous context-free grammar and the underlying prob-
lem is no longer NP-complete. Exact decoding remains in-
feasible because the intersection between the translation for-
est and the target LM is prohibitively slow.
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wise, a subset of the constraints is explicitly added

and the dual optimisation is repeated. They handle

sentences above average length, however, resort-

ing to compact rulesets (10 translation options per

input segment) and using only 3-gram LMs.

In the context of hierarchical models, Aziz et

al. (2013) work with unpruned forests using up-

perbounds. Their approach is the closest to ours.

They also employ a coarse-to-fine strategy with

the OS∗ framework (Dymetman et al., 2012), and

investigate unbiased sampling in addition to op-

timisation. However, they start from a coarser

upperbound with unigram probabilities, and their

refinement strategies are based on exhaustive in-

tersections with small n-gram matching automata.

These refinements make forests grow unmanage-

able too quickly. Because of that, they only deal

with very short sentences (up to 10 words) and

even then decoding is very slow. We design bet-

ter upperbounds and a more efficient refinement

strategy. Moreover, we decode long sentences us-

ing language models of order 3 to 5.6

4 Approach

4.1 Exact optimisation with OS∗

Dymetman et al. (2012) introduced OS∗, a unified

view of optimisation and sampling which can be

seen as a cross between adaptive rejection sam-

pling (Robert and Casella, 2004) and A∗ optimisa-

tion (Hart et al., 1968). In this framework, a com-

plex goal distribution is upperbounded by a sim-

pler proposal distribution for which optimisation

(and sampling) is feasible. This proposal is incre-

mentally refined to be closer to the goal until the

maximum is found (or until the sampling perfor-

mance exceeds a certain level).

Figure 2 illustrates exact optimisation with OS∗.

Suppose f is a complex target goal distribution,

such that we cannot optimise f , but we can as-

sess f(d) for a given d. Let g(0) be an upper-

bound to f , i.e., g(0)(d) ≥ f(d) for all d ∈ D(x).
Moreover, suppose that g(0) is simple enough to

be optimised efficiently. The algorithm proceeds

by solving d0 = argmaxd g
(0)(d) and comput-

6The intuition that a full intersection is wasteful is also
present in (Petrov et al., 2008) in the context of approximate
search. They start from a coarse distribution based on au-
tomatic word clustering which is refined in multiple passes.
At each pass, hypotheses are pruned a posteriori on the basis
of their marginal probabilities, and word clusters are further
split. We work with upperbounds, rather than word clusters,
with unpruned distributions, and perform exact optimisation.

f

g(0)

d0
D(x)

g(1)

d1d
*

f1

f0

f*

Figure 2: Sequence of incrementally refined up-

perbound proposals.

ing the quantity r0 = f(d0)/g(0)(d0). If r0 were

sufficiently close to 1, then g(0)(d0) would be

sufficiently close to f(d0) and we would have

found the optimum. However, in the illustration

g(0)(d0) ≫ f(d0), thus r0 ≪ 1. At this point

the algorithm has concrete evidence to motivate

a refinement of g(0) that can lower its maximum,

bringing it closer to f∗ = maxd f(d) at the cost

of some small increase in complexity. The re-

fined proposal must remain an upperbound to f .

To continue with the illustration, suppose g(1) is

obtained. The process is repeated until eventually

g(t)(dt) = f(dt), where dt = argmaxd g
(t)(d),

for some finite t. At which point dt is the opti-

mum derivation d∗ from f and the sequence of

upperbounds provides a proof of optimality.7

4.2 Model

We work with phrase-based models in a standard

parameterisation (Equation 2). However, to avoid

having to deal with NP-completeness, we con-

strain reordering to happen only within a limited

window given by a notion of distortion limit. We

require that the last source word covered by any

biphrase must be within d words from the leftmost

uncovered source position (Lopez, 2009). This is

a widely used strategy and it is in use in the Moses

toolkit (Koehn et al., 2007).8

Nevertheless, the problem of finding the best

7If d is a maximum from g and g(d) = f(d), then it is
easy to show by contradiction that d is the actual maximum
from f : if there existed d

′ such that f(d′) > f(d), then it
follows that g(d′) ≥ f(d′) > f(d) = g(d), and hence d

would not be a maximum for g.
8A distortion limit characterises a form of pruning that

acts directly in the generative capacity of the model leading
to induction errors (Auli et al., 2009). Limiting reordering
like that lowers complexity to a polynomial function of I and
an exponential function of the distortion limit.
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derivation under the model remains impractica-

ble due to nonlocal parameterisation (namely,

the n-gram LM component). The weighted set

〈D(x), f(d)〉, which represents the objective, is

a complex hypergraph which we cannot afford

to construct. We propose to construct instead a

simpler hypergraph for which optimisation by dy-

namic programming is feasible. This proxy rep-

resents the weighted set
〈

D(x), g(0)(d)
〉

, where

g(0)(d) ≥ f(d) for every d ∈ D(x). Note that

this proposal contains exactly the same translation

options as in the original decoding problem. The

simplification happens only with respect to the pa-

rameterisation. Instead of intersecting the com-

plete n-gram LM distribution explicitly, we im-

plicitly intersect a simpler upperbound view of it,

where by simpler we mean lower-order.

g(0)(d) =

l
∑

i=1

ω(y[ei]) +

l
∑

i=1

φ(ei) +

l−1
∑

i=1

δ(ei, ei−1) (3)

Equation 3 shows the model we use as a proxy

to perform exact optimisation over f . In compar-

ison to Equation 2, the term
∑l
i=1 ω(y[ei]) replaces

ψ(y) = λψpLM
(y). While ψ weights the yield y

taking into account all n-grams (including those

crossing the boundaries of phrases), ω weights

edges in isolation. Particularly, ω(y[ei]) =
λψqLM

(y[ei]), where y[ei] returns the sequence of

target words (a target phrase) associated with the

edge, and q
LM

(·) is an upperbound on the true LM

probability p
LM

(·) (see §4.3). It is obvious from

Equation 3 that our proxy model is much simpler

than the original — the only form of nonlocal pa-

rameterisation left is the distortion penalty, which

is simple enough to represent exactly.

The program in Figure 3 illustrates the con-

struction of
〈

D(x), g(0)(d)
〉

. A nonterminal item

[l, C, r] stores: the leftmost uncovered position l
and a truncated coverage vector C (together they

track d input positions); and the rightmost position

r most recently translated (necessary for the com-

putation of the distortion penalty). Observe how

nonterminal items do not store the LM state.9 The

rule ADJACENT expands derivations by concate-

nation with a biphrase
〈

xi
′

i → yj
′

j

〉

starting at the

leftmost uncovered position i = l. That causes

the coverage window to move ahead to the next

leftmost uncovered position: l′ = l + α1(C) + 1,

9Drawing a parallel to (Heafield et al., 2013a), a nontermi-
nal node in our hypergraph groups derivations while exposing
only an empty LM state.

ITEM
[

[1, I + 1], {0, 1}d−1, [0, I + 1]
]

GOAL [I, ∅, I + 1]
AXIOMS

〈BOS→ BOS〉

[1, 0d−1, 0] : ω(BOS)
ADJACENT

[l, C, r]
〈

xi
′

i
φr−−→ yj

′

j

〉

[l′, C′, i′] : φr ⊗ δ(r, i′)⊗ ω(yj
′

j )

i = l
⊕i′−l

k=i−l ck = 0̄

where l′ = l + α1(C) + 1
C′ ≪ α1(C) + 1

NON-ADJACENT

[l, C, r]
〈

xi
′

i
φr−−→ yj

′

j

〉

[l, C′, i′] : φr ⊗ δ(r, i′)⊗ ω(yj
′

j )

i > l
⊕i′−l

k=i−l ck = 0̄
|r − i+ 1| ≤ d
|i′ − l + 1| ≤ d

where c′k = ck if k < i− l or k > i′ − l else 1̄
ACCEPT

[I + 1, C, r]

[I + 1, ∅, I + 1] : δ(r, I + 1)⊗ ω(EOS)
r ≤ I

Figure 3: Specification of the initial proposal hy-

pergraph. This program allows the same reorder-

ings as (Lopez, 2009) (see logic WLd), however,

it does not store LM state information and it uses

the upperbound LM distribution ω(·).

where α1(C) returns the number of leading 1s in

C, and C ′ ≪ α1(C) + 1 represents a left-shift.

The rule NON-ADJACENT handles the remaining

cases i > l provided that the expansion skips at

most d input words |r − i+ 1| ≤ d. In the conse-

quent, the window C is simply updated to record

the translation of the input span i..i′. In the non-

adjacent case, a gap constraint imposes that the

resulting item will require skipping no more than

d positions before the leftmost uncovered word is

translated |i′ − l + 1| ≤ d.10 Finally, note that

deductions incorporate the weighted upperbound

ω(·), rather than the true LM component ψ(·).11

4.3 LM upperbound and Max-ARPA

Following Carter et al. (2012) we compute an

upperbound on n-gram conditional probabilities

by precomputing max-backoff weights stored in

a “Max-ARPA” table, an extension of the ARPA

format (Jurafsky and Martin, 2000).

A standard ARPA table T stores entries

10This constraint prevents items from becoming dead-ends
where incomplete derivations require a reordering step larger
than d. This is known to prevent many search errors in beam
search (Chang and Collins, 2011).

11Unlike Aziz et al. (2013), rather than unigrams only, we
score all n-grams within a translation rule (including incom-
plete ones).
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〈Z,Z.p,Z.b〉, where Z is an n-gram equal to the

concatenation Pz of a prefix P with a word z, Z.p

is the conditional probability p(z|P), and Z.b is

a so-called “backoff” weight associated with Z.

The conditional probability of an arbitrary n-gram

p(z|P), whether listed or not, can then be recov-

ered from T by the simple recursive procedure

shown in Equation 4, where tail deletes the first

word of the string P.

p(z|P) =







p(z| tail(P)) Pz 6∈ T and P 6∈ T
p(z| tail(P))× P.b Pz 6∈ T and P ∈ T
Pz.p Pz ∈ T

(4)

The optimistic version (or “max-backoff”) q of

p is defined as q(z|P) ≡ maxH p(z|HP), where

H varies over all possible contexts extending the

prefix P to the left. The Max-ARPA table allows to

compute q(z|P) for arbitrary values of z and P. It

is constructed on the basis of the ARPA table T by

adding two columns to T : a column Z.q that stores

the value q(z|P) and a column Z.m that stores an

optimistic version of the backoff weight.

These columns are computed offline in two

passes by first sorting T in descending order of

n-gram length.12 In the first pass (Algorithm 1),

we compute for every entry in the table an opti-

mistic backoff weight m. In the second pass (Algo-

rithm 2), we compute for every entry an optimistic

conditional probability q by maximising over 1-

word history extensions (whose .q fields are al-

ready known due to the sorting of T ).

The following Theorem holds (see proof be-

low): For an arbitrary n-gram Z = Pz, the prob-

ability q(z|P) can be recovered through the proce-

dure shown in Equation 5.

q(z|P) =







p(z|P) Pz 6∈ T and P 6∈ T
p(z|P)× P.m Pz 6∈ T and P ∈ T
Pz.q Pz ∈ T

(5)

Note that, if Z is listed in the table, we return its

upperbound probability q directly. When the n-

gram is unknown, but its prefix is known, we take

into account the optimistic backoff weight m of the

prefix. On the other hand, if both the n-gram and

its prefix are unknown, then no additional context

could change the score of the n-gram, in which

case q(z|P) = p(z|P).
In the sequel, we will need the following defini-

tions. Suppose α = yJI is a substring of y = yM1 .

12If an n-gram is listed in T , then all its substrings must
also be listed. Certain pruning strategies may corrupt this
property, in which case we make missing substrings explicit.

Then p
LM

(α) ≡
∏J
k=I p(yk|y

k−1
1 ) is the contribu-

tion of α to the true LM score of y. We then ob-

tain an upperbound q
LM

(α) to this contribution by

defining q
LM

(α) ≡ q(yI |ǫ)
∏J
k=I+1 q(yk|y

k−1
I ).

Proof of Theorem. Let us first suppose that the length
of P is strictly larger than the order n of the language
model. Then for any H, p(z|HP) = p(z|P); this is be-
cause HP /∈ T and P /∈ T , along with all intermedi-
ary strings, hence, by (4), p(z|HP) = p(z| tail(HP)) =
p(z| tail(tail(HP))) = . . . = p(z|P). Hence q(z|P) =
p(z|P), and, because Pz /∈ T and P /∈ T , the theorem
is satisfied in this case.

Having established the theorem for |P| > n, we
now assume that it is true for |P| > m and prove by
induction that it is true for |P| = m. We use the
fact that, by the definition of q, we have q(z|P) =
maxx∈∆ q(z|xP). We have three cases to consider.
First, suppose that Pz /∈ T and P /∈ T . Then
xPz /∈ T and xP /∈ T , hence by induction q(z|xP) =
p(z|xP) = p(z|P) for any x, therefore q(z|P) =
p(z|P). We have thus proven the first case.
Second, suppose that Pz /∈ T and P ∈ T . Then, for
any x, we have xPz /∈ T , and:

q(z|P) = max
x∈∆

q(z|xP)

= max( max
x∈∆, xP/∈T

q(z|xP), max
x∈∆, xP∈T

q(z|xP)).

For xP /∈ T , by induction, q(z|xP) = p(z|xP) =
p(z|P), and therefore maxx∈∆, xP/∈T q(z|xP) =
p(z|P). For xP ∈ T , we have q(z|xP) = p(z|xP) ×
xP.m = p(z|P)× xP.b× xP.m. Thus, we have:

max
x∈∆, xP∈T

q(z|xP) = p(z|P)× max
x∈∆, xP∈T

xP.b×xP.m.

But now, because of lines 3 and 4 of Algorithm
1, P.m = maxx∈∆, xP∈T xP.b × xP.m, hence
maxx∈∆, xP∈T q(z|xP) = p(z|P) × P.m. Therefore,
q(z|P) = max(p(z|P), p(z|P)×P.m) = p(z|P)×P.m,
where we have used the fact that P.m ≥ 1 due to line 1
of Algorithm 1. We have thus proven the second case.
Finally, suppose that Pz ∈ T . Then, again,

q(z|P) = max
x∈∆

q(z|xP)

= max(

max
x∈∆, xPz/∈T, xP/∈T

q(z|xP),

max
x∈∆, xPz/∈T, xP∈T

q(z|xP),

max
x∈∆, xPz∈T

q(z|xP) ).

For xPz /∈ T, xP /∈ T , we have q(z|xP) =
p(z|xP) = p(z|P) = Pz.p, where the last equality is
due to the fact that Pz ∈ T . For xPz /∈ T, xP ∈ T , we
have q(z|xP) = p(z|xP)× xP.m = p(z|P)× xP.b×
xP.m = Pz.p× xP.b× xP.m. For xPz ∈ T , we have
q(z|xP) = xPz.q. Overall, we thus have:

q(z|P) = max( Pz.p,

max
x∈∆, xPz/∈T, xP∈T

Pz.p× xP.b× xP.m,

max
x∈∆, xPz∈T

xPz.q ).

Note that xPz ∈ T ⇒ xP ∈ T , and then one can

check that Algorithm 2 exactly computes Pz.q as this

maximum over three maxima, hence Pz.q = q(z|P).
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Algorithm 1 Max-ARPA: first pass

1: for Z ∈ T do
2: Z.m← 1
3: for x ∈ ∆ s.t xZ ∈ T do
4: Z.m← max(Z.m,xZ.b× xZ.m)
5: end for
6: end for

Algorithm 2 Max-ARPA: second pass

1: for Z = Pz ∈ T do
2: Pz.q← Pz.p
3: for x ∈ ∆ s.t xP ∈ T do
4: if xPz ∈ T then
5: Pz.q← max(Pz.q,xPz.q)
6: else
7: Pz.q← max(Pz.q,Pz.p× xP.b× xP.m)
8: end if
9: end for

10: end for

4.4 Search

The search for the true optimum derivation is il-

lustrated in Algorithm 3. The algorithm takes as

input the initial proposal distribution g(0)(d) (see

§4.2, Figure 3) and a maximum error ǫ (which we

set to a small constant 0.001 rather than zero, to

avoid problems with floating point precision). In

line 3 we find the optimum derivation d in g(0)

(see §4.5). The variable g∗ stores the maximum

score w.r.t. the current proposal, while the vari-

able f∗ stores the maximum score observed thus

far w.r.t. the true model (note that in line 5 we as-

sess the true score of d). In line 6 we start a loop

that runs until the error falls below ǫ. This error is

the difference (in log-domain) between the proxy

maximum g∗ and the best true score observed thus

far f∗.13 In line 7, we refine the current proposal

using evidence from d (see §4.6). In line 9, we

update the maximum derivation searching through

the refined proposal. In line 11, we keep track of

the best score so far according to the true model,

in order to compute the updated gap in line 6.

4.5 Dynamic Programming

Finding the best derivation in a proposal hyper-

graph is straightforward with standard dynamic

programming. We can compute inside weights

in the max-times semiring in time proportional

13Because g(t) upperbounds f everywhere, in optimisation
we have a guarantee that the maximum of f must lie in the
interval [f∗, g∗) (see Figure 2) and the quantity g∗ − f∗ is
an upperbound on the error that we incur if we early-stop the
search at any given time t. This bound provides a principled
criterion in trading accuracy for performance (a direction that
we leave for future work). Note that most algorithms for ap-
proximate search produce solutions with unbounded error.

Algorithm 3 Exact decoding

1: function OPTIMISE(g(0), ǫ)
2: t← 0 ⊲ step

3: d← argmax
d
g(t)(d)

4: g∗ ← g(t)(d)
5: f∗ ← f(d)
6: while (q∗ − f∗ ≥ ǫ) do ⊲ ǫ is the maximum error

7: g(t+1) ← refine(g(t),d) ⊲ update proposal
8: t← t+ 1
9: d← argmax

d
g(t)(d) ⊲ update argmax

10: g∗ ← g(t)(d)
11: f∗ ← max(f∗, f(d)) ⊲ update “best so far”
12: end while
13: return g(t), d
14: end function

to O(|V | + |E|) (Goodman, 1999). Once inside

weights have been computed, finding the Viterbi-

derivation starting from the root is straightforward.

A simple, though important, optimisation con-

cerns the computation of inside weights. The in-

side algorithm (Baker, 1979) requires a bottom-up

traverse of the nodes in V . To do that, we topolog-

ically sort the nodes in V at time t = 0 and main-

tain a sorted list of nodes as we refine g throughout

the search – thus avoiding having to recompute the

partial ordering of the nodes at every iteration.

4.6 Refinement

If a derivation d = argmaxd g
(t)(d) is such that

g(t)(d) ≪ f(d), there must be in d at least one n-

gram whose upperbound LM weight is far above

its true LM weight. We then lower g(t) locally by

refining only nonterminal nodes that participate in

d. Nonterminal nodes are refined by having their

LM states extended one word at a time.14

For an illustration, assume we are perform-

ing optimisation with a bigram LM. Suppose

that in the first iteration a derivation d0 =
argmaxd g

(0)(d) is obtained. Now consider an

edge in d0

[l, C, r, ǫ] αy1
w
−→ [l0, C0, r0, ǫ]

where an empty LM state is made explicit (with an

empty string ǫ) and αy1 represents a target phrase.

We refine the edge’s head [l0, C0, r0, ǫ] by creating

a node based on it, however, with an extended LM

state, i.e., [l0, C0, r0, y1]. This motivates a split

of the set of incoming edges to the original node,

such that, if the target projection of an incoming

14The refinement operation is a special case of a general
finite-state intersection. However, keeping its effect local to
derivations going through a specific node is non-trivial using
the general mechanism and justifies a tailored operation.
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edge ends in y1, that edge is reconnected to the

new node as below.

[l, C, r, ǫ] αy1
w
−→ [l0, C0, r0, y1]

The outgoing edges from the new node are

reweighted copies of those leaving the original

node. That is, outgoing edges such as

[l0, C0, r0, ǫ] y2β
w
−→

[

l′, C ′, r′, γ′
]

motivate edges such as

[l0, C0, r0, y1] y2β
w⊗w′

−−−→
[

l′, C ′, r′, γ′
]

where w′ = λψqLM
(y1y2)/q

LM
(y2) is a change in LM

probability due to an extended context.

Figure 4 is the logic program that constructs the

refined hypergraph in the general case. In com-

parison to Figure 3, items are now extended to

store an LM state. The input is the original hy-

pergraph G = 〈V,E〉 and a node v0 ∈ V to be

refined by left-extending its LM state γ0 with the

word y. In the program,
〈

uσ
w
−→ v

〉

with u,v ∈ V
and σ ∈ ∆∗ represents an edge in E. An item

[l, C, r, γ]
v

(annotated with a state v ∈ V ) rep-

resents a node (in the refined hypergraph) whose

signature is equivalent to v (in the input hyper-

graph). We start with AXIOMS by copying the

nodes in G. In COPY, edges from G are copied

unless they are headed by v0 and their target pro-

jections end in yγ0 (the extended context). Such

edges are processed by REFINE, which instead of

copying them, creates new ones headed by a re-

fined version of v0. Finally, REWEIGHT contin-

ues from the refined node with reweighted copies

of the edges leaving v0. The weight update repre-

sents a change in LM probability (w.r.t. the upper-

bound distribution) due to an extended context.

5 Experiments

We used the dataset made available by the Work-

shop on Statistical Machine Translation (WMT)

(Bojar et al., 2013) to train a German-English

phrase-based system using the Moses toolkit

(Koehn et al., 2007) in a standard setup. For

phrase extraction, we used both Europarl (Koehn,

2005) and News Commentaries (NC) totalling

about 2.2M sentences.15 For language modelling,

in addition to the monolingual parts of Europarl

15Pre-processing: tokenisation, truecasing and automatic
compound-splitting (German only). Following Durrani et al.
(2013), we set the maximum phrase length to 5.

INPUT

G = 〈V,E〉
v0 = [l0, C0, r0, γ0] ∈ V where γ0 ∈ ∆∗

y ∈ ∆
ITEM [l, C, r, γ ∈ ∆∗]
AXIOMS

[l, C, r, γ]
v

v ∈ V

COPY

[l, C, r, α]
u

〈

uβ
w
−→ v

〉

[l′, C′, r′, α′]
v

: w

v 6= v0 ∨ αβ 6= σyγ0

α, α′, β, σ ∈ ∆∗

REFINE

[l, C,R, α]
u

〈

uβ
w
−→ v0

〉

[l0, C0, r0, yγ0] : w

αβ = σyγ0

α, β, σ ∈ ∆∗

REWEIGHT

[l0, C0, r0, yγ0]
〈

v0σ
w
−→ v

〉

[l, C, r, γ]
v

: w ⊗ w′
σ, γ ∈ ∆∗

where w′ = λψ
q

LM
(yγ0)

q
LM

(γ0)

Figure 4: Local intersection via LM right state re-

finement. The input is a hypergraph G = 〈V,E〉,
a node v0 ∈ V singly identified by its carry

[l0, C0, r0, γ0] and a left-extension y for its LM

context γ0. The program copies most of the edges
〈

uσ
w
−→ v

〉

∈ E. If a derivation goes through v0

and the string under v0 ends in yγ0, the program

refines and reweights it.

and NC, we added News-2013 totalling about 25M

sentences. We performed language model interpo-

lation and batch-mira tuning (Cherry and Foster,

2012) using newstest2010 (2,849 sentence pairs).

For tuning we used cube pruning with a large beam

size (k = 5000) and a distortion limit d = 4. Un-

pruned language models were trained using lmplz

(Heafield et al., 2013b) which employs modified

Kneser-Ney smoothing (Kneser and Ney, 1995).

We report results on newstest2012.

Our exact decoder produces optimal translation

derivations for all the 3,003 sentences in the test

set. Table 1 summarises the performance of our

novel decoder for language models of order n = 3
to n = 5. For 3-gram LMs we also varied the dis-

tortion limit d (from 4 to 6). We report the average

time (in seconds) to build the initial proposal, the

total run time of the algorithm, the number of it-

erations N before convergence, and the size of the

hypergraph in the end of the search (in thousands

of nodes and thousands of edges).16

16The size of the initial proposal does not depend on LM
order, but rather on distortion limit (see Figure 3): on aver-
age (in thousands) |V0| = 0.6 and |E0| = 27 with d = 4,
|V0| = 1.3 and |E0| = 70 with d = 5, and |V0| = 2.5 and

1244



n d build (s) total (s) N |V | |E|

3 4 1.5 21 190 2.5 159

3 5 3.5 55 303 4.4 343

3 6 10 162 484 8 725

4 4 1.5 50 350 4 288

5 4 1.5 106 555 6.1 450

Table 1: Performance of the exact decoder in

terms of: time to build g(0), total decoding time in-

cluding build, number of iterations (N), and num-

ber of nodes and edges (in thousands) at the end of

the search.

It is insightful to understand how different as-

pects of the initial proposal impact on perfor-

mance. Increasing the translation option limit (tol)

leads to g(0) having more edges (this dependency

is linear with tol). In this case, the number of

nodes is only minimally affected — due to the pos-

sibility of a few new segmentations. The maxi-

mum phrase length (mpl) introduces in g(0) more

configurations of reordering constraints ([l, C] in

Figure 3). However, not many more, due to C
being limited by the distortion limit d. In prac-

tice, we observe little impact on time performance.

Increasing d introduces many more permutations

of the input leading to exponentially many more

nodes and edges. Increasing the order n of the LM

has no impact on g(0) and its impact on the overall

search is expressed in terms of a higher number of

nodes being locally intersected.

An increased hypergraph, be it due to addi-

tional nodes or additional edges, necessarily leads

to slower iterations because at each iteration we

must compute inside weights in timeO(|V |+|E|).
The number of nodes has the larger impact on the

number of iterations. OS∗ is very efficient in ig-

noring hypotheses (edges) that cannot compete for

an optimum. For instance, we observe that run-

ning time depends linearly on tol only through the

computation of inside weights, while the number

of iterations is only minimally affected.17 An in-

|E0| = 178 with d = 6. Observe the exponential depen-
dency on distortion limit, which also leads to exponentially
longer running times.

17It is possible to reduce the size of the hypergraph
throughout the search using the upperbound on the search
error g∗ − f∗ to prune hypotheses that surely do not stand
a chance of competing for the optimum (Graehl, 2005). An-
other direction is to group edges connecting the same nonter-
minal nodes into one partial edge (Heafield et al., 2013a) —
this is particularly convenient due to our method only visiting
the 1-best derivation from g(d) at each iteration.

n
Nodes at level m LM states at level m

0 1 2 3 4 1 2 3 4

3 0.4 1.2 0.5 - - 113 263 - -

4 0.4 1.6 1.4 0.3 - 132 544 212 -

5 0.4 2.1 2.4 0.7 0.1 142 790 479 103

Table 2: Average number of nodes (in thousands)

whose LM state encode an m-gram, and average

number of unique LM states of order m in the fi-

nal hypergraph for different n-gram LMs (d = 4
everywhere).

creased LM order, for a fixed distortion limit, im-

pacts much more on the number of iterations than

on the average running time of a single iteration.

Fixing d = 4, the average time per iteration is 0.1

(n = 3), 0.13 (n = 4) and 0.18 (n = 5). Fixing a

3-gram LM, we observe 0.1 (d = 4), 0.17 (d = 5)

and 0.31 (d = 6). Note the exponential growth

of the latter, due to a proposal encoding exponen-

tially many more permutations.

Table 2 shows the average degree of refine-

ment of the nodes in the final proposal. Nodes

are shown by level of refinement, where m indi-

cates that they store m words in their carry. The

table also shows the number of unique m-grams

ever incorporated to the proposal. This table il-

lustrates well how our decoding algorithm moves

from a coarse upperbound where every node stores

an empty string to a variable-order representation

which is sufficient to prove an optimum derivation.

In our approach a complete derivation is opti-

mised from the proxy model at each iteration. We

observe that over 99% of these derivations project

onto distinct strings. In addition, while the opti-

mum solution may be found early in the search, a

certificate of optimality requires refining the proxy

until convergence (see §4.1). It turns out that most

of the solutions are first encountered as late as in

the last 6-10% of the iterations.

We use the optimum derivations obtained with

our exact decoder to measure the number of search

errors made by beam search and cube pruning with

increasing beam sizes (see Table 3). Beam search

reaches optimum derivations with beam sizes k ≥
500 for all language models tested. Cube prun-

ing, on the other hand, still makes mistakes at

k = 1000. Table 4 shows translation quality

achieved with different beam sizes for cube prun-

ing and compares it to exact decoding. Note that

for k ≥ 104 cube pruning converges to optimum
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k
Beam search Cube pruning

3 4 5 3 4 5

10 938 1294 1475 2168 2347 2377

102 19 60 112 613 999 1126

103 0 0 0 29 102 167

104 0 0 0 0 4 7

Table 3: Beam search and cube pruning search er-

rors (out of 3,003 test samples) by beam size using

LMs of order 3 to 5 (d = 4).

order 3 4 5

k d = 4 d = 5 d = 6 d = 4 d = 4

10 20.47 20.13 19.97 20.71 20.69

102 21.14 21.18 21.08 21.73 21.76

103 21.27 21.34 21.32 21.89 21.91

104 21.29 21.37 21.37 21.92 21.93

OS∗ 21.29 21.37 21.37 21.92 21.93

Table 4: Translation quality in terms of BLEU as

a function of beam size in cube pruning with lan-

guage models of order 3 to 5. The bottom row

shows BLEU for our exact decoder.

derivations in the vast majority of the cases (100%

with a 3-gram LM) and translation quality in terms

of BLEU is no different from OS∗. However, with

k < 104 both model scores and translation quality

can be improved. Figure 5 shows a finer view on

search errors as a function of beam size for LMs

of order 3 to 5 (fixed d = 4). In Figure 6, we fix

a 3-gram LM and vary the distortion limit (from 4

to 6). Dotted lines correspond to beam search and

dashed lines correspond to cube pruning.

6 Conclusions and Future Work

We have presented an approach to decoding with

unpruned hypergraphs using upperbounds on the

language model distribution. The algorithm is an

instance of a coarse-to-fine strategy with connec-

tions to A∗ and adaptive rejection sampling known

as OS∗. We have tested our search algorithm us-

ing state-of-the-art phrase-based models employ-

ing robust language models. Our algorithm is able

to decode all sentences of a standard test set in

manageable time consuming very little memory.

We have performed an analysis of search errors

made by beam search and cube pruning and found

that both algorithms perform remarkably well for

phrase-based decoding. In the case of cube prun-

ing, we show that model score and translation
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Figure 5: Search errors made by beam search and

cube pruning as a function of beam-size.

102 103 104

[log] Beam size

100

101

102

103

104

[l
o
g
] 

S
e
a
rc

h
 e

rr
o
rs

Search errors in newstest2012 (3-gram LM)

CP d=4
CP d=5
CP d=6
BS d=4
BS d=5
BS d=6

Figure 6: Search errors made by beam search and

cube pruning as a function of the distortion limit

(decoding with a 3-gram LM).

quality can be improved for beams k < 10, 000.

There are a number of directions that we intend

to investigate to speed up our decoder, such as: (1)

error-safe pruning based on search error bounds;

(2) use of reinforcement learning to guide the de-

coder in choosing which n-gram contexts to ex-

tend; and (3) grouping edges into partial edges,

effectively reducing the size of the hypergraph and

ultimately computing inside weights in less time.
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