
promoting access to White Rose research papers 
   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in Methods of 
Functional Analysis and Topology.  
 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/9798  
 

 
 
Published paper 
Applebaum, D. (2006) Brownian motion and Levy processes on locally compact 
groups, Methods of Functional Analysis and Topology, 12 (2), pp. 101-112 

 

http://eprints.whiterose.ac.uk/9798�
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Abstract

It is shown that every Lévy process on a locally compact group G is determined by a sequence
of one-dimensional Brownian motions and an independent Poisson random measure. As a conse-
quence, we are able to give a very straightforward proof of sample path continuity for Brownian
motion in G. We also show that every Lévy process on G is of pure jump type, when G is totally
disconnected.

MSC 2000: 60B15,60H20,60G44,22D05

1 Introduction

Let G be a separable locally compact group. A Lévy process on G is essentially a
stochastic process with stationary and independent increments. In the case where G =
Rd, the study of these is a classical area of investigation for probability theory which
continues to yield a wealth of interesting results. Two recent monographs on this subject
are [11] and [27]. A key to the evolution of the theory at this level is the celebrated Lévy-
Khintchine formula, which characterises Lévy processes by means of their characteristic
functions.
In the case where G is a Lie group, the mathematical development begins with a beauti-
ful paper by G.A.Hunt [21] which classifies the infinitesimal generators of the associated
Markov semigroup. This result is equivalent to the Lévy-Khintchine formula in Euclid-
ean space. More recently, it was shown that the paths of the process were determined
by a Brownian motion in Euclidean space and an independent Poisson random measure
on the group [3]. For a recent survey of results in the Lie group case, see [5].

∗Most of this work was carried out while the author was employed by the Nottingham Trent University
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Now consider the case where G is an arbitrary locally compact group. For abelian G,
Lévy processes (or equivalently, weakly continuous convolution semigroups of probabil-
ity measures) were investigated in the 1960s. In this case, a Fourier transform can be
built with the aid of the dual group, and a Lévy-Khinchine formula is obtained which
directly generalises the Euclidean space case. A good source for this is Chapter IV of
Parthasarathy [25].
In the non-abelian case, probabilistic investigations were greatly assisted by discoveries
made during the 1950’s, in the course of trying to solve Hilbert’s 5th problem, which
demonstrated that any locally compact group contained a projective limit of Lie groups
as an open neighborhood of the identity [18]. In his seminal monograph [20] (Chapter
IV), Heyer was able to generalise Hunt’s result in the Lie group case, to show that
the generator of a Lévy process is a sum of three mappings, which can be interpreted
probabilistically as describing drift, diffusion and jumps, respectively.
Recent developments which have maintained interest include;

1. Born [12] has shown that any projective limit of Lie algebras has a projective
basis. This enabled him [13] to rewrite Heyer’s formula for the generator, in a
form where it is transparently an infinite dimensional generalisation of Hunt’s
result in the Lie group case. This new formulation is much more amenable to
probabilistic investigations. We remark that Heyer and Pap [19] have recently
extended Born’s result to study the generation of two parameter semigroups of
probability measures, which correspond to additive processes, i.e. those having
independent, but not necessarily stationary, increments.

2. In a series of recent papers, Bendikov and Saloff-Coste have obtained important
new results about Brownian motion on compact groups, see e.g. [9] for studies
of sample path regularity, and [8] for investigations of the case where the law
of the process is absolutely continuous with respect to Haar measure, and has a
continuous density. These results have interesting implications for the potential
theory of associated harmonic sheaves.

There are a number of interesting examples of locally compact groups which are not Lie
groups. These include the infinite-dimensional torus and the p-adic solenoid. A nice
account of both of these, which is in a pertinent form for the present article, can be
found in section 6 of [19].
The organisation of this paper is as follows. In the first section, we gather together
all the results we need on projective limits of Lie groups and Lie algebras and describe
the key results of Born on projective bases [12]. In the second part, we show that the
results of [3] described above for Lie groups, pass over directly to the locally compact
case. So any Lévy process on G is determined by a Euclidean Brownian motion, coupled
to the Lie algebra through a given projective basis, and an independent Poisson random
measure which lives on the group.
We then discuss Brownian motion on G, which is defined to be a Lévy process which
is Gaussian (see [20], Chapter VI, section 2) . We give a short probabilistic proof of
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sample path continuity, Although this result has been proved in a more general setting
by Siebert [29], the proof presented here has the advantage of brevity. Finally we
generalise a result due to Evans [16] in the abelian case, whereby every Lévy process in
a totally disconnected group is shown to be of pure jump type.

Notation. All topological groups discussed in this article, will be assumed to be Haus-
dorff. If G is a topological group, then G0 will denote the connected component of the
identity e. B(G) is the σ-algebra of Borel subsets of G. If G is a locally compact group,
Bb(G) and C0(G) are the Banach spaces (when equipped with the supremum norm)
of bounded Borel functions and continuous functions which vanish at infinity, respec-
tively. For each τ ∈ G,Lτ denotes left translation, which is the isometric isomorphism
of Bb(G) given by (Lτf)(σ) = f(τσ), for each f ∈ Bb(G), σ ∈ G. K(G) is the norm
dense subalgebra of C0(G) comprising smooth functions of compact support. If I is an
index set and (fi, i ∈ I) is a family of real-valued functions on G, we write f : G → R
as f =

⊕
i∈I fi whenever

1. The domains (Dom(fi), i ∈ I) form a partition of G.

2. f(σ) = fi(σ) for all σ ∈ Dom(fi).

3. fi = 0 for all but a finite number of i ∈ I.

If G is a Lie group, then its Lie algebra will sometimes be denoted by L(G).

Acknowledgements. I would like to thank Herbert Heyer for drawing my attention
to Born’s papers, and Sasha Bendikov for helpful discussions.

2 Projective limits and the Lie algebra of a locally compact
group

Let (I, <) be a partially ordered set. Suppose that for every i ∈ I, there exists a locally
compact group Gi, such that for every i, j ∈ I with i < j, there is a continuous open
homomorphism πij : Gj → Gi, such that πik = πij ◦πjk, for all i < j < k. The projective
limit lim

←−i∈I

Gi is the closed subgroup
{
(xi, i ∈ I) ∈ ∏

i∈I Gi; xi = πij(xj) for all i, j ∈ I, i < j
}
.

Yamabe [30] has proved that every connected locally compact group can be represented
as a projective limit of Lie groups.
Let (Hi, i ∈ I) be a family of compact, normal subgroups of a locally compact group
G. We say that they form a Lie system if

1. i < j ⇒ Hj ⊆ Hi.

2.
⋂

i∈I Hi = {e}.
3. G/Hi is a Lie group for all i ∈ I.

A locally compact group G is said to be Lie projective if there exists a Lie system
(Hi, i ∈ I) such that G = lim

←−i∈I

G/Hi. Gluškov [18] has proved that in every locally
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compact group G there exists an open Lie projective subgroup G1 ⊇ G0. Note that the
Lie system so associated to G1 is not necessarily unique.
We now turn our attention to Lie algebras. A topological Lie algebra is a (not necessarily
finite dimensional) Lie algebra for which the Lie bracket is jointly continuous in the
vector topology. Projective limits of Lie algebras were introduced by Lashoff [24].
Suppose that for every i ∈ I, there exists a topological Lie algebra gi, such that for every
i, j ∈ I with i < j, there is a continuous open Lie algebra homomorphism pij : gj → gi,
such that pik = pij ◦ pjk, for all i < j < k. The projective limit lim

←−i∈I

gi is the closed

subalgebra
{
(Xi, i ∈ I) ∈ ∏

i∈I gi; Xi = pij(Xj) for all i, j ∈ I, i < j
}
.

The relationship between projective Lie groups and projective Lie algebras is straight-
forward when G = lim

←−i∈I

Gi, with each Gi a Lie group. In this case g = lim
←−i∈I

L(Gi)

is a topological Lie algebra wherein pij = dπij, for each i, j ∈ I, i < j. We then call
g the Lie algebra of the locally compact group G and sometimes denote it by L(G).
There is a natural notion of exponential map from L(G) to G which works as follows.
If X = (Xi, i ∈ I) ∈ L(G), then

exp(X) = (exp(Xi), i ∈ I).

For each X ∈ L(G), the map t → exp(tX) is a continuous homomorphism from R to
G. We define the left invariant vector field XL associated to X in the obvious way, i.e.

(XLf)(σ) = lim
h→0

f(σ exp(hX))− f(σ)

h
,

where f ∈ C(G) is such that the limit on the right hand side exists for all σ ∈ G. We
say that f is uniformly differentiable with respect to X ∈ L(G) if the above limit exists
in the supremum norm, for all f ∈ C0(G).
If G is an arbitrary locally compact group, we can apply Gluškov’s theorem to define
the Lie algebra L(G) of G to be that of G1, so that

L(G) = lim
←−i∈I

L (G1/Hi) .

From now on, we will always work within this context.
For each i ∈ I, πi is the canonical surjection from G1 onto G1/Hj and dπi is then the
canonical surjection from L(G) onto L(G1/Hj).
Born [12] introduced the following important concept:-
Let S be a set for which I ⊆ S. A family (Xi, i ∈ S) in L(G)−{0} is called a projective
basis if for each j ∈ I, there is a finite subset Sj ⊂ S, such that (dπj(Xi), i ∈ Sj) is a
basis for L(G/Hj) and dπj(Xi) = 0 whenever i /∈ Sj.

Theorem 2.1 (Born) If G is a locally compact group and G1 is a Lie projective open
subgroup of G, then there exists a Lie system for G1 with respect to which L(G) has a
projective basis (Xi, i ∈ S).
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The proof can be found in [12].

We need the following spaces of differentiable functions which were introduced by Born
[13]. For each k ∈ N, j ∈ I, let Ck(G/Hj) be the linear subspace of C0(G/Hj) comprising
functions which are k-times uniformly differentiable with respect to k-fold products from
the set (dπj(Xi), i ∈ Sj). We define

Ck(G1) =
⋃
j∈I

{f j ◦ πj, f
j ∈ Ck(G/Hj)},

and Ck(G) =
⊕
z∈Z

{Lzf, f ∈ Ck(G1)},

where Z generates a representative set of left cosets of G1.
For each k ∈ N, Ck(G) is norm dense in C0(G). The space D(G) of infinitely differen-
tiable (with respect to the given projective basis) functions of compact support on G
is constructed in a similar manner to the above (see also [14]). D(G)+ will denote the
non-negative elements of D(G).
A weak co-ordinate system ([13]) for G at e (relative to a given projective basis (Xi, i ∈
S)) is a family (ki, i ∈ S), such that ki ∈ D(G), (Xikj)(e) = δij and ki(σ) = −ki(σ

−1),
for each i, j ∈ S, σ ∈ G.

Theorem 2.2 (Born) Let G be a locally compact group and G1 be a Lie projective
open subgroup of G. Suppose that there exists a projective basis (Xi, i ∈ S) for L(G)
corresponding to some Lie system of G1. Then there exists a weak co-ordinate system
relative to (Xi, i ∈ S).

See [13] for the proof.

We will need a final result from [12]. Let F(S) be the set of all finite subsets of S. It
is a directed set by inclusion.

Proposition 2.1 If (ti, i ∈ S) with each ti ∈ R, there is exactly one X ∈ L(G) for
which

X = lim
J∈F(S)

∑
j∈J

tjXj.

If X ∈ L(G) is as in Proposition 2.1, we write X =
∑

i∈S tiXi. The associated left-
invariant vector field is XL =

∑
i∈S tiX

L
i . We can similarly define second-order differ-

ential operators of the form A =
∑

i,j∈S aijX
L
i XL

j , where each aij ∈ R.

3 Lévy Processes in Locally Compact Groups

Let G be a locally compact separable group and let (Ω,F , (Ft, t ≥ 0), P ) be a stochastic
base, so that (Ω,F , P ) is a probability space and (Ft, t ≥ 0) is a filtration of σ-algebras
satisfying the standard conditions of right-continuity and completeness. φ = (φ(t), t ≥
0) will denote a Ft-adapted process defined on (Ω,F , P ), and taking values in G.
We say that φ is a Lévy process in G if it satisfies the following:
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1. φ has stationary and independent left increments

2. φ(0) = e (a.s.)

3. φ is stochastically continuous, i.e.

lim
s→t

P (φ(s)−1φ(t) ∈ A) = 0

for all A ∈ B(G) with e /∈ Ā.

Now let (pt, t ≥ 0) be the law of the Lévy process φ, then it follows from the definition
that (pt, t ≥ 0) is a weakly continuous convolution semigroup of probability measures
on G, where the convolution operation is defined for measures µ and ν on G by

(µ ∗ ν)(A) =

∫

G

µ(dτ)ν(τ−1A),

for each A ∈ B(G). So that in particular we have, for all s, t ≥ 0

ps+t = ps ∗ pt and wklimt→0pt = δe, (3.1)

where δe is Dirac measure concentrated at e. Since φ is a Markov process, we obtain a
contraction semigroup of linear operators (T (t), t ≥ 0) on Bb(G) by the prescription

(T (t)f)(τ) = E(f(τφ(t))) =

∫

G

f(τσ)pt(dσ), (3.2)

for each t ≥ 0, f ∈ C0(G), τ ∈ G. In fact (T (t), t ≥ 0) is a Feller semigroup in that

T (t)(C0(G)) ⊆ C0(G) and lim
t→0

||T (t)f − f || = 0

for each f ∈ C0(G).
Note that LτT (t) = T (t)Lτ , for each τ ∈ G, t ≥ 0. Let A : Dom(A) → C0(G) be the
infinitesimal generator of (T (t), t ≥ 0). In order to describe A explicitly, we need the
notion of Lévy measure ([20], p.296). This is a measure ν on (G−{e},B(G−{e})) for
which

1. ν(U c) < ∞ for every neighbourhood of the identity U in G.

2.
∫

G−{e} f(σ)ν(dσ) < ∞ for all f ∈ D(G)+ with f(e) = 0.

We have the following key result for the structure of A. The explicit form given below
in terms of a projective basis is due to Born [13]. This is based on an earlier result by
Heyer [20] pp. 300-8, who expressed the right hand side of (3.3) below as a sum of three
different types of mapping.
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Theorem 3.1 Let G be a locally compact group with fixed projective basis (Xi, i ∈ S)
and weak co-ordinate system (ki, i ∈ S). If φ = (φ(t), t ≥ 0) is a Lévy process in G,
then C2(G) ⊆ Dom(A) and for all f ∈ C2(G), σ ∈ G,

Af(σ) =
∑
i∈S

biXL
i f(σ) +

∑
i,j∈S

aijXL
i XL

j f(σ)

+

∫

G−{e}
(f(στ)− f(σ)−

∑
i∈S

ki(τ)XL
i f(σ))ν(dτ) (3.3)

where b = (bi, i ∈ S) ∈ RS, a = (aij, i, j ∈ S) is a non-negative symmetric matrix and ν
is a Lévy measure on G− {e}.
The triple (b, a, ν) is called the characteristics of the Lévy process φ.
We remark that when we evaluate these at a specific f ∈ C2(G), each of the sums in
(3.3) becomes finite.
It was shown by Heyer [20], p.308 that the Lévy measure ν is uniquely determined by
the convolution semigroup (pt, t ≥ 0) by means of

∫

G−{e}
f(σ)ν(dσ) = lim

t→0

1

t

∫

G

f(σ)pt(dσ), (3.4)

for all f ∈ K(G− {e}).
In the sequel, we will without further comment, utilise the specific projective basis and
associated weak co-ordinate system of Theorem 3.1.
From now on we will assume that the group G has a countable basis for its topology. It
then follows that G is metrizable (see e.g. [23], Chapter 4) and we can find a countable
Lie system (Hn, n ∈ N) in G1. We say that a Lévy process is càdlàg if almost all of it
paths are right continuous with left limits. In this case, we write ∆φ(t) = φ(t−)−1φ(t)
for each t ≥ 0, where φ(t−) is the left limit. Note that t → ∆φ(t) takes at most
countably many non-zero values on compact intervals.
The main result of this section is the following theorem. The proof is essentially the
same as the Lie group case which was established in [3] and so we will just sketch
the main steps rather than repeating the full argument. In the following, we take
Ft = σ{φ(s), 0 ≤ s ≤ t}, for each t ≥ 0.

Theorem 3.2 If φ = (φ(t), t ≥ 0) is a càdlàg Lévy process in G with infinitesimal
generator A of the form (3.3), then there exists

• an Ft-adapted Poisson random measure N on R+ × (G− {e}),
• a sequence B = (Bn, n ∈ N), which is independent of N , of one-dimensional
Ft-adapted Brownian motions with mean zero and covariance Cov(Bn(t), Bm(t) =
2tamn, for each t ≥ 0,m, n ∈ N,
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such that for each f ∈ C2(G), t ≥ 0,

f(φ(t)) = f(e) +
∑

n∈N

∫ t

0

(XL
n f)(φ(s−))dBn(s) +

∫ t

0

Af(φ(s−))ds +

+

∫ t+

0

∫

G−{e}
(f(φ(s−)τ)− f(φ(s−))Ñ(ds, dτ), (3.5)

where Ñ(ds, dτ) = N(ds, dτ)− dsν(dτ).
Furthermore, φ is uniquely determined by B and N and

Ft = σ{Bn(s), N((s, t]× E); n ∈ N, 0 ≤ s ≤ t, E ∈ B(G− {e})},
for each t ≥ 0.

Proof (Sketch). For each 0 ≤ s ≤ t < ∞, σ ∈ G, we introduce the notation φs,t(σ) =

σφ(s)−1φ(t). Now fix s ≥ 0. For each f ∈ C2(G), σ ∈ G, define M f,σ
s = (M f,σ

s,t , t ≥ s)
by

M f,σ
s,t = f(φs,t(σ))− f(e)−

∫ t

s

Af(φs,u(σ))du.

Then M f,σ
s is a centred L2-martingale. We can compute the associated Meyer angle

bracket to obtain

〈M f,σ1
s,t ,M g,σ2

s,t 〉 =

∫ t

s

B(f, g)(φs,u(σ1), φs,u(σ2))du,

for each f, g ∈ C2(G), σ1, σ2 ∈ G, where the “carré de champ”

B(f, g)(ρ1, ρ2) = 2
∞∑

m,n=1

am,n(XL
mf)(ρ1)(X

L
n g)(ρ2)+

∫

G−{e}
(f(ρ1τ)−f(ρ1))(g(ρ2τ)−g(ρ2))ν(dτ),

for each ρ1, ρ2 ∈ G. Now let P = {0 = t0 < t1 < t2 < · · ·} be a partition of R+ with

mesh δ(P) = maxn∈N(tn− tn−1) < ∞. We define a centred L2-martingale (Y P,f,σ
t , t ≥ 0)

by

Y P,f,σ
t =

∑

n∈N
M f,σ

t∧tn−1,t∧tn ,

for each t ≥ 0. Then we obtain another centred L2-martingale (Y f,σ
t , t ≥ 0) by

Y f,σ
t = L2 − lim

δ(P)→0
Y P,f,σ

t ,

for each t ≥ 0. Moreover, for each f, g ∈ C2(G), σ1, σ2 ∈ G, t ≥ 0, we have

〈Y f,σ1
t , Y g,σ2

t 〉 = tB(f, g)(σ1, σ2) and M f,σ
s,t =

∫ t

s

dY f,φs,u−(σ)
u ,
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in the sense of the non-linear stochastic integral of Fujiwara and Kunita [17], lemma
4.2.
For each t ≥ 0, let Y f,σ

t = Y
(c),f,σ
t +Y

(d),f,σ
t be the unique decomposition into continuous

and discontinuous centred martingales. For each 0 ≤ s ≤ t < ∞, E ∈ B(G−{e}), define

N((s, t], E) = #{0 ≤ s < u ≤ t; ∆φ(u) ∈ E}.
Then N extends to a Poisson random measure on R+×(G−{e}) with intensity measure
ν, and for each t ≥ 0,

Y
(d),f,σ
t =

∫ t+

0

∫

G−{e}
(f(στ)− f(σ)Ñ(ds, dτ).

For each n ∈ N, t ≥ 0, define Bn(t) = Y
(c),kn,e
t . Then for each m,n ∈ N, 〈Bm(t), Bn(t)〉 =

2tam,n. Hence for each n ∈ N, t ≥ 0, (Bn(t), t ≥ 0) is a Brownian motion, by Lévy’s
characterisation, and for each t ≥ 0,

Y
(c),f,σ
t =

∑
n∈N

XL
n f(σ)Bn(t),

from which the required result follows. ¤
Example: The Compound Poisson Process

Let (Xn, n ∈ N) be a sequence of i.i.d. random variables taking values in G, with
common law q, and let (M(t), t ≥ 0) be a (non-negative-integer-valued) Poisson process,
with intensity λ > 0, which is independent of all the Xn’s. We define the compound
Poisson process by

φ(0) = e; φ(t) = X1X2 · · ·XN(t) for t > 0.

Elementary calculations, show that (3.5) can be written as:

f(φ(t)) = f(e) +

∫ t+

0

∫

G−{e}
(f(φ(s−)τ)− f(φ(s−)))N(ds, dτ),

for all f ∈ C0(G), t ≥ 0. We then find that A is a bounded linear operator in C0(G)
with

Af(σ) =

∫

G−{e}
(f(στ)− f(σ))ν(dτ),

for all f ∈ C0(G), σ ∈ G, where ν(·) = λq(·). See [4] for details.

A consequence of Theorem 3.2 is the strong Markov property for the Lévy process φ.
Let T be an Ft-stopping time and for each t ≥ 0, define the process φT = (φT (t), t ≥ 0)
by

φT (t) = φ(T )−1φ(T + t).

9



Let FT denote the stopped σ-algebra so that

FT = σ{A ∈ F ; A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}.
Theorem 3.3 (Strong Markov Property) If φ is a càdlàg Lévy process in G, then
φT is a càdlàg Lévy process on G, which is independent of FT and has the same char-
acteristics as φ.

Proof. Once we have Theorem 3.2, the proof proceeds along the same lines as that of
the case where G is a Lie group. We refer to theorem 2 of [4] for the details. ¤

4 Brownian Motion In Locally Compact Groups

Let φ be a càdlàg Lévy process in G. We say that φ is a Brownian motion if the
associated convolution semigroup of laws (pt, t ≥ 0) is Gaussian, i.e.

lim
t→0

1

t
pt(U

c) = 0,

for every neighbourhood U of e in G.

Note. This definition is due to Siebert [28] (based on considerations by Courrège [15]
section 8, in the Euclidean case). It has been extensively developed by Heyer [20],
section 6.2.

Theorem 4.1 If φ is a Lévy process in G with characteristics (b, a, ν), then φ is a
Brownian motion in G if and only if ν = 0 and a 6= 0.

Proof. This is due to Heyer [20], theorem 6.2.20, pp. 440 - 1. ¤
By Theorem 4.1, we see that a càdlàg Lévy process is a Brownian motion in G if and
only if the action of its infinitesimal generator on C2(G) is given by

A =
∑

m,n∈N
amnXL

mXL
n +

∑

n∈N
bnX

L
n ,

with the matrix a 6= 0.

Corollary 4.1 If φ is a càdlàg Lévy process in G, then φ is a Brownian motion if
and only if there exists a sequence B = (Bn, n ∈ N) of one-dimensional Ft-adapted
Brownian motions with mean zero and non-zero covariance Cov(Bn(t), Bm(t) = 2tamn,
for each t ≥ 0,m, n ∈ N, such that for each f ∈ C2(G), t ≥ 0,

f(φ(t)) = f(e) +
∑

n∈N

∫ t

0

(XL
n f)(φ(s))dBn(s) +

∑

m,n∈N

∫ t

0

amnX
L
mXL

n f(φ(s))ds

+
∑

n∈N

∫ t

0

bnX
L
n f(φn(s))ds. (4.6)
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Proof This follows immediately from Theorems 3.2 and 4.1 . ¤
If a = 0, in (4.6), then φ(t) = exp

(
t
∑

n∈N bnXn

)
, for each t ≥ 0. We call such a

deterministic process a pure drift.

Theorem 4.2 If φ is a Lévy process, then the sample paths of φ are a.s. continuous if
and only if φ is a Brownian motion or a pure drift.

Proof. Let N be the Poisson random measure associated to φ. Since E(N(t, A)) = tν(A),
for all t ≥ 0, A ∈ B(G−{e}), it follows by Theorem 4.1 that φ is a Brownian motion or
a pure drift if and only if N = 0 (a.s.). By the construction in Theorem 3.2, this holds
if and only if ∆φ(t) = 0 (a.s.), for each t ≥ 0 and the result follows. ¤
Note. For a proof that Gaussianity or pure drift and (a.s.) path-continuity are equiv-
alent in a more general setting, see Siebert [29]. In the symmetric case (see below), a.s.
continuity of Brownian motion in G may also be proved by checking that the semigroup
acting in L2(G,m) has the property 〈T (t)u, v〉 = o(t), as t → 0, for all continuous func-
tions u and v having disjoint compact supports (see Bendikov [10]). In [6], pp. 1210
-11, it is pointed out that this holds whenever the generator is a local operator, which
is certainly true in this case.

The following result exhibits the projective structure of the Brownian motion φ. Let
τ = inf{t ≥ 0; φ(t) /∈ G1}.
Theorem 4.3 For each 0 ≤ t < τ, n ∈ N, (πn(φ(t)), t ≥ 0) is a Brownian motion in
the Lie group G/Hn.

Proof. For each n ∈ N, let dn = dim(G/Hn) and let X
(n)
i1

, . . . , X
(n)
idn

be the basis of

L(G/Hn) given by X
(n)
ij

= dπn(Xj), for each j ∈ Sn. Let f ∈ C2(G) be of the form

f = fn ◦ πn, where fn ∈ C2(G/Hn). Write φn(t) = πn(φ(t)), for each n ∈ N, t ≥ 0. By
Corollary 4.1, we obtain

fn(φn(t)) = fn(e) +

i
(n)
dn∑

j=i
(n)
1

∫ t

0

(XL
j fn)(φn(s))dBn(s)

+

i
(n)
dn∑

j,k=i
(n)
1

∫ t

0

ajkX
L
j XL

k fn(φn(s))ds +

i
(n)
dn∑

j=i
(n)
1

∫ t

0

bjX
L
j fn(φn(s))ds.

But then we have that φn is the solution of the Stratonovitch stochastic differential
equation

dφn(t) =

i
(n)
dn∑

j=i
(n)
1

XL
j (φn(t)) ◦ dBn(t) +

i
(n)
dn∑

j=i
(n)
1

bjX
L
j (φn(t)),
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with initial condition φn(0) = e.
Hence φn is a (left-invariant) Brownian motion on G/Hn (see Itô [22]), as required. ¤
Of course, τ = ∞ (a.s.) if G is Lie projective, i.e. G = G1.

Note. In the proof of Theorem 4.3, we showed each projection of Brownian motion onto
the Lie group G/Hn satisfies a Stratonovitch stochastic differential equation. Readers
may speculate if it is possible to represent φ itself as a solution of an equation of the
form:

“dφ(t) =
∑

n∈N
XL

n (φ(t)) ◦ dBn(t) +
∑

n∈N
bnX

L
n (φ(t))”.

In fact, this could be carried out using techniques applied by Albeverio and Daletskii
to the construction of left-invariant diffusions on infinite products of Lie groups [1, 2];
however this requires that the Xn’s satisfy a number of constraints that seem unnatural
within the present context.

A Brownian motion φ is said to be symmetric if

pt(A) = pt(A
−1),

for all A ∈ B(G). The following result is well-known (see e.g. [7], p.1282). We indicate
a proof for completeness

Theorem 4.4 If a Brownian motion is symmetric then the action of its infinitesimal
generator on C2(G) is given by

A =
∑

m,n∈N
amnX

L
mXL

n .

Proof. (Sketch). Let (T (t), t ≥ 0) be the Markov semigroup acting in C0(G). Restrict
to D(G) and then extend to a Markov semigroup acting in L2(G,m), where m is a
right-invariant Haar measure. Then (T (t), t ≥ 0) is easily seen to be self-adjoint and so
has a self-adjoint generator. Hence b = 0. ¤

5 Lévy Processes in Totally Disconnected Groups

In this section we take G to be totally disconnected. Every Lévy process in G is then
of “pure jump” type as the following theorem shows:-

Theorem 5.1 If φ is a Lévy process in a totally disconnected locally compact group G,
then there exists a Poisson random measure N on R+ × (G − {e}) such that for all
f ∈ C2(G), t ≥ 0,

1. if kn /∈ L1(G− {e}, ν) for all n ∈ N

f(φ(t)) = f(e) +

∫ t+

0

∫

G−{e}
(f(φ(s−)τ)− f(φ(s−))Ñ(ds, dτ) (5.7)

12



+

∫ t+

0

∫

G−{e}
[f(φ(s−)τ)− f(φ(s−))−

∑

n∈N
kn(τ)XL

n f(φ(s−))]ν(dτ)ds;

2. if kn ∈ L1(G− {e}, ν) for all n ∈ N,

f(φ(t)) = f(e) +

∫ t+

0

∫

G−{e}
(f(φ(s−)τ)− f(φ(s−))N(ds, dτ). (5.8)

Proof. Let φ be a Lévy process with characteristics (b, a, ν). We assume, without loss of
generality, that the support of ν is the whole of G−{e}. Let (Un, n ∈ N) be a sequence
of neighborhoods of the identity in G for which U1 ⊂ G and Un ↓ {e} as n → ∞. We
define a sequence of (finite) Lévy measures (νn, n ∈ N) by the prescription

νn(A) = ν(A ∩ U c
n),

for all A ∈ B(G − {e}). Let φn be a Lévy process with characteristics (b, a, νn). For

each r ∈ N, let (T
(r)
k , k ∈ N) be the jump times of the Poisson process (N(t, U c

r ), t ≥ 0).

For each T
(r)
k ≤ t < T

(r)
k+1, (3.5) yields

f(φr(t)) = f(φr(T
(r)
k )) +

∑

n∈N

∫ t

T
(r)
k

(XL
n f)(φr(s−))dBn(s) +

∫ t

T
(r)
k

Af(φr(s−)ds

−
∫ t

T
(r)
k

∫

Uc
r

(f(φr(s−)τ)− f(φr(s−))ν(dτ)ds

= f(φr(T
(r)
k )) +

∑

n∈N

∫ t

T
(r)
k

(XL
n f)(φr(s−))dBn(s)

+

∫ t

T
(r)
k

{∑

n∈N

(
bn −

∫

Uc
r

kn(τ)ν(dτ)

)
XL

n f(φr(s−))

+
∑

m,n∈N
amnX

L
mXL

n f(φr(s−))

}
ds.

By Corollary 4.1 and Theorem 4.2, it follows that φr has continuous sample paths for all

T
(r)
k ≤ t < T

(r)
k+1. But G is totally disconnected and so φr is constant on each [T

(r)
k , T

(r)
k+1).

Hence

f(φr(t)) = f(e) +

∫ t+

0

∫

Uc
r

(f(φr(s−)τ)− f(φr(s−))N(ds, dτ),

and consequently a = 0 and bn −
∫

Uc
r
kn(τ)ν(dτ) = 0, for all r, n ∈ N. But then we

must have bn =
∫

Uc
1
kn(τ)ν(dτ) and

∫
Uc

r∩U1
kn(τ)ν(dτ) = 0, for each r, n ∈ N. Hence if

kn /∈ L1(G − {e}, ν), we deduce (5.7) immediately from (3.5). If kn ∈ L1(G − {e}, ν),
we have ∫

U1−{e}
kn(τ)ν(dτ) = lim

r→∞

∫

Uc
r∩U1

kn(τ)ν(dτ) = 0,
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for all n ∈ N, and (5.8) follows. ¤
In fact, it is not difficult to verify that if φ satisfies (5.8) then it is of the form

φ(t) =
∏

0≤s≤t

∆φ(s),

for each t ≥ 0, where the product is time-ordered from left to right.

Notes

• A similar result to that of Theorem 5.1 was established by Evans [16] in the case
where G is abelian.

• If G is discrete, then every Lévy process on G is of the form (5.8). Its generator
A then takes the form

(Af)(σ) =

∫

G

(f(στ)− f(σ))ν(dτ),

for f ∈ C2(G), σ ∈ G. This representation was obtained by Ramaswami [26] using
different techniques and it was further shown that ν is finite, so that A extends to
a bounded operator on C0(G) and φ is a compound Poisson process.
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